1
|
Jin S, Jung H, Song J, Kim S, Yoon S, Kim JH, Lee JS, Kim YJ, Son D, Shin M. Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration. Adv Healthc Mater 2025; 14:e2403722. [PMID: 39846266 DOI: 10.1002/adhm.202403722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials. Herein, the phenylborate-tethered hydrogel-assisted doping effect is elucidated on conductive polymers, enhancing peripheral nerve regeneration when used as a sutureless bandage on the injured nerve. The adhesive and conductive nerve bandage consists of biocompatible hyaluronic acid hydrogel microfibers produced by electrospinning, followed by in situ conductive polypyrrole polymerization on the fibrous mat. Particularly, phenylborate groups enable high adsorption of pyrrole without mechanical crack on the hydrogel network and allow tissue-like stretchability and on-nerve adhesiveness. In a rat crushed nerve injury model, the nerve bandage can effectively promote nerve regeneration through stable sutureless wrapping followed by great electrical transmission on the defect region, showing anatomical and functional recovery of the nerve tissues and preventing muscular atrophy. Such hydrogel fibrous bandages will be a promising surgical dressing to be combined with versatile biomedical devices/materials for peripheral nerve repair.
Collapse
Affiliation(s)
- Subin Jin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Hyunjin Jung
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihyang Song
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sumin Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Subeen Yoon
- Department of Biomedical science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung Hyun Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jung Seung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Donghee Son
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
2
|
Kulatunga DCM, Ranaraja U, Kim EY, Kim RE, Kim DE, Ji KB, Kim MK. A novel APP splice variant-dependent marker system to precisely demarcate maturity in SH-SY5Y cell-derived neurons. Sci Rep 2024; 14:12113. [PMID: 38802572 PMCID: PMC11130256 DOI: 10.1038/s41598-024-63005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
SH-SY5Y, a neuroblastoma cell line, can be converted into mature neuronal phenotypes, characterized by the expression of mature neuronal and neurotransmitter markers. However, the mature phenotypes described across multiple studies appear inconsistent. As this cell line expresses common neuronal markers after a simple induction, there is a high chance of misinterpreting its maturity. Therefore, sole reliance on common neuronal markers is presumably inadequate. The Alzheimer's disease (AD) central gene, amyloid precursor protein (APP), has shown contrasting transcript variant dynamics in various cell types. We differentiated SH-SY5Y cells into mature neuron-like cells using a concise protocol and observed the upregulation of total APP throughout differentiation. However, APP transcript variant-1 was upregulated only during the early to middle stages of differentiation and declined in later stages. We identified the maturity state where this post-transcriptional shift occurs, terming it "true maturity." At this stage, we observed a predominant expression of mature neuronal and cholinergic markers, along with a distinct APP variant pattern. Our findings emphasize the necessity of using a differentiation state-sensitive marker system to precisely characterize SH-SY5Y differentiation. Moreover, this study offers an APP-guided, alternative neuronal marker system to enhance the accuracy of the conventional markers.
Collapse
Affiliation(s)
- D Chanuka M Kulatunga
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Umanthi Ranaraja
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | | | | | - Dong Ern Kim
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Kuk Bin Ji
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Min Kyu Kim
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
- MK Biotech Inc., Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Matrella ML, Valletti A, Gigante I, De Rasmo D, Signorile A, Russo S, Lobasso S, Lobraico D, Dibattista M, Pacelli C, Cocco T. High OXPHOS efficiency in RA-FUdr-differentiated SH-SY5Y cells: involvement of cAMP signalling and respiratory supercomplexes. Sci Rep 2024; 14:7411. [PMID: 38548913 PMCID: PMC10978939 DOI: 10.1038/s41598-024-57613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
Neurons are highly dependent on mitochondria to meet their bioenergetic needs and understanding the metabolic changes during the differentiation process is crucial in the neurodegeneration context. Several in vitro approaches have been developed to study neuronal differentiation and bioenergetic changes. The human SH-SY5Y cell line is a widely used cellular model and several differentiation protocols have been developed to induce a neuron-like phenotype including retinoic acid (RA) treatment. In this work we obtained a homogeneous functional population of neuron-like cells by a two-step differentiation protocol in which SH-SY5Y cells were treated with RA plus the mitotic inhibitor 2-deoxy-5-fluorouridine (FUdr). RA-FUdr treatment induced a neuronal phenotype characterized by increased expression of neuronal markers and electrical properties specific to excitable cells. In addition, the RA-FUdr differentiated cells showed an enrichment of long chain and unsaturated fatty acids (FA) in the acyl chain composition of cardiolipin (CL) and the bioenergetic analysis evidences a high coupled and maximal respiration associated with high mitochondrial ATP levels. Our results suggest that the observed high oxidative phosphorylation (OXPHOS) capacity may be related to the activation of the cyclic adenosine monophosphate (cAMP) pathway and the assembly of respiratory supercomplexes (SCs), highlighting the change in mitochondrial phenotype during neuronal differentiation.
Collapse
Affiliation(s)
- Maria Laura Matrella
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Alessio Valletti
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- MASMEC Biomed S.p.A, 70026, Modugno, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology- IRCCS "Saverio De Bellis", Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Domenico De Rasmo
- Bioenergetics and Molecular Biotechnologies, CNR-Institute of Biomembranes, 70124, Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Silvia Russo
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Simona Lobasso
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Donatella Lobraico
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy.
| | - Tiziana Cocco
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy.
| |
Collapse
|
4
|
Liu Y, Zhang J, Cao F, Dong X, Li J, Cao Y, Li Z, Guo Y, Yan J, Liu Y, Zhao Q. N6-methyladenosine-mediated overexpression of long noncoding RNA ADAMTS9-AS2 triggers neuroblastoma differentiation via regulating LIN28B/let-7/MYCN signaling. JCI Insight 2023; 8:e165703. [PMID: 37991019 PMCID: PMC10721320 DOI: 10.1172/jci.insight.165703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
Neuroblastomas have shed light on the differentiation disorder that is associated with spontaneous regression or differentiation in the same tumor at the same time. Long noncoding RNAs (lncRNAs) actively participate in a broad spectrum of biological processes. However, the detailed molecular mechanisms underlying lncRNA regulation of differentiation in neuroblastomas remain largely unknown. Here, we sequenced clinical samples of ganglioneuroma, ganglioneuroblastoma, and neuroblastoma. We compared transcription profiles of neuroblastoma cells, ganglion cells, and intermediate state cells; verified the profiles in a retinoic acid-induced cell differentiation model and clinical samples; and screened out the lncRNA ADAMTS9 antisense RNA 2 (ADAMTS9-AS2), which contributed to neuroblastoma differentiation. ADAMTS9-AS2 upregulation in neuroblastoma cell lines inhibited proliferation and metastatic potential. Additional mechanistic studies illustrated that the interactions between ADAMTS9-AS2 and LIN28B inhibited the association between LIN28B and primary let-7 (pri-let-7) miRNA, then released pri-let-7 into cytoplasm to form mature let-7, resulting in the inhibition of oncogene MYCN activity that subsequently affected cancer stemness and differentiation. Furthermore, we showed that the observed differential expression of ADAMTS9-AS2 in neuroblastoma cells was due to N6-methyladenosine methylation. Finally, ADAMTS9-AS2 upregulation inhibited proliferation and cancer stem-like capabilities in vivo. Taken together, these results show that ADAMTS9-AS2 loss leads to malignant neuroblastoma by increasing metastasis and causing dysfunctional differentiation.
Collapse
Affiliation(s)
- Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jun Zhang
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fang Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaobao Dong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanna Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhanglin Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Guo
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Mungenast L, Nieminen R, Gaiser C, Faia-Torres AB, Rühe J, Suter-Dick L. Electrospun decellularized extracellular matrix scaffolds promote the regeneration of injured neurons. BIOMATERIALS AND BIOSYSTEMS 2023; 11:100081. [PMID: 37427248 PMCID: PMC10329103 DOI: 10.1016/j.bbiosy.2023.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 07/11/2023] Open
Abstract
Traumatic injury to the spinal cord (SCI) causes the transection of neurons, formation of a lesion cavity, and remodeling of the microenvironment by excessive extracellular matrix (ECM) deposition and scar formation leading to a regeneration-prohibiting environment. Electrospun fiber scaffolds have been shown to simulate the ECM and increase neural alignment and neurite outgrowth contributing to a growth-permissive matrix. In this work, electrospun ECM-like fibers providing biochemical and topological cues are implemented into a scaffold to represent an oriented biomaterial suitable for the alignment and migration of neural cells in order to improve spinal cord regeneration. The successfully decellularized spinal cord ECM (dECM), with no visible cell nuclei and dsDNA content < 50 ng/mg tissue, showed preserved ECM components, such as glycosaminoglycans and collagens. Serving as the biomaterial for 3D printer-assisted electrospinning, highly aligned and randomly distributed dECM fiber scaffolds (< 1 µm fiber diameter) were fabricated. The scaffolds were cytocompatible and supported the viability of a human neural cell line (SH-SY5Y) for 14 days. Cells were selectively differentiated into neurons, as confirmed by immunolabeling of specific cell markers (ChAT, Tubulin ß), and followed the orientation given by the dECM scaffolds. After generating a lesion site on the cell-scaffold model, cell migration was observed and compared to reference poly-ε-caprolactone fiber scaffolds. The aligned dECM fiber scaffold promoted the fastest and most efficient lesion closure, indicating superior cell guiding capabilities of dECM-based scaffolds. The strategy of combining decellularized tissues with controlled deposition of fibers to optimize biochemical and topographical cues opens the way for clinically relevant central nervous system scaffolding solutions.
Collapse
Affiliation(s)
- Lena Mungenast
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Ronya Nieminen
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Carine Gaiser
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Ana Bela Faia-Torres
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Jürgen Rühe
- Department of Microsystems Engineering, IMTEK, University of Freiburg, Freiburg 79110, Germany
| | - Laura Suter-Dick
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
- SCAHT: Swiss Centre for Applied Human Toxicology, Missionsstrasse 64, Basel 4055, Switzerland
| |
Collapse
|
6
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Streamlining Culture Conditions for the Neuroblastoma Cell Line SH-SY5Y: A Prerequisite for Functional Studies. Methods Protoc 2022; 5:mps5040058. [PMID: 35893584 PMCID: PMC9326679 DOI: 10.3390/mps5040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
The neuroblastoma cell line SH-SY5Y has been a well-established and very popular in vitro model in neuroscience for decades, especially focusing on neurodevelopmental disorders, such as Parkinson’s disease. The ability of this cell type to differentiate compared with other models in neurobiology makes it one of the few suitable models without having to rely on a primary culture of neuronal cells. Over the years, various, partly contradictory, methods of cultivation have been reported. This study is intended to provide a comprehensive guide to the in vitro cultivation of undifferentiated SH-SY5Y cells. For this purpose, the morphology of the cell line and the differentiation of the individual subtypes are described, and instructions for cell culture practice and long-term cryoconservation are provided. We describe the key growth characteristics of this cell line, including proliferation and confluency data, optimal initial seeding cell numbers, and a comparison of different culture media and cell viability during cultivation. Furthermore, applying an optimized protocol in a long-term cultivation over 60 days, we show that cumulative population doubling (CPD) is constant over time and does not decrease with incremental passage, enabling stable cultivation, for example, for recurrent differentiation to achieve the highest possible reproducibility in subsequent analyses. Therefore, we provide a solid guidance for future research that employs the neuroblastoma cell line SH-SY5Y.
