1
|
Neiteler A, Borooah S, Ross JA. Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelial Cells for the Study of Macular Degeneration. Methods Mol Biol 2025; 2924:101-112. [PMID: 40307638 DOI: 10.1007/978-1-0716-4530-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
We have developed a method to reliably generate retinal pigment epithelium (RPE) in bulk from human induced pluripotent stem cells (iPSCs). These iPSC-RPE showed a typical RPE-like morphology with pigmentation and expressed typical RPE markers. The iPSC-RPE also show a transepithelial electrical resistance and can phagocytose photoreceptor outer segments, indicating that they are also functional. Large quantities of iPSC-RPE can be generated with this method through serial expansion for disease modeling and high-throughput screenings.
Collapse
Affiliation(s)
- Almar Neiteler
- Tissue Injury and Repair Group, Chancellor's Building, University of Edinburgh, Edinburgh, UK
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - James A Ross
- Tissue Injury and Repair Group, Chancellor's Building, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Neiteler A, Palakkan AA, Gallagher KM, Ross JA. Oxidative stress and docosahexaenoic acid injury lead to increased necroptosis and ferroptosis in retinal pigment epithelium. Sci Rep 2023; 13:21143. [PMID: 38036571 PMCID: PMC10689458 DOI: 10.1038/s41598-023-47721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex disease caused by different genetic and environmental risk factors leading to loss of cells in the central part of the retina. Oxidative stress appears to be an important environmental risk factor that contributes to both the initiation and progression of AMD. Retinal pigment epithelium (RPE) plays an important role in regulating oxidative stress in the retina and is one of the main retinal cell types affected in AMD. A main function of RPE is to phagocytose photoreceptor outer segments (POS) which are rich in the polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA), making this cell type potentially more susceptible to oxidative stress-induced lipid peroxidation which can lead to cell death. RPE is known to undergo necrotic cell death in response to oxidative stress. The aim of this study was to determine if DHA in POS can increase oxidative damage to RPE. It was found that RPE undergo increased lipid peroxidation and decreased cell viability when stressed with hydrogen peroxide in combination with DHA or POS. H2O2-induced oxidative stress was found to cause both ferroptosis and necroptosis. However, the ferroptosis regulator acyl-CoA synthetase long-chain family member 4 (ACSL4) was found to be downregulated in RPE exposed to H2O2 and this effect was exacerbated when the RPE cells were simultaneously treated with DHA. Together, these results show a response of RPE when stressed which will likely be overwhelmed under disease conditions such as AMD resulting in cell death.
Collapse
Affiliation(s)
- Almar Neiteler
- Tissue Injury and Repair Group, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Anwar A Palakkan
- Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Anna Nagar, Madurai, 625020, India
| | - Kevin M Gallagher
- Tissue Injury and Repair Group, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - James A Ross
- Tissue Injury and Repair Group, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
3
|
Gao F, Tom E, Lieffrig SA, Finnemann SC, Skowronska-Krawczyk D. A novel quantification method for retinal pigment epithelium phagocytosis using a very-long-chain polyunsaturated fatty acids-based strategy. Front Mol Neurosci 2023; 16:1279457. [PMID: 37928068 PMCID: PMC10622967 DOI: 10.3389/fnmol.2023.1279457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction The vertebrate retinal pigment epithelium (RPE) lies adjacent to the photoreceptors and is responsible for the engulfment and degradation of shed photoreceptor outer segment fragments (POS) through receptor-mediated phagocytosis. Phagocytosis of POS is critical for maintaining photoreceptor function and is a key indicator of RPE functionality. Popular established methods to assess RPE phagocytosis rely mainly on quantifying POS proteins, especially their most abundant protein rhodopsin, or on fluorescent dye conjugation of bulk, unspecified POS components. While these approaches are practical and quantitative, they fail to assess the fate of POS lipids, which make up about 50% of POS by dry weight and whose processing is essential for life-long functionality of RPE and retina. Methods We have developed a novel very-long-chain polyunsaturated fatty acids (VLC-PUFA)-based approach for evaluating RPE phagocytic activity by primary bovine and rat RPE and the human ARPE-19 cell line and validated its results using traditional methods. Results and discussion This new approach can be used to detect in vitro the dynamic process of phagocytosis at varying POS concentrations and incubation times and offers a robust, unbiased, and reproducible assay that will have utility in studies of POS lipid processing.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Emily Tom
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Stephanie A. Lieffrig
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, New York, NY, United States
| | - Silvia C. Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, New York, NY, United States
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Karema-Jokinen V, Koskela A, Hytti M, Hongisto H, Viheriälä T, Liukkonen M, Torsti T, Skottman H, Kauppinen A, Nymark S, Kaarniranta K. Crosstalk of protein clearance, inflammasome, and Ca 2+ channels in retinal pigment epithelium derived from age-related macular degeneration patients. J Biol Chem 2023:104770. [PMID: 37137441 DOI: 10.1016/j.jbc.2023.104770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023] Open
Abstract
Degeneration and/or dysfunction of retinal pigment epithelium (RPE) is generally detected as the formation of intra- and extracellular protein aggregates, called lipofuscin and drusen, respectively, in patients with age-related macular degeneration (AMD), the leading cause of blindness in the elderly population. These clinical hallmarks are linked to dysfunctional protein homeostasis and inflammation, and furthermore, are both regulated by changes in intracellular Ca2+ concentration. While many other cellular mechanisms have been considered in the investigations of AMD-RPE, there has been relatively little work on understanding the interactions of protein clearance, inflammation, and Ca2+ dynamics in disease pathogenesis. Here we established induced pluripotent stem cell-derived RPE from two patients with advanced AMD and from an age- and gender-matched control subject. We studied autophagy and inflammasome activation under disturbed proteostasis in these cell lines and investigated changes in their intracellular Ca2+ concentration and L-type voltage-gated Ca2+ channels. Our work demonstrated dysregulated autophagy and inflammasome activation in AMD-RPE accompanied by reduced intracellular free Ca2+ levels. Interestingly, we found currents through L-type voltage-gated Ca2+ channels to be diminished and showed these channels to be significantly localized to intracellular compartments in AMD-RPE. Taken together, the alterations in Ca2+ dynamics in AMD-RPE together with dysregulated autophagy and inflammasome activation indicate an important role for Ca2+ signaling in AMD pathogenesis, providing new avenues for the development of therapeutic approaches.
Collapse
Affiliation(s)
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heidi Hongisto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Taina Viheriälä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Liukkonen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Tommi Torsti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Soile Nymark
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Finland, Immuno-Ophthalmology, School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland.
| |
Collapse
|
5
|
Todorova V, Merolla L, Karademir D, Wögenstein GM, Behr J, Ebner LJA, Samardzija M, Grimm C. Retinal Layer Separation (ReLayS) method enables the molecular analysis of photoreceptor segments and cell bodies, as well as the inner retina. Sci Rep 2022; 12:20195. [PMID: 36424523 PMCID: PMC9691741 DOI: 10.1038/s41598-022-24586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Understanding the physiology of the retina, and especially of the highly polarized photoreceptors, is essential not only to broaden our knowledge of the processes required for normal vision, but also to develop effective therapies to prevent or slow retinal degenerative diseases. However, the molecular analysis of photoreceptors is a challenge due to the heterogeneity of the retinal tissue and the lack of easy and reliable methods for cell separation. Here we present the ReLayS method-a simple technique for the separation of photoreceptor segments (PS) containing both inner and outer segments, outer nuclear layer (ONL), and inner retina (InR) that contains the remaining retinal layers. The layer-specific material isolated from a mouse half-retina with the ReLayS method was sufficient for protein isolation and Western blotting or RNA isolation and real-time PCR studies. The separation of PS, ONL, and InR was successfully validated by Western blotting and real-time PCR using proteins and genes with known expression profiles within the retina. Furthermore, the separation of the PS from the ONL enabled the detection of light-driven translocation of transducin from the PS to the soma. ReLayS is a simple and useful method to address protein and possibly metabolites distribution in photoreceptor compartments in various situations including development, ageing, and degenerative diseases.
Collapse
Affiliation(s)
- Vyara Todorova
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Luca Merolla
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Duygu Karademir
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Gabriele M Wögenstein
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Julian Behr
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Lynn J A Ebner
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Zurich, Switzerland.
| |
Collapse
|
6
|
Farnoodian M, Bose D, Khristov V, Susaimanickam PJ, Maddileti S, Mariappan I, Abu-Asab M, Campos M, Villasmil R, Wan Q, Maminishkis A, McGaughey D, Barone F, Gundry RL, Riordon DR, Boheler KR, Sharma R, Bharti K. Cell-autonomous lipid-handling defects in Stargardt iPSC-derived retinal pigment epithelium cells. Stem Cell Reports 2022; 17:2438-2450. [DOI: 10.1016/j.stemcr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
|
7
|
Customized strategies for high-yield purification of retinal pigment epithelial cells differentiated from different stem cell sources. Sci Rep 2022; 12:15563. [PMID: 36114268 PMCID: PMC9481580 DOI: 10.1038/s41598-022-19777-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractRetinal pigment epithelial (RPE) cell dysfunction and death are characteristics of age-related macular degeneration. A promising therapeutic option is RPE cell transplantation. Development of clinical grade stem-cell derived RPE requires efficient in vitro differentiation and purification methods. Enzymatic purification of RPE relies on the relative adherence of RPE and non-RPE cells to the culture plate. However, morphology and adherence of non-RPE cells differ for different stem cell sources. In cases whereby the non-RPE adhered as strongly as RPE cells to the culture plate, enzymatic method of purification is unsuitable. Thus, we hypothesized the need to customize purification strategies for RPE derived from different stem cell sources. We systematically compared five different RPE purification methods, including manual, enzymatic, flow cytometry-based sorting or combinations thereof for parameters including cell throughput, yield, purity and functionality. Flow cytometry-based approach was suitable for RPE isolation from heterogeneous cultures with highly adherent non-RPE cells, albeit with lower yield. Although all five purification methods generated pure and functional RPE, there were significant differences in yield and processing times. Based on the high purity of the resulting RPE and relatively short processing time, we conclude that a combination of enzymatic and manual purification is ideal for clinical applications.
Collapse
|
8
|
Zhang T, Huang X, Liu S, Bai X, Zhu X, Clegg DO, Jiang M, Sun X. Determining the optimal stage for cryopreservation of human embryonic stem cell-derived retinal pigment epithelial cells. Stem Cell Res Ther 2022; 13:454. [PMID: 36064625 PMCID: PMC9446586 DOI: 10.1186/s13287-022-03141-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Human embryonic stem cell-derived retinal pigment epithelial cells (hESC-derived RPE) are a promising source for cell-replacement therapy to treat retinal degenerative diseases, but research on RPE cryopreservation is limited. This study aimed to determine the best phase for RPE cryopreservation to preserve the post-thaw function and uncover the mechanism underlying RPE freezing tolerance. Methods hESC-derived RPE cells were cryopreserved at various time points after seeding. After thawing, the survival and attachment rates, RPE marker gene expression, apical-basal polarity, PEDF secretion, transepithelial resistance, and phagocytotic ability of post-thaw RPE cells were evaluated. RNA sequencing was performed on RPE cells at three-time points, differentially expressed genes were identified, and gene ontology, Kyoto encyclopedia of genes and genomes, and protein–protein interaction analyses were used to investigate the key pathways or molecules associated with RPE cell freezing tolerance. Results RPE frozen at passage 2 day 5 (P2D5) had the highest cell viability and attachment after thawing. They also retained properly localized expression of RPE marker genes and biological functions such as PEDF secretion, high transepithelial resistance, and phagocytic ability. The RNA-sequencing analysis revealed that RPE cells at P2D5 expressed high levels of cell cycle/DNA replication and ECM binding associated genes, as well as THBS1, which may serve as a possible hub gene involved in freezing tolerance. We also confirmed that the RPE cells at P2D5 were in the exponential stage with active DNA replication. Conclusions We propose that freezing hESC-derived RPE cells during their exponential phase results in the best post-thawing outcome in terms of cell viability and preservation of RPE cell properties and functions. The high expression levels of the cell cycle and ECM binding associated genes, particularly THBS1, may contribute to better cell recovery at this stage. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03141-2.
