1
|
Wang X, Tan H, Gunawardena HP, Cao J, Dang L, Deng H, Li X, Wang H, Li J, Cui C, Gerber DA. Construction of functional tissue-engineered microvasculatures using circulating fibrocytes as mural cells. J Tissue Eng 2025; 16:20417314251315523. [PMID: 39882546 PMCID: PMC11775981 DOI: 10.1177/20417314251315523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Mural cells are essential for maintaining the proper functions of microvasculatures. However, a key challenge of microvascular tissue engineering is identifying a cellular source for mural cells. We showed that in vitro, circulating fibrocytes (CFs) can (1) shear and stabilize the microvasculatures formed by vascular endothelial cells (VECs) in a collagen gel, (2) form gap junctions with VECs and (3) induce basement membrane formation. CFs transplanted into nude mice along with VECs in either collagen gel or Matrigel exhibited activities similar to those mentioned above, that is, sheathing microvasculatures formed by VECs, inducing basement membrane formation and facilitating the connection of the engineered microvasculatures with the host circulation. Interestingly, the behaviour of CFs also differs from that of human brain vascular pericytes (HBVPs) in vitro, which often infiltrate the lumen of capillary-like structures in a mosaic pattern, actively proliferate and exhibit lower endocytosis and migration capacities. We concluded that CFs are a suitable cellular source for mural cells in the construction of tissue-engineered microvasculatures.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Burn/Plastic Surgery and Wound Repair, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Tan
- Northwest University School of Medicine, Xi’an, China
| | - Harsha P Gunawardena
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Janssen Research and Development LLC, Janssen Pharmaceutical Companies of Johnson and Johnson, Spring House, PA, USA
| | - Jin Cao
- Department of Burn/Plastic Surgery and Wound Repair, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lu Dang
- Department of Burn/Plastic Surgery and Wound Repair, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongbing Deng
- Department of Environmental Science, School of Resource and Environmental Science, Wuhan University, Wuhan, China
| | - Xueyong Li
- Department of Burn/Plastic Surgery and Wound Repair, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongjun Wang
- Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Jinqing Li
- Department of Burn/Plastic Surgery and Wound Repair, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Caibin Cui
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David A Gerber
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Asadi M, Zafari V, Sadeghi-Mohammadi S, Shanehbandi D, Mert U, Soleimani Z, Caner A, Zarredar H. The role of tumor microenvironment and self-organization in cancer progression: Key insights for therapeutic development. BIOIMPACTS : BI 2024; 15:30713. [PMID: 40256216 PMCID: PMC12008505 DOI: 10.34172/bi.30713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Accepted: 11/20/2024] [Indexed: 04/22/2025]
Abstract
Introduction The tumor microenvironment (TME) plays a pivotal role in cancer progression, influencing tumor initiation, growth, invasion, metastasis, and response to therapies. This study explores the dynamic interactions within the TME, particularly focusing on self-organization-a process by which tumor cells and their microenvironment reciprocally shape one another, leading to cancer progression and resistance. Understanding these interactions can reveal new prognostic markers and therapeutic targets within the TME, such as extracellular matrix (ECM) components, immune cells, and cytokine signaling pathways. Methods A comprehensive search method was employed to investigate the current academic literature on TME, particularly focusing on self-organization in the context of cancer progression and resistance across the PubMed, Google Scholar, and Science Direct databases. Results Recent studies suggest that therapies that disrupt TME self-organization could improve patient outcomes by defeating drug resistance and increasing the effectiveness of conventional therapy. Additionally, this research highlights the essential of understanding the biophysical properties of the TME, like cytoskeletal alterations, in the development of more effective malignancy therapy. Conclusion This review indicated that targeting the ECM and immune cells within the TME can improve therapy effectiveness. Also, by focusing on TME self-organization, we can recognize new therapeutic plans to defeat drug resistance.
Collapse
Affiliation(s)
- Milad Asadi
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Venus Zafari
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ufuk Mert
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Zahra Soleimani
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayşe Caner
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Carvalho TP, Toledo FAO, Bautista DFA, Silva MF, Oliveira JBS, Lima PA, Costa FB, Ribeiro NQ, Lee JY, Birbrair A, Paixão TA, Tsolis RM, Santos RL. Pericytes modulate endothelial inflammatory response during bacterial infection. mBio 2024; 15:e0325223. [PMID: 38289074 PMCID: PMC10936204 DOI: 10.1128/mbio.03252-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/14/2024] Open
Abstract
Pericytes are located around blood vessels, in close contact with endothelial cells. We discovered that pericytes dampen pro-inflammatory endothelial cell responses. Endothelial cells co-cultured with pericytes had markedly reduced expression of adhesion molecules (PECAM-1 and ICAM-1) and proinflammatory cytokines (CCL-2 and IL-6) in response to bacterial stimuli (Brucella ovis, Listeria monocytogenes, or Escherichia coli lipopolysaccharide). Pericyte-depleted mice intraperitoneally inoculated with either B. ovis, a stealthy pathogen that does not trigger detectable inflammation, or Listeria monocytogenes, developed peritonitis. Further, during Citrobacter rodentium infection, pericyte-depleted mice developed severe intestinal inflammation, which was not evident in control mice. The anti-inflammatory effect of pericytes required connexin 43, as either chemical inhibition or silencing of connexin 43 abrogated pericyte-mediated suppression of endothelial inflammatory responses. Our results define a mechanism by which pericytes modulate inflammation during infection, which shifts our understanding of pericyte biology: from a structural cell to a pro-active player in modulating inflammation. IMPORTANCE A previously unknown mechanism by which pericytes modulate inflammation was discovered. The absence of pericytes or blocking interaction between pericytes and endothelium through connexin 43 results in stronger inflammation, which shifts our understanding of pericyte biology, from a structural cell to a player in controlling inflammation.