Collapse
|
8
|
Inhibition of neurite outgrowth and enhanced effects compared to baseline toxicity in SH-SY5Y cells. Arch Toxicol 2022; 96:1039-1053. [PMID: 35182163 PMCID: PMC8921145 DOI: 10.1007/s00204-022-03237-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 01/19/2023]
Abstract
Early life exposure to environmental chemicals can cause developmental neurotoxicity (DNT). The impairment of key neurodevelopmental processes such as neurite outgrowth inhibition can be used as endpoints for screening of DNT effects. We quantified neurite-specific effects using the ratio of effect concentrations for cytotoxicity and neurite outgrowth inhibition (SRcytotoxicity). Baseline cytotoxicity, the minimal toxicity of any chemical, was used to quantify enhanced cytotoxicity (toxic ratio, TR) and neuronal-specific toxicity (SRbaseline) by comparing baseline cytotoxicity with the effects on cell viability and neurite outgrowth, respectively. The effects on cell viability and neurite length were measured based on image analysis in human neuroblastoma SH-SY5Y cells. Baseline cytotoxicity was predicted from hydrophobicity descriptors using a previously published model for SH-SY5Y cells. Enhanced cytotoxicity and neuronal-specific toxicity were more often observed for hydrophilic chemicals, which indicates that they are more likely to act through specific modes of action (MOA) on cell viability and neurite outgrowth. Hydrophobic chemicals showed a tendency to act through baseline toxicity without showing specific or enhanced toxicity, but were highly potent considering their low effect concentrations for both cytotoxicity and neurite outgrowth inhibition. The endpoint-specific controls (narciclasine, colchicine, cycloheximide, and rotenone), two carbamates (3-hydroxycarbofuran and carbaryl), and two redox cyclers (diquat and paraquat) showed distinct neurite-specific effects (SRcytotoxicity > 4). By comparing neurite-specific effects with enhanced cytotoxicity, one can explain whether the observed effects involve specific inhibition of neurite outgrowth, other specific MOAs, or merely baseline toxicity arising from hydrophobicity.
Collapse
|
9
|
Singh S, Somvanshi RK, Kumar U. Somatostatin-Mediated Regulation of Retinoic Acid-Induced Differentiation of SH-SY5Y Cells: Neurotransmitters Phenotype Characterization. Biomedicines 2022; 10:biomedicines10020337. [PMID: 35203546 PMCID: PMC8961784 DOI: 10.3390/biomedicines10020337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
During brain development, neurite formation plays a critical role in neuronal communication and cognitive function. In the present study, we compared developmental changes in the expression of crucial markers that govern the functional activity of neurons, including somatostatin (SST), choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), brain nitric oxide synthase (bNOS), gamma-aminobutyric acid (GABA), glutamic acid decarboxylase (GAD-65) and synaptic vesicle protein synaptophysin (SYP) in non-differentiated and retinoic acid (RA)-induced differentiated SH-SY5Y cells. We further determined the role of SST in regulating subcellular distribution and expression of neurotransmitters. Our results indicate that SST potentiates RA-induced differentiation of SH-SY5Y cells and involves regulating the subcellular distribution and expression of neurotransmitter markers and synaptophysin translocation to neurites in a time-dependent manner, anticipating the therapeutic implication of SST in neurodegeneration.
Collapse
|
10
|
Woods I, O'Connor C, Frugoli L, Kerr S, Gutierrez Gonzalez J, Stasiewicz M, McGuire T, Cavanagh B, Hibbitts A, Dervan A, O'Brien FJ. Biomimetic Scaffolds for Spinal Cord Applications Exhibit Stiffness-Dependent Immunomodulatory and Neurotrophic Characteristics. Adv Healthc Mater 2022; 11:e2101663. [PMID: 34784649 DOI: 10.1002/adhm.202101663] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Indexed: 01/14/2023]
Abstract
After spinal cord injury (SCI), tissue engineering scaffolds offer a potential bridge for regeneration across the lesion and support repair through proregenerative signaling. Ideal biomaterial scaffolds that mimic the physicochemical properties of native tissue have the potential to provide innate trophic signaling while also minimizing damaging inflammation. To address this challenge, taking cues from the spinal cord's structure, the proregenerative signaling capabilities of native cord components are compared in vitro. A synergistic mix of collagen-IV and fibronectin (Coll-IV/Fn) is found to optimally enhance axonal extension from neuronal cell lines (SHSY-5Y and NSC-34) and induce morphological features typical of quiescent astrocytes. This optimal composition is incorporated into hyaluronic acid scaffolds with aligned pore architectures but varying stiffnesses (0.8-3 kPa). Scaffolds with biomimetic mechanical properties (<1 kPa), functionalized with Coll-IV/Fn, not only modulate primary astrocyte behavior but also stimulate the production of anti-inflammatory cytokine IL-10 in a stiffness-dependent manner. Seeded SHSY-5Y neurons generate distributed neuronal networks, while softer biomimetic scaffolds promote axonal outgrowth in an ex vivo model of axonal regrowth. These results indicate that the interaction of stiffness and biomaterial composition plays an essential role in vitro in generating repair-critical cellular responses and demonstrates the potential of biomimetic scaffold design.
Collapse
Affiliation(s)
- Ian Woods
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Cian O'Connor
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Lisa Frugoli
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Seán Kerr
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Javier Gutierrez Gonzalez
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre RCSI 123 St Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Martyna Stasiewicz
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Tara McGuire
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Brenton Cavanagh
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Cellular and Molecular Imaging Core Royal College of Surgeons in Ireland 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre RCSI 123 St Stephen's Green, Dublin 2, D02YN77 Ireland
- Trinity Centre for Biomedical Engineering Trinity College Dublin Dublin 2, D02R590 Ireland
| |
Collapse
|
11
|
In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022; 14:nu14020363. [PMID: 35057544 PMCID: PMC8777776 DOI: 10.3390/nu14020363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called “dicarbonyl stress”, resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.
Collapse
|
12
|
Annuario E, Ng K, Vagnoni A. High-Resolution Imaging of Mitochondria and Mitochondrial Nucleoids in Differentiated SH-SY5Y Cells. Methods Mol Biol 2022; 2431:291-310. [PMID: 35412283 DOI: 10.1007/978-1-0716-1990-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mitochondria are highly dynamic organelles which form intricate networks with complex dynamics. Mitochondrial transport and distribution are essential to ensure proper cell function, especially in cells with an extremely polarised morphology such as neurons. A layer of complexity is added when considering mitochondria have their own genome, packaged into nucleoids. Major mitochondrial morphological transitions, for example mitochondrial division, often occur in conjunction with mitochondrial DNA (mtDNA) replication and changes in the dynamic behaviour of the nucleoids. However, the relationship between mtDNA dynamics and mitochondrial motility in the processes of neurons has been largely overlooked. In this chapter, we describe a method for live imaging of mitochondria and nucleoids in differentiated SH-SY5Y cells by instant structured illumination microscopy (iSIM). We also include a detailed protocol for the differentiation of SH-SY5Y cells into cells with a pronounced neuronal-like morphology and show examples of coordinated mitochondrial and nucleoid motility in the long processes of these cells.
Collapse
Affiliation(s)
- Emily Annuario
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kristal Ng
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
13
|
Optimised techniques for high-throughput screening of differentiated SH-SY5Y cells and application for neurite outgrowth assays. Sci Rep 2021; 11:23935. [PMID: 34907283 PMCID: PMC8671469 DOI: 10.1038/s41598-021-03442-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Neuronal models are a crucial tool in neuroscientific research, helping to elucidate the molecular and cellular processes involved in disorders of the nervous system. Adapting these models to a high-throughput format enables simultaneous screening of multiple agents within a single assay. SH-SY5Y cells have been widely used as a neuronal model, yet commonly in an undifferentiated state that is not representative of mature neurons. Differentiation of the SH-SY5Y cells is a necessary step to obtain cells that express mature neuronal markers. Despite this understanding, the absence of a standardised protocol has limited the use of differentiated SH-SY5Y cells in high-throughput assay formats. Here, we describe techniques to differentiate and re-plate SH-SY5Y cells within a 96-well plate for high-throughput screening. SH-SY5Y cells seeded at an initial density of 2,500 cells/well in a 96-well plate provide sufficient space for neurites to extend, without impacting cell viability. Room temperature pre-incubation for 1 h improved the plating homogeneity within the well and the ability to analyse neurites. We then demonstrated the efficacy of our techniques by optimising it further for neurite outgrowth analysis. The presented methods achieve homogenously distributed differentiated SH-SY5Y cells, useful for researchers using these cells in high-throughput screening assays.
Collapse
|
14
|
1,5-Benzodiazepin-2(3H)-ones: In Vitro Evaluation as Antiparkinsonian Agents. Antioxidants (Basel) 2021; 10:antiox10101584. [PMID: 34679721 PMCID: PMC8533176 DOI: 10.3390/antiox10101584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
A new series of twenty-three 1,5-benzodiazepin-2(3H)-ones were synthesized and evaluated in the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays as a new chemotype with antioxidant and good drug-like properties. All of the derivatives showed low cytotoxicity in comparison to curcumin against the human neuroblastoma SH-SY5Y and the human hepatoma HepG2 cell lines. Experimental solubility in bio-relevant media showed a good relationship with melting points in this series. Five compounds with the best antioxidant properties showed neuroprotectant activity against H2O2-induced oxidative stress in the SH-SY5Y cell line. From them, derivatives 4-phenyl-1H-1,5-benzodiazepin-2(3H)-one (18) and 4-(3,4,5-trimethoxyphenyl)-1H-1,5-benzodiazepin-2(3H)-one (20) yielded good neuroprotection activity in the same neuronal cell line under 6-OHD and MPP+ insults as in vitro models of mitochondrial dysfunction and oxidative stress in Parkinson’s disease (PD). Both compounds also demonstrated a significant reduction of intracellular Reactive Oxygen Species (ROS) and superoxide levels, in parallel with a good improvement of the Mitochondrial Membrane Potential (ΔΨm). Compared with curcumin, compound 18 better reduced lipid peroxidation levels, malondialdehyde (MDA), in SH-SY5Y cells under oxidative stress pressure and recovered intracellular glutathione synthetase (GSH) levels. Apoptosis and caspase-3 levels of SH-SY5Y under H2O2 pressure were also reduced after treatment with 18. Neuroprotection in neuron-like differentiated SH-SY5Y cells was also achieved with 18. In summary, this family of 1,5-benzodiazepin-2-ones with an interesting antioxidant and drug-like profile, with low cytotoxic and good neuroprotectant activity, constitutes a new promising chemical class with high potential for the development of new therapeutic agents against PD.