Collapse
Affiliation(s)
- Ting Zhang
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 100 Haining Road, Shanghai, 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Xianyu Huang
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 100 Haining Road, Shanghai, 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Sujun Liu
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 100 Haining Road, Shanghai, 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Xinyue Bai
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 100 Haining Road, Shanghai, 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xinyue Zhu
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 100 Haining Road, Shanghai, 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Dennis O Clegg
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, USA
| | - Mei Jiang
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China. .,Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 100 Haining Road, Shanghai, 200080, China. .,National Clinical Research Center for Eye Diseases, Shanghai, China. .,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| | - Xiaodong Sun
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 100 Haining Road, Shanghai, 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
9
|
Baba K, Goyal V, Tosini G. Circadian Regulation of Retinal Pigment Epithelium Function. Int J Mol Sci 2022; 23:2699. [PMID: 35269840 PMCID: PMC8910459 DOI: 10.3390/ijms23052699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a single layer of cells located between the choriocapillaris vessels and the light-sensitive photoreceptors in the outer retina. The RPE performs physiological processes necessary for the maintenance and support of photoreceptors and visual function. Among the many functions performed by the RPE, the timing of the peak in phagocytic activity by the RPE of the photoreceptor outer segments that occurs 1-2 h. after the onset of light has captured the interest of many investigators and has thus been intensively studied. Several studies have shown that this burst in phagocytic activity by the RPE is under circadian control and is present in nocturnal and diurnal species and rod and cone photoreceptors. Previous investigations have demonstrated that a functional circadian clock exists within multiple retinal cell types and RPE cells. However, the anatomical location of the circadian controlling this activity is not clear. Experimental evidence indicates that the circadian clock, melatonin, dopamine, and integrin signaling play a key role in controlling this rhythm. A series of very recent studies report that the circadian clock in the RPE controls the daily peak in phagocytic activity. However, the loss of the burst in phagocytic activity after light onset does not result in photoreceptor or RPE deterioration during aging. In the current review, we summarized the current knowledge on the mechanism controlling this phenomenon and the physiological role of this peak.
Collapse
Affiliation(s)
| | | | - Gianluca Tosini
- Department of Pharmacology & Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA; (K.B.); (V.G.)
| |
Collapse
|
10
|
Asatryan A, Calandria JM, Kautzmann MAI, Jun B, Gordon WC, Do KV, Bhattacharjee S, Pham TL, Bermúdez V, Mateos MV, Heap J, Bazan NG. New Retinal Pigment Epithelial Cell Model to Unravel Neuroprotection Sensors of Neurodegeneration in Retinal Disease. Front Neurosci 2022; 16:926629. [PMID: 35873810 PMCID: PMC9301569 DOI: 10.3389/fnins.2022.926629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells sustain photoreceptor integrity, and when this function is disrupted, retinal degenerations ensue. Herein, we characterize a new cell line from human RPE that we termed ABC. These cells remarkably recapitulate human eye native cells. Distinctive from other epithelia, RPE cells originate from the neural crest and follow a neural development but are terminally differentiated into "epithelial" type, thus sharing characteristics with their neuronal lineages counterparts. Additionally, they form microvilli, tight junctions, and honeycomb packing and express distinctive markers. In these cells, outer segment phagocytosis, phagolysosome fate, phospholipid metabolism, and lipid mediator release can be studied. ABC cells display higher resistance to oxidative stress and are protected from senescence through mTOR inhibition, making them more stable in culture. The cells are responsive to Neuroprotectin D1 (NPD1), which downregulates inflammasomes and upregulates antioxidant and anti-inflammatory genes. ABC gene expression profile displays close proximity to native RPE lineage, making them a reliable cell system to unravel signaling in uncompensated oxidative stress (UOS) and retinal degenerative disease to define neuroprotection sites.
Collapse
Affiliation(s)
- Aram Asatryan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Jorgelina M Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Khanh V Do
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Thang L Pham
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Vicente Bermúdez
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Melina Valeria Mateos
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Jessica Heap
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| |
Collapse
|
11
|
Zhang Q, Presswalla F, Ali RR, Zacks DN, Thompson DA, Miller JML. Pharmacologic activation of autophagy without direct mTOR inhibition as a therapeutic strategy for treating dry macular degeneration. Aging (Albany NY) 2021; 13:10866-10890. [PMID: 33872219 PMCID: PMC8109132 DOI: 10.18632/aging.202974] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Dry age-related macular degeneration (AMD) is marked by the accumulation of extracellular and intracellular lipid-rich deposits within and around the retinal pigment epithelium (RPE). Inducing autophagy, a conserved, intracellular degradative pathway, is a potential treatment strategy to prevent disease by clearing these deposits. However, mTOR inhibition, the major mechanism for inducing autophagy, disrupts core RPE functions. Here, we screened autophagy inducers that do not directly inhibit mTOR for their potential as an AMD therapeutic in primary human RPE culture. Only two out of more than thirty autophagy inducers tested reliably increased autophagy flux in RPE, emphasizing that autophagy induction mechanistically differs across distinct tissues. In contrast to mTOR inhibitors, these compounds preserved RPE health, and one inducer, the FDA-approved compound flubendazole (FLBZ), reduced the secretion of apolipoprotein that contributes to extracellular deposits termed drusen. Simultaneously, FLBZ increased production of the lipid-degradation product β-hydroxybutyrate, which is used by photoreceptor cells as an energy source. FLBZ also reduced the accumulation of intracellular deposits, termed lipofuscin, and alleviated lipofuscin-induced cellular senescence and tight-junction disruption. FLBZ triggered compaction of lipofuscin-like granules into a potentially less toxic form. Thus, induction of RPE autophagy without direct mTOR inhibition is a promising therapeutic approach for dry AMD.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Feriel Presswalla
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Robin R. Ali
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- KCL Centre for Cell and Gene Therapy, London, England WC2R 2LS, United Kingdom
| | - David N. Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Debra A. Thompson
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jason ML. Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
12
|
Ando S, Hashida N, Yamashita D, Kawabata T, Asao K, Kawasaki S, Sakurai K, Yoshimori T, Nishida K. Rubicon regulates A2E-induced autophagy impairment in the retinal pigment epithelium implicated in the pathology of age-related macular degeneration. Biochem Biophys Res Commun 2021; 551:148-154. [PMID: 33740621 DOI: 10.1016/j.bbrc.2021.02.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022]
Abstract
Waste product deposition and light stress in the retinal pigment epithelium (RPE) are crucial factors in the pathogenesis of various retinal degenerative diseases, including age-related macular degeneration (AMD), a leading cause of vision loss in elderly individuals worldwide. Given that autophagy in the RPE suppresses waste accumulation, determining the molecular mechanism by which autophagy is compromised in degeneration is necessary. Using polarized human RPE sheets, we found that bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E), a major toxic fluorophore of lipofuscin, causes significant impairment of autophagy and the simultaneous upregulation of Rubicon, a negative regulator of autophagy. Importantly, this impairment was reversed in Rubicon-specific siRNA-treated RPE sheets. In a retinal functional analysis using electroretinograms (ERGs), mice with the RPE-specific deletion of Rubicon showed no significant differences from control cre-expressing mice but presented partially but significantly enhanced amplitudes compared with Atg7 knockout mice. We also found that an inflammatory reaction in the retina in response to chronic blue light irradiation was alleviated in mice with the RPE-specific deletion of Rubicon. In summary, we propose that upregulating basal autophagy by targeting Rubicon is beneficial for protecting the RPE from functional damage with ageing and the inflammatory reaction caused by light-induced cellular stress.
Collapse
Affiliation(s)
- Satoru Ando
- Department of Ocular Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Ako Research Institute, Otsuka Pharmaceutical Co., Ltd, Ako, Hyogo, Japan
| | - Noriyasu Hashida
- Department of Ocular Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Daisuke Yamashita
- Department of Ocular Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Ako Research Institute, Otsuka Pharmaceutical Co., Ltd, Ako, Hyogo, Japan
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Kazunobu Asao
- Department of Ocular Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Kawasaki
- Department of Ocular Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazushi Sakurai
- Department of Ocular Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Ako Research Institute, Otsuka Pharmaceutical Co., Ltd, Ako, Hyogo, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kohji Nishida
- Department of Ocular Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
13
|
Lynn SA, Johnston DA, Scott JA, Munday R, Desai RS, Keeling E, Weaterton R, Simpson A, Davis D, Freeman T, Chatelet DS, Page A, Cree AJ, Lee H, Newman TA, Lotery AJ, Ratnayaka JA. Oligomeric Aβ 1-42 Induces an AMD-Like Phenotype and Accumulates in Lysosomes to Impair RPE Function. Cells 2021; 10:413. [PMID: 33671133 PMCID: PMC7922851 DOI: 10.3390/cells10020413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease-associated amyloid beta (Aβ) proteins accumulate in the outer retina with increasing age and in eyes of age-related macular degeneration (AMD) patients. To study Aβ-induced retinopathy, wild-type mice were injected with nanomolar human oligomeric Aβ1-42, which recapitulate the Aβ burden reported in human donor eyes. In vitro studies investigated the cellular effects of Aβ in endothelial and retinal pigment epithelial (RPE) cells. Results show subretinal Aβ-induced focal AMD-like pathology within 2 weeks. Aβ exposure caused endothelial cell migration, and morphological and barrier alterations to the RPE. Aβ co-localized to late-endocytic compartments of RPE cells, which persisted despite attempts to clear it through upregulation of lysosomal cathepsin B, revealing a novel mechanism of lysosomal impairment in retinal degeneration. The rapid upregulation of cathepsin B was out of step with the prolonged accumulation of Aβ within lysosomes, and contrasted with enzymatic responses to internalized photoreceptor outer segments (POS). Furthermore, RPE cells exposed to Aβ were identified as deficient in cargo-carrying lysosomes at time points that are critical to POS degradation. These findings imply that Aβ accumulation within late-endocytic compartments, as well as lysosomal deficiency, impairs RPE function over time, contributing to visual defects seen in aging and AMD eyes.
Collapse
Affiliation(s)
- Savannah A. Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - David A. Johnston
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Jenny A. Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Rosie Munday
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Roshni S. Desai
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Ruaridh Weaterton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Alexander Simpson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Dillon Davis
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Thomas Freeman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - David S. Chatelet
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Angela J. Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| |
Collapse
|
14
|
Liu F, Peng S, Adelman RA, Rizzolo LJ. Knockdown of Claudin-19 in the Retinal Pigment Epithelium Is Accompanied by Slowed Phagocytosis and Increased Expression of SQSTM1. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 33591357 PMCID: PMC7900869 DOI: 10.1167/iovs.62.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/22/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Besides regulating paracellular diffusion, claudin-19 modulates the expression of proteins essential for the retinal pigment epithelium (RPE). This study asks how RPE responds when the expression of claudin-19 is reduced. Methods In stem cell-derived RPE, claudin-19 and sequestosome-1/p62 (SQSTM1) were knocked down with siRNAs. Expression was monitored by quantitative RT-PCR and western blotting. Morphology and function were monitored by immunocytochemistry and transepithelial electrical resistance (TER). Phagocytosis of photoreceptor outer segments (POSs) was followed by fluorescence-activated cell sorting and western blotting. Pharmacology was used to assess the effects of AMP-activated protein kinase (AMPK) and SQSTM1 on phagocytosis. Enzymatic activity was measured using commercial assay kits. Results Knockdown of claudin-19 reduced the TER without affecting the integrity of the apical junctional complex, as assessed by the distribution of zonula occludens-1 and filamentous actin. AMPK was activated without apparent effect on autophagy. Activation of AMPK alone had little effect on phagocytosis. Without affecting ingestion, knockdown reduced the rate of POS degradation and increased the steady-state levels of LC3B and SQSTM1. Proteasome inhibitors also retarded degradation, as did knockdown of SQSTM1. The expression of metallothioneins and the activity of superoxide dismutase increased. Conclusions Knockdown of claudin-19 slowed the degradation of internalized POSs. The study questions the role of activated AMPK in phagocytosis and suggests a role for SQSTM1. Further, knockdown was associated with a partial oxidative stress response. The study opens new avenues of experimentation to explore these essential RPE functions.