Collapse
Affiliation(s)
- Thaynara P. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Frank A. O. Toledo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diego F. A. Bautista
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique F. Silva
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jefferson B. S. Oliveira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pâmela A. Lima
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabíola B. Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Noelly Q. Ribeiro
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jee-Yon Lee
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Alexander Birbrair
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Reneé M. Tsolis
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| |
Collapse
|
4
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
5
|
Zhang L, Li Y, Yang W, Lin L, Li J, Liu D, Li C, Wu J, Li Y. Protocatechuic aldehyde increases pericyte coverage and mitigates pericyte damage to enhance the atherosclerotic plaque stability. Biomed Pharmacother 2023; 168:115742. [PMID: 37871558 DOI: 10.1016/j.biopha.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Pericyte dysfunction and loss contribute substantially to the destabilization and rupture of atherosclerotic plaques. Protocatechuic aldehyde (PCAD), a natural polyphenol, exerts anti-atherosclerotic effects. However, the effects and mechanisms of this polyphenol on pericyte recruitment, coverage, and pericyte function remain unknown. We here treated apolipoprotein E-deficient mice having high-fat diet-induced atherosclerosis with PCAD. PCAD achieved therapeutic effects similar to rosuvastatin in lowering lipid levels and thus preventing atherosclerosis progression. With PCAD administration, plaque phenotype exhibited higher stability with markedly reduced lesion vulnerability, which is characterized by reduced lipid content and macrophage accumulation, and a consequent increase in collagen deposition. PCAD therapy increased pericyte coverage in the plaques, reduced VEGF-A production, and inhibited intraplaque neovascularization. PCAD promoted pericyte proliferation, adhesion, and migration to mitigate ox-LDL-induced pericyte dysfunction, which thus maintained the capillary network structure and stability. Furthermore, TGFBR1 silencing partially reversed the protective effect exerted by PCAD on human microvascular pericytes. PCAD increased pericyte coverage and impeded ox-LDL-induced damages through TGF-β1/TGFBR1/Smad2/3 signaling. All these novel findings indicated that PCAD increases pericyte coverage and alleviates pericyte damage to improve the stability of atherosclerotic plaques, which is accomplished by regulating TGF-β1/TGFBR1/Smad2/3 signaling in pericytes.
Collapse
Affiliation(s)
- Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenqing Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dekun Liu
- Shool of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Shandong Provincial Engineering Laboratory of Traditional Chinese Medicine Precision Therapy for Cardiovascular Diseases, Jinan 250355, China.
| |
Collapse
|
6
|
Ahmadi A, Ahrari S, Salimian J, Salehi Z, Karimi M, Emamvirdizadeh A, Jamalkandi SA, Ghanei M. p38 MAPK signaling in chronic obstructive pulmonary disease pathogenesis and inhibitor therapeutics. Cell Commun Signal 2023; 21:314. [PMID: 37919729 PMCID: PMC10623820 DOI: 10.1186/s12964-023-01337-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by persistent respiratory symptoms and airflow limitation due to airway and/or alveolar remodeling. Although the abnormalities are primarily prompted by chronic exposure to inhaled irritants, maladjusted and self-reinforcing immune responses are significant contributors to the development and progression of the disease. The p38 isoforms are regarded as pivotal hub proteins that regulate immune and inflammatory responses in both healthy and disease states. As a result, their inhibition has been the subject of numerous recent studies exploring their therapeutic potential in COPD. MAIN BODY We performed a systematic search based on the PRISMA guidelines to find relevant studies about P38 signaling in COPD patients. We searched the PubMed and Google Scholar databases and used "P38" AND "COPD" Mesh Terms. We applied the following inclusion criteria: (1) human, animal, ex vivo and in vitro studies; (2) original research articles; (3) published in English; and (4) focused on P38 signaling in COPD pathogenesis, progression, or treatment. We screened the titles and abstracts of the retrieved studies and assessed the full texts of the eligible studies for quality and relevance. We extracted the following data from each study: authors, year, country, sample size, study design, cell type, intervention, outcome, and main findings. We classified the studies according to the role of different cells and treatments in P38 signaling in COPD. CONCLUSION While targeting p38 MAPK has demonstrated some therapeutic potential in COPD, its efficacy is limited. Nevertheless, combining p38 MAPK inhibitors with other anti-inflammatory steroids appears to be a promising treatment choice. Clinical trials testing various p38 MAPK inhibitors have produced mixed results, with some showing improvement in lung function and reduction in exacerbations in COPD patients. Despite these mixed results, research on p38 MAPK inhibitors is still a major area of study to develop new and more effective therapies for COPD. As our understanding of COPD evolves, we may gain a better understanding of how to utilize p38 MAPK inhibitors to treat this disease. Video Abstract.
Collapse
Affiliation(s)
- Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sajjad Ahrari
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zhao Y, Ma J, Cui Y, Lin H. A method to isolate human dermal microvascular pericytes without the use of magnetic beads sorting in vitro. Tissue Cell 2023; 84:102171. [PMID: 37480631 DOI: 10.1016/j.tice.2023.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Human dermal microvascular pericytes (HDMPCs) are a critical component of the skin flap microvasculature and play a role in regulating flap blood flow and integrity. Pericytes were isolated mostly via magnetic bead sorting in the published literature. In this study, we discuss in detail how to separate and concentrate pericytes from human facial flaps using enzyme digestion and differential adherence instead of magnetic bead sorting. Cultured HDMPCs were seen to have well-spread irregular edges, with most cells having two longitudinal pericytic processes. The phalloidin staining revealed that HDMPCs had prominent stress fibers, and the nucleus deviated to the side that interacted with the neighboring pericytic processes. Flow cytometry analysis showed that the positive rates of NG2 in the first and second passages were 91.2% ± 0.7% and 98.2% ± 0.1% separately. And the immunofluorescence and western blot results demonstrated a positive expression of α smooth muscle actin (αSMA), platelet-derived growth factor receptor β (PDGFRβ), and NG-2, while the endothelial cell marker CD31 was negatively expressed. In summary, we established a straightforward methodology for selectively isolating and identifying HDMPCs as well as generating high-purity cell cultures in vitro without the use of magnetic bead sorting.
Collapse
Affiliation(s)
- Yinhua Zhao
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen road, Chaoyang district, Beijing 100029, China
| | - Jiaxing Ma
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen road, Chaoyang district, Beijing 100029, China
| | - Yue Cui
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen road, Chaoyang district, Beijing 100029, China
| | - Huang Lin
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen road, Chaoyang district, Beijing 100029, China.
| |
Collapse
|
8
|
Fu J, Liang H, Yuan P, Wei Z, Zhong P. Brain pericyte biology: from physiopathological mechanisms to potential therapeutic applications in ischemic stroke. Front Cell Neurosci 2023; 17:1267785. [PMID: 37780206 PMCID: PMC10536258 DOI: 10.3389/fncel.2023.1267785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Pericytes play an indispensable role in various organs and biological processes, such as promoting angiogenesis, regulating microvascular blood flow, and participating in immune responses. Therefore, in this review, we will first introduce the discovery and development of pericytes, identification methods and functional characteristics, then focus on brain pericytes, on the one hand, to summarize the functions of brain pericytes under physiological conditions, mainly discussing from the aspects of stem cell characteristics, contractile characteristics and paracrine characteristics; on the other hand, to summarize the role of brain pericytes under pathological conditions, mainly taking ischemic stroke as an example. Finally, we will discuss and analyze the application and development of pericytes as therapeutic targets, providing the research basis and direction for future microvascular diseases, especially ischemic stroke treatment.
