1
|
Cienfuegos IA, Ciotti BJ, Billington RA, Sutton PA, Lamarre SG, Fraser KPP. Life in the margins: the effect of immersion/emersion and tidal cycle on the North Atlantic limpet Patella vulgata protein synthesis rates. J Comp Physiol B 2024; 194:779-792. [PMID: 39261359 DOI: 10.1007/s00360-024-01582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Biological processes in intertidal species follow tidal rhythms that enhance survival and fitness. Whereas tidal effects on behaviour and metabolic rates have been widely studied, impacts on other key process such as protein synthesis are still poorly understood. To date, no studies have examined the effect of immersion/emersion and tidal cycles on protein synthesis rates (ks). Patella vulgata is an intertidal limpet present in North-Eastern Atlantic rocky shores from high to low shore. Previously reported P. vulgata respiration and heart rate measurements suggest aerobic metabolism is maintained during emersion and growth rates increase from high to low shore, but whether these patterns are reflected in ks is currently unclear. Here, we measured for the first time in any intertidal organism, ks, RNA to protein ratios and RNA translational efficiency (kRNA) in P. vulgata over a full tidal cycle, at three different shore heights. ks increased during emersion (p < 0.001) and was significantly higher in low shore animals compared to the other shore heights (p < 0.001), additionally ks was negatively correlated to body mass (p = 0.002). RNA to protein ratios remained unchanged over the tidal cycle (p = 0.659) and did not vary with shore height (p = 0.591). kRNA was significantly higher during emersion and was also higher in low shore limpets (p < 0.001). This study demonstrates that P. vulgata increases ks during emersion, an important adaptation in a species that spends a considerable amount of its lifecycle emersed. Intertidal species are highly exposed to increasing air temperatures, making knowledge of physiological responses during emersion critical in understanding and forecasting climate warming impacts.
Collapse
Affiliation(s)
- Ignacio A Cienfuegos
- School of Biological and Marine Sciences, University of Plymouth, Davy Building, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Benjamin J Ciotti
- School of Biological and Marine Sciences, University of Plymouth, Davy Building, Drake Circus, Plymouth, PL4 8AA, UK
| | - Richard A Billington
- School of Biological and Marine Sciences, University of Plymouth, Davy Building, Drake Circus, Plymouth, PL4 8AA, UK
| | - Paul A Sutton
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Keiron P P Fraser
- School of Biological and Marine Sciences, University of Plymouth, Davy Building, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
2
|
Hunt von Herbing I. Energetic Costs of Stress in Developing Fishes: Quantifying Allostasis and Allostatic Load. Integr Comp Biol 2024; 64:1019-1033. [PMID: 38992244 DOI: 10.1093/icb/icae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Stress exerts negative effects on fish health through stimulation of the hypothalamic-pituitary-interrenal axis and autonomic nervous system, resulting in heightened neural and neuroendocrine responses. Energetic investment and physiological adaptation are then required to re-establish homeostatic stability or reach a new allostatic state. The cost of the energetic investment is referred to as allostatic load (AL). While determining the sources of stress and assessing their consequences have resulted in estimates of AL, most of this work has been conducted in adult mammals and humans; no ALs exist for developing fish. From a series of experiments on a model species, zebrafish (Danio rerio), whose yolk-sac larvae were exposed to two chronic stressors (high-temperature and hypoxia), ALs were quantified based on biomarkers of ontogenetic changes in growth, morphometrics, and metabolic activities. Results showed that for zebrafish yolk-sac larvae, chronic stress imposed high AL and, thus, high total allostatic energetic costs, (Rt (AL)), because of prolonged energy demand in the face of limited resources (e.g., yolk). Under severe chronic stress, energetic costs were sufficiently large that energy-limited developing fish may not be able to fully compensate, resulting in maladaptive responses from allostatic overload, leading either to death or to novel allostatic states, possibly more resilient to environmental change.