Collapse
Affiliation(s)
- Fanfei Liu
- Aier School of Ophthalmology, Central South University, Changsha, China
- Department of Surgery, Yale University, New Haven, Connecticut, United States
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| | - Shaomin Peng
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Ron A. Adelman
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| | - Lawrence J. Rizzolo
- Department of Surgery, Yale University, New Haven, Connecticut, United States
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
15
|
Biswas P, Borooah S, Matsui H, Voronchikhina M, Zhou J, Zawaydeh Q, Raghavendra PB, Ferreyra H, Riazuddin SA, Wahlin K, Frazer KA, Ayyagari R. Detection and validation of novel mutations in MERTK in a simplex case of retinal degeneration using WGS and hiPSC-RPEs model. Hum Mutat 2020; 42:189-199. [PMID: 33252167 DOI: 10.1002/humu.24146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022]
Abstract
Inherited retinal degenerations (IRDs) are a group of genetically heterogeneous conditions with a broad phenotypic heterogeneity. Here, we report detection and validation of the underlying cause of progressive retinal degeneration in a nuclear family of European descent with a single affected individual. Whole genome sequencing of the proband and her unaffected sibling identified a novel intron 8 donor splice site variant (c.1296 + 1G>A) and a novel 731 base pair deletion encompassing exon 9 (Chr2:g.112751488_112752218 del) resulting in c.1297_1451del; p.K433_G484fsTer3 in the Mer tyrosine kinase protooncogene (MERTK), which is highly expressed in the retinal pigment epithelium (RPE). The proband carried both variants in the heterozygous state, which segregated with disease in the pedigree. These MERTK variants are predicted to result in the defective splicing of exon 8 and loss of exon 9 respectively. To evaluate the impact of these novel variants, peripheral blood mononuclear cells of the proband and her parents were reprogrammed to humaninduced pluripotent stem cell (hiPSC) lines, which were subsequently differentiated to hiPSC-RPE. Analysis of the proband's hiPSC-RPE revealed the absence of both MERTK transcript and its respective protein as well as abnormal phagocytosis when compared with the parental hiPSC-RPE. In summary, whole genome sequencing identified novel compound heterozygous variants in MERTK as the underlying cause of progressive retinal degeneration in a simplex case. Further, analysis using an hiPSC-RPE model established the functional impact of novel MERTK mutations and revealed the potential mechanism underlying pathology in the proband.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA.,REVA University, Bengaluru, Karnataka, India
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Marina Voronchikhina
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - Jason Zhou
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - Qais Zawaydeh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - Pongali B Raghavendra
- REVA University, Bengaluru, Karnataka, India.,School of Regenerative Medicine, Manipal University-MAHE, Bangalore, India
| | - Henry Ferreyra
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - S Amer Riazuddin
- Wilmer Eye Institute, Johns Hopkins Univesity School of Medicine, Baltimore, Maryland, USA
| | - Karl Wahlin
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - Kelly A Frazer
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, San Diego, California, USA
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Udry F, Decembrini S, Gamm DM, Déglon N, Kostic C, Arsenijevic Y. Lentiviral mediated RPE65 gene transfer in healthy hiPSCs-derived retinal pigment epithelial cells markedly increased RPE65 mRNA, but modestly protein level. Sci Rep 2020; 10:8890. [PMID: 32483256 PMCID: PMC7264209 DOI: 10.1038/s41598-020-65657-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of cobblestone-like epithelial cells that accomplishes critical functions for the retina. Several protocols have been published to differentiate pluripotent stem cells into RPE cells suitable for disease modelling and therapy development. In our study, the RPE identity of human induced pluripotent stem cell (hiPSC)-derived RPE (iRPE) was extensively characterized, and then used to test a lentiviral-mediated RPE65 gene augmentation therapy. A dose study of the lentiviral vector revealed a dose-dependent effect of the vector on RPE65 mRNA levels. A marked increase of the RPE65 mRNA was also observed in the iRPE (100-fold) as well as in an experimental set with RPE derived from another hiPSC source and from foetal human RPE. Although iRPE displayed features close to bona fide RPE, no or a modest increase of the RPE65 protein level was observed depending on the protein detection method. Similar results were observed with the two other cell lines. The mechanism of RPE65 protein regulation remains to be elucidated, but the current work suggests that high vector expression will not produce an excess of the normal RPE65 protein level.
Collapse
Affiliation(s)
- Florian Udry
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
| | - Sarah Decembrini
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
- Department of Biomedicine, University Hospital Basel & University Basel, Hebelstr. 20, 4031, Basel, Switzerland
| | - David M Gamm
- McPherson Eye Research Institute, Waisman Center and Department of Ophthalmology and Visual Sciences, and University of Wisconsin-Madison, Madison, USA
| | - Nicole Déglon
- Neuroscience Research Center, Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corinne Kostic
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland.
| |
Collapse
|
17
|
Murugeswari P, Firoz A, Murali S, Vinekar A, Krishna L, Anandula VR, Jeyabalan N, Chevour P, Jayadev C, Shetty R, Carpentier G, Kumaramanickavel G, Ghosh A, Das D. Vitamin-D3 (α-1, 25(OH) 2D3) Protects Retinal Pigment Epithelium From Hyperoxic Insults. Invest Ophthalmol Vis Sci 2020; 61:4. [PMID: 32031576 PMCID: PMC7325624 DOI: 10.1167/iovs.61.2.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Oxidative stress affects the retinal pigment epithelium (RPE) leading to development of vascular eye diseases. Cholecalciferol (VIT-D) is a known modulator of oxidative stress and angiogenesis. This in vitro study was carried out to evaluate the protective role of VIT-D on RPE cells incubated under hyperoxic conditions. Methods Cadaver primary RPE (PRPE) cells were cultured in hyperoxia (40% O2) with or without VIT-D (α-1, 25(OH) 2D3). The functional and physiological effects of PRPE cells with VIT-D treatment were analyzed using molecular and biochemical tools. Results Vascular signaling modulators, such as vascular endothelial growth factor (VEGF) and Notch, were reduced in hyperoxic conditions but significantly upregulated in the presence of VIT-D. Additionally, PRPE conditioned medium with VIT-D induced the tubulogenesis in primary human umbilical vein endothelial cells (HUVEC) cells. VIT-D supplementation restored phagocytosis and transmembrane potential in PRPE cells cultured under hyperoxia. Conclusions VIT-D protects RPE cells and promotes angiogenesis under hyperoxic insult. These findings may give impetus to the potential of VIT-D as a therapeutic agent in hyperoxia induced retinal vascular diseases.
Collapse
|
18
|
Yang C, Shani S, Tahiri H, Ortiz C, Gu M, Lavoie JC, Croteau S, Hardy P. Extracellular microparticles exacerbate oxidative damage to retinal pigment epithelial cells. Exp Cell Res 2020; 390:111957. [PMID: 32173468 DOI: 10.1016/j.yexcr.2020.111957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress-induced retinal pigment epithelial cell (RPE) dysfunction is a primary contributing factor to early dry age-related macular degeneration (AMD). Oxidative injury to the retina may promote extracellular vesicles (EVs) released from RPE. In this study, we investigated the effects of oxidative-induced RPE cell-derived microparticles (RMPs) on RPE cell functions. The oxidative stress induced more RMPs released from RPE cells in vitro and in vivo, and significant more RMPs were released from aged RPE cells than that from younger RPE cells. RMPs were taken up by RPE cells in a time-dependent manner; however, blockage of CD36 attenuated the uptake process. Furthermore, the decrease of RPE cell viability by RMPs treatment was associated with an increased expression of cyclin-dependent kinase inhibitors p15 and p21. RMPs enhanced senescence and interrupted phagocytic activity of RPE cells as well. The present study demonstrated that RMPs produce a strong effect of inducing RPE cell degeneration. This finding further supports the postulate that RMPs exacerbate oxidative stress damage to RPE cells, which may uncover a potentially relevant process in the genesis of dry AMD.
Collapse
Affiliation(s)
- Chun Yang
- Departments of Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, H3T 1C5, Canada
| | - Saeideh Shani
- Departments of Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, H3T 1C5, Canada
| | - Houda Tahiri
- Departments of Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, H3T 1C5, Canada
| | - Christina Ortiz
- Departments of Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, H3T 1C5, Canada
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | | | - Stéphane Croteau
- Department of Medicine, University of Montréal, Montréal, H3T 1C5, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, H3T 1C5, Canada.
| |
Collapse
|
19
|
Masaeli E, Forster V, Picaud S, Karamali F, Nasr-Esfahani MH, Marquette C. Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting. Biofabrication 2020; 12:025006. [PMID: 31578006 DOI: 10.1088/1758-5090/ab4a20] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mammalian retina contains multiple cellular layers, each carrying out a specific task. Such a controlled organization should be considered as a crucial factor for designing retinal therapies. The maintenance of retinal layered complexity through the use of scaffold-free techniques has recently emerged as a promising approach for clinical ocular tissue engineering. In an attempt to fabricate such layered retinal model, we are proposing herein a unique inkjet bioprinting system applied to the deposition of a photoreceptor cells (PRs) layer on top of a bioprinted retinal pigment epithelium (RPE), in a precise arrangement and without any carrier material. The results showed that, after bioprinting, both RPE and PRs were well positioned in a layered structure and expressed their structural markers, which was further demonstrated by ZO1, MITF, rhodopsin, opsin B, opsin R/G and PNA immunostaining, three days after bioprinting. We also showed that considerable amounts of human vascular endothelial growth factors (hVEGF) were released from the RPE printed layer, which confirmed the formation of a functional RPE monolayer after bioprinting. Microstructures of bioprinted cells as well as phagocytosis of photoreceptor outer segments by apical RPE microvilli were finally established through transmission electron microscopy (TEM) imaging. In summary, using this carrier-free bioprinting method, it was possible to develop a reasonable in vitro retina model for studying some sight-threatening diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Elahe Masaeli
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. 3d.FAB, Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bat. Lederer, 1 rue Victor Grignard, 69100 Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
20
|
Lian C, Lou H, Zhang J, Tian H, Ou Q, Xu JY, Jin C, Gao F, Zhang J, Wang J, Li W, Xu G, Lu L, Xu GT. MicroRNA-24 protects retina from degeneration in rats by down-regulating chitinase-3-like protein 1. Exp Eye Res 2019; 188:107791. [PMID: 31491426 DOI: 10.1016/j.exer.2019.107791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) have been shown to play critical roles in the pathogenesis and progression of degenerative retinal diseases like age-related macular degeneration (AMD). In this study, we first demonstrated that miR-24 plays an important role in maintaining retinal structure and visual function of rats by targeting chitinase-3-like protein 1 (CHI3L1). In the retinal pigment epithelial (RPE) cells of Royal College of Surgeons (RCS) rats, an animal model of genetic retinal degeneration (RD), miR-24 was found lower and CHI3L1 level was higher in comparison with those in Sprague-Dawley (SD) rats. Other changes in the eyes of RCS rats include activated AKT/mTOR and ERK pathways and abnormal autophagy in the RPE cells. Such roles of miR-24 and CHI3L1 were further confirmed in RCS rats by subretinal injection of agomiR-24, which decreased CHI3L1 level and preserved retinal structure and function. Upstream, NF-κB was identified as the regulator of miR-24 in the RPE cells of these rats. On the other hand, in SD rats, intraocular treatment of antagomiR-24 induced pathological changes similar to those in RCS rats. The results revealed the protective roles for miR-24 to RPE cells and a mechanism for RD in RCS rats was proposed: extracellular stress stimuli first activate the NF-κB signaling pathway, which lowers miR-24 expression so that CHI3L1 increased. CHI3L1 sequentially results in aberrant autophagy and RPE dysfunction by activating AKT/mTOR and ERK pathways. Taken together, although the possibility, that the therapeutic effects in RCS rats are caused by other transcriptional changes regulated by miR-24, cannot be excluded, these findings indicate that miR-24 protects rat retina by targeting CHI3L1. Thus, miR-24 and CHI3L1 might be the targets for developing more effective therapy for degenerative retinal diseases like AMD.