Collapse
Affiliation(s)
- Jiaqi Fu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou, Jiangsu, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyu Wei
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Ping Zhong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| |
Collapse
|
9
|
Wu Y, Fu J, Huang Y, Duan R, Zhang W, Wang C, Wang S, Hu X, Zhao H, Wang L, Liu J, Gao G, Yuan P. Biology and function of pericytes in the vascular microcirculation. Animal Model Exp Med 2023; 6:337-345. [PMID: 37317664 PMCID: PMC10486323 DOI: 10.1002/ame2.12334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Pericytes are the main cellular components of tiny arteries and capillaries. Studies have found that pericytes can undergo morphological contraction or relaxation under stimulation by cytokines, thus affecting the contraction and relaxation of microvessels and playing an essential role in regulating vascular microcirculation. Moreover, due to the characteristics of stem cells, pericytes can differentiate into a variety of inflammatory cell phenotypes, which then affect the immune function. Additionally, pericytes can also participate in angiogenesis and wound healing by interacting with endothelial cells in vascular microcirculation disorders. Here we review the origin, biological phenotype and function of pericytes, and discuss the potential mechanisms of pericytes in vascular microcirculation disorders, especially in pulmonary hypertension, so as to provide a sound basis and direction for the prevention and treatment of vascular microcirculation diseases.
Collapse
Affiliation(s)
- Yue Wu
- Ningbo University School of MedicineNingboChina
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jiaqi Fu
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
- Institute of Health Science and EngineeringUniversity of Shanghai Science and TechnologyShanghaiChina
| | - Yuxia Huang
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ruowang Duan
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wentian Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Caihong Wang
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
- Institute of Bismuth ScienceUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Shang Wang
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaoyi Hu
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Hui Zhao
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
- Institute of Bismuth ScienceUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Lan Wang
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jinming Liu
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guosheng Gao
- Ningbo Huamei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Ping Yuan
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
10
|
Zhang J, Li W, Wang W, Chen Q, Xu Z, Deng M, Zhou L, He G. Dual roles of FAK in tumor angiogenesis: A review focused on pericyte FAK. Eur J Pharmacol 2023; 947:175694. [PMID: 36967077 DOI: 10.1016/j.ejphar.2023.175694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Focal adhesion kinase (FAK), also known as protein tyrosine kinase 2 (PTK2), is a ubiquitously expressed non-receptor tyrosine kinase, that plays a pivotal role in integrin-mediated signal transduction. Endothelial FAK is upregulated in many types of cancer and promotes tumorigenesis and tumor progression. However, recent studies have shown that pericyte FAK has the opposite effect. This review article dissects the mechanisms, by which endothelial cells (ECs) and pericyte FAK regulate angiogenesis, with an emphasis on the Gas6/Axl pathway. In particular, this article discusses the role of pericyte FAK loss on angiogenesis during tumorigenesis and metastasis. In addition, the existing challenges and future application of drug-based anti-FAK targeted therapies will be discussed to provide a theoretical basis for further development and use of FAK inhibitors.
Collapse
|
11
|
Myronenko O, Foris V, Crnkovic S, Olschewski A, Rocha S, Nicolls MR, Olschewski H. Endotyping COPD: hypoxia-inducible factor-2 as a molecular "switch" between the vascular and airway phenotypes? Eur Respir Rev 2023; 32:220173. [PMID: 36631133 PMCID: PMC9879331 DOI: 10.1183/16000617.0173-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023] Open
Abstract
COPD is a heterogeneous disease with multiple clinical phenotypes. COPD endotypes can be determined by different expressions of hypoxia-inducible factors (HIFs), which, in combination with individual susceptibility and environmental factors, may cause predominant airway or vascular changes in the lung. The pulmonary vascular phenotype is relatively rare among COPD patients and characterised by out-of-proportion pulmonary hypertension (PH) and low diffusing capacity of the lung for carbon monoxide, but only mild-to-moderate airway obstruction. Its histologic feature, severe remodelling of the small pulmonary arteries, can be mediated by HIF-2 overexpression in experimental PH models. HIF-2 is not only involved in the vascular remodelling but also in the parenchyma destruction. Endothelial cells from human emphysema lungs express reduced HIF-2α levels, and the deletion of pulmonary endothelial Hif-2α leads to emphysema in mice. This means that both upregulation and downregulation of HIF-2 have adverse effects and that HIF-2 may represent a molecular "switch" between the development of the vascular and airway phenotypes in COPD. The mechanisms of HIF-2 dysregulation in the lung are only partly understood. HIF-2 levels may be controlled by NAD(P)H oxidases via iron- and redox-dependent mechanisms. A better understanding of these mechanisms may lead to the development of new therapeutic targets.
Collapse
Affiliation(s)
- Oleh Myronenko
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark R Nicolls
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| |
Collapse
|
12
|
Pericytes in the tumor microenvironment. Cancer Lett 2023; 556:216074. [PMID: 36682706 DOI: 10.1016/j.canlet.2023.216074] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Pericytes are a type of mural cell located between the endothelial cells of capillaries and the basement membrane, which function to regulate the capillary vasomotor and maintain normal microcirculation of local tissues and organs and have been identified as a significant component in the tumor microenvironment (TME). Pericytes have various interactions with different components of the TME, such as constituting the pre-metastatic niche, promoting the growth of cancer cells and drug resistance through paracrine activity, and inducing M2 macrophage polarization. While changes in the TME can affect the number, phenotype, and molecular markers of pericytes. For example, pericyte detachment from endothelial cells in the TME facilitates tumor cells in situ to invade the circulating blood and is beneficial to local capillary basement membrane enzymatic hydrolysis and endothelial cell proliferation and budding, which contribute to tumor angiogenesis and metastasis. In this review, we discuss the emerging role of pericytes in the TME, and tumor treatment related to pericytes. This review aimed to provide a more comprehensive understanding of the function of pericytes and the relationship between pericytes and tumors and to provide ideas for the treatment and prevention of malignant tumors.
