1
|
Falconieri GS, Bertini L, Fiaschetti M, Bizzarri E, Baccelli I, Caruso C, Proietti S. Arabidopsis GLYI4 Reveals Intriguing Insights into the JA Signaling Pathway and Plant Defense. Int J Mol Sci 2024; 25:12162. [PMID: 39596230 PMCID: PMC11594653 DOI: 10.3390/ijms252212162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Plant hormones play a central role in various physiological functions and mediate defense responses against (a)biotic stresses. Jasmonic acid (JA) has emerged as one of the key phytohormones involved in the response to necrotrophic pathogens. Under stressful conditions, plants can also produce small molecules, such as methylglyoxal (MG), a cytotoxic aldehyde. The enzymes glyoxalase I (GLYI) and glyoxalase II primarily detoxify MG. In Arabidopsis thaliana, GLYI4 has been recently characterized as having a crucial role in MG detoxification and emerging involvement in the JA pathway. Here, we investigated the impact of a GLYI4 loss-of-function on the Arabidopsis JA pathway and how MG affects it. The results showed that the glyI4 mutant plant had stunted growth, a smaller rosette diameter, reduced leaf size, and an altered pigment concentration. A gene expression analysis of the JA marker genes showed significant changes in the JA biosynthetic and signaling pathway genes in the glyI4 mutant. Disease resistance bioassays against the necrotroph Botrytis cinerea revealed altered patterns in the glyI4 mutant, likely due to increased oxidative stress. The MG effect has a further negative impact on plant performance. Collectively, these results contribute to clarifying the intricate interconnections between the GLYI4, MG, and JA pathways, opening up new avenues for further explorations of the intricate molecular mechanisms controlling plant stress responses.
Collapse
Affiliation(s)
- Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Matteo Fiaschetti
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy;
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| |
Collapse
|
2
|
Yan F, Ma J, Peng M, Xi C, Chang S, Yang Y, Tian S, Zhou B, Liu T. Lactic acid induced defense responses in tobacco against Phytophthora nicotianae. Sci Rep 2024; 14:9338. [PMID: 38654120 DOI: 10.1038/s41598-024-60037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Induced resistance is considered an eco-friendly disease control strategy, which can enhance plant disease resistance by inducing the plant's immune system to activate the defense response. In recent years, studies have shown that lactic acid can play a role in plant defense against biological stress; however, whether lactic acid can improve tobacco resistance to Phytophthora nicotianae, and its molecular mechanism remains unclear. In our study, the mycelial growth and sporangium production of P. nicotianae were inhibited by lactic acid in vitro in a dose-dependent manner. Application of lactic acid could reduce the disease index, and the contents of total phenol, salicylic acid (SA), jasmonic acid (JA), lignin and H2O2, catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased. To explore this lactic acid-induced protective mechanism for tobacco disease resistance, RNA-Seq analysis was used. Lactic acid enhances tobacco disease resistance by activating Ca2+, reactive oxygen species (ROS) signal transduction, regulating antioxidant enzymes, SA, JA, abscisic acid (ABA) and indole-3-acetic acid (IAA) signaling pathways, and up-regulating flavonoid biosynthesis-related genes. This study demonstrated that lactic acid might play a role in inducing resistance to tobacco black shank disease; the mechanism by which lactic acid induces disease resistance includes direct antifungal activity and inducing the host to produce direct and primed defenses. In conclusion, this study provided a theoretical basis for lactic acid-induced resistance and a new perspective for preventing and treating tobacco black shank disease.
Collapse
Affiliation(s)
- Fan Yan
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- National-Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junchi Ma
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- National-Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Manjiang Peng
- Tobacco Quality Inspection, Department of Raw Material, Hongyun Honghe Tobacco Group, Kunming, 650051, Yunnan, China
| | - Congfang Xi
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Sheng Chang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming, Yunnan, 650201, China
| | - Ying Yang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming, Yunnan, 650201, China
| | - Suohui Tian
- No. 10 Middle School, Guangnan County, Wenshan Prefecture, Wenshan, 663300, Yunnan, China.
| | - Bo Zhou
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming, Yunnan, 650201, China.
| | - Tao Liu
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
- National-Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
3
|
Marzorati F, Rossi R, Bernardo L, Mauri P, Silvestre DD, Lauber E, Noël LD, Murgia I, Morandini P. Arabidopsis thaliana Early Foliar Proteome Response to Root Exposure to the Rhizobacterium Pseudomonas simiae WCS417. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:737-748. [PMID: 37470457 DOI: 10.1094/mpmi-05-23-0071-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Pseudomonas simiae WCS417 is a plant growth-promoting rhizobacterium that improves plant health and development. In this study, we investigate the early leaf responses of Arabidopsis thaliana to WCS417 exposure and the possible involvement of formate dehydrogenase (FDH) in such responses. In vitro-grown A. thaliana seedlings expressing an FDH::GUS reporter show a significant increase in FDH promoter activity in their roots and shoots after 7 days of indirect exposure (without contact) to WCS417. After root exposure to WCS417, the leaves of FDH::GUS plants grown in the soil also show an increased FDH promoter activity in hydathodes. To elucidate early foliar responses to WCS417 as well as FDH involvement, the roots of A. thaliana wild-type Col and atfdh1-5 knock-out mutant plants grown in soil were exposed to WCS417, and proteins from rosette leaves were subjected to proteomic analysis. The results reveal that chloroplasts, in particular several components of the photosystems PSI and PSII, as well as members of the glutathione S-transferase family, are among the early targets of the metabolic changes induced by WCS417. Taken together, the alterations in the foliar proteome, as observed in the atfdh1-5 mutant, especially after exposure to WCS417 and involving stress-responsive genes, suggest that FDH is a node in the early events triggered by the interactions between A. thaliana and the rhizobacterium WCS417. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Francesca Marzorati
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Rossana Rossi
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Letizia Bernardo
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Emmanuelle Lauber
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Laurent D Noël
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Irene Murgia
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Proietti S, Falconieri GS, Bertini L, Pascale A, Bizzarri E, Morales-Sanfrutos J, Sabidó E, Ruocco M, Monti MM, Russo A, Dziurka K, Ceci M, Loreto F, Caruso C. Beauveria bassiana rewires molecular mechanisms related to growth and defense in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4225-4243. [PMID: 37094092 PMCID: PMC10400115 DOI: 10.1093/jxb/erad148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Plant roots can exploit beneficial associations with soil-inhabiting microbes, promoting growth and expanding the immune capacity of the host plant. In this work, we aimed to provide new information on changes occurring in tomato interacting with the beneficial fungus Beauveria bassiana. The tomato leaf proteome revealed perturbed molecular pathways during the establishment of the plant-fungus relationship. In the early stages of colonization (5-7 d), proteins related to defense responses to the fungus were down-regulated and proteins related to calcium transport were up-regulated. At later time points (12-19 d after colonization), up-regulation of molecular pathways linked to protein/amino acid turnover and to biosynthesis of energy compounds suggests beneficial interaction enhancing plant growth and development. At the later stage, the profile of leaf hormones and related compounds was also investigated, highlighting up-regulation of those related to plant growth and defense. Finally, B. bassiana colonization was found to improve plant resistance to Botrytis cinerea, impacting plant oxidative damage. Overall, our findings further expand current knowledge on the possible mechanisms underlying the beneficial role of B. bassiana in tomato plants.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Alberto Pascale
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Julia Morales-Sanfrutos
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Maurilia M Monti
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Assunta Russo
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Francesco Loreto
- Department of Biology, Via Cinthia, University of Naples Federico II, 80126, Naples, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Verbon EH, Liberman LM, Zhou J, Yin J, Pieterse CMJ, Benfey PN, Stringlis IA, de Jonge R. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. MOLECULAR PLANT 2023; 16:1160-1177. [PMID: 37282370 PMCID: PMC10527033 DOI: 10.1016/j.molp.2023.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Growth- and health-promoting bacteria can boost crop productivity in a sustainable way. Pseudomonas simiae WCS417 is such a bacterium that efficiently colonizes roots, modifies the architecture of the root system to increase its size, and induces systemic resistance to make plants more resistant to pests and pathogens. Our previous work suggested that WCS417-induced phenotypes are controlled by root cell-type-specific mechanisms. However, it remains unclear how WCS417 affects these mechanisms. In this study, we transcriptionally profiled five Arabidopsis thaliana root cell types following WCS417 colonization. We found that the cortex and endodermis have the most differentially expressed genes, even though they are not in direct contact with this epiphytic bacterium. Many of these genes are associated with reduced cell wall biogenesis, and mutant analysis suggests that this downregulation facilitates WCS417-driven root architectural changes. Furthermore, we observed elevated expression of suberin biosynthesis genes and increased deposition of suberin in the endodermis of WCS417-colonized roots. Using an endodermal barrier mutant, we showed the importance of endodermal barrier integrity for optimal plant-beneficial bacterium association. Comparison of the transcriptome profiles in the two epidermal cell types that are in direct contact with WCS417-trichoblasts that form root hairs and atrichoblasts that do not-implies a difference in potential for defense gene activation. While both cell types respond to WCS417, trichoblasts displayed both higher basal and WCS417-dependent activation of defense-related genes compared with atrichoblasts. This suggests that root hairs may activate root immunity, a hypothesis that is supported by differential immune responses in root hair mutants. Taken together, these results highlight the strength of cell-type-specific transcriptional profiling to uncover "masked" biological mechanisms underlying beneficial plant-microbe associations.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Louisa M Liberman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jiayu Zhou
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Jie Yin
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands; Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece.