Collapse
|
15
|
Lebedev TD, Vagapova ER, Prassolov VS. The Different Impact of ERK Inhibition on Neuroblastoma, Astrocytoma, and Rhabdomyosarcoma Cell Differentiation. Acta Naturae 2021; 13:69-77. [PMID: 35127149 PMCID: PMC8807533 DOI: 10.32607/actanaturae.11461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 12/02/2022] Open
Abstract
Aberrant ERK activity can lead to uncontrolled cell proliferation,
immortalization, and impaired cell differentiation. Impairment of normal cell
differentiation is one of the critical stages in malignant cell transformation.
In this study, we investigated a relationship between ERK tyrosine kinase
activity and the main differentiation features (changes in cell morphology and
expression of genes encoding differentiation markers and growth factor
receptors) in SH-SY5Y neuroblastoma, U-251 astrocytoma, and TE-671
rhabdomyosarcoma cells. ERK activity was assessed using a reporter system that
enabled live measurements of ERK activity in single cells. We demonstrated that
suppression of ERK activity by selective ERK inhibitors, in contrast to a
commonly used differentiation inducer, retinoic acid, leads to significant
changes in TE-671 cell morphology and expression of the myogenic
differentiation marker genes PROM1, MYOG, and PAX7. There was a relationship
between ERK activity and morphological changes at an individual cell level. In
this case, SH-SY5Y cell differentiation induced by retinoic acid was
ERK-independent. We showed that ERK inhibition increases the sensitivity of
TE-671 cells to the EGF, IGF-1, and NGF growth factors, presumably by reducing
basal ERK activity, and to the BDNF growth factor, by increasing expression of
the TrkB receptor.
Collapse
Affiliation(s)
- T. D. Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - E. R. Vagapova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| |
Collapse
|
16
|
Öztaş E, Kara M, Boran T, Bişirir E, Karaman EF, Kaptan E, Özhan G. Cellular Stress Pathways Are Linked to Acetamiprid-Induced Apoptosis in SH-SY5Y Neural Cells. BIOLOGY 2021; 10:biology10090820. [PMID: 34571697 PMCID: PMC8467785 DOI: 10.3390/biology10090820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023]
Abstract
Simple Summary Neonicotinoids constitute more than one-quarter of the insecticides on the market. Acetamiprid, a widely used neonicotinoid, has been found to be linked with neurological symptoms and there is an urge to understand its molecular mechanisms. It decreased cellular viability in millimole concentrations after 24 h in SH-SY5Y neural cells. Additionally, it increased reactive oxygen species, intracellular calcium and endoplasmic reticulum stress. Since overwhelmed cellular stress can destroy cellular structures and cause cell death, we also evaluated cellular death mechanisms. Acetamiprid induced apoptosis rather than necrosis indicating that cells undergo suicide initiated by self-generated death signals. Even though acetamiprid is considered to be a safe option in the struggle against harmful agricultural insects, these results suggest that the widespread use should be taken under strict control in order not to cause damage to the mammals. Abstract Acetamiprid (ACE), a commonly used neonicotinoid insecticide, is correlated with neurological symptoms, immunotoxicity and hepatotoxicity. Cellular stress and damage could play an important role in ACE-induced neurotoxicity; however, its mechanism has not been fully understood. We evaluated the effects of ACE on oxidative stress, endoplasmic reticulum (ER) stress, cellular death, mRNA expression levels of related genes and protein expressions of related molecular mechanisms in SH-SY5Y human neuroblastoma cells. The half maximal inhibition of enzyme activity (IC50) value of ACE was determined as 4.26 mM after 24 h of treatment by MTT assay. We revealed an increase in reactive oxygen species (ROS) production and calcium release. Significant increases were measured in inositol-requiring enzyme 1-alpha (IRE1-α) and binding immunoglobulin protein 90 (GRP90) levels as well as mRNA expression levels of caspase 3, 4 and 9 genes indicating enhanced ER stress. Apoptosis and ER stress-related genes were significantly upregulated at ≥2 mM. Indeed, ACE caused apoptosis and necroptosis while necrosis was not observed. There was a significant increase in the protein level of mitogen-activated protein kinase-8 (MAPK8) at 4 mM of ACE while no change was seen for nuclear factor kappa-B (NF-κB) and tumor necrosis factor-alpha (TNF-α). In conclusion, increased cellular stress markers could be proposed as an underlying mechanism of ACE-induced cell death in neural cells.
Collapse
Affiliation(s)
- Ezgi Öztaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (M.K.); (T.B.); (E.B.); (E.F.K.); (G.Ö.)
- Correspondence:
| | - Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (M.K.); (T.B.); (E.B.); (E.F.K.); (G.Ö.)
| | - Tuğçe Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (M.K.); (T.B.); (E.B.); (E.F.K.); (G.Ö.)
| | - Enes Bişirir
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (M.K.); (T.B.); (E.B.); (E.F.K.); (G.Ö.)
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (M.K.); (T.B.); (E.B.); (E.F.K.); (G.Ö.)
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
| | - Engin Kaptan
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul 34134, Turkey;
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (M.K.); (T.B.); (E.B.); (E.F.K.); (G.Ö.)
| |
Collapse
|
17
|
Szychowski KA, Skóra B, Mańdziuk M. Tris (2,3-Dibromopropyl) Isocyanurate (TDBP-TAZTO or TBC) Shows Different Toxicity Depending on the Degree of Differentiation of the Human Neuroblastoma (SH-SY5Y) Cell Line. Neurotox Res 2021; 39:1575-1588. [PMID: 34342853 PMCID: PMC8429403 DOI: 10.1007/s12640-021-00399-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Tris (2,3-dibromopropyl) isocyanurate (TDBP-TAZTO or TBC) is a heterocyclic hexabromated flame retardant. It is widely used during the production of many synthetic compounds. High concentrations of TDBP-TAZTO were found in river water, surface sediments, soil, earthworms, and carp tissues. Moreover, it has been shown that this compound can cross the blood–brain barrier and accumulate in the gut and brain of carp. The aryl hydrocarbon receptor (AhR) has been characterized as a multifunctional intracellular sensor and receptor. AhR is an activator of cytochrome P450 1A1 and 1A2, which metabolize various toxic compounds. The aim of the study was to explain how/whether TDBP-TAZTO increases the expression and/or activity of the CYP1A1 enzyme and the AhR and TUBB3 expression during SH-SY5Y cell differentiation. SH-SY5Y cells were differentiated for 7 and 14 days using retinoic acid. Cell viability, ethoxyresorufin-O-deethylase (EROD) activity, and mRNA expression of CYP1A1, AhR, and TUBB3 were assessed. Our experiment showed that, during the differentiation process, the ability of TDBP-TAZTO to induce EROD activity in SH-SY5Y cells subsequently decreased, which may have been an effect of cell differentiation into neurons. Moreover, the results suggest that TDBP-TAZTO can affect the differentiation process. Since no CYP2B6 mRNA expression was detected, the CAR receptor may not be involved in the TDBP-TAZTO mechanism of action. However, more research is needed in this field to elucidate this mechanism precisely.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Marzena Mańdziuk
- Department of Physiotherapy, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
18
|
ALS-linked FUS mutants affect the localization of U7 snRNP and replication-dependent histone gene expression in human cells. Sci Rep 2021; 11:11868. [PMID: 34088960 PMCID: PMC8178370 DOI: 10.1038/s41598-021-91453-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/18/2021] [Indexed: 11/24/2022] Open
Abstract
Genes encoding replication-dependent histones lack introns, and the mRNAs produced are a unique class of RNA polymerase II transcripts in eukaryotic cells that do not end in a polyadenylated tail. Mature mRNAs are thus formed by a single endonucleolytic cleavage that releases the pre-mRNA from the DNA and is the only processing event necessary. U7 snRNP is one of the key factors that determines the cleavage site within the 3ʹUTR of replication-dependent histone pre-mRNAs. We have previously showed that the FUS protein interacts with U7 snRNA/snRNP and regulates the expression of histone genes by stimulating transcription and 3ʹ end maturation. Mutations in the FUS gene first identified in patients with amyotrophic lateral sclerosis (ALS) lead to the accumulation of the FUS protein in cytoplasmic inclusions. Here, we report that mutations in FUS lead to disruption of the transcriptional activity of FUS and mislocalization of U7 snRNA/snRNP in cytoplasmic aggregates in cellular models and primary neurons. As a consequence, decreased transcriptional efficiency and aberrant 3ʹ end processing of histone pre-mRNAs were observed. This study highlights for the first time the deregulation of replication-dependent histone gene expression and its involvement in ALS.
Collapse
|
19
|
Antioxidant and Neuroprotective Activity of Extra Virgin Olive Oil Extracts Obtained from Quercetano Cultivar Trees Grown in Different Areas of the Tuscany Region (Italy). Antioxidants (Basel) 2021; 10:antiox10030421. [PMID: 33801925 PMCID: PMC8000409 DOI: 10.3390/antiox10030421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are driven by several mechanisms such as inflammation, abnormal protein aggregation, excitotoxicity, mitochondrial dysfunction and oxidative stress. So far, no therapeutic strategies are available for neurodegenerative diseases and in recent years the research is focusing on bioactive molecules present in food. In particular, extra-virgin olive oil (EVOO) phenols have been associated to neuroprotection. In this study, we investigated the potential antioxidant and neuroprotective activity of two different EVOO extracts obtained from Quercetano cultivar trees grown in two different areas (plain and hill) of the Tuscany region (Italy). The different geographical origin of the orchards influenced phenol composition. Plain extract presented a higher content of phenyl ethyl alcohols, cinnammic acids, oleacein, oleocanthal and flavones; meanwhile, hill extract was richer in lignans. Hill extract was more effective in protecting differentiated SH-SY5Y cells from peroxide stress thanks to a marked upregulation of the antioxidant enzymes heme oxygenase 1, NADPH quinone oxidoreductase 1, thioredoxin Reductase 1 and glutathione reductase. Proteomic analysis revealed that hill extract plays a role in the regulation of proteins involved in neuronal plasticity and activation of neurotrophic factors such as BDNF. In conclusion, these data demonstrate that EVOOs can have important neuroprotective activities, but these effects are strictly related to their specific phenol composition.