Collapse
|
13
|
Zhang Y, Neng L, Sharma K, Hou Z, Johnson A, Song J, Dabdoub A, Shi X. Pericytes control vascular stability and auditory spiral ganglion neuron survival. eLife 2023; 12:e83486. [PMID: 36719173 PMCID: PMC9940910 DOI: 10.7554/elife.83486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The inner ear has a rich population of pericytes, a multi-functional mural cell essential for sensory hair cell heath and normal hearing. However, the mechanics of how pericytes contribute to the homeostasis of the auditory vascular-neuronal complex in the spiral ganglion are not yet known. In this study, using an inducible and conditional pericyte depletion mouse (PDGFRB-CreERT2; ROSA26iDTR) model, we demonstrate, for the first time, that pericyte depletion causes loss of vascular volume and spiral ganglion neurons (SGNs) and adversely affects hearing sensitivity. Using an in vitro trans-well co-culture system, we show pericytes markedly promote neurite and vascular branch growth in neonatal SGN explants and adult SGNs. The pericyte-controlled neural growth is strongly mediated by pericyte-released exosomes containing vascular endothelial growth factor-A (VEGF-A). Treatment of neonatal SGN explants or adult SGNs with pericyte-derived exosomes significantly enhances angiogenesis, SGN survival, and neurite growth, all of which were inhibited by a selective blocker of VEGF receptor 2 (Flk1). Our study demonstrates that pericytes in the adult ear are critical for vascular stability and SGN health. Cross-talk between pericytes and SGNs via exosomes is essential for neuronal and vascular health and normal hearing.
Collapse
Affiliation(s)
- Yunpei Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Lingling Neng
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Kushal Sharma
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Zhiqiang Hou
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Anatasiya Johnson
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Junha Song
- Life Sciences Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research InstituteTorontoCanada
- Department of Otolaryngology-Head & Neck Surgery, University of TorontoTorontoCanada
- Department of Laboratory Medicine and Pathobiology, University of TorontoTorontoCanada
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
14
|
Tu Y, Li Q, Zhou Y, Ye Z, Wu C, Xie E, Li Y, Li P, Wu Y, Guo Z, Yu C, Zheng J, Gao Y. Empagliflozin inhibits coronary microvascular dysfunction and reduces cardiac pericyte loss in db/db mice. Front Cardiovasc Med 2022; 9:995216. [PMID: 36588571 PMCID: PMC9800791 DOI: 10.3389/fcvm.2022.995216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Coronary microvascular dysfunction (CMD) is a pathophysiological feature of diabetic heart disease. However, whether sodium-glucose cotransporter 2 (SGLT2) inhibitors protect the cardiovascular system by alleviating CMD is not known. Objective We observed the protective effects of empagliflozin (EMPA) on diabetic CMD. Materials and methods The mice were randomly divided into a db/db group and a db/db + EMPA group, and db/m mice served as controls. At 8 weeks of age, the db/db + EMPA group was given empagliflozin 10 mg/(kg⋅d) by gavage for 8 weeks. Body weight, fasting blood glucose and blood pressure were dynamically observed. Cardiac systolic and diastolic function and coronary flow reserve (CFR) were detected using echocardiography. The coronary microvascular structure and distribution of cardiac pericytes were observed using immunofluorescence staining. Picrosirius red staining was performed to evaluate cardiac fibrosis. Results Empagliflozin lowered the increased fasting blood glucose levels of the db/db group. The left ventricular ejection fraction, left ventricular fractional shortening, E/A ratio and E/e' ratio were not significantly different between the three groups. CFR was decreased in the db/db group, but EMPA significantly improved CFR. In contrast to the sparse and abnormal expansion of coronary microvessels observed in the db/db group, the number of coronary microvessels was increased, and the capillary diameter was decreased in the db/db + EMPA group. The number and microvascular coverage of cardiac pericytes were reduced in the db/db mice but were improved by EMPA. The cardiac fibrosis was increased in db/db group and may alleviate by EMPA. Conclusion Empagliflozin inhibited CMD and reduced cardiac pericyte loss in diabetic mice.
Collapse
Affiliation(s)
- Yimin Tu
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Li
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yuanchen Zhou
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Zixiang Ye
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Chao Wu
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Enmin Xie
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yike Li
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peizhao Li
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yaxin Wu
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Ziyu Guo
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Changan Yu
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
15
|
Corano Scheri K, Liang X, Dalal V, Le Poole IC, Varga J, Hayashida T. SARA suppresses myofibroblast precursor transdifferentiation in fibrogenesis in a mouse model of scleroderma. JCI Insight 2022; 7:160977. [PMID: 36136606 PMCID: PMC9675568 DOI: 10.1172/jci.insight.160977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
We previously reported that Smad anchor for receptor activation (SARA) plays a critical role in maintaining epithelial cell phenotype. Here, we show that SARA suppressed myofibroblast precursor transdifferentiation in a mouse model of scleroderma. Mice overexpressing SARA specifically in PDGFR-β+ pericytes and pan-leukocytes (SARATg) developed significantly less skin fibrosis in response to bleomycin injection compared with wild-type littermates (SARAWT). Single-cell RNA-Seq analysis of skin PDGFR-β+ cells implicated pericyte subsets assuming myofibroblast characteristics under fibrotic stimuli, and SARA overexpression blocked the transition. In addition, a cluster that expresses molecules associated with Th2 cells and macrophage activation was enriched in SARAWT mice, but not in SARATg mice, after bleomycin treatment. Th2-specific Il-31 expression was increased in skin of the bleomycin-treated SARAWT mice and patients with scleroderma (or systemic sclerosis, SSc). Receptor-ligand analyses indicated that lymphocytes mediated pericyte transdifferentiation in SARAWT mice, while with SARA overexpression the myofibroblast activity of pericytes was suppressed. Together, these data suggest a potentially novel crosstalk between myofibroblast precursors and immune cells in the pathogenesis of SSc, in which SARA plays a critical role.