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands.
| |
Collapse
|
6
|
Duplicated Flagellins in Pseudomonas Divergently Contribute to Motility and Plant Immune Elicitation. Microbiol Spectr 2023; 11:e0362122. [PMID: 36629446 PMCID: PMC9927476 DOI: 10.1128/spectrum.03621-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Flagellins are the main constituents of the flagellar filaments that provide bacterial motility, chemotactic ability, and host immune elicitation ability. Although the functions of flagellins have been extensively studied in bacteria with a single flagellin-encoding gene, the function of multiple flagellin-encoding genes in a single bacterial species is largely unknown. Here, the model plant-growth-promoting bacterium Pseudomonas kilonensis F113 was used to decipher the divergent functions of duplicated flagellins. We demonstrate that the two flagellins (FliC-1 and FliC-2) in 12 Pseudomonas strains, including F113, are evolutionarily distinct. Only the fliC-1 gene but not the fliC-2 gene in strain F113 is responsible for flagellar biogenesis, motility, and plant immune elicitation. The transcriptional expression of fliC-2 was significantly lower than that of fliC-1 in medium and in planta, most likely due to variations in promoter activity. In silico prediction revealed that all fliC-2 genes in the 12 Pseudomonas strains have a poorly conserved promoter motif. Compared to the Flg22-2 epitope (relative to FliC-2), Flg22-1 (relative to FliC-1) induced stronger FLAGELLIN SENSING 2 (FLS2)-mediated microbe-associated molecular pattern-triggered immunity and significantly inhibited plant root growth. A change in the 19th amino acid in Flg22-2 reduced its binding affinity to the FLS2/brassinosteroid insensitive 1-associated kinase 1 complex. Also, Flg22-2 epitopes in the other 11 Pseudomonas strains were presumed to have low binding affinity due to the same change in the 19th amino acid. These findings suggest that Pseudomonas has evolved duplicate flagellins, with only FliC-1 contributing to motility and plant immune elicitation. IMPORTANCE Flagellins have emerged as important microbial patterns. This work focuses on flagellin duplication in some plant-associated Pseudomonas. Our findings on the divergence of duplicated flagellins provide a conceptual framework for better understanding the functional determinant flagellin and its peptide in multiple-flagellin plant-growth-promoting rhizobacteria.
Collapse
|
7
|
Vismans G, van Bentum S, Spooren J, Song Y, Goossens P, Valls J, Snoek BL, Thiombiano B, Schilder M, Dong L, Bouwmeester HJ, Pétriacq P, Pieterse CMJ, Bakker PAHM, Berendsen RL. Coumarin biosynthesis genes are required after foliar pathogen infection for the creation of a microbial soil-borne legacy that primes plants for SA-dependent defenses. Sci Rep 2022; 12:22473. [PMID: 36577764 PMCID: PMC9797477 DOI: 10.1038/s41598-022-26551-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Plants deposit photosynthetically-fixed carbon in the rhizosphere, the thin soil layer directly around the root, thereby creating a hospitable environment for microbes. To manage the inhabitants of this nutrient-rich environment, plant roots exude and dynamically adjust microbe-attracting and -repelling compounds to stimulate specific members of the microbiome. Previously, we demonstrated that foliar infection of Arabidopsis thaliana by the biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) leads to a disease-induced modification of the rhizosphere microbiome. Soil conditioned with Hpa-infected plants provided enhanced protection against foliar downy mildew infection in a subsequent population of plants, a phenomenon dubbed the soil-borne legacy (SBL). Here, we show that for the creation of the SBL, plant-produced coumarins play a prominent role as coumarin-deficient myb72 and f6'h1 mutants were defective in creating a Hpa-induced SBL. Root exudation profiles changed significantly in Col-0 upon foliar Hpa infection, and this was accompanied by a compositional shift in the root microbiome that was significantly different from microbial shifts occurring on roots of Hpa-infected coumarin-deficient mutants. Our data further show that the Hpa-induced SBL primes Col-0 plants growing in SBL-conditioned soil for salicylic acid (SA)-dependent defenses. The SA-signaling mutants sid2 and npr1 were unresponsive to the Hpa-induced SBL, suggesting that the protective effect of the Hpa-induced shift in the root microbiome results from an induced systemic resistance that requires SA-signaling in the plant.
Collapse
Affiliation(s)
- Gilles Vismans
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Sietske van Bentum
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Jelle Spooren
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Yang Song
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Pim Goossens
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Josep Valls
- Univ. Bordeaux, INRAE, UMR 1366 OENO - Axe Molécules À Intérêt Biologique, ISVV, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Basten L Snoek
- Department of Biology, Science4, Life Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Benjamin Thiombiano
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Mario Schilder
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Pierre Pétriacq
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathology, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Corné M J Pieterse
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Peter A H M Bakker
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Roeland L Berendsen
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Falconieri GS, Bertini L, Bizzarri E, Proietti S, Caruso C. Plant defense: ARR11 response regulator as a potential player in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:995178. [PMID: 36212312 PMCID: PMC9533103 DOI: 10.3389/fpls.2022.995178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Plant growth and response to environmental cues are largely driven by hormones. Salicylic acid (SA)- and jasmonic acid (JA)-mediated defenses have been shown to be effective against different types of attackers. SA-mediated defense is mainly effective against biotrophic pathogens and phloem-feeding insects, whereas JA-mediated defense is effective against necrotrophic pathogens and tissue-damaging insects. Cytokinins (CKs) are classic growth hormones that have also emerged as plant immunity modulators. Evidence pointed out that CKs contribute to the defense responses mediated by SA and JA, acting as hormone modulators of the SA/JA signaling backbone. Recently, we identified in Arabidopsis a type-B response regulator 11 (ARR 11) involved in cytokinin-mediated responses as a novel regulator of the SA/JA cross-talk. Here we investigated plant fitness and resistance against the fungal necrotrophic pathogen Botrytis cinerea in Arabidopsis wild-type Col-8 and defective arr11 mutant following SA, JA, CK single or combined treatment. Our results demonstrated that the CK and SA/JA/CK combination has a positive outcome on plant fitness in both Arabidopsis Col-8 and arr11 mutant,. The triple hormone treatment is efficient in increasing resistance to B. cinerea in Col-8 and this effect is stronger in arr11 mutant. The results will provide not only new background knowledge, corroborating the role of ARR11 in plant-defense related processes, but also new potential opportunities for alternative ways of protecting plants from fungal diseases.