Collapse
Affiliation(s)
- Ione Hunt von Herbing
- Marine Conservation and Aquatic Physiology Laboratory (MCAPL), Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA
| |
Collapse
|
3
|
Fraser KPP, Peck LS, Clark MS, Clarke A. A comparative study of tissue protein synthesis rates in an Antarctic, Harpagifer antarcticus and a temperate, Lipophrys pholis teleost. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111650. [PMID: 38718893 DOI: 10.1016/j.cbpa.2024.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The affect of temperature on tissue protein synthesis rates has been reported in temperate and tropical, but not Antarctic fishes. Previous studies have generally demonstrated low growth rates in Antarctic fish species in comparison to temperate relatives and elevated levels of protein turnover. This study investigates how low temperatures effect tissue protein synthesis and hence tissue growth in a polar fish species. Groups of Antarctic, Harpagifer antarcticus and temperate, Lipophrys pholis, were acclimated to a range of overlapping water temperatures and protein synthesis was measure in white muscle (WM), liver and gastrointestinal tract (GIT). WM protein synthesis rates increased linearly with temperature in both species (H. antarcticus 0.16-0.23%.d-1, L. pholis, 0.31-0.76%.d-1), while liver (H. antarcticus 0.24-0.27%.d-1, L. pholis, 0.44-1.03%.d-1) and GIT were unaffected by temperature in H. antarcticus but increased non-linearly in L.pholis (H. antarcticus 0.22-0.26%.d-1, L. pholis, 0.40-0.86%.d-1). RNA to protein ratios were unaffected by temperature in H. antarcticus but increased weakly, in L.pholis WM and liver. In L.pholis, RNA translational efficiency increased significantly with temperature in all tissues, but only in liver in H. antarcticus. At the overlapping temperature of 3 °C, protein synthesis (WM 26%, Liver, 39%, GIT, 35%) and RNA translational efficiency (WM 273%, Liver, 271%, GIT, 300%) were significantly lower in H. antarcticus than L.pholis, while RNA to protein ratios were significantly higher (WM 270%, Liver 170%, GIT 186%). Tissue specific effects of temperature are detectable in both species. This study provides the first evidence, that tissue protein synthesis rates are constrained in Antarctic fishes.
Collapse
Affiliation(s)
- Keiron P P Fraser
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK; University of Plymouth, Marine Station, Artillery Place, Coxside, Plymouth PL4 0LU, UK.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Andrew Clarke
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| |
Collapse
|
4
|
Beaudreau N, Page TM, Drolet D, McKindsey CW, Howland KL, Calosi P. Using a metabolomics approach to investigate the sensitivity of a potential Arctic-invader and its Arctic sister-species to marine heatwaves and traditional harvesting disturbances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170167. [PMID: 38242480 DOI: 10.1016/j.scitotenv.2024.170167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Coastal species are threatened by fishing practices and changing environmental conditions, such as marine heatwaves (MHW). The mechanisms that confer tolerance to such stressors in marine invertebrates are poorly understood. However, differences in tolerance among different species may be attributed to their geographical distribution. To test the tolerance of species occupying different thermal ranges, we used two closely related bivalves the softshell clam Mya arenaria (Linnaeus, 1758), a cold-temperate invader with demonstrated potential for establishment in the Arctic, and the blunt gaper Mya truncata (Linnaeus, 1758), a native polar species. Clams were subjected to a thermal stress, mimicking a MHW, and harvesting stress in a controlled environment. Seven acute temperature changes (2, 7, 12, 17, 22, 27, and 32 °C) were tested at two harvesting disturbance intensities (with, without). Survival was measured after 12 days and three tissues (gills, mantle, and posterior adductor muscle) collected from surviving individuals for targeted metabolomic profiling. MHW tolerance differed significantly between species: 26.9 °C for M. arenaria and 17.8 °C for M. truncata, with a negligeable effect of harvesting. At the upper thermal limit, M. arenaria displayed a more profound metabolomic remodelling when compared to M. truncata, and this varied greatly between tissue types. Network analysis revealed differences in pathway utilization at the upper MHW limit, with M. arenaria displaying a greater reliance on multiple DNA repair and expression and cell signalling pathways, while M. truncata was limited to fewer pathways. This suggests that M. truncata is ill equipped to cope with warming environments. MHW patterning in the Northwest Atlantic may be a strong predictor of population survival and future range shifts in these two clam species. As polar environments undergo faster rates of warming compared to the global average, M. truncata may be outcompeted by M. arenaria expanding into its native range.