Collapse
|
20
|
Asthana A, Ndyabawe K, Mendez D, Douglass M, Haidekker MA, Kisaalita WS. Calcium Oscillation Frequency Is a Potential Functional Complex Physiological Relevance Indicator for a Neuroblastoma-Based 3D Culture Model. ACS Biomater Sci Eng 2020; 6:4314-4323. [PMID: 33463347 DOI: 10.1021/acsbiomaterials.9b01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vitro screening for drugs that affect neural function in vivo is still primitive. It primarily relies on single cellular responses from 2D monolayer cultures that have been shown to be exaggerations of the in vivo response. For the 3D model to be physiologically relevant, it should express characteristics that not only differentiate it from 2D but also closely emulate those seen in vivo. These complex physiologically relevant (CPR) outcomes can serve as a standard for determining how close a 3D culture is to its native tissue or which out of a given number of 3D platforms is better suited for a given application. In this study, Fluo-4-based calcium fluorescence imaging was performed followed by automated image data processing to quantify the calcium oscillation frequency of SHSY5Y cells cultured in 2D and 3D formats. It was found that the calcium oscillation frequency is upregulated in traditional 2D cultures while it was comparable to in vivo in spheroid and microporous polymer scaffold-based 3D models, suggesting calcium oscillation frequency as a potential functional CPR indicator for neural cultures.
Collapse
|
21
|
Turkez H, Cacciatore I, Arslan ME, Fornasari E, Marinelli L, Di Stefano A, Mardinoglu A. Histidyl-Proline Diketopiperazine Isomers as Multipotent Anti-Alzheimer Drug Candidates. Biomolecules 2020; 10:biom10050737. [PMID: 32397415 PMCID: PMC7277666 DOI: 10.3390/biom10050737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclic dipeptides administered by both parenteral and oral routes are suggested as promising candidates for the treatment of neurodegeneration-related pathologies. In this study, we tested Cyclo (His-Pro) isomers (cHP1-4) for their anti-Alzheimer potential using a differentiated human neuroblastoma cell line (SH-SY5Y) as an Alzheimer’s disease (AD) experimental model. The SH-SY5Y cell line was differentiated by the application of all-trans retinoic acid (RA) to obtain mature neuron-like cells. Amyloid-beta 1-42 (Aβ1-42) peptides, the main effector in AD, were administered to the differentiated cell cultures to constitute the in vitro disease model. Next, we performed cell viability analyses 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays) to investigate the neuroprotective concentrations of cyclodipeptides using the in vitro AD model. We evaluated acetylcholinesterase (AChE), α- and β-secretase activities (TACE and BACE1), antioxidant potency, and apoptotic/necrotic properties and performed global gene expression analysis to understand the main mechanism behind the neuroprotective features of cHP1-4. Moreover, we conducted sister chromatid exchange (SCE), micronucleus (MN), and 8-hydroxy-2′-deoxyguanosine (8-OHdG) analyses to evaluate the genotoxic damage potential after applications with cHP1-4 on cultured human lymphocytes. Our results revealed that cHP1-4 isomers provide a different degree of neuroprotection against Aβ1-42-induced cell death on the in vitro AD model. The applications with cHP1-4 isomers altered the activity of AChE but not the activity of TACE and BACE1. Our analysis indicated that the cHP1-4 increased the total antioxidant capacity without altering total oxidative status levels in the cellular AD model and that cHP1-4 modulated the alterations of gene expressions by Aβ1-42 exposure. We also observed that cHP1-4 exhibited noncytotoxic and non-genotoxic features in cultured human whole blood cells. In conclusion, cHP1-4 isomers, especially cHP4, have been explored as novel promising therapeutics against AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
- Correspondence: (H.T.); (A.M.)
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey;
| | - Erika Fornasari
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Lisa Marinelli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Antonio Di Stefano
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
- Correspondence: (H.T.); (A.M.)
| |
Collapse
|
22
|
Salahuddin MF, Qrareya AN, Mahdi F, Jackson D, Foster M, Vujanovic T, Box JG, Paris JJ. Combined HIV-1 Tat and oxycodone activate the hypothalamic-pituitary-adrenal and -gonadal axes and promote psychomotor, affective, and cognitive dysfunction in female mice. Horm Behav 2020; 119:104649. [PMID: 31821792 PMCID: PMC7071558 DOI: 10.1016/j.yhbeh.2019.104649] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/26/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
The majority of HIV+ patients present with neuroendocrine dysfunction and ~50% experience co-morbid neurological symptoms including motor, affective, and cognitive dysfunction, collectively termed neuroHIV. In preclinical models, the neurotoxic HIV-1 regulatory protein, trans-activator of transcription (Tat), promotes neuroHIV pathology that can be exacerbated by opioids. We and others find gonadal steroids, estradiol (E2) or progesterone (P4), to rescue Tat-mediated pathology. However, the combined effects of Tat and opioids on neuroendocrine function and the subsequent ameliorative capacity of gonadal steroids are unknown. We found that conditional HIV-1 Tat expression in naturally-cycling transgenic mice dose-dependently potentiated oxycodone-mediated psychomotor behavior. Tat increased depression-like behavior in a tail-suspension test among proestrous mice, but decreased it among diestrous mice (who already demonstrated greater depression-like behavior); oxycodone reversed these effects. Combined Tat and oxycodone produced apparent behavioral disinhibition of anxiety-like responding which was greater on diestrus than on proestrus. These mice made more central entries in an open field, but spent less time there and demonstrated greater circulating corticosterone. Tat increased the E2:P4 ratio of circulating steroids on diestrus and acute oxycodone attenuated this effect, but repeated oxycodone exacerbated it. Corticotropin-releasing factor was increased by Tat expression, acute oxycodone exposure, and was greater on diestrus compared to proestrus. In human neuroblastoma cells, Tat exerted neurotoxicity that was ameliorated by E2 (1 or 10 nM) or P4 (100, but not 10 nM) independent of oxycodone. Oxycodone decreased gene expression of estrogen and κ-opioid receptors. Thus, neuroendocrine function may be an important target for HIV-1 Tat/opioid interactions.
Collapse
Affiliation(s)
- Mohammed F Salahuddin
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Alaa N Qrareya
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Dejun Jackson
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Matthew Foster
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Tamara Vujanovic
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - J Gaston Box
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Jason J Paris
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
23
|
Mori T, Cukelj R, Prévôt ME, Ustunel S, Story A, Gao Y, Diabre K, McDonough JA, Freeman EJ, Hegmann E, Clements RJ. 3D Porous Liquid Crystal Elastomer Foams Supporting Long-term Neuronal Cultures. Macromol Rapid Commun 2020; 41:e1900585. [PMID: 32009277 DOI: 10.1002/marc.201900585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/18/2019] [Indexed: 02/05/2023]
Abstract
3D liquid crystal elastomer (3D-LCE) foams are used to support long-term neuronal cultures for over 60 days. Sequential imaging shows that cell density remains relatively constant throughout the culture period while the number of cells per observational area increases. In a subset of samples, retinoic acid is used to stimulate extensive neuritic outgrowth and maturation of proliferated neurons within the LCEs, inducing a threefold increase in length with cells displaying morphologies indicative of mature neurons. Designed LCEs' micro-channels have a similar diameter to endogenous parenchymal arterioles, ensuring that neurons throughout the construct have constant access to growth media during extended experiments. Here it is shown that 3D-LCEs provide a unique environment and simple method to longitudinally study spatial neuronal function, not possible in conventional culture environments, with simplistic integration into existing methodological pipelines.
Collapse
Affiliation(s)
- Taizo Mori
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Richard Cukelj
- Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Marianne Estelle Prévôt
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Senay Ustunel
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Chemical Physics Interdisciplinary Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Anna Story
- Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Yunxiang Gao
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Karene Diabre
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Jennifer Ann McDonough
- Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Biomedical Sciences Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Brain Health Research Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Ernest Johnson Freeman
- Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Biomedical Sciences Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Brain Health Research Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Elda Hegmann
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Biomedical Sciences Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Brain Health Research Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Chemical Physics Interdisciplinary Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Robert John Clements
- Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Biomedical Sciences Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Brain Health Research Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| |
Collapse
|
24
|
Pregnane steroidogenesis is altered by HIV-1 Tat and morphine: Physiological allopregnanolone is protective against neurotoxic and psychomotor effects. Neurobiol Stress 2020; 12:100211. [PMID: 32258256 PMCID: PMC7109513 DOI: 10.1016/j.ynstr.2020.100211] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pregnane steroids, particularly allopregnanolone (AlloP), are neuroprotective in response to central insult. While unexplored in vivo, AlloP may confer protection against the neurological dysfunction associated with human immunodeficiency virus type 1 (HIV-1). The HIV-1 regulatory protein, trans-activator of transcription (Tat), is neurotoxic and its expression in mice increases anxiety-like behavior; an effect that can be ameliorated by progesterone, but not when 5α-reduction is blocked. Given that Tat's neurotoxic effects involve mitochondrial dysfunction and can be worsened with opioid exposure, we hypothesized that Tat and/or combined morphine would perturb steroidogenesis in mice, promoting neuronal death, and that exogenous AlloP would rescue these effects. Like other models of neural injury, conditionally inducing HIV-1 Tat in transgenic mice significantly increased the central synthesis of pregnenolone and progesterone's 5α-reduced metabolites, including AlloP, while decreasing central deoxycorticosterone (independent of changes in plasma). Morphine significantly increased brain and plasma concentrations of several steroids (including progesterone, deoxycorticosterone, corticosterone, and their metabolites) likely via activation of the hypothalamic-pituitary-adrenal stress axis. Tat, but not morphine, caused glucocorticoid resistance in primary splenocytes. In neurons, Tat depolarized mitochondrial membrane potential and increased cell death. Physiological concentrations of AlloP (0.1, 1, or 10 nM) reversed these effects. High-concentration AlloP (100 nM) was neurotoxic in combination with morphine. Tat induction in transgenic mice potentiated the psychomotor effects of acute morphine, while exogenous AlloP (1.0 mg/kg, but not 0.5 mg/kg) was ameliorative. Data demonstrate that steroidogenesis is altered by HIV-1 Tat or morphine and that physiological AlloP attenuates resulting neurotoxic and psychomotor effects.