Collapse
Affiliation(s)
- Katia Corano Scheri
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Xiaoyan Liang
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Vidhi Dalal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - I. Caroline Le Poole
- Departments of Dermatology and Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tomoko Hayashida
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Song W, Bo X, Ma X, Hou K, Li D, Geng W, Zeng J. Craniomaxillofacial derived bone marrow mesenchymal stem/stromal cells (BMSCs) for craniomaxillofacial bone tissue engineering: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e650-e659. [PMID: 35691558 DOI: 10.1016/j.jormas.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
Craniomaxillofacial bone defects seriously affect the appearance, function, and psychological status of patients. Traditional autologous bone grafting is very challenging due to the limited sources of bone tissue, excessive surgical trauma, and high incidence of related complications. Craniomaxillofacial bone tissue engineering (BTE) strategies based on bone marrow mesenchymal stem cells (BMSCs) are emerging as an alternative. Craniomaxillofacial BMSCs (C-BMSCs) are homologous to craniomaxillofacial bones, which develop from the mesoderm and neural crest. This article aims to compare the differences in osteogenesis, angiogenesis, and immune regulation of C-BMSCs and other sources of BMSCs, and propose ideas and strategies such as 3D printing and mechanotherapy to completely harness the characteristics of C-BMSCs. In conclusion, C-BSMCs are a promising source of stem cells for the repair and reconstruction of craniomaxillofacial bone defects, and more attention should be paid to accelerating their basic research and clinical practices.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaowen Bo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xiaohan Ma
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Kegui Hou
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China; Department of Stomatology, Shunyi District Hospital affiliated to Capital Medical University, Beijing, China
| | - Dan Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jianyu Zeng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Wei WJ, Wang YC, Guan X, Chen WG, Liu J. A neurovascular unit-on-a-chip: culture and differentiation of human neural stem cells in a three-dimensional microfluidic environment. Neural Regen Res 2022; 17:2260-2266. [PMID: 35259847 PMCID: PMC9083144 DOI: 10.4103/1673-5374.337050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biological studies typically rely on a simple monolayer cell culture, which does not reflect the complex functional characteristics of human tissues and organs, or their real response to external stimuli. Microfluidic technology has advantages of high-throughput screening, accurate control of the fluid velocity, low cell consumption, long-term culture, and high integration. By combining the multipotential differentiation of neural stem cells with high throughput and the integrated characteristics of microfluidic technology, an in vitro model of a functionalized neurovascular unit was established using human neural stem cell-derived neurons, astrocytes, oligodendrocytes, and a functional microvascular barrier. The model comprises a multi-layer vertical neural module and vascular module, both of which were connected with a syringe pump. This provides controllable conditions for cell inoculation and nutrient supply, and simultaneously simulates the process of ischemic/hypoxic injury and the process of inflammatory factors in the circulatory system passing through the blood-brain barrier and then acting on the nerve tissue in the brain. The in vitro functionalized neurovascular unit model will be conducive to central nervous system disease research, drug screening, and new drug development.
Collapse
Affiliation(s)
- Wen-Juan Wei
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Ya-Chen Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Xin Guan
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Wei-Gong Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
18
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Carrasco JL, Madrid JF, Rodríguez Bello A. Comparison of the Behavior of Perivascular Cells (Pericytes and CD34+ Stromal Cell/Telocytes) in Sprouting and Intussusceptive Angiogenesis. Int J Mol Sci 2022; 23:ijms23169010. [PMID: 36012273 PMCID: PMC9409369 DOI: 10.3390/ijms23169010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Perivascular cells in the pericytic microvasculature, pericytes and CD34+ stromal cells/telocytes (CD34+SCs/TCs), have an important role in angiogenesis. We compare the behavior of these cells depending on whether the growth of endothelial cells (ECs) from the pre-existing microvasculature is toward the interstitium with vascular bud and neovessel formation (sprouting angiogenesis) or toward the vascular lumen with intravascular pillar development and vessel division (intussusceptive angiogenesis). Detachment from the vascular wall, mobilization, proliferation, recruitment, and differentiation of pericytes and CD34+SCs/TCs, as well as associated changes in vessel permeability and functionality, and modifications of the extracellular matrix are more intense, longer lasting over time, and with a greater energy cost in sprouting angiogenesis than in intussusceptive angiogenesis, in which some of the aforementioned events do not occur or are compensated for by others (e.g., sparse EC and pericyte proliferation by cell elongation and thinning). The governing mechanisms involve cell-cell contacts (e.g., peg-and-socket junctions between pericytes and ECs), multiple autocrine and paracrine signaling molecules and pathways (e.g., vascular endothelial growth factor, platelet-derived growth factor, angiopoietins, transforming growth factor B, ephrins, semaphorins, and metalloproteinases), and other factors (e.g., hypoxia, vascular patency, and blood flow). Pericytes participate in vessel development, stabilization, maturation and regression in sprouting angiogenesis, and in interstitial tissue structure formation of the pillar core in intussusceptive angiogenesis. In sprouting angiogenesis, proliferating perivascular CD34+SCs/TCs are an important source of stromal cells during repair through granulation tissue formation and of cancer-associated fibroblasts (CAFs) in tumors. Conversely, CD34+SCs/TCs have less participation as precursor cells in intussusceptive angiogenesis. The dysfunction of these mechanisms is involved in several diseases, including neoplasms, with therapeutic implications.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
| | - Aixa Rodríguez Bello
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38071 Tenerife, Spain
| |
Collapse
|
19
|
Ippolitov D, Arreza L, Munir MN, Hombach-Klonisch S. Brain Microvascular Pericytes—More than Bystanders in Breast Cancer Brain Metastasis. Cells 2022; 11:cells11081263. [PMID: 35455945 PMCID: PMC9028330 DOI: 10.3390/cells11081263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Brain tissue contains the highest number of perivascular pericytes compared to other organs. Pericytes are known to regulate brain perfusion and to play an important role within the neurovascular unit (NVU). The high phenotypic and functional plasticity of pericytes make this cell type a prime candidate to aid physiological adaptations but also propose pericytes as important modulators in diverse pathologies in the brain. This review highlights known phenotypes of pericytes in the brain, discusses the diverse markers for brain pericytes, and reviews current in vitro and in vivo experimental models to study pericyte function. Our current knowledge of pericyte phenotypes as it relates to metastatic growth patterns in breast cancer brain metastasis is presented as an example for the crosstalk between pericytes, endothelial cells, and metastatic cells. Future challenges lie in establishing methods for real-time monitoring of pericyte crosstalk to understand causal events in the brain metastatic process.