Collapse
Affiliation(s)
- Nicholas Beaudreau
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Tessa M Page
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - David Drolet
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Christopher W McKindsey
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Kimberly L Howland
- Fisheries and Oceans Canada, Arctic and Aquatic Research Division, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Piero Calosi
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| |
Collapse
|
5
|
Williamson A, Carter CG, Basseer Codabaccus M, Fitzgibbon QP, Smith GG. Application of a stoichiometric bioenergetic approach and whole-body protein synthesis to the nutritional assessment of juvenile Thenus australiensis. Sci Rep 2023; 13:14378. [PMID: 37658120 PMCID: PMC10474296 DOI: 10.1038/s41598-023-41070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
The present study successfully combined a stoichiometric bioenergetic approach with an endpoint stochastic model to simultaneously determine specific dynamic action, metabolic substrate use and whole-body protein synthesis in juvenile slipper lobster Thenus australiensis. Juvenile lobsters were fasted for 48 h to investigate routine metabolism before receiving a single meal of formulated feed containing 1% 15N-labeled Spirulina. Postprandial oxygen consumption rate, dissolved inorganic carbon, and total nitrogen excretion returned to the pre-feeding level within 24 h. The rate of whole-body protein synthesis was 0.76 ± 0.15 mg CP g-1 day-1, with a significant reduction from 24 to 48 h post-feeding. The postprandial increase in whole-body protein synthesis accounted for 13-19% of total oxygen uptake. Protein was the primary energy substrate for 48 h fasted (45% oxygen consumption) and post-feeding lobster (44%), suggesting that dietary protein was not efficiently used for growth. The secondary energy substrate differed between carbohydrates in 48 h fasted and lipids in post-feeding lobsters. The present study recommends integrating protein synthesis into protein requirement experiments of marine ectotherms to acquire a more comprehensive picture of protein and energy metabolism and nutritional physiology crucial for formulating cost-effective aquafeeds.
Collapse
Affiliation(s)
- Andrea Williamson
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia.
| | - Chris G Carter
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - M Basseer Codabaccus
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| |
Collapse
|
6
|
De Marco A, Baldassarro VA, Calzà L, Giardino L, Dondi F, Ferrari MG, Bignami G, Parma L, Bonaldo A. Prolonged heat waves reduce the condition index and alter the molecular parameters in the pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108518. [PMID: 36610607 DOI: 10.1016/j.fsi.2023.108518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The entire shellfish farming sector is negatively affected by heat waves. Predictive models show that while heat waves are not predicted to exceed 28 °C in the northern Adriatic Sea over the coming decades, their duration will increase to periods of up to 30 days. Knowledge regarding the effects of heat waves on bivalves at physiological and molecular level is still limited. This study attempted to simulate what will happen in the future in Pacific oysters exposed to prolonged heat waves, assessing morphometric and physiological indices, and investigating the expression level of a number of genes, including the chaperone heat shock proteins HSP70, HSP72 and HSP90, and the factor P53. A state of stress in the heat wave-exposed animals was found, with loss of body weight and energy resources: despite showing a higher clearance rate, these animals were unable to absorb the nutrients required to maintain homeostasis, as well as demonstrating an alteration in hemolymphatic AST activity, total calcium and magnesium concentration. mRNA levels of all examined genes increased in response to thermal stress, with long-term overexpression, activating cell stress defense mechanisms and modulating the cycle cell. The results of this study indicate that heat waves affect oyster welfare, with consequences for the productivity of the sector due to the lack of salable products.