Collapse
Affiliation(s)
| | | | | | | | - Carla Caruso
- *Correspondence: Silvia Proietti, ; Carla Caruso,
| |
Collapse
|
9
|
Pescador L, Fernandez I, Pozo MJ, Romero-Puertas MC, Pieterse CMJ, Martínez-Medina A. Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by Trichoderma volatile compounds in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:584-595. [PMID: 34131708 PMCID: PMC8757496 DOI: 10.1093/jxb/erab294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 05/03/2023]
Abstract
Volatile compounds (VCs) of Trichoderma fungi trigger induced systemic resistance (ISR) in Arabidopsis that is effective against a broad spectrum of pathogens. The root-specific transcription factor MYB72 is an early regulator of ISR and also controls the activation of iron-deficiency responses. Nitric oxide (NO) is involved in the regulation of MYB72-dependent iron-deficiency responses in Arabidopsis roots, but the role of NO in the regulation of MYB72 and ISR by Trichoderma VCs remains unexplored. Using in vitro bioassays, we applied Trichoderma VCs to Arabidopsis seedlings. Plant perception of Trichoderma VCs triggered a burst of NO in Arabidopsis roots. By suppressing this burst using an NO scavenger, we show the involvement of NO in Trichoderma VCs-mediated regulation of MYB72 expression. Using an NO scavenger and the Arabidopsis lines myb72 and nia1nia2 in in planta bioassays, we demonstrate that NO signalling is required in the roots for activation of Trichoderma VCs-mediated ISR against the leaf pathogen Botrytis cinerea. Analysis of the defence-related genes PR1 and PDF1.2 points to the involvement of root NO in priming leaves for enhanced defence. Our results support a key role of root NO signalling in the regulation of MYB72 expression during the activation of ISR by Trichoderma VCs.
Collapse
Affiliation(s)
- Leyre Pescador
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
- Department of Biochemistry, Cell and Molecular Plant Biology, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig/Institute of Biodiversity, Friedrich Schiller University Jena, Puschstraße 4, 04103 Leipzig, Germany
| | - Iván Fernandez
- Plant–Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40, 37008 Salamanca, Spain
| | - María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry, Cell and Molecular Plant Biology, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ainhoa Martínez-Medina
- Plant–Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40, 37008 Salamanca, Spain
| |
Collapse
|
10
|
Courbier S, Snoek BL, Kajala K, Li L, van Wees SCM, Pierik R. Mechanisms of far-red light-mediated dampening of defense against Botrytis cinerea in tomato leaves. PLANT PHYSIOLOGY 2021; 187:1250-1266. [PMID: 34618050 PMCID: PMC8566310 DOI: 10.1093/plphys/kiab354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Plants detect neighboring competitors through a decrease in the ratio between red and far-red light (R:FR). This decreased R:FR is perceived by phytochrome photoreceptors and triggers shade avoidance responses such as shoot elongation and upward leaf movement (hyponasty). In addition to promoting elongation growth, low R:FR perception enhances plant susceptibility to pathogens: the growth-defense tradeoff. Although increased susceptibility in low R:FR has been studied for over a decade, the associated timing of molecular events is still unknown. Here, we studied the chronology of FR-induced susceptibility events in tomato (Solanum lycopersicum) plants pre-exposed to either white light (WL) or WL supplemented with FR light (WL+FR) prior to inoculation with the necrotrophic fungus Botrytis cinerea (B.c.). We monitored the leaf transcriptional changes over a 30-h time course upon infection and followed up with functional studies to identify mechanisms. We found that FR-induced susceptibility in tomato is linked to a general dampening of B.c.-responsive gene expression, and a delay in both pathogen recognition and jasmonic acid-mediated defense gene expression. In addition, we found that the supplemental FR-induced ethylene emissions affected plant immune responses under the WL+FR condition. This study improves our understanding of the growth-immunity tradeoff, while simultaneously providing leads to improve tomato resistance against pathogens in dense cropping systems.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, The Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Linge Li
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Saskia C M van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| |
Collapse
|
11
|
Sulfur Deprivation Modulates Salicylic Acid Responses via Nonexpressor of Pathogenesis-Related Gene 1 in Arabidopsis thaliana. PLANTS 2021; 10:plants10061065. [PMID: 34073325 PMCID: PMC8230334 DOI: 10.3390/plants10061065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Mineral nutrients are essential for plant growth and reproduction, yet only a few studies connect the nutritional status to plant innate immunity. The backbone of plant defense response is mainly controlled by two major hormones: salicylic acid (SA) and jasmonic acid (JA). This study investigated changes in the macronutrient concentration (deficiency/excess of nitrogen, phosphorus, potassium, magnesium, and sulfur) on the expression of PR1, a well-characterized marker in the SA-pathway, and PDF1.2 and LOX2 for the JA-pathway, analyzing plants carrying the promoter of each gene fused to GUS as a reporter. After histochemical GUS assays, we determined that PR1 gene was strongly activated in response to sulfur (S) deficiency. Using RT-PCR, we observed that the induction of PR1 depended on the function of Non-expressor of Pathogenesis-Related gene 1 (NPR1) and SA accumulation, as PR1 was not expressed in npr1-1 mutant and NahG plants under S-deprived conditions. Plants treated with different S-concentrations showed that total S-deprivation was required to induce SA-mediated defense responses. Additionally, bioassays revealed that S-deprived plants, induced resistance to the hemibiotrophic pathogen Pseudomonas syringae pv. DC3000 and increase susceptibility to the necrotrophic Botrytis cinerea. In conclusion, we observed a relationship between S and SA/JA-dependent defense mechanisms in Arabidopsis.
Collapse
|
12
|
Averkina IO, Harris M, Asare EO, Hourdin B, Paponov IA, Lillo C. Pinpointing regulatory protein phosphatase 2A subunits involved in beneficial symbiosis between plants and microbes. BMC PLANT BIOLOGY 2021; 21:183. [PMID: 33863284 PMCID: PMC8052836 DOI: 10.1186/s12870-021-02960-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND PROTEIN PHOSPHATASE 2A (PP2A) expression is crucial for the symbiotic association between plants and various microbes, and knowledge on these symbiotic processes is important for sustainable agriculture. Here we tested the hypothesis that PP2A regulatory subunits, especially B'φ and B'θ, are involved in signalling between plants and mycorrhizal fungi or plant-growth promoting bacteria. RESULTS Treatment of tomato plants (Solanum lycopersicum) with the plant growth-promoting rhizobacteria (PGPR) Azospirillum brasilense and Pseudomonas simiae indicated a role for the PP2A B'θ subunit in responses to PGPR. Arbuscular mycorrhizal fungi influenced B'θ transcript levels in soil-grown plants with canonical arbuscular mycorrhizae. In plant roots, transcripts of B'φ were scarce under all conditions tested and at a lower level than all other PP2A subunit transcripts. In transformed tomato plants with 10-fold enhanced B'φ expression, mycorrhization frequency was decreased in vermiculite-grown plants. Furthermore, the high B'φ expression was related to abscisic acid and gibberellic acid responses known to be involved in plant growth and mycorrhization. B'φ overexpressor plants showed less vigorous growth, and although fruits were normal size, the number of seeds per fruit was reduced by 60% compared to the original cultivar. CONCLUSIONS Expression of the B'θ gene in tomato roots is strongly influenced by beneficial microbes. Analysis of B'φ overexpressor tomato plants and established tomato cultivars substantiated a function of B'φ in growth and development in addition to a role in mycorrhization.