Collapse
|
25
|
Santoro AM, Lanza V, Bellia F, Sbardella D, Tundo GR, Cannizzo A, Grasso G, Arizzi M, Nicoletti VG, Alcaro S, Costa G, Pietropaolo A, Malgieri G, D'Abrosca G, Fattorusso R, García‐Viñuales S, Ahmed IMM, Coletta M, Milardi D. Pyrazolones Activate the Proteasome by Gating Mechanisms and Protect Neuronal Cells from β‐Amyloid Toxicity. ChemMedChem 2019; 15:302-316. [DOI: 10.1002/cmdc.201900612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/28/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Anna Maria Santoro
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Francesco Bellia
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Diego Sbardella
- IRCCS – Fondazione G.B. Bietti Via Livenza 3 00189 Roma Italy
- Università di Roma Tor Vergata Dipartimento di Scienze Cliniche e Medicina Traslazionale Via Montpellier 1 00133 Roma Italy
| | - Grazia R. Tundo
- Università di Roma Tor Vergata Dipartimento di Scienze Cliniche e Medicina Traslazionale Via Montpellier 1 00133 Roma Italy
| | - Alessandra Cannizzo
- Università degli Studi di Catania Dipartimento di Scienze Chimiche V.le Andrea Doria 6 95125 Catania Italy
| | - Giuseppe Grasso
- Università degli Studi di Catania Dipartimento di Scienze Chimiche V.le Andrea Doria 6 95125 Catania Italy
| | - Mariaconcetta Arizzi
- Università degli Studi di Catania Dipartimento di Scienze Chimiche V.le Andrea Doria 6 95125 Catania Italy
| | - Vincenzo G. Nicoletti
- Università degli Studi di Catania Dipartimento di Scienze Biomediche e Biotecnologiche (BIOMETEC) Università di Catania Via Santa Sofia 97 95124 Catania
| | - Stefano Alcaro
- Università degli Studi Magna Graecia di Catanzaro Dipartimento di Scienze della Salute Viale Europa 88100 Catanzaro Italy
| | - Giosuè Costa
- Università degli Studi Magna Graecia di Catanzaro Dipartimento di Scienze della Salute Viale Europa 88100 Catanzaro Italy
| | - Adriana Pietropaolo
- Università degli Studi Magna Graecia di Catanzaro Dipartimento di Scienze della Salute Viale Europa 88100 Catanzaro Italy
| | - Gaetano Malgieri
- Università della Campania “Luigi Vanvitelli” Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche Via Vivaldi 43 81100 Caserta Italy
| | - Gianluca D'Abrosca
- Università della Campania “Luigi Vanvitelli” Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche Via Vivaldi 43 81100 Caserta Italy
| | - Roberto Fattorusso
- Università della Campania “Luigi Vanvitelli” Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche Via Vivaldi 43 81100 Caserta Italy
| | - Sara García‐Viñuales
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Ikhlas M. M. Ahmed
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Massimiliano Coletta
- Università di Roma Tor Vergata Dipartimento di Scienze Cliniche e Medicina Traslazionale Via Montpellier 1 00133 Roma Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| |
Collapse
|
26
|
Chiu CC, Yeh TH, Chen RS, Chen HC, Huang YZ, Weng YH, Cheng YC, Liu YC, Cheng AJ, Lu YC, Chen YJ, Lin YW, Hsu CC, Chen YL, Lu CS, Wang HL. Upregulated Expression of MicroRNA-204-5p Leads to the Death of Dopaminergic Cells by Targeting DYRK1A-Mediated Apoptotic Signaling Cascade. Front Cell Neurosci 2019; 13:399. [PMID: 31572127 PMCID: PMC6753175 DOI: 10.3389/fncel.2019.00399] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRs) downregulate or upregulate the mRNA level by binding to the 3′-untranslated region (3′UTR) of target gene. Dysregulated miR levels can be used as biomarkers of Parkinson’s disease (PD) and could participate in the etiology of PD. In the present study, 45 brain-enriched miRs were evaluated in serum samples from 50 normal subjects and 50 sporadic PD patients. The level of miR-204-5p was upregulated in serum samples from PD patients. An upregulated level of miR-204-5p was also observed in the serum and substantia nigra (SN) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Expression of miR-204-5p increased the level of α-synuclein (α-Syn), phosphorylated (phospho)-α-Syn, tau, or phospho-tau protein and resulted in the activation of endoplasmic reticulum (ER) stress in SH-SY5Y dopaminergic cells. Expression of miR-204-5p caused autophagy impairment and activation of c-Jun N-terminal kinase (JNK)-mediated apoptotic cascade in SH-SY5Y dopaminergic cells. Our study using the bioinformatic method and dual-luciferase reporter analysis suggests that miR-204-5p positively regulates mRNA expression of dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) by directly interacting with 3′UTR of DYRK1A. The mRNA and protein levels of DYRK1A were increased in SH-SY5Y dopaminergic cells expressing miR-204-5p and SN of MPTP-induced PD mouse model. Knockdown of DYRK1A expression or treatment of the DYRK1A inhibitor harmine attenuated miR-204-5p-induced increase in protein expression of phospho-α-Syn or phospho-tau, ER stress, autophagy impairment, and activation of JNK-mediated apoptotic pathway in SH-SY5Y dopaminergic cells or primary cultured dopaminergic neurons. Our results suggest that upregulated expression of miR-204-5p leads to the death of dopaminergic cells by targeting DYRK1A-mediated ER stress and apoptotic signaling cascade.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan.,School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hua-Chien Chen
- Genomic Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Division of Sports Medicine, Taiwan Landseed Hospital, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ching Lu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chen Hsu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
27
|
Human Embryonic Stem Cell-Derived Neural Lineages as In Vitro Models for Screening the Neuroprotective Properties of Lignosus rhinocerus (Cooke) Ryvarden. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3126376. [PMID: 33204680 PMCID: PMC7658738 DOI: 10.1155/2019/3126376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
In the biomedical field, there is growing interest in using human stem cell-derived neurons as in vitro models for pharmacological and toxicological screening of bioactive compounds extracted from natural products. Lignosus rhinocerus (Tiger Milk Mushroom) is used by indigenous communities in Malaysia as a traditional medicine to treat various diseases. The sclerotium of L. rhinocerus has been reported to have medicinal properties, including various bioactivities such as neuritogenic, anti-inflammatory, and anticancer effects. This study aims to investigate the neuroprotective activities of L. rhinocerus sclerotial extracts. Human embryonic stem cell (hESC)-derived neural lineages exposed to the synthetic glucocorticoid, dexamethasone (DEX), were used as the in vitro models. Excess glucocorticoids have been shown to adversely affect fetal brain development and impair differentiation of neural progenitor cells. Screening of different L. rhinocerus sclerotial extracts and DEX on the hESC-derived neural lineages was conducted using cell viability and neurite outgrowth assays. The neuroprotective effects of L. rhinocerus sclerotial extracts against DEX were further evaluated using apoptosis assays and Western blot analysis. Hot aqueous and methanol extracts of L. rhinocerus sclerotium promoted neurite outgrowth of hESC-derived neural stem cells (NSCs) with negligible cytotoxicity. Treatment with DEX decreased viability of NSCs by inducing apoptosis. Coincubation of L. rhinocerus methanol extract with DEX attenuated the DEX-induced apoptosis and reduction in phospho-Akt (pAkt) level in NSCs. These results suggest the involvement of Akt signaling in the neuroprotection of L. rhinocerus methanol extract against DEX-induced apoptosis in NSCs. Methanol extract of L. rhinocerus sclerotium exhibited potential neuroprotective activities against DEX-induced toxicity in hESC-derived NSCs. This study thus validates the use of human stem cell-derived neural lineages as potential in vitro models for screening of natural products with neuroprotective properties.
Collapse
|
28
|
Boban M, Babić Leko M, Miškić T, Hof PR, Šimić G. Human neuroblastoma SH-SY5Y cells treated with okadaic acid express phosphorylated high molecular weight tau-immunoreactive protein species. J Neurosci Methods 2019; 319:60-68. [PMID: 30278184 PMCID: PMC6440880 DOI: 10.1016/j.jneumeth.2018.09.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Early stages of Alzheimer's disease (AD) are characterized by high phosphorylation of microtubule-associated protein tau, which may result from the downregulation of protein phosphatases. NEW METHOD In order to model phosphatase downregulation and analyze its effect on tau aggregation in vitro, we treated neuroblastoma SH-SY5Y cells with okadaic acid (OA), a protein phosphatase inhibitor, and examined high molecular weight phospho-tau species. RESULTS AND COMPARISON WITH EXISTING METHODS OA treatment led to the appearance of heat-stable protein species with apparent molecular weight around 100 kDa, which were immunoreactive to anti-tau antibodies against phosphorylated Ser202 and Ser396. As these high molecular weight tau-immunoreactive proteins (HMW-TIPs) corresponded to the predicted size of two tau monomers, we considered the possibility that they represent phosphorylation-induced tau oligomers. We attempted to dissociate HMW-TIPs by urea and guanidine, as well as by alkaline phosphatase treatment, but HMW-TIPs were stable under all conditions tested. These characteristics resemble properties of certain sodium dodecyl sulfate (SDS)-resistant tau oligomers from AD brains. The absence of HMW-TIPs detection by anti-total tau antibodies Tau46, CP27 and Tau13 may be a consequence of epitope masking and protein truncation. Alternatively, HMW-TIPs may represent previously unreported phosphoproteins cross-reacting with tau. CONCLUSIONS Taken together, our data provide a novel characterization of an OA-based cell culture model in which OA induces the appearance of HMW-TIPs. These findings have implications for further studies of tau under the conditions of protein phosphatase downregulation, aiming to explain mechanisms involved in early events leading to AD.
Collapse
Affiliation(s)
- Mirta Boban
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Terezija Miškić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia.
| |
Collapse
|
29
|
Cholinergic Differentiation of Human Neuroblastoma SH-SY5Y Cell Line and Its Potential Use as an In vitro Model for Alzheimer's Disease Studies. Mol Neurobiol 2019; 56:7355-7367. [PMID: 31037648 DOI: 10.1007/s12035-019-1605-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/10/2019] [Indexed: 12/31/2022]
Abstract
Cholinergic transmission is critical to high-order brain functions such as memory, learning, and attention. Alzheimer's disease (AD) is characterized by cognitive decline associated with a specific degeneration of cholinergic neurons. No effective treatment to prevent or reverse the symptoms is known. Part of this might be due to the lack of in vitro models that effectively mimic the relevant features of AD. Here, we describe the characterization of an AD in vitro model using the SH-SY5Y cell line. Exponentially growing cells were maintained in DMEM/F12 medium and differentiation was triggered by the combination of retinoic acid (RA) and BDNF. Both acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) enzymatic activities and immunocontent were determined. For mimicking tau and amyloid-β pathology, RA + BDNF-differentiated cells were challenged with okadaic acid (OA) or soluble oligomers of amyloid-β (AβOs) and neurotoxicity was evaluated. RA + BDNF-induced differentiation resulted in remarkable neuronal morphology alterations characterized by increased neurite density. Enhanced expression and enzymatic activities of cholinergic markers were observed compared to RA-differentiation only. Combination of sublethal doses of AβOs and OA resulted in decreased neurite densities, an in vitro marker of synaptopathy. Challenging RA + BDNF-differentiated SH-SY5Y cells with the combination of sublethal doses of OA and AβO, without causing considerable decrease of cell viability, provides an in vitro model which mimics the early-stage pathophysiology of cholinergic neurons affected by AD.