Collapse
Affiliation(s)
- Antonina De Marco
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy.
| | - Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Maria Giulia Ferrari
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Giorgia Bignami
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Luca Parma
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
7
|
Ritchie DJ, Friesen CR. Invited review: Thermal effects on oxidative stress in vertebrate ectotherms. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111082. [PMID: 34571153 DOI: 10.1016/j.cbpa.2021.111082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Human-induced climate change is occurring rapidly. Ectothermic organisms are particularly vulnerable to these temperature changes due to their reliance on environmental temperature. The extent of ectothermic thermal adaptation and plasticity in the literature is well documented; however, the role of oxidative stress in these processes needs more attention. Oxidative stress occurs when reactive oxygen species, generated mainly through aerobic respiration, overwhelm antioxidant defences and damage crucial biomolecules. The effects of oxidative damage include the alteration of life-history traits and reductions in whole-organism fitness. Here we review the literature addressing experimental temperature effects on oxidative stress in vertebrate ectotherms. Acute and acclimation temperature treatments produce distinctly different results and highlight the role of phylogeny and thermal adaptation in shaping oxidative stress responses. Acute treatments on organisms adapted to stable environments generally produced significant oxidative stress responses, whilst organisms adapted to variable conditions exhibited capacity to cope with temperature changes and mitigate oxidative stress. In acclimation treatments, the temperature treatments higher than optimal temperatures tended to produce significantly less oxidative stress than lower temperatures in reptiles, whilst in some eurythermal fish species, no oxidative stress response was observed. These results highlight the importance of phylogeny and adaptation to past environmental conditions for temperature-dependent oxidative stress responses. We conclude with recommendations on experimental procedures to investigate these phenomena with reference to thermal plasticity, adaptation and biogeographic variation that provide the most significant benefits to adaptable populations. These results have potential conservation ramifications as they may shed light on the physiological effects of temperature alterations in some vertebrate ectotherms.
Collapse
Affiliation(s)
- Daniel J Ritchie
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia
| | - Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia; School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Bldg A08, Science Road, Sydney, NSW 2006, Australia.
| |
Collapse
|
8
|
Post-Prandial Amino Acid Changes in Gilthead Sea Bream. Animals (Basel) 2021; 11:ani11071889. [PMID: 34201988 PMCID: PMC8300103 DOI: 10.3390/ani11071889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Following a meal, a series of physiological changes occurs in fish as they digest, absorb and assimilate ingested nutrients. This study aims to assess post-prandial free amino acid (FAA) activity in gilthead sea bream consuming a partial marine protein (fishmeal) replacement. Sea bream were fed diets where 16 and 27% of the fishmeal protein was replaced by plant protein. The essential amino acid (EAA) composition of the white muscle, liver and gut of sea bream was strongly correlated with the EAA composition of the 16% protein replacement diet compared to the 27% protein replacement diet. The mean FAA concentration in the white muscle and liver changed at 4 to 8 h after a meal and was not different to pre-feeding (0 h) and at 24 h after feeding. It was confirmed in this study that 16% replacement of marine protein with plant protein meets the amino acid needs of sea bream. Overall, the present study contributes towards understanding post-prandial amino acid profiles during uptake, tissue assimilation and immediate metabolic processing of amino acids in sea bream consuming a partial marine protein replacement. This study suggests the need to further investigate the magnitude of the post-prandial tissue-specific amino acid activity in relation to species-specific abilities to regulate metabolism due to dietary nutrient utilization.