Collapse
Affiliation(s)
- Irina O Averkina
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Muhammad Harris
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Edward Ohene Asare
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Berenice Hourdin
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Ivan A Paponov
- NIBIO, Norwegian institute of Bioeconomy Research, Division of Food Production and Society, P.O. Box 115, NO-1431, Ås, Norway
- Current address: Department of Food Science, 8200 Aarhus University, Aarhus, Denmark
| | - Cathrine Lillo
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway.
| |
Collapse
|
13
|
Trapet PL, Verbon EH, Bosma RR, Voordendag K, Van Pelt JA, Pieterse CMJ. Mechanisms underlying iron deficiency-induced resistance against pathogens with different lifestyles. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2231-2241. [PMID: 33188427 DOI: 10.1093/jxb/eraa535] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/10/2020] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is a poorly available mineral nutrient which affects the outcome of many cross-kingdom interactions. In Arabidopsis thaliana, Fe starvation limits infection by necrotrophic pathogens. Here, we report that Fe deficiency also reduces disease caused by the hemi-biotrophic bacterium Pseudomonas syringae and the biotrophic oomycete Hyaloperonospora arabidopsidis, indicating that Fe deficiency-induced resistance is effective against pathogens with different lifestyles. Furthermore, we show that Fe deficiency-induced resistance is not caused by withholding Fe from the pathogen but is a plant-mediated defense response that requires activity of ethylene and salicylic acid. Because rhizobacteria-induced systemic resistance (ISR) is associated with a transient up-regulation of the Fe deficiency response, we tested whether Fe deficiency-induced resistance and ISR are similarly regulated. However, Fe deficiency-induced resistance functions independently of the ISR regulators MYB72 and BGLU42, indicating that both types of induced resistance are regulated in a different manner. Mutants opt3 and frd1, which display misregulated Fe homeostasis under Fe-sufficient conditions, show disease resistance levels comparable with those of Fe-starved wild-type plants. Our results suggest that disturbance of Fe homeostasis, through Fe starvation stress or other non-homeostatic conditions, is sufficient to prime the plant immune system for enhanced defense.
Collapse
Affiliation(s)
- Pauline L Trapet
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Renda R Bosma
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Kirsten Voordendag
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| |
Collapse
|
14
|
Li B, Wang R, Wang S, Zhang J, Chang L. Diversified Regulation of Cytokinin Levels and Signaling During Botrytis cinerea Infection in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:584042. [PMID: 33643340 PMCID: PMC7902887 DOI: 10.3389/fpls.2021.584042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/06/2021] [Indexed: 05/28/2023]
Abstract
Cytokinins (CKs) can modulate plant immunity to various pathogens, but how CKs are involved in plant defense responses to the necrotrophic pathogen Botrytis cinerea is still unknown. Here, we found that B. cinerea infection induced transcriptional changes in multiple genes involved in the biosynthesis, degradation, and signaling of CKs, as well as their contents, in pathogen-infected Arabidopsis leaves. Among the CKs, the gene expression of CYTOKININ OXIDASE/DEHYDROGENASE 5 (CKX5) was remarkably induced in the local infected leaves and the distant leaves of the same plant without pathogen inoculation. Cis-zeatin (cZ) and its riboside (cZR) accumulated considerably in infected leaves, suggesting an important role of the cis-zeatin type of CKs in the plant response to B. cinerea. Cytokinin double-receptor mutants were more susceptible to B. cinerea infection, whereas an exogenous CK treatment enhanced the expression levels of defense-related genes and of jasmonic acid (JA) and ethylene (ET), but not salicylic acid (SA), resulting in higher resistance of Arabidopsis to B. cinerea. Investigation of CK responses to B. cinerea infection in the JA biosynthesis mutant, jar1-1, and ET-insensitive mutant, ein2-1, showed that CK signaling and levels of CKs, namely, those of isopentenyladenine (iP), isopentenyladenine riboside (iPR), and trans-zeatin (tZ), were enhanced in jar1-1-infected leaves. By contrast, reductions in iP, iPR, tZ, and tZ riboside (tZR) as well as cZR contents occurred in ein2-1-infected leaves, whose transcript levels of CK signaling genes were likewise differentially regulated. The Arabidopsis Response Regulator 5 (ARR5) gene was upregulated in infected leaves of ein2-1 whereas another type-A response regulator, ARR16, was significantly downregulated, suggesting the existence of a complex regulation of CK signaling via the ET pathway. Accumulation of the cis-zeatin type of CKs in B. cinerea-infected leaves depended on ET but not JA pathways. Collectively, our findings provide evidence that CK responds to B. cinerea infection in a variety of ways that are differently modulated by JA and ET pathways in Arabidopsis.
Collapse
Affiliation(s)
- Beibei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ruolin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shiya Wang
- School of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
15
|
Courbier S, Grevink S, Sluijs E, Bonhomme PO, Kajala K, Van Wees SCM, Pierik R. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. PLANT, CELL & ENVIRONMENT 2020; 43:2769-2781. [PMID: 32833234 DOI: 10.1101/2020.05.25.114439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 05/27/2023]
Abstract
Plants experience a decrease in the red:far-red light ratio (R:FR) when grown at high planting density. In addition to eliciting the shade avoidance response, low R:FR also enhances plant susceptibility to pathogens via modulation of defense hormone-mediated responses. However, other mechanisms, also affected by low R:FR, have not been considered as potential components in FR-induced susceptibility. Here, we identify FR-induced accumulation of leaf soluble sugars as a novel component of FR-induced susceptibility. We observed that phytochrome inactivation by FR or phytochrome B mutation was associated with elevated leaf glucose and fructose levels and enhanced disease severity caused by Botrytis cinerea. By experimentally manipulating internal leaf sugar levels, we found that the FR-induced susceptibility in tomato was partly sugar-dependent. Further analysis revealed that the observed sugar accumulation in supplemental FR occurred in a jasmonic acid (JA)-dependent manner, and the JA biosynthesis mutant def1 also displayed elevated soluble sugar levels, which was rescued by exogenous methyl jasmonate (MeJA) application. We propose that the reduced JA responsiveness under low R:FR promotes disease symptoms not only via dampened induction of defense responses, but also via increased levels of soluble sugars that supports pathogen growth in tomato leaves.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Sanne Grevink
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Emma Sluijs
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Pierre-Olivier Bonhomme
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Courbier S, Grevink S, Sluijs E, Bonhomme P, Kajala K, Van Wees SCM, Pierik R. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. PLANT, CELL & ENVIRONMENT 2020; 43:2769-2781. [PMID: 32833234 PMCID: PMC7693051 DOI: 10.1111/pce.13870] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 05/12/2023]
Abstract
Plants experience a decrease in the red:far-red light ratio (R:FR) when grown at high planting density. In addition to eliciting the shade avoidance response, low R:FR also enhances plant susceptibility to pathogens via modulation of defense hormone-mediated responses. However, other mechanisms, also affected by low R:FR, have not been considered as potential components in FR-induced susceptibility. Here, we identify FR-induced accumulation of leaf soluble sugars as a novel component of FR-induced susceptibility. We observed that phytochrome inactivation by FR or phytochrome B mutation was associated with elevated leaf glucose and fructose levels and enhanced disease severity caused by Botrytis cinerea. By experimentally manipulating internal leaf sugar levels, we found that the FR-induced susceptibility in tomato was partly sugar-dependent. Further analysis revealed that the observed sugar accumulation in supplemental FR occurred in a jasmonic acid (JA)-dependent manner, and the JA biosynthesis mutant def1 also displayed elevated soluble sugar levels, which was rescued by exogenous methyl jasmonate (MeJA) application. We propose that the reduced JA responsiveness under low R:FR promotes disease symptoms not only via dampened induction of defense responses, but also via increased levels of soluble sugars that supports pathogen growth in tomato leaves.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Sanne Grevink
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Emma Sluijs
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Pierre‐Olivier Bonhomme
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Saskia C. M. Van Wees
- Plant‐Microbe Interactions, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
17
|
Speckbacher V, Ruzsanyi V, Martinez-Medina A, Hinterdobler W, Doppler M, Schreiner U, Böhmdorfer S, Beccaccioli M, Schuhmacher R, Reverberi M, Schmoll M, Zeilinger S. The Lipoxygenase Lox1 Is Involved in Light- and Injury-Response, Conidiation, and Volatile Organic Compound Biosynthesis in the Mycoparasitic Fungus Trichoderma atroviride. Front Microbiol 2020; 11:2004. [PMID: 32973724 PMCID: PMC7482316 DOI: 10.3389/fmicb.2020.02004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
The necrotrophic mycoparasite Trichoderma atroviride is a biological pest control agent frequently applied in agriculture for the protection of plants against fungal phytopathogens. One of the main secondary metabolites produced by this fungus is 6-pentyl-α-pyrone (6-PP). 6-PP is an organic compound with antifungal and plant growth-promoting activities, whose biosynthesis was previously proposed to involve a lipoxygenase (Lox). In this study, we investigated the role of the single lipoxygenase-encoding gene lox1 encoded in the T. atroviride genome by targeted gene deletion. We found that light inhibits 6-PP biosynthesis but lox1 is dispensable for 6-PP production as well as for the ability of T. atroviride to parasitize and antagonize host fungi. However, we found Lox1 to be involved in T. atroviride conidiation in darkness, in injury-response, in the production of several metabolites, including oxylipins and volatile organic compounds, as well as in the induction of systemic resistance against the plant-pathogenic fungus Botrytis cinerea in Arabidopsis thaliana plants. Our findings give novel insights into the roles of a fungal Ile-group lipoxygenase and expand the understanding of a light-dependent role of these enzymes.