Collapse
Affiliation(s)
- Chunpin Lian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Hui Lou
- Department of Ophthalmology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Weiye Li
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China; Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Guoxu Xu
- Department of Ophthalmology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200092, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
21
|
Chen G, Abdeen AA, Wang Y, Shahi PK, Robertson S, Xie R, Suzuki M, Pattnaik BR, Saha K, Gong S. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. NATURE NANOTECHNOLOGY 2019; 14:974-980. [PMID: 31501532 PMCID: PMC6778035 DOI: 10.1038/s41565-019-0539-2] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/26/2019] [Indexed: 05/20/2023]
Abstract
Delivery technologies for the CRISPR-Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing system often require viral vectors, which pose safety concerns for therapeutic genome editing1. Alternatively, cationic liposomal components or polymers can be used to encapsulate multiple CRISPR components into large particles (typically >100 nm diameter); however, such systems are limited by variability in the loading of the cargo. Here, we report the design of customizable synthetic nanoparticles for the delivery of Cas9 nuclease and a single-guide RNA (sgRNA) that enables the controlled stoichiometry of CRISPR components and limits the possible safety concerns in vivo. We describe the synthesis of a thin glutathione (GSH)-cleavable covalently crosslinked polymer coating, called a nanocapsule (NC), around a preassembled ribonucleoprotein (RNP) complex between a Cas9 nuclease and an sgRNA. The NC is synthesized by in situ polymerization, has a hydrodynamic diameter of 25 nm and can be customized via facile surface modification. NCs efficiently generate targeted gene edits in vitro without any apparent cytotoxicity. Furthermore, NCs produce robust gene editing in vivo in murine retinal pigment epithelium (RPE) tissue and skeletal muscle after local administration. This customizable NC nanoplatform efficiently delivers CRISPR RNP complexes for in vitro and in vivo somatic gene editing.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Amr A Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Pawan K Shahi
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Bikash R Pattnaik
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Johansson JK, Karema-Jokinen VI, Hakanen S, Jylhä A, Uusitalo H, Vihinen-Ranta M, Skottman H, Ihalainen TO, Nymark S. Sodium channels enable fast electrical signaling and regulate phagocytosis in the retinal pigment epithelium. BMC Biol 2019; 17:63. [PMID: 31412898 PMCID: PMC6694495 DOI: 10.1186/s12915-019-0681-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Voltage-gated sodium (Nav) channels have traditionally been considered a trademark of excitable cells. However, recent studies have shown the presence of Nav channels in several non-excitable cells, such as astrocytes and macrophages, demonstrating that the roles of these channels are more diverse than was previously thought. Despite the earlier discoveries, the presence of Nav channel-mediated currents in the cells of retinal pigment epithelium (RPE) has been dismissed as a cell culture artifact. We challenge this notion by investigating the presence and possible role of Nav channels in RPE both ex vivo and in vitro. RESULTS Our work demonstrates that several subtypes of Nav channels are found in human embryonic stem cell (hESC)-derived and mouse RPE, most prominently subtypes Nav1.4, Nav1.6, and Nav1.8. Whole cell patch clamp recordings from the hESC-derived RPE monolayers showed that the current was inhibited by TTX and QX-314 and was sensitive to the selective blockers of the main Nav subtypes. Importantly, we show that the Nav channels are involved in photoreceptor outer segment phagocytosis since blocking their activity significantly reduces the efficiency of particle internalization. Consistent with this role, our electron microscopy results and immunocytochemical analysis show that Nav1.4 and Nav1.8 accumulate on phagosomes and that pharmacological inhibition of Nav channels as well as silencing the expression of Nav1.4 with shRNA impairs the phagocytosis process. CONCLUSIONS Taken together, our study shows that Nav channels are present in RPE, giving this tissue the capacity of fast electrical signaling. The channels are critical for the physiology of RPE with an important role in photoreceptor outer segment phagocytosis.
Collapse
Affiliation(s)
- Julia K Johansson
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Viivi I Karema-Jokinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Jylhä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hannu Uusitalo
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Heli Skottman
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Teemu O Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Soile Nymark
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
23
|
Milićević N, Mazzaro N, de Bruin I, Wils E, Ten Brink J, Asbroek AT, Mendoza J, Bergen A, Felder-Schmittbuhl MP. Rev-Erbα and Photoreceptor Outer Segments modulate the Circadian Clock in Retinal Pigment Epithelial Cells. Sci Rep 2019; 9:11790. [PMID: 31409842 PMCID: PMC6692399 DOI: 10.1038/s41598-019-48203-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Retinal photoreceptor outer segments (POS) are renewed daily through phagocytosis by the adjacent retinal pigment epithelial (RPE) monolayer. Phagocytosis is mainly driven by the RPE circadian clock but the underlying molecular mechanisms remain elusive. Using ARPE-19 (human RPE cell-line) dispersed and monolayer cell cultures, we investigated the influence of cellular organization on the RPE clock and phagocytosis genes. PCR analysis revealed rhythmic expression of clock and phagocytosis genes in all ARPE-19 cultures. Monolayers had a tendency for higher amplitudes of clock gene oscillations. In all conditions ARNTL, CRY1, PER1-2, REV-ERBα, ITGB5, LAMP1 and PROS1 were rhythmically expressed with REV-ERBα being among the clock genes whose expression showed most robust rhythms in ARPE-19 cells. Using RPE-choroid explant preparations of the mPer2Luc knock-in mice we found that Rev-Erbα deficiency induced significantly longer periods and earlier phases of PER2-bioluminescence oscillations. Furthermore, early phagocytosis factors β5-Integrin and FAK and the lysosomal marker LAMP1 protein levels are rhythmic. Finally, POS incubation affects clock and clock-controlled phagocytosis gene expression in RPE monolayers in a time-dependent manner suggesting that POS can reset the RPE clock. These results shed some light on the complex interplay between POS, the RPE clock and clock-controlled phagocytosis machinery which is modulated by Rev-Erbα.
Collapse
Affiliation(s)
- Nemanja Milićević
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France.,Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nadia Mazzaro
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France
| | - Ivanka de Bruin
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Esmée Wils
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jacoline Ten Brink
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Anneloor Ten Asbroek
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jorge Mendoza
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France
| | - Arthur Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France.
| |
Collapse
|
24
|
Muniz-Feliciano L, Doggett TA, Zhou Z, Ferguson TA. RUBCN/rubicon and EGFR regulate lysosomal degradative processes in the retinal pigment epithelium (RPE) of the eye. Autophagy 2019; 13:2072-2085. [PMID: 28933590 DOI: 10.1080/15548627.2017.1380124] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy/autophagy is an intracellular stress survival and recycling system whereas phagocytosis internalizes material from the extracellular milieu; yet, both pathways utilize lysosomes for cargo degradation. Whereas autophagy occurs in all cells, phagocytosis is performed by cell types such as macrophages and the retinal pigment epithelial (RPE) cells of the eye where it is supported by the noncanonical autophagy process termed LC3-associated phagocytosis (LAP). Autophagy and LAP are distinct pathways that use many of the same mediators and must compete for cellular resources, suggesting that cells may regulate both processes under homeostatic and stress conditions. Our data reveal that RPE cells promote LAP through the expression of RUBCN/Rubicon (RUN domain and cysteine-rich domain containing Beclin 1-interacting protein) and suppress autophagy through the activation of EGFR (epidermal growth factor receptor). In the morning when photoreceptor outer segments (POS) phagocytosis and LAP are highest, RUBCN expression is increased. At the same time, outer segment phagocytosis activates the EGFR resulting in MTOR (mechanistic target of rapamycin [serine/threonine kinase]) stimulation, the accumulation of SQSTM1/p62, and the phosphorylation of BECN1 (Beclin 1, autophagy related) on an inhibitory residue thereby suppressing autophagy. Silencing Rubcn, preventing EGFR activity or directly inducing autophagy in RPE cells by starvation inhibits phagocytic degradation of POS. Thus, RPE cells regulate lysosomal pathways during the critical period of POS phagocytosis to support retinal homeostasis.
Collapse
Affiliation(s)
- Luis Muniz-Feliciano
- a Department of Ophthalmology and Visual Sciences , Washington University School of Medicine , St. Louis , Missouri , USA
| | - Teresa A Doggett
- a Department of Ophthalmology and Visual Sciences , Washington University School of Medicine , St. Louis , Missouri , USA
| | - Zhenqing Zhou
- a Department of Ophthalmology and Visual Sciences , Washington University School of Medicine , St. Louis , Missouri , USA
| | - Thomas A Ferguson
- a Department of Ophthalmology and Visual Sciences , Washington University School of Medicine , St. Louis , Missouri , USA
| |
Collapse
|
25
|
Primary Cilium-Mediated Retinal Pigment Epithelium Maturation Is Disrupted in Ciliopathy Patient Cells. Cell Rep 2019; 22:189-205. [PMID: 29298421 PMCID: PMC6166245 DOI: 10.1016/j.celrep.2017.12.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are sensory organelles that protrude from the cell membrane. Defects in the primary cilium cause ciliopathy disorders, with retinal degeneration as a prominent phenotype. Here, we demonstrate that the retinal pigment epithelium (RPE), essential for photoreceptor development and function, requires a functional primary cilium for complete maturation and that RPE maturation defects in ciliopathies precede photoreceptor degeneration. Pharmacologically enhanced ciliogenesis in wild-type induced pluripotent stem cells (iPSC)-RPE leads to fully mature and functional cells. In contrast, ciliopathy patient-derived iPSC-RPE and iPSC-RPE with a knockdown of ciliary-trafficking protein remain immature, with defective apical processes, reduced functionality, and reduced adult-specific gene expression. Proteins of the primary cilium regulate RPE maturation by simultaneously suppressing canonical WNT and activating PKCδ pathways. A similar cilium-dependent maturation pathway exists in lung epithelium. Our results provide insights into ciliopathy-induced retinal degeneration, demonstrate a developmental role for primary cilia in epithelial maturation, and provide a method to mature iPSC epithelial cells for clinical applications. May-Simera et al. show that primary cilia regulate the maturation and polarization of human iPSC-RPE, mouse RPE, and human iPSC-lung epithelium through canonical WNT suppression and PKCδ activation. RPE cells derived from ciliopathy patients exhibit defective structure and function. These results provide insights into ciliopathy-induced retinal degeneration.
Collapse
|
26
|
Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, Li Y, Stoddard J, Stankewicz C, Wan Q, Zhang C, Campos MM, Miyagishima KJ, McGaughey D, Villasmil R, Mattapallil M, Stanzel B, Qian H, Wong W, Chase L, Charles S, McGill T, Miller S, Maminishkis A, Amaral J, Bharti K. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med 2019; 11:eaat5580. [PMID: 30651323 PMCID: PMC8784963 DOI: 10.1126/scitranslmed.aat5580] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/14/2018] [Accepted: 12/18/2018] [Indexed: 08/09/2023]
Abstract
Considerable progress has been made in testing stem cell-derived retinal pigment epithelium (RPE) as a potential therapy for age-related macular degeneration (AMD). However, the recent reports of oncogenic mutations in induced pluripotent stem cells (iPSCs) underlie the need for robust manufacturing and functional validation of clinical-grade iPSC-derived RPE before transplantation. Here, we developed oncogenic mutation-free clinical-grade iPSCs from three AMD patients and differentiated them into clinical-grade iPSC-RPE patches on biodegradable scaffolds. Functional validation of clinical-grade iPSC-RPE patches revealed specific features that distinguished transplantable from nontransplantable patches. Compared to RPE cells in suspension, our biodegradable scaffold approach improved integration and functionality of RPE patches in rats and in a porcine laser-induced RPE injury model that mimics AMD-like eye conditions. Our results suggest that the in vitro and in vivo preclinical functional validation of iPSC-RPE patches developed here might ultimately be useful for evaluation and optimization of autologous iPSC-based therapies.