Collapse
|
9
|
Ellison A, Pouv A, Pace DA. Different protein metabolic strategies for growth during food-induced physiological plasticity in echinoid larvae. J Exp Biol 2021; 224:jeb.230748. [PMID: 33526554 DOI: 10.1242/jeb.230748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022]
Abstract
Food-induced morphological plasticity, a type of developmental plasticity, is a well-documented phenomenon in larvae of the echinoid echinoderm, Dendraster excentricus A recent study in our lab has shown that this morphological plasticity is associated with significant physiological plasticity for growth. The goal of the current study was to measure several aspects of protein metabolism in larvae growing at different rates to understand the mechanistic basis for this physiological growth plasticity. Larvae of D. excentricus were fed rations of 1000 algal cells ml-1 (low-fed larvae) or 10,000 algal cells ml-1 (high-fed larvae). Relative protein growth rate was 6.0 and 12.2% day-1 for low- and high-fed larvae, respectively. The energetic cost of protein synthesis was similar for the two treatments at 4.91 J mg-1 protein synthesized. Larvae in both treatments used about 50% of their metabolic energy production to fuel protein synthesis. Mass-specific rates of protein synthesis were also similar. Large differences in mass-specific rates of protein degradation were observed. Low-fed larvae had relatively low rates of degradation early in development that increased with larval age, surpassing those of high-fed larvae at 20 days post-fertilization. Changes in protein depositional efficiency during development were similar to those of larval growth efficiency, indicating that differences in protein metabolism are largely responsible for whole-organism growth plasticity. Low-fed larvae also had alanine transport rates that were 2 times higher than those of high-fed larvae. In total, these results provide an explanation for the differences in growth efficiency between low- and high-fed larvae and allow for a more integrated understanding of developmental plasticity in echinoid larvae.
Collapse
Affiliation(s)
- Aimee Ellison
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90084, USA
| | - Amara Pouv
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90084, USA
| | - Douglas A Pace
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90084, USA
| |
Collapse
|
10
|
Wang S, Fitzgibbon QP, Carter CG, Smith GG. Effect of protein synthesis inhibitor cycloheximide on starvation, fasting and feeding oxygen consumption in juvenile spiny lobster Sagmariasus verreauxi. J Comp Physiol B 2019; 189:351-365. [PMID: 31101978 DOI: 10.1007/s00360-019-01221-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 12/01/2022]
Abstract
Metabolism in aquatic ectotherms evaluated by oxygen consumption rates reflects energetic costs including those associated with protein synthesis. Metabolism is influenced by nutritional status governed by feeding, nutrient intake and quality, and time without food. However, little is understood about contribution of protein synthesis to crustacean energy metabolism. This study is the first using a protein synthesis inhibitor cycloheximide to research contribution of cycloheximide-sensitive protein synthesis to decapod crustacean metabolism. Juvenile Sagmariasus verreauxi were subject to five treatments: 2-day fasted lobsters sham injected with saline; 2-day fasted lobsters injected with cycloheximide; 10-day starved lobsters injected with cycloheximide; post-prandial lobsters fed with squid Nototodarus sloanii with no further treatment; and post-prandial lobsters injected with cycloheximide. Standard and routine metabolic rates in starved lobsters were reduced by 32% and 41%, respectively, compared to fasted lobsters, demonstrating metabolic downregulation with starvation. Oxygen consumption rates of fasted and starved lobsters following cycloheximide injection were reduced by 29% and 13%, respectively, demonstrating protein synthesis represents only a minor component of energy metabolism in unfed lobsters. Oxygen consumption rate of fed lobsters was reduced by 96% following cycloheximide injection, demonstrating protein synthesis in decapods contributes a major proportion of specific dynamic action (SDA). SDA in decapods is predominantly a post-absorptive process likely related to somatic growth. This work extends previously limited knowledge on contribution of protein synthesis to crustacean metabolism, which is crucial to explore the relationship between nutritional status and diet quality and how this will affect growth potential in aquaculture species.
Collapse
Affiliation(s)
- Shuangyao Wang
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia.