Collapse
Affiliation(s)
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Ainhoa Martinez-Medina
- Plant-Microbe Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Maria Doppler
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | | | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Venegas-Molina J, Proietti S, Pollier J, Orozco-Freire W, Ramirez-Villacis D, Leon-Reyes A. Induced tolerance to abiotic and biotic stresses of broccoli and Arabidopsis after treatment with elicitor molecules. Sci Rep 2020; 10:10319. [PMID: 32587286 PMCID: PMC7316721 DOI: 10.1038/s41598-020-67074-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/02/2020] [Indexed: 11/09/2022] Open
Abstract
The plant hormones salicylic acid (SA) and jasmonic acid (JA) regulate defense mechanisms capable of overcoming different plant stress conditions and constitute distinct but interconnected signaling pathways. Interestingly, several other molecules are reported to trigger stress-specific defense responses to biotic and abiotic stresses. In this study, we investigated the effect of 14 elicitors against diverse but pivotal types of abiotic (drought) and biotic (the chewing insect Ascia monuste, the hemibiotrophic bacterium Pseudomonas syringae DC 3000 and the necrotrophic fungus Alternaria alternata) stresses on broccoli and Arabidopsis. Among the main findings, broccoli pre-treated with SA and chitosan showed the highest drought stress recovery in a dose-dependent manner. Several molecules led to increased drought tolerance over a period of three weeks. The enhanced drought tolerance after triggering the SA pathway was associated with stomata control. Moreover, methyl jasmonate (MeJA) reduced A. monuste insect development and plant damage, but unexpectedly, other elicitors increased both parameters. GUS reporter assays indicated expression of the SA-dependent PR1 gene in plants treated with nine elicitors, whereas the JA-dependent LOX2 gene was only expressed upon MeJA treatment. Overall, elicitors capable of tackling drought and biotrophic pathogens mainly triggered the SA pathway, but adversely also induced systemic susceptibility to chewing insects. These findings provide directions for potential future in-depth characterization and utilization of elicitors and induced resistance in plant protection.
Collapse
Affiliation(s)
- Jhon Venegas-Molina
- Laboratorio de Biotecnología Agrícola y de Alimentos-Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías El Politécnico, Universidad San Francisco de Quito USFQ, Campus Cumbayá, 17-1200-841, Quito, Ecuador
| | - Silvia Proietti
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Jacob Pollier
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Metabolomics Core, 9052, Ghent, Belgium
| | - Wilson Orozco-Freire
- Laboratorio de Biotecnología Agrícola y de Alimentos-Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías El Politécnico, Universidad San Francisco de Quito USFQ, Campus Cumbayá, 17-1200-841, Quito, Ecuador
| | - Darío Ramirez-Villacis
- Laboratorio de Biotecnología Agrícola y de Alimentos-Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías El Politécnico, Universidad San Francisco de Quito USFQ, Campus Cumbayá, 17-1200-841, Quito, Ecuador
| | - Antonio Leon-Reyes
- Laboratorio de Biotecnología Agrícola y de Alimentos-Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías El Politécnico, Universidad San Francisco de Quito USFQ, Campus Cumbayá, 17-1200-841, Quito, Ecuador.
| |
Collapse
|
19
|
Zhou Y, Vroegop-Vos IA, Van Dijken AJH, Van der Does D, Zipfel C, Pieterse CMJ, Van Wees SCM. Carbonic anhydrases CA1 and CA4 function in atmospheric CO 2-modulated disease resistance. PLANTA 2020; 251:75. [PMID: 32146566 DOI: 10.1007/s00425-020-03370-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Carbonic anhydrases CA1 and CA4 attenuate plant immunity and can contribute to altered disease resistance levels in response to changing atmospheric CO2 conditions. β-Carbonic anhydrases (CAs) play an important role in CO2 metabolism and plant development, but have also been implicated in plant immunity. Here we show that the bacterial pathogen Pseudomonas syringae and application of the microbe-associated molecular pattern (MAMP) flg22 repress CA1 and CA4 gene expression in Arabidopsis thaliana. Using the CA double-mutant ca1ca4, we provide evidence that CA1 and CA4 play an attenuating role in pathogen- and flg22-triggered immune responses. In line with this, ca1ca4 plants exhibited enhanced resistance against P. syringae, which was accompanied by an increased expression of the defense-related genes FRK1 and ICS1. Under low atmospheric CO2 conditions (150 ppm), when CA activity is typically low, the levels of CA1 transcription and resistance to P. syringae in wild-type Col-0 were similar to those observed in ca1ca4. However, under ambient (400 ppm) and elevated (800 ppm) atmospheric CO2 conditions, CA1 transcription was enhanced and resistance to P. syringae reduced. Together, these results suggest that CA1 and CA4 attenuate plant immunity and that differential CA gene expression in response to changing atmospheric CO2 conditions contribute to altered disease resistance levels.
Collapse
Affiliation(s)
- Yeling Zhou
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Irene A Vroegop-Vos
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Anja J H Van Dijken
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Dieuwertje Van der Does
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zurich, Switzerland
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
20
|
Fernández I, Cosme M, Stringlis IA, Yu K, de Jonge R, van Wees SM, Pozo MJ, Pieterse CMJ, van der Heijden MGA. Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. THE NEW PHYTOLOGIST 2019; 223:867-881. [PMID: 30883790 DOI: 10.1111/nph.15798] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Approximately 29% of all vascular plant species are unable to establish an arbuscular mycorrhizal (AM) symbiosis. Despite this, AM fungi (Rhizophagus spp.) are enriched in the root microbiome of the nonhost Arabidopsis thaliana, and Arabidopsis roots become colonized when AM networks nurtured by host plants are available. Here, we investigated the nonhost-AM fungus interaction by analyzing transcriptional changes in Rhizophagus, Arabidopsis and the host plant Medicago truncatula while growing in the same mycorrhizal network. In early interaction stages, Rhizophagus activated the Arabidopsis strigolactone biosynthesis genes CCD7 and CCD8, suggesting that detection of AM fungi is not completely impaired. However, in colonized Arabidopsis roots, fungal nutrient transporter genes GintPT, GintAMT2, GintMST2 and GintMST4, essential for AM symbiosis, were not activated. RNA-seq transcriptome analysis pointed to activation of costly defenses in colonized Arabidopsis roots. Moreover, Rhizophagus colonization caused a 50% reduction in shoot biomass, but also led to enhanced systemic immunity against Botrytis cinerea. This suggests that early signaling between AM fungi and Arabidopsis is not completely impaired and that incompatibility appears at later interaction stages. Moreover, Rhizophagus-mediated defenses coincide with reduced Arabidopsis growth, but also with systemic disease resistance, highlighting the multifunctional role of AM fungi in host and nonhost interactions.