Collapse
|
30
|
Chalatsa I, Arvanitis DA, Koulakiotis NS, Giagini A, Skaltsounis AL, Papadopoulou-Daifoti Z, Tsarbopoulos A, Sanoudou D. The Crocus sativus Compounds trans-Crocin 4 and trans-Crocetin Modulate the Amyloidogenic Pathway and Tau Misprocessing in Alzheimer Disease Neuronal Cell Culture Models. Front Neurosci 2019; 13:249. [PMID: 30971876 PMCID: PMC6443833 DOI: 10.3389/fnins.2019.00249] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/04/2019] [Indexed: 11/23/2022] Open
Abstract
Crocus sativus L. natural compounds have been extensively used in traditional medicine for thousands of years. Recent research evidence is now emerging in support of its therapeutic potential for different pathologies including neurodegenerative diseases. Herein, the C. sativus L. natural compounds trans-crocin 4 and trans-crocetin were selected for in depth molecular characterization of their potentially protective effects against Alzheimer’s Disease (AD), utilizing two AD neuronal cell culture models (SH-SY5Y overexpressing APP and PC12 expressing hyperphosphorylated tau). Biologically relevant concentrations, ranging from 0.1 μM to 1 mM, applied for 24 h or 72 h, were well tolerated by differentiated wild type SH-SY5Y and PC12 cells. When tested on neuronally differentiated SH-SY5Y-APP both trans-crocin 4 and trans-crocetin had significant effects against amyloidogenic pathways. Trans-crocin 4 significantly decreased of β-secretase, a key enzyme of the amyloidogenic pathway, and APP-C99, while it decreased γ-secretases that generate toxic beta-amyloid peptides. Similarly, trans-crocetin treatment led to a reduction in β- and γ-secretases, as well as to accumulation of cellular AβPP. When tested on the neuronally differentiated PC12-htau cells, both compounds proved effective in suppressing the active forms of GSK3β and ERK1/2 kinases, as well as significantly reducing total tau and tau phosphorylation. Collectively, our data demonstrate a potent effect of trans-crocin 4 and trans-crocetin in suppressing key molecular pathways of AD pathogenesis, rendering them a promising tool in the prevention and potentially the treatment of AD.
Collapse
Affiliation(s)
- Ioanna Chalatsa
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Athina Giagini
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios Leandros Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Zeta Papadopoulou-Daifoti
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anthony Tsarbopoulos
- GAIA Research Center, Bioanalytical Department, The Goulandris Natural History Museum, Athens, Greece.,Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
31
|
Zeng Z, Zhang Y, Liang X, Wang F, Zhao J, Xu Z, Liu X, Liu X. Qingnao dripping pills mediate immune-inflammatory response and MAPK signaling pathway after acute ischemic stroke in rats. J Pharmacol Sci 2019; 139:143-150. [DOI: 10.1016/j.jphs.2018.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/06/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
|
32
|
Heravi M, Dargahi L, Parsafar S, Tayaranian Marvian A, Aliakbari F, Morshedi D. The primary neuronal cells are more resistant than PC12 cells to α-synuclein toxic aggregates. Neurosci Lett 2019; 701:38-47. [PMID: 30776494 DOI: 10.1016/j.neulet.2019.01.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alpha-synuclein (αSN) is an abundant presynaptic brain protein that its aggregated species believed to play pivotal roles in the development of neurodegenerative diseases, especially Parkinson's disease (PD). In this study, we compared the response of primary neuronal cells with a well-known cell line model, PC12, against the toxic aggregates of αSN. METHODS Primary hippocampal neurons (PHNs) were isolated from 17 to 18 days old rat embryos. Fibrillization was induced in recombinant αSN and monitored by standard methods. The toxicity of different aggregates of αSN on the treated cells was then studied. Furthermore, changes in the intracellular reactive oxygen species (ROS) and Ca2+ levels were also compared in two kinds of treated cells. We also studied the gene expression profile of certain Ca2+ channels and carriers using the GEO2 database. RESULTS The viability rate was significantly lower in PC12 versus PHNs, in response to αSN. This is while the intracellular ROS and Ca2+ levels were significantly increased in both cell types. Analysis of microarray data indicated that some factors involved in Ca2+ hemostasis may face significant changes in the PD condition. CONCLUSION By putting these data together, it is clear that PHN is more resistant than PC12 toward αSN cytotoxicity even in the presence of rising cytoplasmic ROS and Ca2+ levels. Exploring the supporting mechanisms which PHN uses to be more resistant to αSN cytotoxicity can help to open a roadmap toward therapeutic plans in PD and other synucleinopathy disorders.
Collapse
Affiliation(s)
- Mansooreh Heravi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soha Parsafar
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amir Tayaranian Marvian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
33
|
Almeida AS, Soares NL, Sequeira CO, Pereira SA, Sonnewald U, Vieira HLA. Improvement of neuronal differentiation by carbon monoxide: Role of pentose phosphate pathway. Redox Biol 2018; 17:338-347. [PMID: 29793167 PMCID: PMC6007049 DOI: 10.1016/j.redox.2018.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022] Open
Abstract
Over the last decades, the silent-killer carbon monoxide (CO) has been shown to also be an endogenous cytoprotective molecule able to inhibit cell death and modulate mitochondrial metabolism. Neuronal metabolism is mostly oxidative and neurons also use glucose for maintaining their anti-oxidant status by generation of reduced glutathione (GSH) via the pentose-phosphate pathway (PPP). It is established that neuronal differentiation depends on reactive oxygen species (ROS) generation and signalling, however there is a lack of information about modulation of the PPP during adult neurogenesis. Thus, the main goal of this study was to unravel the role of CO on cell metabolism during neuronal differentiation, particularly by targeting PPP flux and GSH levels as anti-oxidant system. A human neuroblastoma SH-S5Y5 cell line was used, which differentiates into post-mitotic neurons by treatment with retinoic acid (RA), supplemented or not with CO-releasing molecule-A1 (CORM-A1). SH-SY5Y cell differentiation supplemented with CORM-A1 prompted an increase in neuronal yield production. It did, however, not alter glycolytic metabolism, but increased the PPP. In fact, CORM-A1 treatment stimulated (i) mRNA expression of 6-phosphogluconate dehydrogenase (PGDH) and transketolase (TKT), which are enzymes for oxidative and non-oxidative phases of the PPP, respectively and (ii) protein expression and activity of glucose 6-phosphate dehydrogenase (G6PD) the rate-limiting enzyme of the PPP. Likewise, whenever G6PD was knocked-down CO-induced improvement on neuronal differentiation was reverted, while pharmacological inhibition of GSH synthesis did not change CO's effect on the improvement of neuronal differentiation. Both results indicate the key role of PPP in CO-modulation of neuronal differentiation. Furthermore, at the end of SH-SY5Y neuronal differentiation process, CORM-A1 supplementation increased the ratio of reduced and oxidized glutathione (GSH/GSSG) without alteration of GSH metabolism. These data corroborate with PPP stimulation. In conclusion, CO improves neuronal differentiation of SH-S5Y5 cells by stimulating the PPP and modulating the GSH system.
Collapse
Affiliation(s)
- Ana S Almeida
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal; Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal
| | - Nuno L Soares
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Catarina O Sequeira
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | | | - Helena L A Vieira
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal.
| |
Collapse
|
34
|
Bautista E, Zarco N, Aguirre-Pineda N, Lara-Lozano M, Vergara P, González-Barrios JA, Aguilar-Roblero R, Segovia J. Expression of Gas1 in Mouse Brain: Release and Role in Neuronal Differentiation. Cell Mol Neurobiol 2018; 38:841-859. [PMID: 29110208 PMCID: PMC11481942 DOI: 10.1007/s10571-017-0559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
Abstract
Growth arrest-specific 1 (Gas1) is a pleiotropic protein that induces apoptosis of tumor cells and has important roles during development. Recently, the presence of two forms of Gas1 was reported: one attached to the cell membrane by a GPI anchor; and a soluble extracellular form shed by cells. Previously, we showed that Gas1 is expressed in different areas of the adult mouse CNS. Here, we report the levels of Gas1 mRNA protein in different regions and analyzed its expressions in glutamatergic, GABAergic, and dopaminergic neurons. We found that Gas1 is expressed in GABAergic and glutamatergic neurons in the Purkinje-molecular layer of the cerebellum, hippocampus, thalamus, and fastigial nucleus, as well as in dopaminergic neurons of the substantia nigra. In all cases, Gas1 was found in the cell bodies, but not in the neuropil. The Purkinje and the molecular layers show the highest levels of Gas1, whereas the granule cell layer has low levels. Moreover, we detected the expression and release of Gas1 from primary cultures of Purkinje cells and from hippocampal neurons as well as from neuronal cell lines, but not from cerebellar granular cells. In addition, using SH-SY5Y cells differentiated with retinoic acid as a neuronal model, we found that extracellular Gas1 promotes neurite outgrowth, increases the levels of tyrosine hydroxylase, and stimulates the inhibition of GSK3β. These findings demonstrate that Gas1 is expressed and released by neurons and promotes differentiation, suggesting an important role for Gas1 in cellular signaling in the CNS.