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Chris G Carter
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| |
Collapse
|
11
|
Salomão RAS, De Paula TG, Zanella BTT, Carvalho PLPF, da Silva Duran BO, Valente JS, de Almeida Fantinatti BE, Fernandes AA, Barros MM, Mareco EA, Carvalho RF, Dos Santos VB, Dal-Pai-Silva M. The combination of resveratrol and exercise enhances muscle growth characteristics in pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2019; 235:46-55. [PMID: 31077846 DOI: 10.1016/j.cbpa.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 02/08/2023]
Abstract
Pacu is a tropical fish with important value to aquaculture. During cellular metabolism, reactive oxygen species (ROS) are produced, which can influence muscle growth. Resveratrol is an effective antioxidant that scavenges ROS and can modulate physical performance preventing oxidative stress. We investigated the effects of resveratrol and exercise on pacu muscle growth characteristics. Four groups were used: fish fed with control diet /without exercise (C); fish fed with control diet/subjected to exercise (CE); fish fed resveratrol-supplemented diet/without exercise (R); and fish fed resveratrol-supplemented diet/subjected to exercise (RE). At 30 days, the RE group presented a significant increase in body weight, fewer muscle fibers in the 20-40 μm and more fibers in the >60 μm diameter class compared to the C group. At day 7, catalase activity decreased in CE and RE groups. Superoxide dismutase activity decreased only in the CE group. Myod and mtor gene expression was higher in R and RE and igf-1 was up-regulated in the RE group. Murf1a level decreased in CE, R, and RE, while sdha expression was higher in the RE group. We suggest that resveratrol in combination with exercise was beneficial for muscle growth and metabolism, increasing the expression levels of genes related to muscle anabolism and oxidative metabolism, besides the decrease of catabolic gene expression. Notably, all of these changes occurred together with muscle hypertrophy and increased body weight. Our results show a positive application for resveratrol in association with exercise as a strategy to improve the growth performance of juvenile pacus.
Collapse
Affiliation(s)
- Rondinelle Artur Simões Salomão
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil; Aquaculture Center, CAUNESP, Sao Paulo State University, UNESP, Jaboticabal, SP, Brazil
| | | | | | | | | | - Jéssica Silvino Valente
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Ana Angélica Fernandes
- Department of Chemistry and Biochemistry, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Margarida Maria Barros
- Department of Breeding and Animal Nutrition, FMVZ, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Edson Assunção Mareco
- Department of Biology, University of Western Sao Paulo, UNOESTE, Presidente Prudente, SP, Brazil
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil; Aquaculture Center, CAUNESP, Sao Paulo State University, UNESP, Jaboticabal, SP, Brazil.
| |
Collapse
|
12
|
Castaño A, Bols N, Braunbeck T, Dierickx P, Halder M, Isomaa B, Kawahara K, Lee LEJ, Mothersill C, Pärt P, Repetto G, Sintes JR, Rufli H, Smith R, Wood C, Segner H. The use of Fish Cells in Ecotoxicology: The Report and Recommendations of ECVAM Workshop 47,. Altern Lab Anim 2019; 31:317-51. [PMID: 15612875 DOI: 10.1177/026119290303100314] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Argelia Castaño
- Animal Health Research Centre, Spanish National Institute for Food and Agrarian Research and Technology (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bury S, Cichoń M, Bauchinger U, Sadowska ET. High oxidative stress despite low energy metabolism and vice versa: Insights through temperature acclimation in an ectotherm. J Therm Biol 2018; 78:36-41. [DOI: 10.1016/j.jtherbio.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 01/30/2023]
|
14
|
Pan TCF, Applebaum SL, Frieder CA, Manahan DT. Biochemical bases of growth variation during development: a study of protein turnover in pedigreed families of bivalve larvae ( Crassostrea gigas). ACTA ACUST UNITED AC 2018; 221:jeb.171967. [PMID: 29615524 DOI: 10.1242/jeb.171967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Animal size is a highly variable trait regulated by complex interactions between biological and environmental processes. Despite the importance of understanding the mechanistic bases of growth, predicting size variation in early stages of development remains challenging. Pedigreed lines of the Pacific oyster (Crassostrea gigas) were crossed to produce contrasting growth phenotypes to analyze the metabolic bases of growth variation in larval stages. Under controlled environmental conditions, substantial growth variation of up to 430% in shell length occurred among 12 larval families. Protein was the major biochemical constituent in larvae, with an average protein-to-lipid content ratio of 2.8. On average, 86% of protein synthesized was turned over (i.e. only 14% retained as protein accreted), with a regulatory shift in depositional efficiency resulting in increased protein accretion during later larval growth. Variation in protein depositional efficiency among families did not explain the range in larval growth rates. Instead, changes in protein synthesis rates predicted 72% of growth variation. High rates of protein synthesis to support faster growth, in turn, necessitated greater allocation of the total ATP pool to protein synthesis. An ATP allocation model is presented for larvae of C. gigas that includes the major components (82%) of energy demand: protein synthesis (45%), ion pump activity (20%), shell formation (14%) and protein degradation (3%). The metabolic trade-offs between faster growth and the need for higher ATP allocation to protein synthesis could be a major determinant of fitness for larvae of different genotypes responding to the stress of environmental change.