Collapse
Affiliation(s)
- Iván Fernández
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Marco Cosme
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Ke Yu
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - SaskiaC M van Wees
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Maria J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, 18008, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Marcel G A van der Heijden
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
- Plant-Soil-Interactions, Agroscope, Zürich, 8046, Switzerland
| |
Collapse
|
21
|
Coolen S, Van Pelt JA, Van Wees SCM, Pieterse CMJ. Mining the natural genetic variation in Arabidopsis thaliana for adaptation to sequential abiotic and biotic stresses. PLANTA 2019; 249:1087-1105. [PMID: 30547240 DOI: 10.1007/s00425-018-3065-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/05/2018] [Indexed: 05/24/2023]
Abstract
In this genome-wide association study, we obtained novel insights into the genetic basis of the effect of herbivory or drought stress on the level of resistance against the fungus Botrytis cinerea. In nature, plants function in complex environments where they encounter different biotic and abiotic stresses individually, sequentially or simultaneously. The adaptive response to a single stress does not always reflect how plants respond to such a stress in combination with other stresses. To identify genetic factors that contribute to the plant's ability to swiftly adapt to different stresses, we investigated the response of Arabidopsis thaliana to infection by the necrotrophic fungus B. cinerea when preceded by Pieris rapae herbivory or drought stress. Using 346 natural A. thaliana accessions, we found natural genetic variation in the level of resistance against single B. cinerea infection. When preceded by herbivory or drought stress, the level of B. cinerea resistance was differentially influenced in the 346 accessions. To study the genetic factors contributing to the differential adaptation of A. thaliana to B. cinerea infection under multi-stress conditions, we performed a genome-wide association study supported by quantitative trait loci mapping and fine mapping with full genome sequences of 164 accessions. This yielded several genes previously associated with defense to B. cinerea and additional candidate genes with putative roles in the plant's adaptive response to a combination of herbivory, drought and B. cinerea infection.
Collapse
Affiliation(s)
- Silvia Coolen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Verbon EH, Trapet PL, Kruijs S, Temple-Boyer-Dury C, Rouwenhorst TG, Pieterse CMJ. Rhizobacteria-Mediated Activation of the Fe Deficiency Response in Arabidopsis Roots: Impact on Fe Status and Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:909. [PMID: 31354776 PMCID: PMC6639660 DOI: 10.3389/fpls.2019.00909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/26/2019] [Indexed: 05/16/2023]
Abstract
The beneficial root-colonizing rhizobacterium Pseudomonas simiae WCS417 stimulates plant growth and induces systemic resistance against a broad spectrum of plant diseases. In Arabidopsis thaliana (Arabidopsis), the root transcriptional response to WCS417 shows significant overlap with the root response to iron (Fe) starvation, including activation of the marker genes MYB72 and IRT1. Here, we investigated how colonization of Arabidopsis roots by WCS417 impacts Fe homeostasis in roots and shoots. Under Fe-sufficient conditions, root colonization by WCS417 induced a transient Fe deficiency response in the root and elevated both the total amount of Fe in the shoot and the shoot fresh weight. When plants were grown under Fe-starvation conditions, WCS417 still promoted plant growth, but did not increase the total amount of Fe, resulting in chlorosis. Thus, increased Fe uptake in response to WCS417 is essential to maintain Fe homeostasis in the more rapidly growing plant. As the WCS417-induced Fe deficiency response is known to require a shoot-derived signal, we tested whether the Fe deficiency response is activated in response to an increased Fe demand in the more rapidly growing shoot. Exogenous application of Fe to the leaves to reduce a potential shoot Fe shortage did not prevent WCS417-mediated induction of the Fe deficiency response in the roots. Moreover, the leaf Fe status-dependent shoot-to-root signaling mutant opt3-2, which is impaired in the phloem-specific Fe transporter OPT3, still up-regulated the Fe deficiency response genes MYB72 and IRT1 in response to WCS417. Collectively, our results suggest that the WCS417-induced Fe deficiency response in the root is controlled by a shoot-to-root signaling system that functions independently of both leaf Fe status and OPT3.
Collapse
Affiliation(s)
- Eline H. Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Pauline L. Trapet
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Sophie Kruijs
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Coline Temple-Boyer-Dury
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - T. Gerrit Rouwenhorst
- Ecology and Biodiversity, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
- *Correspondence: Corné M. J. Pieterse,
| |
Collapse
|
23
|
Proietti S, Caarls L, Coolen S, Van Pelt JA, Van Wees SC, Pieterse CM. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. PLANT, CELL & ENVIRONMENT 2018; 41:2342-2356. [PMID: 29852537 PMCID: PMC6175328 DOI: 10.1111/pce.13357] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 05/22/2023]
Abstract
Jasmonic acid (JA) regulates plant defenses against necrotrophic pathogens and insect herbivores. Salicylic acid (SA) and abscisic acid (ABA) can antagonize JA-regulated defenses, thereby modulating pathogen or insect resistance. We performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis thaliana for the effect of SA and ABA on the JA pathway. We treated 349 Arabidopsis accessions with methyl JA (MeJA), or a combination of MeJA and either SA or ABA, after which expression of the JA-responsive marker gene PLANT DEFENSIN1.2 (PDF1.2) was quantified as a readout for GWA analysis. Both hormones antagonized MeJA-induced PDF1.2 in the majority of the accessions but with a large variation in magnitude. GWA mapping of the SA- and ABA-affected PDF1.2 expression data revealed loci associated with crosstalk. GLYI4 (encoding a glyoxalase) and ARR11 (encoding an Arabidopsis response regulator involved in cytokinin signalling) were confirmed by T-DNA insertion mutant analysis to affect SA-JA crosstalk and resistance against the necrotroph Botrytis cinerea. In addition, At1g16310 (encoding a cation efflux family protein) was confirmed to affect ABA-JA crosstalk and susceptibility to Mamestra brassicae herbivory. Collectively, this GWA study identified novel players in JA hormone crosstalk with potential roles in the regulation of pathogen or insect resistance.
Collapse
Affiliation(s)
- Silvia Proietti
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Lotte Caarls
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Silvia Coolen
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Johan A. Van Pelt
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Saskia C.M. Van Wees
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Corné M.J. Pieterse
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
24
|
Ravanbakhsh M, Sasidharan R, Voesenek LACJ, Kowalchuk GA, Jousset A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. MICROBIOME 2018; 6:52. [PMID: 29562933 PMCID: PMC5863443 DOI: 10.1186/s40168-018-0436-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
The plant hormone ethylene is one of the central regulators of plant development and stress resistance. Optimal ethylene signaling is essential for plant fitness and is under strong selection pressure. Plants upregulate ethylene production in response to stress, and this hormone triggers defense mechanisms. Due to the pleiotropic effects of ethylene, adjusting stress responses to maximize resistance, while minimizing costs, is a central determinant of plant fitness. Ethylene signaling is influenced by the plant-associated microbiome. We therefore argue that the regulation, physiology, and evolution of the ethylene signaling can best be viewed as the interactive result of plant genotype and associated microbiota. In this article, we summarize the current knowledge on ethylene signaling and recapitulate the multiple ways microorganisms interfere with it. We present ethylene signaling as a model system for holobiont-level evolution of plant phenotype: this cascade is tractable, extremely well studied from both a plant and a microbial perspective, and regulates fundamental components of plant life history. We finally discuss the potential impacts of ethylene modulation microorganisms on plant ecology and evolution. We assert that ethylene signaling cannot be fully appreciated without considering microbiota as integral regulatory actors, and we more generally suggest that plant ecophysiology and evolution can only be fully understood in the light of plant-microbiome interactions.
Collapse
Affiliation(s)
- Mohammadhossein Ravanbakhsh
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - George A Kowalchuk
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Alexandre Jousset
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Stringlis IA, Proietti S, Hickman R, Van Verk MC, Zamioudis C, Pieterse CMJ. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:166-180. [PMID: 29024173 PMCID: PMC5765484 DOI: 10.1111/tpj.13741] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 05/05/2023]
Abstract
Below ground, microbe-associated molecular patterns (MAMPs) of root-associated microbiota can trigger costly defenses at the expense of plant growth. However, beneficial rhizobacteria, such as Pseudomonas simiae WCS417, promote plant growth and induce systemic resistance without being warded off by local root immune responses. To investigate early root responses that facilitate WCS417 to exert its plant-beneficial functions, we performed time series RNA-Seq of Arabidopsis roots in response to live WCS417 and compared it with MAMPs flg22417 (from WCS417), flg22Pa (from pathogenic Pseudomonas aeruginosa) and fungal chitin. The MAMP transcriptional responses differed in timing, but displayed a large overlap in gene identity. MAMP-upregulated genes are enriched for genes with functions in immunity, while downregulated genes are enriched for genes related to growth and development. Although 74% of the transcriptional changes inflicted by live WCS417 overlapped with the flg22417 profile, WCS417 actively suppressed more than half of the MAMP-triggered transcriptional responses, possibly to allow the establishment of a mutually beneficial interaction with the host root. Interestingly, the sector of the flg22417 -repressed transcriptional network that is not affected by WCS417 has a strong auxin signature. Using auxin response mutant tir1afb2afb3, we demonstrate a dual role for auxin signaling in finely balancing growth-promoting and defense-eliciting activities of beneficial microbes in plant roots.