Collapse
Affiliation(s)
- Danyyl Ippolitov
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Leanne Arreza
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Maliha Nuzhat Munir
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
- Department of Pathology, University of Manitoba, Winnipeg, MB R3E 0Z2, Canada
- Correspondence:
| |
Collapse
|
20
|
Gu T, Hu K, Si X, Hu Y, Huang H. Mechanisms of immune effector cell-associated neurotoxicity syndrome after CAR-T treatment. WIREs Mech Dis 2022; 14:e1576. [PMID: 35871757 PMCID: PMC9787013 DOI: 10.1002/wsbm.1576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptor T-cell (CAR-T) treatment has revolutionized the landscape of cancer therapy with significant efficacy on hematologic malignancy, especially in relapsed and refractory B cell malignancies. However, unexpected serious toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) still hamper its broad application. Clinical trials using CAR-T cells targeting specific antigens on tumor cell surface have provided valuable information about the characteristics of ICANS. With unclear mechanism of ICANS after CAR-T treatment, unremitting efforts have been devoted to further exploration. Clinical findings from patients with ICANS strongly indicated existence of overactivated peripheral immune response followed by endothelial activation-induced blood-brain barrier (BBB) dysfunction, which triggers subsequent central nervous system (CNS) inflammation and neurotoxicity. Several animal models have been built but failed to fully replicate the whole spectrum of ICANS in human. Hopefully, novel and powerful technologies like single-cell analysis may help decipher the precise cellular response within CNS from a different perspective when ICANS happens. Moreover, multidisciplinary cooperation among the subjects of immunology, hematology, and neurology will facilitate better understanding about the complex immune interaction between the peripheral, protective barriers, and CNS in ICANS. This review elaborates recent findings about ICANS after CAR-T treatment from bed to bench, and discusses the potential cellular and molecular mechanisms that may promote effective management in the future. This article is categorized under: Cancer > Biomedical Engineering Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Tianning Gu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Kejia Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaohui Si
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Yongxian Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - He Huang
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| |
Collapse
|
21
|
Cabrera JTO, Makino A. Efferocytosis of vascular cells in cardiovascular disease. Pharmacol Ther 2022; 229:107919. [PMID: 34171333 PMCID: PMC8695637 DOI: 10.1016/j.pharmthera.2021.107919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Cell death and the clearance of apoptotic cells are tightly regulated by various signaling molecules in order to maintain physiological tissue function and homeostasis. The phagocytic removal of apoptotic cells is known as the process of efferocytosis, and abnormal efferocytosis is linked to various health complications and diseases, such as cardiovascular disease, inflammatory diseases, and autoimmune diseases. During efferocytosis, phagocytic cells and/or apoptotic cells release signals, such as "find me" and "eat me" signals, to stimulate the phagocytic engulfment of apoptotic cells. Primary phagocytic cells are macrophages and dendritic cells; however, more recently, other neighboring cell types have also been shown to exhibit phagocytic character, including endothelial cells and fibroblasts, although they are comparatively slower in clearing dead cells. In this review, we focus on macrophage efferocytosis of vascular cells, such as endothelial cells, smooth muscle cells, fibroblasts, and pericytes, and its relation to the progression and development of cardiovascular disease. We also highlight the role of efferocytosis-related molecules and their contribution to the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- Jody Tori O Cabrera
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Guan XY, Guan XL, Jiao ZY. Improving therapeutic resistance: beginning with targeting the tumor microenvironment. J Chemother 2021; 34:492-516. [PMID: 34873999 DOI: 10.1080/1120009x.2021.2011661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cancer is a serious threat to human health and life. The tumor microenvironment (TME) not only plays a key role in the occurrence, development and metastasis of cancer, but also has a profound impact on treatment resistance. To improve and solve this problem, an increasing number of strategies targeting the TME have been proposed, and great progress has been made in recent years. This article reviews the characteristics and functions of the main matrix components of the TME and the mechanisms by which each component affects drug resistance. Furthermore, this article elaborates on targeting the TME as a strategy to treat acquired drug resistance, reduce tumor metastasis, recurrence, and improve efficacy.
Collapse
Affiliation(s)
- Xiao-Ying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiao-Li Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zuo-Yi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
23
|
Yuan K, Agarwal S, Chakraborty A, Condon DF, Patel H, Zhang S, Huang F, Mello SA, Kirk OI, Vasquez R, de Jesus Perez VA. Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology. Compr Physiol 2021; 11:2227-2247. [PMID: 34190345 PMCID: PMC10507675 DOI: 10.1002/cphy.c200027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pericytes are mesenchymal-derived mural cells localized within the basement membrane of pulmonary and systemic capillaries. Besides structural support, pericytes control vascular tone, produce extracellular matrix components, and cytokines responsible for promoting vascular homeostasis and angiogenesis. However, pericytes can also contribute to vascular pathology through the production of pro-inflammatory and pro-fibrotic cytokines, differentiation into myofibroblast-like cells, destruction of the extracellular matrix, and dissociation from the vessel wall. In the lung, pericytes are responsible for maintaining the integrity of the alveolar-capillary membrane and coordinating vascular repair in response to injury. Loss of pericyte communication with alveolar capillaries and a switch to a pro-inflammatory/pro-fibrotic phenotype are common features of lung disorders associated with vascular remodeling, inflammation, and fibrosis. In this article, we will address how to differentiate pericytes from other cells, discuss the molecular mechanisms that regulate the interactions of pericytes and endothelial cells in the pulmonary circulation, and the experimental tools currently used to study pericyte biology both in vivo and in vitro. We will also discuss evidence that links pericytes to the pathogenesis of clinically relevant lung disorders such as pulmonary hypertension, idiopathic lung fibrosis, sepsis, and SARS-COVID. Future studies dissecting the complex interactions of pericytes with other pulmonary cell populations will likely reveal critical insights into the origin of pulmonary diseases and offer opportunities to develop novel therapeutics to treat patients afflicted with these devastating disorders. © 2021 American Physiological Society. Compr Physiol 11:2227-2247, 2021.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Respiratory Diseases Research, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Serena Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Flora Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Salvador A. Mello
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | | | - Rocio Vasquez
- University of Central Florida, Orlando, Florida, USA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
24
|
Zhang H, Zhang X, Hong X, Tong X. Homogeneity or heterogeneity, the paradox of neurovascular pericytes in the brain. Glia 2021; 69:2474-2487. [PMID: 34152032 PMCID: PMC8453512 DOI: 10.1002/glia.24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 11/11/2022]
Abstract
Pericytes are one of the main components of the neurovascular unit. They play a critical role in regulating blood flow, blood–brain barrier permeability, neuroinflammation, and neuronal activity. In the central nervous system (CNS), pericytes are classified into three subtypes, that is, ensheathing, mesh, and thin‐strand pericytes, based on their distinct morphologies and region‐specific distributions. However, whether these three types of pericytes exhibit heterogeneity or homogeneity with regard to membrane properties has been understudied to date. Here, we combined bulk RNA sequencing analysis with electrophysiological methods to demonstrate that the three subtypes of pericytes share similar electrical membrane properties in the CNS, suggesting a homogenous population of neurovascular pericytes in the brain. Furthermore, we identified an inwardly rectifying potassium channel subtype Kir4.1 functionally expressed in pericytes. Electrophysiological patch clamp recordings indicate that Kir4.1 channel currents in pericytes represent a small portion of the K+ macroscopic currents in physiological conditions. However, a significant augmentation of Kir4.1 currents in pericytes was induced when the extracellular K+ was elevated to pathological levels, suggesting pericytes Kir4.1 channels might play an important role as K+ sensors and contribute to K+ homeostasis in local neurovascular networks in pathology.