Collapse
Affiliation(s)
- Ruchi Sharma
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Vladimir Khristov
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Aaron Rising
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Balendu Shekhar Jha
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Roba Dejene
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Nathan Hotaling
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Jonathan Stoddard
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Casey Stankewicz
- Cellular Dynamics International Inc. (a FUJIFILM company), Madison, WI 53711, USA
| | - Qin Wan
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Connie Zhang
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | | | - Kiyoharu J Miyagishima
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - David McGaughey
- Ophthalmic Genetics and Visual Functional Branch, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Rafael Villasmil
- Flow Cytometry Core, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Mary Mattapallil
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Boris Stanzel
- Macula Center Saar, Sulzbach Knappschaft Eye Clinic, Sulzbach/Saar 66280, Germany
| | - Haohua Qian
- Visual Function Core, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Wai Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Lucas Chase
- Cellular Dynamics International Inc. (a FUJIFILM company), Madison, WI 53711, USA
| | | | - Trevor McGill
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sheldon Miller
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Arvydas Maminishkis
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Juan Amaral
- Office of Scientific Director, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Ratnayaka JA, Keeling E, Chatelet DS. Study of Intracellular Cargo Trafficking and Co-localization in the Phagosome and Autophagy-Lysosomal Pathways of Retinal Pigment Epithelium (RPE) Cells. Methods Mol Biol 2019; 2150:167-182. [PMID: 30969403 DOI: 10.1007/7651_2019_223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The transport and targeting of internalized molecules to distinct intracellular organelles/compartments can prove challenging to visualize clearly, which can contribute to some of the difficulties associated with these studies. By combining several approaches, we show how the trafficking and processing of photoreceptor outer segments in the phagosome and autophagy-lysosomal pathways of the retinal pigment epithelium (RPE) can easily be quantified and visualized as 3D-reconstructed images. This protocol takes advantage of new developments in microscopy and image-analysis software which has the potential to help better understand dynamic intracellular processes that underlie RPE dysfunction associated with irreversible blinding diseases such as age-related macular degeneration. The method described herein can also be used to study the trafficking and co-localization of different intracellular cargos in other cell types and tissues.
Collapse
Affiliation(s)
- J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David S Chatelet
- Biomedical Imaging Unit, University of Southampton, Southampton, UK
| |
Collapse
|
28
|
Foltz LP, Howden SE, Thomson JA, Clegg DO. Functional Assessment of Patient-Derived Retinal Pigment Epithelial Cells Edited by CRISPR/Cas9. Int J Mol Sci 2018; 19:E4127. [PMID: 30572641 PMCID: PMC6321630 DOI: 10.3390/ijms19124127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa is the most common form of inherited blindness and can be caused by a multitude of different genetic mutations that lead to similar phenotypes. Specifically, mutations in ubiquitously expressed splicing factor proteins are known to cause an autosomal dominant form of the disease, but the retina-specific pathology of these mutations is not well understood. Fibroblasts from a patient with splicing factor retinitis pigmentosa caused by a missense mutation in the PRPF8 splicing factor were used to produce three diseased and three CRISPR/Cas9-corrected induced pluripotent stem cell (iPSC) clones. We differentiated each of these clones into retinal pigment epithelial (RPE) cells via directed differentiation and analyzed the RPE cells in terms of gene and protein expression, apicobasal polarity, and phagocytic ability. We demonstrate that RPE cells can be produced from patient-derived and corrected cells and they exhibit morphology and functionality similar but not identical to wild-type RPE cells in vitro. Functionally, the RPE cells were able to establish apicobasal polarity and phagocytose photoreceptor outer segments at the same capacity as wild-type cells. These data suggest that patient-derived iPSCs, both diseased and corrected, are able to differentiate into RPE cells with a near normal phenotype and without differences in phagocytosis, a result that differs from previous mouse models. These RPE cells can now be studied to establish a disease-in-a-dish system relevant to retinitis pigmentosa.
Collapse
Affiliation(s)
- Leah P Foltz
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Sara E Howden
- Murdoch Children's Research Institute, University of Melbourne, Parkville 3052, Australia.
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - James A Thomson
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
29
|
Korkka I, Viheriälä T, Juuti-Uusitalo K, Uusitalo-Järvinen H, Skottman H, Hyttinen J, Nymark S. Functional Voltage-Gated Calcium Channels Are Present in Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium. Stem Cells Transl Med 2018; 8:179-193. [PMID: 30394009 PMCID: PMC6344904 DOI: 10.1002/sctm.18-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 11/25/2022] Open
Abstract
Retinal pigment epithelium (RPE) performs important functions for the maintenance of photoreceptors and vision. Malfunctions within the RPE are implicated in several retinal diseases for which transplantations of stem cell‐derived RPE are promising treatment options. Their success, however, is largely dependent on the functionality of the transplanted cells. This requires correct cellular physiology, which is highly influenced by the various ion channels of RPE, including voltage‐gated Ca2+ (CaV) channels. This study investigated the localization and functionality of CaV channels in human embryonic stem cell (hESC)‐derived RPE. Whole‐cell patch‐clamp recordings from these cells revealed slowly inactivating L‐type currents comparable to freshly isolated mouse RPE. Some hESC‐RPE cells also carried fast transient T‐type resembling currents. These findings were confirmed by immunostainings from both hESC‐ and mouse RPE that showed the presence of the L‐type Ca2+ channels CaV1.2 and CaV1.3 as well as the T‐type Ca2+ channels CaV3.1 and CaV3.2. The localization of the major subtype, CaV1.3, changed during hESC‐RPE maturation co‐localizing with pericentrin to the base of the primary cilium before reaching more homogeneous membrane localization comparable to mouse RPE. Based on functional assessment, the L‐type Ca2+ channels participated in the regulation of vascular endothelial growth factor secretion as well as in the phagocytosis of photoreceptor outer segments in hESC‐RPE. Overall, this study demonstrates that a functional machinery of voltage‐gated Ca2+ channels is present in mature hESC‐RPE, which is promising for the success of transplantation therapies. stem cells translational medicine2019;8:179&15
Collapse
Affiliation(s)
- Iina Korkka
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Taina Viheriälä
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland.,Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere, Finland
| | - Kati Juuti-Uusitalo
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Eye Centre, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, Department of Ophthalmology, University of Tampere, Tampere, Finland
| | - Heli Skottman
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Soile Nymark
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
30
|
Enhancing TFEB-Mediated Cellular Degradation Pathways by the mTORC1 Inhibitor Quercetin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5073420. [PMID: 30510622 PMCID: PMC6230393 DOI: 10.1155/2018/5073420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
Signaling pathways mediated by the mechanistic target of rapamycin (mTOR) play key roles in aging and age-related diseases. As a downstream protein of mTOR, transcription factor EB (TFEB) controls lysosome biogenesis and cellular trafficking, processes that are essential for the functions of phagocytic cells like the retinal pigment epithelium (RPE). In the current study, we show that a naturally occurring polyphenolic compound, quercetin, promoted TFEB nuclear translocation and enhanced its transcriptional activity in cultured RPE cells. Activated TFEB facilitated degradation of phagocytosed photoreceptor outer segments. Quercetin is a direct inhibitor of mTOR but did not influence the activity of Akt at the tested concentration range. Our data suggest that the dietary compound quercetin can have beneficial roles in neuronal tissues by improving the functions of the TFEB-lysosome axis and enhancing the capacities of cellular degradation and self-renewal.
Collapse
|
31
|
Zhang Q, Presswalla F, Feathers K, Cao X, Hughes BA, Zacks DN, Thompson DA, Miller JML. A platform for assessing outer segment fate in primary human fetal RPE cultures. Exp Eye Res 2018; 178:212-222. [PMID: 30336126 DOI: 10.1016/j.exer.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/01/2018] [Accepted: 10/13/2018] [Indexed: 12/14/2022]
Abstract
The daily shedding and renewal of photoreceptor outer segments (OS) is critical for maintaining vision. This process relies on the efficient uptake, degradation, and sorting of shed OS material by the retinal pigment epithelium (RPE). Poor OS degradation has been linked to retinal degenerations such as Stargardt disease and may contribute to macular degeneration. While primary human fetal RPE cultures have emerged as a valuable model of in vivo human RPE function, surprisingly few studies have utilized the model for tracking the degradation and fate of OS components in the RPE. Here, we establish an improved platform for studying this topic by modifying existing protocols and creating new methods. Our human fetal culture model facilitates studies of RPE secretion in response to OS ingestion, preserves RPE differentiation and polarization during live-cell imaging of OS phagocytosis, and minimizes costs. We optimize Mer tyrosine kinase-dependent OS phagocytosis assays specifically in human fetal cultures and provide a simple and accurate method for measuring total OS consumption by the RPE. Finally, we utilize chemical transfection, dextran labeling, and immunocytochemistry to evaluate key players in OS degradation, including lysosomes and autophagy proteins. To facilitate quantification of autophagy vesicles, we develop customized image analysis macros in the Fiji/ImageJ software environment. These protocols will facilitate a broad range of studies in human fetal RPE cultures aimed at determining the ultimate fate of OS components after ingestion, a critical step in understanding the pathogenesis of numerous retinal diseases.
Collapse
Affiliation(s)
- Qitao Zhang
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Feriel Presswalla
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kecia Feathers
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xu Cao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bret A Hughes
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Debra A Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jason M L Miller
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Lynn SA, Keeling E, Dewing JM, Johnston DA, Page A, Cree AJ, Tumbarello DA, Newman TA, Lotery AJ, Ratnayaka JA. A convenient protocol for establishing a human cell culture model of the outer retina. F1000Res 2018; 7:1107. [PMID: 30271583 PMCID: PMC6137423 DOI: 10.12688/f1000research.15409.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
The retinal pigment epithelium (RPE) plays a key role in the pathogenesis of several blinding retinopathies. Alterations to RPE structure and function are reported in Age-related Macular Degeneration, Stargardt and Best disease as well as pattern dystrophies. However, the precise role of RPE cells in disease aetiology remains incompletely understood. Many studies into RPE pathobiology have utilised animal models, which only recapitulate limited disease features. Some studies are also difficult to carry out in animals as the ocular space remains largely inaccessible to powerful microscopes. In contrast, in-vitro models provide an attractive alternative to investigating pathogenic RPE changes associated with age and disease. In this article we describe the step-by-step approach required to establish an experimentally versatile in-vitro culture model of the outer retina incorporating the RPE monolayer and supportive Bruch's membrane (BrM). We show that confluent monolayers of the spontaneously arisen human ARPE-19 cell-line cultured under optimal conditions reproduce key features of native RPE. These models can be used to study dynamic, intracellular and extracellular pathogenic changes using the latest developments in microscopy and imaging technology. We also discuss how RPE cells from human foetal and stem-cell derived sources can be incorporated alongside sophisticated BrM substitutes to replicate the aged/diseased outer retina in a dish. The work presented here will enable users to rapidly establish a realistic in-vitro model of the outer retina that is amenable to a high degree of experimental manipulation which will also serve as an attractive alternative to using animals. This in-vitro model therefore has the benefit of achieving the 3Rs objective of reducing and replacing the use of animals in research. As well as recapitulating salient structural and physiological features of native RPE, other advantages of this model include its simplicity, rapid set-up time and unlimited scope for detailed single-cell resolution and matrix studies.