Collapse
Affiliation(s)
- Ioannis A. Stringlis
- Plant‐Microbe InteractionsDepartment of BiologyFaculty of ScienceUtrecht UniversityP.O. Box 800.563508 TBUtrechtthe Netherlands
| | - Silvia Proietti
- Plant‐Microbe InteractionsDepartment of BiologyFaculty of ScienceUtrecht UniversityP.O. Box 800.563508 TBUtrechtthe Netherlands
- Present address:
Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
| | - Richard Hickman
- Plant‐Microbe InteractionsDepartment of BiologyFaculty of ScienceUtrecht UniversityP.O. Box 800.563508 TBUtrechtthe Netherlands
| | - Marcel C. Van Verk
- Plant‐Microbe InteractionsDepartment of BiologyFaculty of ScienceUtrecht UniversityP.O. Box 800.563508 TBUtrechtthe Netherlands
- Present address:
Keygene N.V.P.O. Box 2166700 AEWageningenthe Netherlands
| | - Christos Zamioudis
- Plant‐Microbe InteractionsDepartment of BiologyFaculty of ScienceUtrecht UniversityP.O. Box 800.563508 TBUtrechtthe Netherlands
- Present address:
Rijk Zwaan Breeding B.V.P.O. Box 402678ZG De Lierthe Netherlands
| | - Corné M. J. Pieterse
- Plant‐Microbe InteractionsDepartment of BiologyFaculty of ScienceUtrecht UniversityP.O. Box 800.563508 TBUtrechtthe Netherlands
| |
Collapse
|
26
|
Martínez-Medina A, Van Wees SCM, Pieterse CMJ. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. PLANT, CELL & ENVIRONMENT 2017; 40:2691-2705. [PMID: 28667819 DOI: 10.1111/pce.13016] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/15/2017] [Accepted: 06/18/2017] [Indexed: 05/05/2023]
Abstract
Root colonization by Trichoderma fungi can trigger induced systemic resistance (ISR). In Arabidopsis, Trichoderma-ISR relies on the transcription factor MYB72, which plays a dual role in the onset of ISR and the activation of Fe uptake responses. Volatile compounds (VCs) from rhizobacteria are important elicitors of MYB72 in Arabidopsis roots. Here, we investigated the mode of action of VCs from Trichoderma fungi in the onset of ISR and Fe uptake responses. VCs from Trichoderma asperellum and Trichoderma harzianum were applied in an in vitro split-plate system with Arabidopsis or tomato seedlings. Locally, Trichoderma-VCs triggered MYB72 expression and molecular, physiological and morphological Fe uptake mechanisms in Arabidopsis roots. In leaves, Trichoderma-VCs primed jasmonic acid-dependent defences, leading to an enhanced resistance against Botrytis cinerea. By using Arabidopsis micrografts of VCs-exposed rootstocks and non-exposed scions, we demonstrated that perception of Trichoderma-VCs by the roots leads to a systemic signal that primes shoots for enhanced defences. Trichoderma-VCs also elicited Fe deficiency responses and shoot immunity in tomato, suggesting that this phenomenon is expressed in different plant species. Our results indicate that Trichoderma-VCs trigger locally a readjustment of Fe homeostasis in roots, which links to systemic elicitation of ISR by priming of jasmonic acid-dependent defences.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Institute of Ecology, Friedrich Schiller University, Leipzig, 04103, Germany
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
27
|
Martínez-Medina A, Appels FVW, van Wees SCM. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78. PLANT SIGNALING & BEHAVIOR 2017; 12:e1345404. [PMID: 28692334 PMCID: PMC5616143 DOI: 10.1080/15592324.2017.1345404] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 05/22/2023]
Abstract
We recently found that the beneficial fungus Trichoderma harzianum T-78 primes tomato plants for salicylic acid (SA)- and jasmonic acid (JA)-regulated defenses, resulting in enhanced resistance against the root knot nematode Meloidogyne incognita. By using SA- and JA-impaired mutant lines and exogenous hormonal application, here we investigated whether the SA- and JA-pathways also have a role in T-78 root colonization of Arabidopsis thaliana. Endophytic colonization by T-78 was faster in the SA-impaired mutant sid2 than in the wild type. Moreover, elicitation of SA-dependent defenses by SA application reduced T-78 colonization, indicating that the SA-pathway affects T-78 endophytism. In contrast, elicitation of the JA-pathway, which antagonized SA-dependent defenses, resulted in enhanced endophytic colonization by T-78. These findings are in line with our previous observation that SA-dependent defenses are repressed by T-78, which likely aids colonization by the endophytic fungus.
Collapse
Affiliation(s)
| | - Freek V. W. Appels
- Plant-Microbe Interactions, Department of Biology, Utrecht University, The Netherlands
| | - Saskia C. M. van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, The Netherlands
| |
Collapse
|
28
|
Li Q, Zheng J, Li S, Huang G, Skilling SJ, Wang L, Li L, Li M, Yuan L, Liu P. Transporter-Mediated Nuclear Entry of Jasmonoyl-Isoleucine Is Essential for Jasmonate Signaling. MOLECULAR PLANT 2017; 10:695-708. [PMID: 28179150 DOI: 10.1016/j.molp.2017.01.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 05/22/2023]
Abstract
To control gene expression by directly responding to hormone concentrations, both animal and plant cells have exploited comparable mechanisms to sense small-molecule hormones in nucleus. Whether nuclear entry of these hormones is actively transported or passively diffused, as conventionally postulated, through the nuclear pore complex, remains enigmatic. Here, we identified and characterized a jasmonate transporter in Arabidopsis thaliana, AtJAT1/AtABCG16, which exhibits an unexpected dual localization at the nuclear envelope and plasma membrane. We show that AtJAT1/AtABCG16 controls the cytoplasmic and nuclear partition of jasmonate phytohormones by mediating both cellular efflux of jasmonic acid (JA) and nuclear influx of jasmonoyl-isoleucine (JA-Ile), and is essential for maintaining a critical nuclear JA-Ile concentration to activate JA signaling. These results illustrate that transporter-mediated nuclear entry of small hormone molecules is a new mechanism to regulate nuclear hormone signaling. Our findings provide an avenue to develop pharmaceutical agents targeting the nuclear entry of small molecules.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jian Zheng
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Shuaizhang Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanrong Huang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Stephen J Skilling
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Lijian Wang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Ling Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Lixing Yuan
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
29
|
Coolen S, Proietti S, Hickman R, Davila Olivas NH, Huang PP, Van Verk MC, Van Pelt JA, Wittenberg AHJ, De Vos M, Prins M, Van Loon JJA, Aarts MGM, Dicke M, Pieterse CMJ, Van Wees SCM. Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:249-67. [PMID: 26991768 DOI: 10.1111/tpj.13167] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 05/19/2023]
Abstract
In nature, plants have to cope with a wide range of stress conditions that often occur simultaneously or in sequence. To investigate how plants cope with multi-stress conditions, we analyzed the dynamics of whole-transcriptome profiles of Arabidopsis thaliana exposed to six sequential double stresses inflicted by combinations of: (i) infection by the necrotrophic fungus Botrytis cinerea, (ii) herbivory by chewing larvae of Pieris rapae, and (iii) drought stress. Each of these stresses induced specific expression profiles over time, in which one-third of all differentially expressed genes was shared by at least two single stresses. Of these, 394 genes were differentially expressed during all three stress conditions, albeit often in opposite directions. When two stresses were applied in sequence, plants displayed transcriptome profiles that were very similar to the second stress, irrespective of the nature of the first stress. Nevertheless, significant first-stress signatures could be identified in the sequential stress profiles. Bioinformatic analysis of the dynamics of co-expressed gene clusters highlighted specific clusters and biological processes of which the timing of activation or repression was altered by a prior stress. The first-stress signatures in second stress transcriptional profiles were remarkably often related to responses to phytohormones, strengthening the notion that hormones are global modulators of interactions between different types of stress. Because prior stresses can affect the level of tolerance against a subsequent stress (e.g. prior herbivory strongly affected resistance to B. cinerea), the first-stress signatures can provide important leads for the identification of molecular players that are decisive in the interactions between stress response pathways.