Collapse
Affiliation(s)
- T-C Francis Pan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | - Scott L Applebaum
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | - Christina A Frieder
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | - Donal T Manahan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| |
Collapse
|
15
|
Habroun SS, Schaffner AA, Taylor EN, Strand CR. Food consumption increases cell proliferation in the python brain. ACTA ACUST UNITED AC 2018; 221:jeb.173377. [PMID: 29496780 DOI: 10.1242/jeb.173377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/20/2018] [Indexed: 11/20/2022]
Abstract
Pythons are model organisms for investigating physiological responses to food intake. While systemic growth in response to food consumption is well documented, what occurs in the brain is currently unexplored. In this study, male ball pythons (Python regius) were used to test the hypothesis that food consumption stimulates cell proliferation in the brain. We used 5-bromo-12'-deoxyuridine (BrdU) as a cell-birth marker to quantify and compare cell proliferation in the brain of fasted snakes and those at 2 and 6 days after a meal. Throughout the telencephalon, cell proliferation was significantly increased in the 6 day group, with no difference between the 2 day group and controls. Systemic postprandial plasticity occurs quickly after a meal is ingested, during the period of active digestion; however, the brain displays a surge of cell proliferation after most digestion and absorption is complete.
Collapse
Affiliation(s)
- Stacy S Habroun
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA.,Neurosciences Department, University of California-San Diego, Biomedical Research Facility, La Jolla, CA 92093, USA
| | - Andrew A Schaffner
- Statistics Department, California Polytechnic State University, San Luis Obispo, CA 93407-0405 , USA
| | - Emily N Taylor
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| | - Christine R Strand
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| |
Collapse
|
16
|
Jackson AGS, Leu SY, Hicks JW. Simultaneously Occurring Elevated Metabolic States Expose Constraints in Maximal Levels of Oxygen Consumption in the Oviparous Snake Lamprophis fuliginosus. Physiol Biochem Zool 2017; 90:301-312. [PMID: 28384426 DOI: 10.1086/691094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
African house snakes (Lamprophis fuliginosus) were used to compare the metabolic increments associated with reproduction, digestion, and activity both individually and when combined simultaneously. Rates of oxygen consumption ([Formula: see text]) and carbon dioxide production ([Formula: see text]) were measured in adult female (nonreproductive and reproductive) and adult male snakes during rest, digestion, activity while fasting, and postprandial activity. We also compared the endurance time (i.e., time to exhaustion) during activity while fasting and postprandial activity in males and females. For nonreproductive females and males, our results indicate that the metabolic increments of digestion (∼3-6-fold) and activity while fasting (∼6-10-fold) did not interact in an additive fashion; instead, the aerobic scope associated with postprandial activity was 40%-50% lower, and animals reached exhaustion up to 11 min sooner. During reproduction, there was no change in digestive [Formula: see text], but aerobic scope for activity while fasting was 30% lower than nonreproductive values. The prioritization pattern of oxygen delivery exhibited by L. fuliginosus during postprandial activity (in both males and females) and for activity while fasting (in reproductive females) was more constrained than predicted (i.e., instead of unchanged [Formula: see text], peak values were 30%-40% lower). Overall, our results indicate that L. fuliginosus's cardiopulmonary system's capacity for oxygen delivery was not sufficient to maintain the metabolic increments associated with reproduction, digestion, and activity simultaneously without limiting aerobic scope and/or activity performance.