Collapse
Affiliation(s)
- Savannah A. Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - David A. Johnston
- Biomedical Imaging Unit, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Anton Page
- Biomedical Imaging Unit, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Angela J. Cree
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - David A. Tumbarello
- Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| |
Collapse
|
33
|
Lin YC, Horng LY, Sung HC, Wu RT. Sodium Iodate Disrupted the Mitochondrial-Lysosomal Axis in Cultured Retinal Pigment Epithelial Cells. J Ocul Pharmacol Ther 2018; 34:500-511. [PMID: 30020815 DOI: 10.1089/jop.2017.0073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Low doses of sodium iodate (NaIO3) impair visual function in experimental animals with selective damage to retinal pigment epithelium (RPE) and serve as a useful model to study diseases caused by RPE degeneration. Mitochondrial dysfunction and defective autophagy have been suggested to play important roles in normal aging as well as many neurodegenerative diseases. In this study, we examined whether NaIO3 treatment disrupted the mitochondrial-lysosomal axis in cultured RPE. METHODS The human RPE cell line, ARPE-19, was treated with low concentrations (≤500 μM) of NaIO3. The expression of proteins involved in the autophagic pathway and mitochondrial biogenesis was examined with Western blot. Intracellular acidic compartments and lipofuscinogenesis were evaluated by acridine orange staining and autofluorescence, respectively. Mitochondrial mass, mitochondrial membrane potential (MMP), and mitochondrial function were quantified by MitoTracker Green staining, tetramethylrhodamine methyl ester staining, and the MTT assay, respectively. Phagocytosis and the degradation of photoreceptor outer segments (POS) were assessed by fluorescence-based approaches and Western blot against rhodopsin. RESULTS Treatment with low concentrations of NaIO3 decreased cellular acidity, blocked autophagic flux, and resulted in increased lipofuscinogenesis in ARPE-19 cells. Despite increases in protein levels of Sirtuin 1 and PGC-1α, mitochondrial function was compromised, and this decrease was attributed to disrupted MMP. POS phagocytic activities decreased by 60% in NaIO3-treated cells, and the degradation of ingested POS was also impaired. Pretreatment and cotreatment with rapamycin partially rescued NaIO3-induced RPE dysfunction. CONCLUSIONS Low concentrations of NaIO3 disrupted the mitochondrial-lysosomal axis in RPE and led to impaired phagocytic activities and degradation capacities.
Collapse
Affiliation(s)
- Ying-Cheng Lin
- 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University , Taipei, Taiwan .,2 Department of Ophthalmology, Yang-Ming branch, Taipei City Hospital , Taipei, Taiwan
| | - Lin-Yea Horng
- 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University , Taipei, Taiwan .,3 Research Center for Drug Discovery, National Yang-Ming University , Taipei, Taiwan
| | - Hui-Ching Sung
- 3 Research Center for Drug Discovery, National Yang-Ming University , Taipei, Taiwan
| | - Rong-Tsun Wu
- 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University , Taipei, Taiwan .,3 Research Center for Drug Discovery, National Yang-Ming University , Taipei, Taiwan .,4 Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung, Taiwan
| |
Collapse
|
34
|
Chen CL, Chen YH, Liang CM, Tai MC, Lu DW, Chen JT. Glucosamine-Induced Autophagy through AMPK⁻mTOR Pathway Attenuates Lipofuscin-Like Autofluorescence in Human Retinal Pigment Epithelial Cells In Vitro. Int J Mol Sci 2018; 19:ijms19051416. [PMID: 29747425 PMCID: PMC5983587 DOI: 10.3390/ijms19051416] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 12/02/2022] Open
Abstract
Age-related macular degeneration (AMD) is a vision-threatening age-associated disease. The retinal pigment epithelial (RPE) cells phagocytose and digest photoreceptor outer segment (POS). Incomplete digestion of POS leads to lipofuscin accumulation, which contributes to the pathology of the AMD. Autophagy could help reduce the amount of lipofuscin accumulation. In the present study, we evaluated the effects of glucosamine (GlcN), a natural supplement, on the induction of autophagy and POS-derived lipofuscin-like autofluorescence (LLAF) in ARPE-19 cells in vitro, and investigated the potential molecular pathway involved. Our results revealed that GlcN had no effect on phagocytosis of POS at the lower doses. GlcN treatment induced autophagy in cells. GlcN decreased the LLAF in native POS-treated cells, whereas malondialdehyde or 4-hydroxynonenal-modified POS attenuated this effect. 3-Methyladenine inhibited GlcN-induced autophagy and attenuated the effect of GlcN on the decrease of the native POS-derived LLAF. Furthermore, GlcN induced the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR), whereas Compound C inhibited these effects of GlcN. Altogether, these results suggest that GlcN decreased the native POS-derived LLAF through induction of autophagy, at least in part, by the AMPK–mTOR pathway. This mechanism has potential for the preventive treatment of lipofuscin-related retinal degeneration such as AMD.
Collapse
Affiliation(s)
- Ching-Long Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, 325 Cheng-Kung Road, Section 2, Taipei 114, Taiwan.
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, 325 Cheng-Kung Road, Section 2, Taipei 114, Taiwan.
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, 325 Cheng-Kung Road, Section 2, Taipei 114, Taiwan.
| | - Ming-Cheng Tai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, 325 Cheng-Kung Road, Section 2, Taipei 114, Taiwan.
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, 325 Cheng-Kung Road, Section 2, Taipei 114, Taiwan.
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, 325 Cheng-Kung Road, Section 2, Taipei 114, Taiwan.
| |
Collapse
|
35
|
Dejos C, Kuny S, Han WH, Capel H, Lemieux H, Sauvé Y. Photoreceptor-induced RPE phagolysosomal maturation defects in Stargardt-like Maculopathy (STGD3). Sci Rep 2018; 8:5944. [PMID: 29654292 PMCID: PMC5899129 DOI: 10.1038/s41598-018-24357-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/28/2018] [Indexed: 11/09/2022] Open
Abstract
For many neurodegenerative disorders, expression of a pathological protein by one cell type impedes function of other cell types, which in turn contributes to the death of the first cell type. In transgenic mice modelling Stargardt-like (STGD3) maculopathy, human mutant ELOVL4 expression by photoreceptors is associated with defects in the underlying retinal pigment epithelium (RPE). To examine how photoreceptors exert cytotoxic effects on RPE cells, transgenic ELOVL4 (TG1-2 line; TG) and wild-type (WT) littermates were studied one month prior (preclinical stage) to onset of photoreceptor loss (two months). TG photoreceptor outer segments presented to human RPE cells are recognized and internalized into phagosomes, but their digestion is delayed. Live RPE cell imaging pinpoints decreased numbers of acidified phagolysomes. In vivo, master regulator of lysosomal genes, transcription factor EB (TFEB), and key lysosomal enzyme Cathepsin D are both unaffected. Oxidative stress, as ruled out with high-resolution respirometry, does not play a role at such an early stage. Upregulation of CRYBA1/A3 and phagocytic cells (microglia/macrophages) interposed between RPE and photoreceptors support adaptive responses to processing delays. Impaired phagolysosomal maturation is observed in RPE of mice expressing human mutant ELOVL4 in their photoreceptors prior to photoreceptor death and associated vision loss.
Collapse
Affiliation(s)
- Camille Dejos
- Department of Ophthalmology and Visual Sciences, University of Alberta, 7-45 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Sharee Kuny
- Department of Ophthalmology and Visual Sciences, University of Alberta, 7-45 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Woo Hyun Han
- Department of Ophthalmology and Visual Sciences, University of Alberta, 7-45 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Heather Capel
- Department of Physiology, University of Alberta, 7-45 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, 8406 Rue Marie-Anne Gaboury Northwest, Edmonton, AB, T6C 4G9, Canada
| | - Yves Sauvé
- Department of Ophthalmology and Visual Sciences, University of Alberta, 7-45 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada. .,Department of Physiology, University of Alberta, 7-45 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
36
|
da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, Vernon A, Daniels JT, Nommiste B, Hasan SM, Gooljar SB, Carr AJF, Vugler A, Ramsden CM, Bictash M, Fenster M, Steer J, Harbinson T, Wilbrey A, Tufail A, Feng G, Whitlock M, Robson AG, Holder GE, Sagoo MS, Loudon PT, Whiting P, Coffey PJ. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 2018; 36:328-337. [PMID: 29553577 DOI: 10.1038/nbt.4114] [Citation(s) in RCA: 465] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/28/2018] [Indexed: 01/12/2023]
Abstract
Age-related macular degeneration (AMD) remains a major cause of blindness, with dysfunction and loss of retinal pigment epithelium (RPE) central to disease progression. We engineered an RPE patch comprising a fully differentiated, human embryonic stem cell (hESC)-derived RPE monolayer on a coated, synthetic basement membrane. We delivered the patch, using a purpose-designed microsurgical tool, into the subretinal space of one eye in each of two patients with severe exudative AMD. Primary endpoints were incidence and severity of adverse events and proportion of subjects with improved best-corrected visual acuity of 15 letters or more. We report successful delivery and survival of the RPE patch by biomicroscopy and optical coherence tomography, and a visual acuity gain of 29 and 21 letters in the two patients, respectively, over 12 months. Only local immunosuppression was used long-term. We also present the preclinical surgical, cell safety and tumorigenicity studies leading to trial approval. This work supports the feasibility and safety of hESC-RPE patch transplantation as a regenerative strategy for AMD.
Collapse
Affiliation(s)
- Lyndon da Cruz
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences (WEISS), Charles Bell House, London, UK
| | - Kate Fynes
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Odysseas Georgiadis
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Julie Kerby
- Pfizer, Granta Park, Cambridge, UK
- Cell and Gene Therapy Catapult, London, UK
| | - Yvonne H Luo
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Ahmad Ahmado
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Amanda Vernon
- Cells for Sight, Transplantation & Research Program, UCL Institute of Ophthalmology, London, UK
| | - Julie T Daniels
- Cells for Sight, Transplantation & Research Program, UCL Institute of Ophthalmology, London, UK
| | - Britta Nommiste
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Shazeen M Hasan
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Sakina B Gooljar
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Amanda-Jayne F Carr
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Anthony Vugler
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Conor M Ramsden
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | | - Adnan Tufail
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | | | - Anthony G Robson
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Graham E Holder
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mandeep S Sagoo
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Paul Whiting
- Pfizer, Granta Park, Cambridge, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Peter J Coffey
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Center for Stem Cell Biology and Engineering, NRI, UC, Santa Barbara, California, USA
| |
Collapse
|
37
|
Shang P, Stepicheva NA, Hose S, Zigler JS, Sinha D. Primary Cell Cultures from the Mouse Retinal Pigment Epithelium. J Vis Exp 2018. [PMID: 29608155 DOI: 10.3791/56997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a highly polarized multi-functional epithelium that is located between the neural retina and the choroid of the eye. It is a single sheet of pigmented cells that are hexagonally packed and connected by tight junctions. The main functions of the RPE include absorption of light, phagocytosis of the shed photoreceptor outer segments, spatial buffering of ions, transport of nutrients, ions and water as well as active involvement in the visual cycle. With such important and diverse functions, it is critically important to study the biology of RPE cells. A number of RPE cell lines have been established; however, passaged and immortalized cells are known to quickly lose some of the morphological and physiological characteristics of natural RPE cells. Thus, primary cells are more suitable for studying different aspects of RPE cell biology and function. Mouse primary RPE cell culture is very useful to researchers since mouse models are widely used in biological studies, however collecting RPE cells from mouse is also very challenging due to their small size. Here, we present a protocol for establishing primary mouse RPE cell cultures which includes enucleation and dissection of the eyes and isolation of the RPE sheets to yield the cells for culturing. This method enables efficient cell recovery. The RPE cells obtained from two mice can reach confluency on one 12 mm polyester membrane insert pre-loaded in culture plate after one week of culture and display some of the original properties of bona fide RPE cells such as hexagonal shape and pigmentation after two weeks of culture.
Collapse
Affiliation(s)
- Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine;
| | | | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine; Wilmer Eye Institute, The Johns Hopkins University School of Medicine
| |
Collapse
|
38
|
Lin YY, Liu JH, Chang Y. Foetal bovine serum can reduce toxicity of indocyanine green, brilliant blue G and trypan blue in ARPE-19 cellular model that suggests new surgical staining protocols for internal limiting membrane peeling procedure. Clin Exp Ophthalmol 2018; 46:796-808. [PMID: 29417735 DOI: 10.1111/ceo.13165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND To investigate and compare the cytotoxicity of indocyanine green (ICG), brilliant blue G (BBG) and trypan blue (TB) using ARPE-19 cells that have been pre-treated/post-treated with balanced salt solution (BSS) or foetal bovine serum (FBS). METHODS The cultured human retina pigment epithelium ARPE-19 cells were pre-treated/post-treated with BSS or FBS (represent the autologous serum in clinic) in parallel with cells being soaked with various concentrations of ICG, BBG and TB. The cells were then assessed for viability, growth rate, reactive oxygen species (ROS) level, mitochondrial membrane potential (Δψ) and mitochondrial mass as cytotoxic indices. For the FBS pre-treated cells, only ROS was examined. RESULTS Using the MTT assay, cytotoxicity seemed to appear when the dye concentration was above 2.5 mg/mL for ICG but no cytotoxicity for BBG and TB at the concentrations used. Cell growth was arrested at a concentration 1 mg/mL when ICG or BBG were present but no arrest at any of the tested concentrations was found for TB with the cell-growth curve was slowest for ICG. Cellular ROS levels increased at all concentrations of all dyes, but the increasing slopes were decreased after FBS post-treatment washout. CONCLUSIONS As a rinse buffer FBS performs much better than BSS in terms of cell rescue, which agrees with a clinical report when autologous whole blood was applied to macular hole surgery. However, FBS pre-treatment seems to be much better than FBS use as washout buffer in post-treatment.