Collapse
Affiliation(s)
- Silvia Coolen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Silvia Proietti
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Nelson H Davila Olivas
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ping-Ping Huang
- Laboratory of Genetics, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel C Van Verk
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
- Bioinformatics, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | | | - Martin De Vos
- Keygene N.V., PO Box 216, 6700 AE, Wageningen, The Netherlands
| | - Marcel Prins
- Keygene N.V., PO Box 216, 6700 AE, Wageningen, The Netherlands
| | - Joop J A Van Loon
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
30
|
Wintermans PCA, Bakker PAHM, Pieterse CMJ. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. PLANT MOLECULAR BIOLOGY 2016; 90:623-34. [PMID: 26830772 PMCID: PMC4819784 DOI: 10.1007/s11103-016-0442-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/15/2016] [Indexed: 05/18/2023]
Abstract
The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arabidopsis accessions were tested for root architecture characteristics and shoot fresh weight in response to exposure to WCS417r. Although virtually all Arabidopsis accessions tested responded positively to WCS417r, there was a large variation between accessions in the increase in shoot fresh weight, the extra number of lateral roots formed, and the effect on primary root length. Correlation analyses revealed that the bacterially-mediated increase in shoot fresh weight is related to alterations in root architecture. GWA mapping for WCS417r-stimulated changes in root and shoot growth characteristics revealed 10 genetic loci highly associated with the responsiveness of Arabidopsis to the plant growth-promoting activity of WCS417r. Several of the underlying candidate genes have been implicated in important plant growth-related processes. These results demonstrate that plants possess natural genetic variation for the capacity to profit from the plant growth-promoting function of a beneficial rhizobacterium in their rhizosphere. This knowledge is a promising starting point for sustainable breeding strategies for future crops that are better able to maximize profitable functions from their root microbiome.
Collapse
Affiliation(s)
- Paul C A Wintermans
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Vos IA, Moritz L, Pieterse CMJ, Van Wees SCM. Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:639. [PMID: 26347758 PMCID: PMC4538242 DOI: 10.3389/fpls.2015.00639] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/02/2015] [Indexed: 05/18/2023]
Abstract
The hormone salicylic acid (SA) generally induces plant defenses against biotrophic pathogens. Jasmonic acid (JA) and its oxylipin derivatives together with ethylene (ET) are generally important hormonal regulators of induced plant defenses against necrotrophic pathogens, whereas JAs together with abscisic acid (ABA) are implicated in induced plant defenses against herbivorous insects. Hormonal crosstalk between the different plant defense pathways has often been hypothesized to be a cost-saving strategy that has evolved as a means of the plant to reduce allocation costs by repression of unnecessary defenses, thereby minimizing trade-offs between plant defense and growth. However, proof for this hypothesis has not been demonstrated yet. In this study the impact of hormonal crosstalk on disease resistance and fitness of Arabidopsis thaliana when under multi-species attack was investigated. Induction of SA- or JA/ABA-dependent defense responses by the biotrophic pathogen Hyaloperonospora arabidopsidis or the herbivorous insect Pieris rapae, respectively, was shown to reduce the level of induced JA/ET-dependent defense against subsequent infection with the necrotrophic pathogen Botrytis cinerea. However, despite the enhanced susceptibility to this second attacker, no additional long-term negative effects were observed on plant fitness when plants had been challenged by multiple attackers. Similarly, when plants were grown in dense competition stands to enlarge fitness effects of induced defenses, treatment with a combination of SA and MeJA did not cause additional negative effects on plant fitness in comparison to the single MeJA treatment. Together, these data support the notion that hormonal crosstalk in plants during multi-attacker interactions allows plants to prioritize their defenses, while limiting the fitness costs associated with induction of defenses.
Collapse
Affiliation(s)
| | | | | | - Saskia C. M. Van Wees
- *Correspondence: Saskia C. M. Van Wees, Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P. O. Box 800.56, Kruyt Building, Padualaan 8, 3508 TB Utrecht, Netherlands,
| |
Collapse
|
32
|
Zamioudis C, Hanson J, Pieterse CMJ. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. THE NEW PHYTOLOGIST 2014; 204:368-79. [PMID: 25138267 DOI: 10.1111/nph.12980] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/04/2014] [Indexed: 05/03/2023]
Abstract
Selected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditions of iron deficiency. Here, we investigated the role of MYB72 in both processes. To identify MYB72 target genes, we analyzed the root transcriptomes of wild-type Col-0, mutant myb72 and complemented 35S:FLAG-MYB72/myb72 plants in response to ISR-inducing Pseudomonas fluorescens WCS417. Five WCS417-inducible genes were misregulated in myb72 and complemented in 35S:FLAG-MYB72/myb72. Amongst these, we uncovered β-glucosidase BGLU42 as a novel component of the ISR signaling pathway. Overexpression of BGLU42 resulted in constitutive disease resistance, whereas the bglu42 mutant was defective in ISR. Furthermore, we found 195 genes to be constitutively upregulated in MYB72-overexpressing roots in the absence of WCS417. Many of these encode enzymes involved in the production of iron-mobilizing phenolic metabolites under conditions of iron deficiency. We provide evidence that BGLU42 is required for their release into the rhizosphere. Together, this work highlights a thus far unidentified link between the ability of beneficial rhizobacteria to stimulate systemic immunity and mechanisms induced by iron deficiency in host plants.
Collapse
Affiliation(s)
- Christos Zamioudis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | | | | |
Collapse
|
33
|
Pel MJC, van Dijken AJH, Bardoel BW, Seidl MF, van der Ent S, van Strijp JAG, Pieterse CMJ. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:603-10. [PMID: 24654978 DOI: 10.1094/mpmi-02-14-0032-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant pathogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defense-related genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from being recognized by its cognate immune receptor.
Collapse
|
34
|
Dalio RJD, Fleischmann F, Humez M, Osswald W. Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. PLoS One 2014; 9:e87860. [PMID: 24489973 PMCID: PMC3905044 DOI: 10.1371/journal.pone.0087860] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
Phytophthora plurivora causes severe damage on Fagus sylvatica and is responsible for the extensive decline of European Beech throughout Europe. Unfortunately, no effective treatment against this disease is available. Phosphite (Phi) is known to protect plants against Phytophthora species; however, its mode of action towards P. plurivora is still unknown. To discover the effect of Phi on root infection, leaves were sprayed with Phi and roots were subsequently inoculated with P. plurivora zoospores. Seedling physiology, defense responses, colonization of root tissue by the pathogen and mortality were monitored. Additionally the Phi concentration in roots was quantified. Finally, the effect of Phi on mycelial growth and zoospore formation was recorded. Phi treatment was remarkably efficient in protecting beech against P. plurivora; all Phi treated plants survived infection. Phi treated and infected seedlings showed a strong up-regulation of several defense genes in jasmonate, salicylic acid and ethylene pathways. Moreover, all physiological parameters measured were comparable to control plants. The local Phi concentration detected in roots was high enough to inhibit pathogen growth. Phi treatment alone did not harm seedling physiology or induce defense responses. The up-regulation of defense genes could be explained either by priming or by facilitation of pathogen recognition of the host.
Collapse
Affiliation(s)
- Ronaldo J. D. Dalio
- Section Pathology of Woody Plants, Technische Universität München, Freising, Germany
| | - Frank Fleischmann
- Section Pathology of Woody Plants, Technische Universität München, Freising, Germany
| | - Martina Humez
- Section Pathology of Woody Plants, Technische Universität München, Freising, Germany
| | - Wolfgang Osswald
- Section Pathology of Woody Plants, Technische Universität München, Freising, Germany
| |
Collapse
|