Collapse
Affiliation(s)
- Huimin Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqi Hong
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Scalise AA, Kakogiannos N, Zanardi F, Iannelli F, Giannotta M. The blood-brain and gut-vascular barriers: from the perspective of claudins. Tissue Barriers 2021; 9:1926190. [PMID: 34152937 PMCID: PMC8489939 DOI: 10.1080/21688370.2021.1926190] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In some organs, such as the brain, endothelial cells form a robust and highly selective blood-to-tissue barrier. However, in other organs, such as the intestine, endothelial cells provide less stringent permeability, to allow rapid exchange of solutes and nutrients where needed. To maintain the structural and functional integrity of the highly dynamic blood–brain and gut–vascular barriers, endothelial cells form highly specialized cell-cell junctions, known as adherens junctions and tight junctions. Claudins are a family of four-membrane-spanning proteins at tight junctions and they have both barrier-forming and pore-forming properties. Tissue-specific expression of claudins has been linked to different diseases that are characterized by barrier impairment. In this review, we summarize the more recent progress in the field of the claudins, with particular attention to their expression and function in the blood–brain barrier and the recently described gut–vascular barrier, under physiological and pathological conditions. Abbreviations: 22q11DS 22q11 deletion syndrome; ACKR1 atypical chemokine receptor 1; AD Alzheimer disease; AQP aquaporin; ATP adenosine triphosphate; Aβ amyloid β; BAC bacterial artificial chromosome; BBB blood-brain barrier; C/EBP-α CCAAT/enhancer-binding protein α; cAMP cyclic adenosine monophosphate (or 3ʹ,5ʹ-cyclic adenosine monophosphate); CD cluster of differentiation; CNS central nervous system; DSRED discosoma red; EAE experimental autoimmune encephalomyelitis; ECV304 immortalized endothelial cell line established from the vein of an apparently normal human umbilical cord; EGFP enhanced green fluorescent protein; ESAM endothelial cell-selective adhesion molecule; GLUT-1 glucose transporter 1; GVB gut-vascular barrier; H2B histone H2B; HAPP human amyloid precursor protein; HEK human embryonic kidney; JACOP junction-associated coiled coil protein; JAM junctional adhesion molecules; LYVE1 lymphatic vessel endothelial hyaluronan receptor 1; MADCAM1 mucosal vascular addressin cell adhesion molecule 1; MAPK mitogen-activated protein kinase; MCAO middle cerebral artery occlusion; MMP metalloprotease; MS multiple sclerosis; MUPP multi-PDZ domain protein; PATJ PALS-1-associated tight junction protein; PDGFR-α platelet-derived growth factor receptor α polypeptide; PDGFR-β platelet-derived growth factor receptor β polypeptide; RHO rho-associated protein kinase; ROCK rho-associated, coiled-coil-containing protein kinase; RT-qPCR real time quantitative polymerase chain reactions; PDGFR-β soluble platelet-derived growth factor receptor, β polypeptide; T24 human urinary bladder carcinoma cells; TG2576 transgenic mice expressing the human amyloid precursor protein; TNF-α tumor necrosis factor α; WTwild-type; ZO zonula occludens.
Collapse
|
26
|
Wang H, Pan J, Barsky L, Jacob JC, Zheng Y, Gao C, Wang S, Zhu W, Sun H, Lu L, Jia H, Zhao Y, Bruns C, Vago R, Dong Q, Qin L. Characteristics of pre-metastatic niche: the landscape of molecular and cellular pathways. MOLECULAR BIOMEDICINE 2021; 2:3. [PMID: 35006432 PMCID: PMC8607426 DOI: 10.1186/s43556-020-00022-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis is a major contributor to cancer-associated deaths. It involves complex interactions between primary tumorigenic sites and future metastatic sites. Accumulation studies have revealed that tumour metastasis is not a disorderly spontaneous incident but the climax of a series of sequential and dynamic events including the development of a pre-metastatic niche (PMN) suitable for a subpopulation of tumour cells to colonize and develop into metastases. A deep understanding of the formation, characteristics and function of the PMN is required for developing new therapeutic strategies to treat tumour patients. It is rapidly becoming evident that therapies targeting PMN may be successful in averting tumour metastasis at an early stage. This review highlights the key components and main characteristics of the PMN and describes potential therapeutic strategies, providing a promising foundation for future studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Junjie Pan
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Livnat Barsky
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao Gao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Haoting Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Razi Vago
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| |
Collapse
|
27
|
Reyes N, Figueroa S, Tiwari R, Geliebter J. CXCL3 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:15-24. [PMID: 34286438 DOI: 10.1007/978-3-030-62658-7_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer progression is driven, to a large extent, by the action of immune cells that have been recruited to tumor sites through interactions between chemokines and their receptors. Chemokines of the CXC subfamily are secreted by both tumor and non-tumor cells within the microenvironment of the tumor, where they induce either antitumor or protumor activity that fosters either clearance or progression of the tumor, respectively. Understanding the nature of these interactions is important to envisage novel approaches targeting the essential components of the tumor microenvironment, increasing the odds for favorable patient outcomes. In this chapter we describe the involvement of the chemokine (C-X-C motif) ligand 3 (CXCL3) in the human tumor microenvironment and its effects on immune and non-immune cells. Because of the limited data on the CXCL3 signaling in the tumor microenvironment, we extend the review to other members of the CXC subfamily of chemokines. This review also addresses the future trends or directions for therapeutic interventions that target signaling pathways used by these molecules in the tumor microenvironment.
Collapse
Affiliation(s)
- Niradiz Reyes
- School of Medicine, University of Cartagena, Cartagena, Colombia.
| | - Stephanie Figueroa
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj Tiwari
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Jan Geliebter
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
28
|
Roife D, Sarcar B, Fleming JB. Stellate Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:67-84. [PMID: 32588324 DOI: 10.1007/978-3-030-44518-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As tumor microenvironments share many of the same qualities as chronic wounds, attention is turning to the wound-repair cells that support the growth of cancerous cells. Stellate cells are star-shaped cells that were first discovered in the perisinusoidal spaces in the liver and have been found to support wound healing by the secretion of growth factors and extracellular matrix. They have since been also found to serve a similar function in the pancreas. In both organs, the wound-healing process may become dysregulated and lead to pathological fibrosis (also known as cirrhosis in the liver). In recent years there has been increasing attention paid to the role of these cells in tumor formation and progression. They may be a factor in initiating the first steps of carcinogenesis such as with liver cirrhosis and hepatocellular carcinoma and also contribute to continued tumor growth, invasion, metastasis, evasion of the immune system, and resistance to chemotherapy, in cancers of both the liver and pancreas. In this chapter we aim to review the structure and function of hepatic and pancreatic stellate cells and their contributions to the tumor microenvironment in their respective cancers and also discuss potential new targets for cancer therapy based on our new understanding of these vital components of the tumor stroma.