Collapse
Affiliation(s)
- Elizabeth Bautista
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Natanael Zarco
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Nicolás Aguirre-Pineda
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Manuel Lara-Lozano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
- Laboratorio de Medicina Genómica, Hospital Regional 1 de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Avenida Instituto Politécnico Nacional N° 1669, Gustavo A. Madero, Col. Magdalena de las Salinas, Del. Gustavo A. Madero, 07760, Mexico, DF, Mexico
| | - Paula Vergara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Juan Antonio González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1 de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Avenida Instituto Politécnico Nacional N° 1669, Gustavo A. Madero, Col. Magdalena de las Salinas, Del. Gustavo A. Madero, 07760, Mexico, DF, Mexico
| | - Raúl Aguilar-Roblero
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacan, 04510, Mexico, DF, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico.
| |
Collapse
|
35
|
Yu Q, Du F, Douglas JT, Yu H, Yan SS, Yan SF. Mitochondrial Dysfunction Triggers Synaptic Deficits via Activation of p38 MAP Kinase Signaling in Differentiated Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. J Alzheimers Dis 2018; 59:223-239. [PMID: 28598851 DOI: 10.3233/jad-170283] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Loss of synapse and synaptic dysfunction contribute importantly to cognitive impairment in Alzheimer's disease (AD). Mitochondrial dysfunction and oxidative stress are early pathological features in AD-affected brain. However, the effect of AD mitochondria on synaptogenesis remains to be determined. Using human trans-mitochondrial "cybrid" (cytoplasmic hybrid) neuronal cells whose mitochondria were transferred from platelets of patients with sporadic AD or age-matched non-AD subjects with relatively normal cognition, we provide the first evidence of mitochondrial dysfunction compromises synaptic development and formation of synapse in AD cybrid cells in response to chemical-induced neuronal differentiation. Compared to non-AD control cybrids, AD cybrid cells showed synaptic loss which was evidenced by a significant reduction in expression of two synaptic marker proteins: synaptophysin (presynaptic marker) and postsynaptic density protein-95, and neuronal proteins (MAP-2 and NeuN) upon neuronal differentiation. In parallel, AD-mediated synaptic deficits correlate to mitochondrial dysfunction and oxidative stress as well as activation of p38 MAP kinase. Notably, inhibition of p38 MAP kinase by pharmacological specific p38 inhibitor significantly increased synaptic density, improved mitochondrial function, and reduced oxidative stress. These results suggest that activation of p38 MAP kinase signaling pathway contributes to AD-mediated impairment in neurogenesis, possibly by inhibiting the neuronal differentiation. Our results provide new insight into the crosstalk of dysfunctional AD mitochondria to synaptic formation and maturation via activation of p38 MAP kinase. Therefore, blockade of p38 MAP kinase signal transduction could be a potential therapeutic strategy for AD by alleviating loss of synapses.
Collapse
Affiliation(s)
- Qing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China.,Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Fang Du
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Justin T Douglas
- Nuclear Magnetic Resonance Laboratory, Molecular Structures group, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - Shirley ShiDu Yan
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Shi Fang Yan
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
36
|
N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents. Oncotarget 2018; 7:26235-46. [PMID: 27036033 PMCID: PMC5041977 DOI: 10.18632/oncotarget.8454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/10/2016] [Indexed: 01/03/2023] Open
Abstract
Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil. To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment.
Collapse
|
37
|
Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ 2017; 25:542-572. [PMID: 29229998 PMCID: PMC5864235 DOI: 10.1038/s41418-017-0020-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 01/22/2023] Open
Abstract
Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium (www.cebiond.org), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.
Collapse
|
38
|
Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism. J Virol 2017; 91:JVI.00958-17. [PMID: 28956768 DOI: 10.1128/jvi.00958-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitroIMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare cases, encephalitis. Presently, there is no cure available to treat those infected or prevent future transmission. Due to the ability of HSV to cause a persistent, lifelong infection in the peripheral nervous system, the virus remains within the host for life. To better understand the basis of virus-neuron interactions that allow HSV to persist within the host peripheral nervous system, improved neuronal models are required. Here we describe a cost-effective and scalable human neuronal model system that can be used to study many neurotropic viruses, such as HSV, Zika virus, dengue virus, and rabies virus.
Collapse
|
39
|
Krishtal J, Bragina O, Metsla K, Palumaa P, Tõugu V. In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells. PLoS One 2017; 12:e0186636. [PMID: 29065138 PMCID: PMC5655426 DOI: 10.1371/journal.pone.0186636] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
The progression of Alzheimer’s disease is causatively linked to the accumulation of amyloid-β aggregates in the brain, however, it is not clear how the amyloid aggregates initiate the death of neuronal cells. The in vitro toxic effects of amyloid peptides are most commonly examined using the human neuroblastoma derived SH-SY5Y cell line and here we show that differentiated neuron-like SH-SY5Y cells are more sensitive to amyloid peptides than non-differentiated cells, because the latter lack long neurites. Exogenous soluble amyloid-β 1–42 covered cell bodies and whole neurites in differentiated cells with dense fibrils, causing neurite beading and fragmentation, whereas preformed amyloid-β 1–42 fibrils had no toxic effects. Importantly, spontaneously fibrillizing amyloid-β 1–42 peptide exhibited substantially higher cellular toxicity than amyloid-β 1–40, which did not form fibrils under the experimental conditions. These results support the hypothesis that peptide toxicity is related to the active fibrillization process in the incubation mixture.
Collapse
Affiliation(s)
- Jekaterina Krishtal
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| | - Olga Bragina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristel Metsla
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Vello Tõugu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
40
|
Delogu GL, Pintus F, Mayán L, Matos MJ, Vilar S, Munín J, Fontenla JA, Hripcsak G, Borges F, Viña D. MAO inhibitory activity of bromo-2-phenylbenzofurans: synthesis, in vitro study, and docking calculations. MEDCHEMCOMM 2017; 8:1788-1796. [PMID: 30108888 PMCID: PMC6084085 DOI: 10.1039/c7md00311k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 11/21/2022]
Abstract
Monoamine oxidase (MAO) is an enzyme responsible for metabolism of monoamine neurotransmitters which play an important role in brain development and function. This enzyme exists in two isoforms, and it has been demonstrated that MAO-B activity, but not MAO-A activity, increases with aging. MAO inhibitors show clinical value because besides the monoamine level regulation they reduce the formation of by-products of the MAO catalytic cycle, which are toxic to the brain. A series of 2-phenylbenzofuran derivatives was designed, synthesized and evaluated against hMAO-A and hMAO-B enzymes. A bromine substituent was introduced in the 2-phenyl ring, whereas position 5 or 7 of the benzofuran moiety was substituted with a methyl group. Most of the tested compounds inhibited preferentially MAO-B in a reversible manner, with IC50 values in the low micro or nanomolar range. The 2-(2'-bromophenyl)-5-methylbenzofuran (5) was the most active compound identified (IC50 = 0.20 μM). In addition, none of the studied compounds showed cytotoxic activity against the human neuroblastoma cell line SH-SY5Y. Molecular docking simulations were used to explain the observed hMAO-B structure-activity relationship for this type of compounds.
Collapse
Affiliation(s)
- G L Delogu
- Department of Life Sciences and Environment - Section of Pharmaceutical Sciences - University of Cagliari, 09124 Cagliari, Italy.
| | - F Pintus
- Department of Life Sciences and Environment - Section of Pharmaceutical Sciences - University of Cagliari, 09124 Cagliari, Italy.
| | - L Mayán
- Department of Pharmacology - CIMUS University of Santiago de Compostela Avda Barcelona s/n, Campus Vida, 15782 Santiago de Compostela, Spain.
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M J Matos
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - S Vilar
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Biomedical Informatics, Columbia University, Medical Center of New York, 10032 New York, USA
| | - J Munín
- Department of Pharmacology - CIMUS University of Santiago de Compostela Avda Barcelona s/n, Campus Vida, 15782 Santiago de Compostela, Spain.
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J A Fontenla
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - G Hripcsak
- Department of Biomedical Informatics, Columbia University, Medical Center of New York, 10032 New York, USA
| | - F Borges
- CIQUP/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Portugal
| | - D Viña
- Department of Pharmacology - CIMUS University of Santiago de Compostela Avda Barcelona s/n, Campus Vida, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
41
|
Harris G, Hogberg H, Hartung T, Smirnova L. 3D Differentiation of LUHMES Cell Line to Study Recovery and Delayed Neurotoxic Effects. CURRENT PROTOCOLS IN TOXICOLOGY 2017; 73:11.23.1-11.23.28. [PMID: 28777440 PMCID: PMC5674809 DOI: 10.1002/cptx.29] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Current neurotoxicity testing and the study of molecular mechanisms in neurodegeneration in vitro usually focuses on acute exposures to compounds. 3D Lund human mesencephalic (LUHMES) cells allow long-term treatment or pulse exposure in combination with compound washout to study delayed neurotoxic effects as well as recovery and neurodegeneration pathways. In this unit we describe 3D LUHMES culture and characterization. Characterization of the model involves immunocytochemistry, flow cytometry, and qPCR measurements. Studying the delayed effects of compounds is more relevant to human exposures and neurodegenerative diseases with a strong genetic or environmental component. Most assays for molecular endpoints have been developed for monolayer cell culture and therefore need to be adapted for 3D models. In this unit, we further describe toxicological assays for molecular endpoints such as ATP levels, mitochondrial viability, and neurite outgrowth, which have been adapted for use in 3D LUHMES cultures. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Georgina Harris
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Str. Baltimore, Maryland, USA
| | - Helena Hogberg
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Str. Baltimore, Maryland, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Str. Baltimore, Maryland, USA
- University of Konstanz, 78457, Konstanz, Germany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Str. Baltimore, Maryland, USA
| |
Collapse
|
42
|
Lopes FM, Bristot IJ, da Motta LL, Parsons RB, Klamt F. Mimicking Parkinson's Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models. Neuromolecular Med 2017; 19:241-255. [PMID: 28721669 DOI: 10.1007/s12017-017-8454-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and has both unknown etiology and non-curative therapeutic options. Patients begin to present the classic motor symptoms of PD-tremor at rest, bradykinesia and rigidity-once 50-70% of the dopaminergic neurons of the nigrostriatal pathway have degenerated. As a consequence of this, it is difficult to investigate the early-stage events of disease pathogenesis. In vitro experimental models are used extensively in PD research because they present a controlled environment that enables the direct investigation of the early molecular mechanisms that are potentially involved with dopaminergic degeneration, as well as for the screening of potential therapeutic drugs. However, the establishment of PD in vitro models is a controversial issue for neuroscience research not only because it is challenging to mimic, in isolated cell systems, the physiological neuronal environment, but also the pathophysiological conditions experienced by human dopaminergic cells in vivo during the progression of the disease. Since no previous work has attempted to systematically review the literature regarding the establishment of an optimal in vitro model, and/or the features presented by available models used in the PD field, this review aims to summarize the merits and limitations of the most widely used dopaminergic in vitro models in PD research, which may help the PD researcher to choose the most appropriate model for studies directed at the elucidation of the early-stage molecular events underlying PD onset and progression.