Collapse
Affiliation(s)
- Yu-Yi Lin
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Jorn-Hon Liu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yin Chang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
39
|
Keeling E, Lotery AJ, Tumbarello DA, Ratnayaka JA. Impaired Cargo Clearance in the Retinal Pigment Epithelium (RPE) Underlies Irreversible Blinding Diseases. Cells 2018; 7:E16. [PMID: 29473871 PMCID: PMC5850104 DOI: 10.3390/cells7020016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 01/09/2023] Open
Abstract
Chronic degeneration of the Retinal Pigment Epithelium (RPE) is a precursor to pathological changes in the outer retina. The RPE monolayer, which lies beneath the neuroretina, daily internalises and digests large volumes of spent photoreceptor outer segments. Impaired cargo handling and processing in the endocytic/phagosome and autophagy pathways lead to the accumulation of lipofuscin and pyridinium bis-retinoid A2E aggregates and chemically modified compounds such as malondialdehyde and 4-hydroxynonenal within RPE. These contribute to increased proteolytic and oxidative stress, resulting in irreversible damage to post-mitotic RPE cells and development of blinding conditions such as age-related macular degeneration, Stargardt disease and choroideremia. Here, we review how impaired cargo handling in the RPE results in their dysfunction, discuss new findings from our laboratory and consider how newly discovered roles for lysosomes and the autophagy pathway could provide insights into retinopathies. Studies of these dynamic, molecular events have also been spurred on by recent advances in optics and imaging technology. Mechanisms underpinning lysosomal impairment in other degenerative conditions including storage disorders, α-synuclein pathologies and Alzheimer's disease are also discussed. Collectively, these findings help transcend conventional understanding of these intracellular compartments as simple waste disposal bags to bring about a paradigm shift in the way lysosomes are perceived.
Collapse
Affiliation(s)
- Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.
| | - David A Tumbarello
- Biological Sciences, Faculty of Natural & Environmental Sciences, Life Science Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
40
|
Müller C, Charniga C, Temple S, Finnemann SC. Quantified F-Actin Morphology Is Predictive of Phagocytic Capacity of Stem Cell-Derived Retinal Pigment Epithelium. Stem Cell Reports 2018; 10:1075-1087. [PMID: 29456184 PMCID: PMC5918243 DOI: 10.1016/j.stemcr.2018.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 01/22/2023] Open
Abstract
With stem cell-derived retinal pigment epithelial (RPE) replacement therapies in clinical testing, establishing potency of RPE prior to transplantation is imperative. Phagocytosis of photoreceptor outer segment fragments (POS) is a key indicator of RPE functionality. Comparing RPE derived from different donor human adult RPE stem cell lines, we found that cells were either high-phagocytic or low-phagocytic despite sharing phagocytic receptors and ligands, junctional ZO-1, and lack of epithelial-mesenchymal transition. We found that low-phagocytic cells harbored F-actin stress fibers but lacked contiguous lateral circumferential F-actin and ezrin-rich microvilli of high-phagocytic cells. Rho kinase inhibition reversed the F-actin phenotype and restored phagocytic capacity to low-phagocytic RPE. Conversely, RhoA activation induced stress fiber formation and reduced phagocytic function of high-phagocytic RPE. These results demonstrate that a stress fiber-rich microfilament cytoskeleton causes phagocytic dysfunction of RPE cells. We propose F-actin assessment as a rapid, sensitive, and quantitative test to identify RPE populations lacking phagocytic capacity. F-actin stress fibers predict low phagocytic activity of adult stem cell-derived RPE Rho kinase inhibition eliminates stress fibers and restores phagocytic function F-actin scoring allows rapid, sensitive, and quantitative RPE quality assessment
Collapse
Affiliation(s)
- Claudia Müller
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY 10458, USA
| | | | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Silvia C Finnemann
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY 10458, USA.
| |
Collapse
|
41
|
Sudharsan R, Elliott MH, Dolgova N, Aguirre GD, Beltran WA. Photoreceptor Outer Segment Isolation from a Single Canine Retina for RPE Phagocytosis Assay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:593-601. [PMID: 29721992 DOI: 10.1007/978-3-319-75402-4_72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protocols for photoreceptor outer segment (POS) isolation that can be used in phagocytosis assays of retinal pigment epithelium (RPE) cells have routinely used a large number of cow or pig eyes. However, when working with large animal models (e.g., dog, cats, transgenic pigs) of inherited retinal degenerative diseases, access to retinal tissues may be limited. An optimized protocol is presented in this paper to isolate sufficient POS from a single canine retina for use in RPE phagocytosis assays.
Collapse
Affiliation(s)
- Raghavi Sudharsan
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael H Elliott
- Department of Ophthalmology, University of Oklahoma Health Science Centre, Oklahoma City, OK, USA
| | - Natalia Dolgova
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Neferine, is not inducer but blocker for macroautophagic flux targeting on lysosome malfunction. Biochem Biophys Res Commun 2017; 495:1516-1521. [PMID: 29197576 DOI: 10.1016/j.bbrc.2017.11.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/26/2017] [Indexed: 12/24/2022]
Abstract
Neferine, an alkaloid isolated from Lotus seeds, displays multiple pharmacological effects that counter cancer, oxidants, and arrhythmia. It was initially identified as a strong inducer for macroautophagy in cancer cells by suppressing AMPK/mTOR signaling. In this study, we found that autophagy signaling was inhibited in the condition of neferine treatment. Exposure to neferine resulted in the accumulation of LC3-II and an associated adaptor protein, p62/SQSTM1. Knockdown of ATG5 failed to reduce the accumulation of LC3-II induced by neferine. The electron microscopy (EM) images showed that neferine induce accumulation of multi-vesicle bodies (MVB) and failure of lysosome maturation. Moreover, exposure to neferine reduced maturation of cathepsin D and impaired the degradation of autophagic and phagocytic cargos. Rather than stimulate autophagic flux, the data indicate that neferine impaired lysosomes to block degradation within phagolysosomes.
Collapse
|
43
|
Shao Z, Wang H, Zhou X, Guo B, Gao X, Xiao Z, Liu M, Sha J, Jiang C, Luo Y, Liu Z, Li S. Spontaneous generation of a novel foetal human retinal pigment epithelium (RPE) cell line available for investigation on phagocytosis and morphogenesis. Cell Prolif 2017; 50. [PMID: 28924976 PMCID: PMC6529143 DOI: 10.1111/cpr.12386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022] Open
Abstract
Objectives Primary retinal pigment epithelium (RPE) cells have a limited capacity to re‐establish epithelial morphology and to maintain native RPE function in vitro, and all commercially available RPE cell lines have drawbacks of morphology or function; therefore, the establishment of new RPE cell lines with typical characteristics of RPE would be helpful in further understanding of their physiological and pathological mechanisms. Here, we firstly report a new spontaneously generated RPE line, fhRPE‐13A, from a 13‐week aborted foetus. We aimed to investigate its availability as a RPE model. Materials and methods RNA‐seq data were mapped to the human genome assembly hg19. Global transcriptional data were analysed by Weighted Gene Co‐expression Network Analysis (WGCNA) and differentially expressed genes (DEGs). The morphology and molecular characteristics were examined by immunofluorescence, transmission electron micrographs, PCR and western blot. Photoreceptor outer segments (POS) phagocytosis assay and transepithelial resistance measurement (TER) were performed to assess phagocytic activity and barrier function, respectively. Results The fhRPE‐13A cells showed typical polygonal morphology and normal biological processes of RPE. Meanwhile they were capable of POS phagocytosis in vitro, and the expression level of TYR and TYRP1 were significantly higher than that in ARPE‐19 cells. Conclusions The foetal human RPE line fhRPE‐13A is a valuable system for researching phagocytosis and morphogenesis of RPE in vitro.
Collapse
Affiliation(s)
- Zhihua Shao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyun Wang
- Shanghai First Maternity and Infant Health Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuejian Zhou
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Baosen Guo
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Xuehu Gao
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Zengrong Xiao
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Meng Liu
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Jihong Sha
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Chunlian Jiang
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Yuping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhixue Liu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Bennis A, ten Brink JB, Moerland PD, Heine VM, Bergen AA. Comparative gene expression study and pathway analysis of the human iris- and the retinal pigment epithelium. PLoS One 2017; 12:e0182983. [PMID: 28827822 PMCID: PMC5565104 DOI: 10.1371/journal.pone.0182983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/27/2017] [Indexed: 11/25/2022] Open
Abstract
Background The retinal pigment epithelium (RPE) is a neural monolayer lining the back of the eye. Degeneration of the RPE leads to severe vision loss in, so far incurable, diseases such as age-related macular degeneration and some forms of retinitis pigmentosa. A promising future replacement therapy may be autologous iris epithelial cell transdifferentiation into RPE in vitro and, subsequently, transplantation. In this study we compared the gene expression profiles of the iris epithelium (IE) and the RPE. Methods We collected both primary RPE- and IE cells from 5 freshly frozen human donor eyes, using respectively laser dissection microscopy and excision. We performed whole-genome expression profiling using 44k Agilent human microarrays. We investigated the gene expression profiles on both gene and functional network level, using R and the knowledge database Ingenuity. Results The major molecular pathways related to the RPE and IE were quite similar and yielded basic neuro-epithelial cell functions. Nonetheless, we also found major specific differences: For example, genes and molecular pathways, related to the visual cycle and retinol biosynthesis are significantly higher expressed in the RPE than in the IE. Interestingly, Wnt and aryl hydrocarbon receptor (AhR-) signaling pathways are much higher expressed in the IE than in the RPE, suggesting, respectively, a possible pluripotent and high detoxification state of the IE. Conclusions This study provides a valuation of the similarities and differences between the expression profiles of the RPE and IE. Our data combined with that of the literature, represent a most comprehensive perspective on transcriptional variation, which may support future research in the development of therapeutic transplantation of IE.
Collapse
Affiliation(s)
- Anna Bennis
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jacoline B. ten Brink
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Perry D. Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
| | - Vivi M. Heine
- Department of Pediatrics / Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| | - Arthur A. Bergen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Centre, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
45
|
Davis RJ, Alam NM, Zhao C, Müller C, Saini JS, Blenkinsop TA, Mazzoni F, Campbell M, Borden SM, Charniga CJ, Lederman PL, Aguilar V, Naimark M, Fiske M, Boles N, Temple S, Finnemann SC, Prusky GT, Stern JH. The Developmental Stage of Adult Human Stem Cell-Derived Retinal Pigment Epithelium Cells Influences Transplant Efficacy for Vision Rescue. Stem Cell Reports 2017; 9:42-49. [PMID: 28625537 PMCID: PMC5511099 DOI: 10.1016/j.stemcr.2017.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a common cause of central visual loss in the elderly. Retinal pigment epithelial (RPE) cell loss occurs early in the course of AMD and RPE cell transplantation holds promise to slow disease progression. We report that subretinal transplantation of RPE stem cell (RPESC)-derived RPE cells (RPESC-RPE) preserved vision in a rat model of RPE cell dysfunction. Importantly, the stage of differentiation that RPESC-RPE acquired prior to transplantation influenced the efficacy of vision rescue. Whereas cells at all stages of differentiation tested rescued photoreceptor layer morphology, an intermediate stage of RPESC-RPE differentiation obtained after 4 weeks of culture was more consistent at vision rescue than progeny that were differentiated for 2 weeks or 8 weeks of culture. Our results indicate that the developmental stage of RPESC-RPE significantly influences the efficacy of RPE cell replacement, which affects the therapeutic application of these cells for AMD.