Collapse
Affiliation(s)
- David Roife
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Bhaswati Sarcar
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
29
|
Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020; 18:59. [PMID: 32264958 PMCID: PMC7140346 DOI: 10.1186/s12964-020-0530-4] [Citation(s) in RCA: 1044] [Impact Index Per Article: 208.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
The dynamic interactions of cancer cells with their microenvironment consisting of stromal cells (cellular part) and extracellular matrix (ECM) components (non-cellular) is essential to stimulate the heterogeneity of cancer cell, clonal evolution and to increase the multidrug resistance ending in cancer cell progression and metastasis. The reciprocal cell-cell/ECM interaction and tumor cell hijacking of non-malignant cells force stromal cells to lose their function and acquire new phenotypes that promote development and invasion of tumor cells. Understanding the underlying cellular and molecular mechanisms governing these interactions can be used as a novel strategy to indirectly disrupt cancer cell interplay and contribute to the development of efficient and safe therapeutic strategies to fight cancer. Furthermore, the tumor-derived circulating materials can also be used as cancer diagnostic tools to precisely predict and monitor the outcome of therapy. This review evaluates such potentials in various advanced cancer models, with a focus on 3D systems as well as lab-on-chip devices. Video abstract.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committees, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognitive, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tuebingen, Tuebingen, Germany
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, USA
| | - Peyman Zare
- Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| |
Collapse
|
30
|
COX-2 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1277:87-104. [PMID: 33119867 DOI: 10.1007/978-3-030-50224-9_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumorigenesis is a multistep, complicated process, and many studies have been completed over the last few decades to elucidate this process. Increasingly, many studies have shifted focus toward the critical role of the tumor microenvironment (TME), which consists of cellular players, cell-cell communications, and extracellular matrix (ECM). In the TME, cyclooxygenase-2 (COX-2) has been found to be a key molecule mediating the microenvironment changes. COX-2 is an inducible form of the enzyme that converts arachidonic acid into the signal transduction molecules (thromboxanes and prostaglandins). COX-2 is frequently expressed in many types of cancers and has been closely linked to its occurrence, progression, and prognosis. For example, COX-2 has been shown to (1) regulate tumor cell growth, (2) promote tissue invasion and metastasis, (3) inhibit apoptosis, (4) suppress antitumor immunity, and (5) promote sustainable angiogenesis. In this chapter, we summarize recent advances of studies that have evaluated COX-2 signaling in TME.
Collapse
|
31
|
Andreotti JP, Silva WN, Costa AC, Picoli CC, Bitencourt FCO, Coimbra-Campos LMC, Resende RR, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Neural stem cell niche heterogeneity. Semin Cell Dev Biol 2019; 95:42-53. [PMID: 30639325 PMCID: PMC6710163 DOI: 10.1016/j.semcdb.2019.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/02/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
In mammals, new neurons can be generated from neural stem cells in specific regions of the adult brain. Neural stem cells are characterized by their abilities to differentiate into all neural lineages and to self-renew. The specific microenvironments regulating neural stem cells, commonly referred to as neurogenic niches, comprise multiple cell populations whose precise contributions are under active current exploration. Understanding the cross-talk between neural stem cells and their niche components is essential for the development of therapies against neurological disorders in which neural stem cells function is altered. In this review, we describe and discuss recent studies that identified novel components in the neural stem cell niche. These discoveries bring new concepts to the field. Here, we evaluate these recent advances that change our understanding of the neural stem cell niche heterogeneity and its influence on neural stem cell function.
Collapse
Affiliation(s)
- Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia C O Bitencourt
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
32
|
Leonel C, Sena IFG, Silva WN, Prazeres PHDM, Fernandes GR, Mancha Agresti P, Martins Drumond M, Mintz A, Azevedo VAC, Birbrair A. Staphylococcus epidermidis role in the skin microenvironment. J Cell Mol Med 2019; 23:5949-5955. [PMID: 31278859 PMCID: PMC6714221 DOI: 10.1111/jcmm.14415] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a complex dynamic physiological process in response to cutaneous destructive stimuli that aims to restore the cutaneous' barrier role. Deciphering the underlying mechanistic details that contribute to wound healing will create novel therapeutic strategies for skin repair. Recently, by using state-of-the-art technologies, it was revealed that the cutaneous microbiota interact with skin immune cells. Strikingly, commensal Staphylococcus epidermidis-induced CD8+ T cells induce re-epithelization of the skin after injury, accelerating wound closure. From a drug development perspective, the microbiota may provide new therapeutic candidate molecules to accelerate skin healing. Here, we summarize and evaluate recent advances in the understanding of the microbiota in the skin microenvironment.
Collapse
Affiliation(s)
- Caroline Leonel
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Isadora F. G. Sena
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Walison N. Silva
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | | | | | - Pamela Mancha Agresti
- Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | | | - Akiva Mintz
- Department of RadiologyColumbia University Medical CenterNew YorkNew York
| | - Vasco A. C. Azevedo
- Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Alexander Birbrair
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
- Department of RadiologyColumbia University Medical CenterNew YorkNew York
| |
Collapse
|
33
|
Alcendor DJ. Human Vascular Pericytes and Cytomegalovirus Pathobiology. Int J Mol Sci 2019; 20:E1456. [PMID: 30909422 PMCID: PMC6471229 DOI: 10.3390/ijms20061456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
Pericytes are multipotent cells of the vascular system with cytoplasmic extensions proximal to endothelial cells that occur along the abluminal surface of the endothelium. The interactions between endothelial cells and pericytes are essential for proper microvascular formation, development, stabilization, and maintenance. Pericytes are essential for the regulation of paracellular flow between cells, transendothelial fluid transport, angiogenesis, and vascular immunosurveillance. They also influence the chemical composition of the surrounding microenvironment to protect endothelial cells from potential harm. Dysregulation or loss of pericyte function can result in microvascular instability and pathological consequences. Human pericytes have been shown to be targets for human cytomegalovirus (HCMV) infection and lytic replication that likely contribute to vascular inflammation. This review focuses on human vascular pericytes and their permissiveness for HCMV infection. It also discusses their implication in pathogenesis in the blood⁻brain barrier (BBB), the inner blood⁻retinal barrier (IBRB), the placenta⁻blood barrier, and the renal glomerulus as well as their potential role in subclinical vascular disease.
Collapse
Affiliation(s)
- Donald J Alcendor
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA.
| |
Collapse
|