Collapse
Affiliation(s)
- Fernanda Martins Lopes
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil. .,Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Ivi Juliana Bristot
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Leonardo Lisbôa da Motta
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
43
|
Murillo JR, Goto-Silva L, Sánchez A, Nogueira FCS, Domont GB, Junqueira M. Quantitative proteomic analysis identifies proteins and pathways related to neuronal development in differentiated SH-SY5Y neuroblastoma cells. EUPA OPEN PROTEOMICS 2017; 16:1-11. [PMID: 29900121 PMCID: PMC5965715 DOI: 10.1016/j.euprot.2017.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/07/2017] [Accepted: 06/21/2017] [Indexed: 02/04/2023]
Abstract
Differentiation analysis of SH-SY5Y cells with iTRAQ strategy is proposed. Differentiated SH-SY5Y cells are more appropriated as a neuronal model. Upregulated proteins are mainly related to ECM-interaction and apoptosis. Proteins to explore as differentiation markers: AGRN, EMILIM-1, AIFM, STMN1.
SH-SY5Y neuroblastoma cells are susceptible to differentiation using retinoic acid (RA) and brain-derived neurotrophic factor (BDNF), providing a model of neuronal differentiation. We compared SH-SY5Y cells proteome before and after RA/BDNF treatment using iTRAQ and phosphopeptide enrichment strategies. We identified 5587 proteins, 366 of them with differential abundance. Differentiated cells expressed proteins related to neuronal development, and, undifferentiated cells expressed proteins involved in cell proliferation. Interactive network covered focal adhesion, cytoskeleton dynamics and neurodegenerative diseases processes and regulation of mitogen-activated protein kinase-related signaling pathways; key proteins involved in those processes might be explored as markers for neuronal differentiation.
Collapse
Affiliation(s)
- Jimmy Rodriguez Murillo
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Livia Goto-Silva
- D'Or Institute for Research and Education (IDOR), 22281-100, Rio de Janeiro, Brazil
| | - Aniel Sánchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Center of Excellence in Biological and Medical Mass Spectrometry, Biomedical Center D13, Lund University, 221 84 Lund, Sweden
| | - Fábio C S Nogueira
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Magno Junqueira
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Thellman NM, Triezenberg SJ. Herpes Simplex Virus Establishment, Maintenance, and Reactivation: In Vitro Modeling of Latency. Pathogens 2017. [PMID: 28644417 PMCID: PMC5617985 DOI: 10.3390/pathogens6030028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All herpes viruses establish lifelong infections (latency) in their host, and herpes simplex viruses (HSVs) are highly prevalent worldwide. Recurrence of HSV infections contributes to significant disease burden in people and on rare occasion can be fatal. Cell culture models that recapitulate latent infection provide valuable insight on the host processes regulating viral establishment and maintenance of latency. More robust and rapid than infections in live animal studies, advancements in neuronal culture techniques have made the systematic analysis of viral reactivation mechanisms feasible. Only recently have human neuronal cell lines been available, but models in the natural host cell are a critical addition to the currently available models.
Collapse
|
45
|
Kotapalli SS, Dasari C, Duscharla D, Kami Reddy KR, Kasula M, Ummanni R. All-Trans-Retinoic Acid Stimulates Overexpression of Tumor Protein D52 (TPD52, Isoform 3) and Neuronal Differentiation of IMR-32 Cells. J Cell Biochem 2017; 118:4358-4369. [PMID: 28436114 DOI: 10.1002/jcb.26090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/21/2017] [Indexed: 11/06/2022]
Abstract
Tumor protein D52 (TPD52), a proto-oncogene is overexpressed in a variety of epithelial carcinomas and plays an important role in cell proliferation, migration, and cell death. In the present study we found that the treatment of IMR-32 neuroblastoma (NB) cells with retinoic acid (RA) stimulates an increase in expression of TPD52. TPD52 expression is detectable after 72 h, can be maintained till differentiation of NB cells suggesting that TPD52 is involved in differentiation. Here, we demonstrate that TPD52 is essential for RA to promote differentiation of NB cells. Our results show that exogenous expression of EGFP-TPD52 in IMR-32 cells resulted cell differentiation even without RA. RA by itself and with overexpression of TPD52 can increase the ability of NB cells differentiation. Interestingly, transfection of IMR-32 cells with a specific small hairpin RNA for efficient knockdown of TPD52 attenuated RA induced NB cells differentiation. Transcriptional and translational level expression of neurotropic (BDNF, NGF, Nestin) and differentiation (β III tubulin, NSE, TH) factors in NB cells with altered TPD52 expression and/or RA treatment confirmed essential function of TPD52 in cellular differentiation. Furthermore, we show that TPD52 protects cells from apoptosis and arrest cell proliferation by varying expression of p27Kip1, activation of Akt and ERK1/2 thus promoting cell differentiation. Additionally, inhibition of STAT3 activation by its specific inhibitor arrested NB cells differentiation by EGFP-TPD52 overexpression with or without RA. Taken together, our data reveal that TPD52 act through activation of JAK/STAT signaling pathway to undertake NB cells differentiation induced by RA. J. Cell. Biochem. 118: 4358-4369, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sudha Sravanti Kotapalli
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Chandrashekhar Dasari
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Divya Duscharla
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Karthik Reddy Kami Reddy
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Manjula Kasula
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Ramesh Ummanni
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
46
|
Pezzini F, Bettinetti L, Di Leva F, Bianchi M, Zoratti E, Carrozzo R, Santorelli FM, Delledonne M, Lalowski M, Simonati A. Transcriptomic Profiling Discloses Molecular and Cellular Events Related to Neuronal Differentiation in SH-SY5Y Neuroblastoma Cells. Cell Mol Neurobiol 2017; 37:665-682. [PMID: 27422411 PMCID: PMC11482124 DOI: 10.1007/s10571-016-0403-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.
Collapse
Affiliation(s)
- Francesco Pezzini
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Laura Bettinetti
- Department of Biotechnologies, University of Verona, Verona, Italy
| | | | - Marzia Bianchi
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisa Zoratti
- Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
- Aptuit s.r.l., Verona, Italy
| | - Rosalba Carrozzo
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Filippo M Santorelli
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, IRCCS Stella Maris, Calambrone-Pisa, Italy
| | | | - Maciej Lalowski
- Medicum, Biochemistry/Developmental Biology Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland.
| | - Alessandro Simonati
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
| |
Collapse
|
47
|
Valente MJ, Bastos MDL, Fernandes E, Carvalho F, Guedes de Pinho P, Carvalho M. Neurotoxicity of β-Keto Amphetamines: Deathly Mechanisms Elicited by Methylone and MDPV in Human Dopaminergic SH-SY5Y Cells. ACS Chem Neurosci 2017; 8:850-859. [PMID: 28067045 DOI: 10.1021/acschemneuro.6b00421] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synthetic cathinones (β-keto amphetamines) act as potent CNS stimulants similarly to classical amphetamines, which raise concerns about their potential neurotoxic effects. The present in vitro study aimed to explore and compare the mechanisms underlying the neurotoxicity of two commonly abused cathinone derivatives, 3,4-methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV), with those of 3,4-methylenedioxymethamphetamine (MDMA), using undifferentiated and differentiated SH-SY5Y cells. Following a 24 h exposure period, methylone and MDPV induced loss of cell viability in a concentration-dependent manner, in the following order of potency: MDPV ≈ MDMA > methylone. Dopaminergic differentiated cells evidenced higher sensitivity to the neurotoxic effects of both cathinones and MDMA than the undifferentiated ones, but this effect was not inhibited by the DAT inhibitor GBR 12909. Intracellular oxidative stress mediated by methylone and MDPV was demonstrated by the increase in reactive oxygen and nitrogen species (ROS and RNS) production, depletion of intracellular reduced glutathione and increased oxidized glutathione levels. All three drugs elicited mitochondrial impairment, characterized by the mitochondrial membrane potential (Δψm) dissipation and intracellular ATP depletion. Apoptosis was found to be a common mechanism of cell death induced by methylone and MDPV, with evident chromatin condensation and formation of pyknotic nuclei, and activation of caspases 3, 8, and 9. In conclusion, the present data shows that oxidative stress and mitochondrial dysfunction play a role in cathinones-induced neuronal damage, ultimately leading to cell death by apoptosis.
Collapse
Affiliation(s)
- Maria João Valente
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
| | - Márcia Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
- FP-ENAS, CEBIMED, Fundação Ensino e Cultura Fernando Pessoa , 4249-004 Porto, Portugal
| |
Collapse
|
48
|
Jacob RS, Sen S, Maji SK. Adhesion of Human Mesenchymal Stem Cells and Differentiation of SH-SY5Y Cells on Amyloid Fibrils. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/masy.201600071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Reeba S. Jacob
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai Maharashtra 400076 India
| | - Shamik Sen
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai Maharashtra 400076 India
| | - Samir K. Maji
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai Maharashtra 400076 India
| |
Collapse
|
49
|
Gew LT, Misran M. Energetic mixing of anti-SNAP25 on lipid monolayers: degree of saturation of C18 fatty acids. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.6144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lai Ti Gew
- Department of Biological Sciences, Faculty of Science and Technology; Sunway University; No. 5, Jalan Universiti, Bandar Sunway 47500 Petaling Jaya Selangor Malaysia
- Department of Chemistry, Faculty of Science; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science; University of Malaya; Kuala Lumpur 50603 Malaysia
| |
Collapse
|
50
|
Zennaro C, Rastaldi MP, Bakeine GJ, Delfino R, Tonon F, Farra R, Grassi G, Artero M, Tormen M, Carraro M. A nanoporous surface is essential for glomerular podocyte differentiation in three-dimensional culture. Int J Nanomedicine 2016; 11:4957-4973. [PMID: 27757030 PMCID: PMC5053378 DOI: 10.2147/ijn.s110201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although it is well recognized that cell-matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes - the gatekeepers of glomerular filtration - which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes. With this in mind, we produced and utilized rough and porous surfaces obtained from silicon to analyze the behavior of two diverse ramified cells: glomerular podocytes and a neuronal cell line used as a control. Proper differentiation and development of ramifications of both cell types was largely influenced by topographical characteristics. Confirming previous data, the neuronal cell line acquired features of maturation on rough nanosurfaces. In contrast, podocytes developed and matured preferentially on nanoporous surfaces provided with grooves, as shown by the organization of the actin cytoskeleton stress fibers and the proper development of vinculin-positive focal adhesions. On the basis of these findings, we suggest that in vitro studies regarding podocyte attachment to the glomerular basement membrane should take into account the geometrical properties of the surface on which the tests are conducted because physiological cellular activity depends on the three-dimensional microenvironment.
Collapse
Affiliation(s)
- Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | | | - Gerald James Bakeine
- Department of Radiology, San Martino University Hospital, University of Genoa, Genoa
| | - Riccarda Delfino
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | - Federica Tonon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste
| | - Gabriele Grassi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
- Department of Life Sciences, Cattinara University Hospital, University of Trieste
| | - Mary Artero
- Azienda Sanitaria Universitaria Integrata di Trieste, Trieste
| | | | - Michele Carraro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| |
Collapse
|