Collapse
Affiliation(s)
- Richard J Davis
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Nazia M Alam
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10605, USA; Center for Visual Restoration, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | - Cuiping Zhao
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Claudia Müller
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY 10458, USA
| | - Janmeet S Saini
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Timothy A Blenkinsop
- Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesca Mazzoni
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY 10458, USA
| | - Melissa Campbell
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Susan M Borden
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Carol J Charniga
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Patty L Lederman
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Vanessa Aguilar
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Michael Naimark
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Michael Fiske
- Upstate Stem Cell cGMP Facility, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nathan Boles
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Sally Temple
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Silvia C Finnemann
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY 10458, USA
| | - Glen T Prusky
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10605, USA; Center for Visual Restoration, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | - Jeffrey H Stern
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA.
| |
Collapse
|
46
|
Ex-vivo models of the Retinal Pigment Epithelium (RPE) in long-term culture faithfully recapitulate key structural and physiological features of native RPE. Tissue Cell 2017; 49:447-460. [PMID: 28669519 PMCID: PMC5545183 DOI: 10.1016/j.tice.2017.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 01/06/2023]
Abstract
Damage to the Retinal Pigment Epithelium (RPE) is a key feature of retinopathy. We describe 2 substrates which support RPE cultures for long-term studies. Substrates were; a polyester transwell membrane and a novel electrospun scaffold. Both support RPE cultures with structural and functional features of native RPE. Electrospun scaffolds may be better for studying some disease-linked RPE changes.
The Retinal Pigment Epithelium (RPE) forms the primary site of pathology in several blinding retinopathies. RPE cultures are being continuously refined so that dynamic disease processes in this important monolayer can be faithfully studied outside the eye over longer periods. The RPE substrate, which mimics the supportive Bruch’s membrane (BrM), plays a key role in determining how well in-vitro cultures recapitulate native RPE cells. Here, we evaluate how two different types of BrM substrates; (1) a commercially-available polyester transwell membrane, and (2) a novel electrospun scaffold developed in our laboratory, could support the generation of realistic RPE tissues in culture. Our findings reveal that both substrates were capable of supporting long-lasting RPE monolayers with structural and functional specialisations of in-situ RPE cells. These cultures were used to study autofluorescence and barrier formation, as well as activities such as outer-segment internalisation/trafficking and directional secretion of key proteins; the impairment of which underlies retinal disease. Hence, both substrates fulfilled important criteria for generating authentic in-vitro cultures and act as powerful tools to study RPE pathophysiology. However, RPE grown on electrospun scaffolds may be better suited to studying complex RPE-BrM interactions such as the formation of drusen-like deposits associated with early retinal disease.
Collapse
|
47
|
Tian B, Al-Moujahed A, Bouzika P, Hu Y, Notomi S, Tsoka P, Miller JW, Lin H, Vavvas DG. Atorvastatin Promotes Phagocytosis and Attenuates Pro-Inflammatory Response in Human Retinal Pigment Epithelial Cells. Sci Rep 2017; 7:2329. [PMID: 28539592 PMCID: PMC5443823 DOI: 10.1038/s41598-017-02407-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
Phagocytosis of daily shed photoreceptor outer segments is an important function of the retinal pigment epithelium (RPE) and it is essential for retinal homeostasis. RPE dysfunction, especially impairment of its phagocytic ability, plays an essential role in the pathogenesis of age-related macular degeneration (AMD). Statins, or HMG CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitors, are drugs with multiple properties that have been extensively used to treat hyperlipidemia. However, their effect on RPE cells has not been fully elucidated. Here we report that high dose atorvastatin increased the phagocytic function of ARPE-19 cells, as well as rescue the cells from the phagocytic dysfunction induced by cholesterol crystals and oxidized low-density lipoproteins (ox-LDL), potentially by increasing the cellular membrane fluidity. Similar effects were observed when evaluating two other hydrophobic statins, lovastatin and simvastatin. Furthermore, atorvastatin was able to block the induction of interleukins IL-6 and IL-8 triggered by pathologic stimuli relevant to AMD, such as cholesterol crystals and ox-LDL. Our study shows that statins, a well-tolerated class of drugs with rare serious adverse effects, help preserve the phagocytic function of the RPE while also exhibiting anti-inflammatory properties. Both characteristics make statins a potential effective medication for the prevention and treatment of AMD.
Collapse
Affiliation(s)
- Bo Tian
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmad Al-Moujahed
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, United States
- Department of Pathology, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Peggy Bouzika
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, United States
| | - Yijun Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shoji Notomi
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, United States
| | - Pavlina Tsoka
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, United States
| | - Joan W Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, United States
| | - Haijiang Lin
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, United States.
- Department of Ophthalmology & Visual Sciences, University of Massachusetts Medical School, Worcester, MA, 01605, United States.
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, United States.
| |
Collapse
|
48
|
Ramsden CM, Nommiste B, R Lane A, Carr AJF, Powner MB, J K Smart M, Chen LL, Muthiah MN, Webster AR, Moore AT, Cheetham ME, da Cruz L, Coffey PJ. Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs. Sci Rep 2017; 7:51. [PMID: 28246391 PMCID: PMC5427915 DOI: 10.1038/s41598-017-00142-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/07/2017] [Indexed: 01/22/2023] Open
Abstract
Inherited retinal dystrophies are an important cause of blindness, for which currently there are no effective treatments. In order to study this heterogeneous group of diseases, adequate disease models are required in order to better understand pathology and to test potential therapies. Induced pluripotent stem cells offer a new way to recapitulate patient specific diseases in vitro, providing an almost limitless amount of material to study. We used fibroblast-derived induced pluripotent stem cells to generate retinal pigment epithelium (RPE) from an individual suffering from retinitis pigmentosa associated with biallelic variants in MERTK. MERTK has an essential role in phagocytosis, one of the major functions of the RPE. The MERTK deficiency in this individual results from a nonsense variant and so the MERTK-RPE cells were subsequently treated with two translational readthrough inducing drugs (G418 & PTC124) to investigate potential restoration of expression of the affected gene and production of a full-length protein. The data show that PTC124 was able to reinstate phagocytosis of labeled photoreceptor outer segments at a reduced, but significant level. These findings represent a confirmation of the usefulness of iPSC derived disease specific models in investigating the pathogenesis and screening potential treatments for these rare blinding disorders.
Collapse
Affiliation(s)
- Conor M Ramsden
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK.,Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK
| | - Britta Nommiste
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Amelia R Lane
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Amanda-Jayne F Carr
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Michael B Powner
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Division of Optometry and Visual Sciences, City University London, Northampton Square, London, EC1V 0HB, UK
| | - Matthew J K Smart
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Li Li Chen
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Manickam N Muthiah
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK.,Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK
| | - Andrew R Webster
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Anthony T Moore
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK.,UCSF School of Medicine, Koret Vision Center, 10 Koret Way, San Francisco, CA 94143, USA
| | - Michael E Cheetham
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Lyndon da Cruz
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK.,Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK
| | - Peter J Coffey
- Department of Ocular Biology and Therapeutics (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK. .,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK. .,Center for Stem Cell Biology and Engineering, NRI, UC Santa Barbara, USA.
| |
Collapse
|
49
|
Sethna S, Chamakkala T, Gu X, Thompson TC, Cao G, Elliott MH, Finnemann SC. Regulation of Phagolysosomal Digestion by Caveolin-1 of the Retinal Pigment Epithelium Is Essential for Vision. J Biol Chem 2016; 291:6494-506. [PMID: 26814131 DOI: 10.1074/jbc.m115.687004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 01/09/2023] Open
Abstract
Caveolin-1 associates with the endo/lysosomal machinery of cells in culture, suggesting that it functions at these organelles independently of its contribution to cell surface caveolae. Here we explored mice lacking caveolin-1 specifically in the retinal pigment epithelium (RPE). The RPE supports neighboring photoreceptors via diurnal phagocytosis of spent photoreceptor outer segment fragments. Like mice lacking caveolin-1 globally, (RPE)CAV1(-/-) mice developed a normal RPE and neural retina but showed reduced rod photoreceptor light responses, indicating that lack of caveolin-1 affects photoreceptor function in a non-cell-autonomous manner. (RPE)CAV1(-/-) RPE in situ showed normal particle engulfment but delayed phagosome clearance and reversed diurnal profiles of levels and activities of lysosomal enzymes. Therefore, eliminating caveolin-1 specifically impairs phagolysosomal degradation by the RPE in vivo. Endogenous caveolin-1 was recruited to maturing phagolysosomes in RPE cells in culture. Consistent with these in vivo data, a moderate increase (to ∼ 2.5-fold) or decrease (by half) of caveolin-1 protein levels in RPE cells in culture was sufficient to accelerate or impair phagolysosomal digestion, respectively. A mutant form of caveolin-1 that fails to reach the cell surface augmented degradation like wild-type caveolin-1. Acidic lysosomal pH and increased protease activity are essential for digestion. We show that halving caveolin-1 protein levels significantly alkalinized lysosomal pH and decreased lysosomal enzyme activities. Taken together, our results reveal a novel role for intracellular caveolin-1 in modulating phagolysosomal function. Moreover, they show, for the first time, that organellar caveolin-1 significantly affects tissue functionality in vivo.
Collapse
Affiliation(s)
- Saumil Sethna
- From the Department of Biological Sciences, Center for Cancer Genetic Diseases and Gene Regulation, Fordham University, Bronx, New York 10458
| | - Tess Chamakkala
- From the Department of Biological Sciences, Center for Cancer Genetic Diseases and Gene Regulation, Fordham University, Bronx, New York 10458
| | - Xiaowu Gu
- the Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| | - Timothy C Thompson
- the Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Guangwen Cao
- the Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Michael H Elliott
- the Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| | - Silvia C Finnemann
- From the Department of Biological Sciences, Center for Cancer Genetic Diseases and Gene Regulation, Fordham University, Bronx, New York 10458,
| |
Collapse
|
50
|
Uhl PB, Amann B, Hauck SM, Deeg CA. Novel localization of peripherin 2, the photoreceptor-specific retinal degeneration slow protein, in retinal pigment epithelium. Int J Mol Sci 2015; 16:2678-92. [PMID: 25629227 PMCID: PMC4346858 DOI: 10.3390/ijms16022678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/22/2015] [Indexed: 11/23/2022] Open
Abstract
Retinal pigment epithelium (RPE) builds the outer blood-retinal barrier of the eye. Since one typical feature of the autoimmune disease, equine recurrent uveitis (ERU), is the breakdown of this barrier, we recently performed comparative analysis of healthy and uveitic RPE. We identified for the first time peripherin 2, which is responsible for visual perception and retina development, to be localized in RPE. The purpose of this study was therefore to validate our findings by characterizing the expression patterns of peripherin 2 in RPE and retina. We also investigated whether peripherin 2 expression changes in ERU and if it is expressed by the RPE itself. Via immunohistochemistry, significant downregulation of peripherin 2 in uveitic RPE compared to the control was detectable, but there was no difference in healthy and uveitic retina. A further interesting finding was the clear distinction between peripherin 2 and the phagocytosis marker, rhodopsin, in healthy RPE. In conclusion, changes in the expression pattern of peripherin 2 selectively affect RPE, but not retina, in ERU. Moreover, peripherin 2 is clearly detectable in healthy RPE due to both phagocytosis and the expression by the RPE cells themselves. Our novel findings are very promising for better understanding the molecular mechanisms taking place on RPE in uveitis.
Collapse
Affiliation(s)
- Patrizia B Uhl
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University, Veterinärstraße 13, D-80539 Munich, Germany.
| | - Barbara Amann
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University, Veterinärstraße 13, D-80539 Munich, Germany.
| | - Stefanie M Hauck
- Research Unit for Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| | - Cornelia A Deeg
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University, Veterinärstraße 13, D-80539 Munich, Germany.
| |
Collapse
|