Collapse
|
17
|
Jusup M, Sousa T, Domingos T, Labinac V, Marn N, Wang Z, Klanjšček T. Physics of metabolic organization. Phys Life Rev 2016; 20:1-39. [PMID: 27720138 DOI: 10.1016/j.plrev.2016.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 01/26/2023]
Abstract
We review the most comprehensive metabolic theory of life existing to date. A special focus is given to the thermodynamic roots of this theory and to implications that the laws of physics-such as the conservation of mass and energy-have on all life. Both the theoretical foundations and biological applications are covered. Hitherto, the foundations were more accessible to physicists or mathematicians, and the applications to biologists, causing a dichotomy in what always should have been a single body of work. To bridge the gap between the two aspects of the same theory, we (i) adhere to the theoretical formalism, (ii) try to minimize the amount of information that a reader needs to process, but also (iii) invoke examples from biology to motivate the introduction of new concepts and to justify the assumptions made, and (iv) show how the careful formalism of the general theory enables modular, self-consistent extensions that capture important features of the species and the problem in question. Perhaps the most difficult among the introduced concepts, the utilization (or mobilization) energy flow, is given particular attention in the form of an original and considerably simplified derivation. Specific examples illustrate a range of possible applications-from energy budgets of individual organisms, to population dynamics, to ecotoxicology.
Collapse
Affiliation(s)
- Marko Jusup
- Center of Mathematics for Social Creativity, Hokkaido University, 5-8 Kita Ward, Sapporo 060-0808, Japan.
| | - Tânia Sousa
- Maretec, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Tiago Domingos
- Maretec, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Velimir Labinac
- Department of Physics, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia
| | - Nina Marn
- Department for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Zhen Wang
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Tin Klanjšček
- Department for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Yang CY, Sierp MT, Abbott CA, Li Y, Qin JG. Responses to thermal and salinity stress in wild and farmed Pacific oysters Crassostrea gigas. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:22-29. [PMID: 27343357 DOI: 10.1016/j.cbpa.2016.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/25/2022]
Abstract
The Pacific oyster Crassostrea gigas was introduced from Japan to many countries in the world for oyster farming, resulting in the establishment of wild populations in intertidal zones and resource competition with local faunas. This study examined physiological responses of wild oysters and farmed oysters to thermal (15°C, 25°C, 37°C and 44°C) and salinity stress (39, 50 and 60ppt). The wild oysters produced more 72kDa heat shock proteins when the temperature increased from 15°C to 25°C and 37°C and the salinity increased from 39 to 50 and 60ppt. However, the amount of 69kDa heat shock protein was similar between farmed and wild oysters when the temperature increased from 15°C to the sublethal temperature 37°C, but it was lower in wild oysters than in farmed oysters when the temperature increased from 15°C to the lethal temperature 44°C. In the tissues, wild oysters used more glycogen to promote metabolic activities by increasing the level of AEC (adenylate energy charge). The results suggest that farmed oysters might have limited ability to cope with heat stress due to low energy reserve and glycolysis activity for HSP synthesis. This study provides experimental evidence on differential responses between wild and farmed oysters to temperature and salinity changes, leading to a better understanding on the pattern of distribution for invading oyster species in the marine environment and the adaptation of marine invertebrates to the threat of climate change.
Collapse
Affiliation(s)
- C-Y Yang
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - M T Sierp
- Primary Industries and Regions, SA, 25 Grenfell Street, Adelaide, SA 5000, Australia
| | - C A Abbott
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Yan Li
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - J G Qin
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| |
Collapse
|
19
|
Todgham AE, Crombie TA, Hofmann GE. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes. J Exp Biol 2016; 220:369-378. [DOI: 10.1242/jeb.145946] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023]
Abstract
There is an accumulating body of evidence suggesting that the sub-zero Antarctic marine environment places physiological constraints on protein homeostasis. Levels of ubiquitin (Ub)-conjugated proteins, 20S proteasome activity and mRNA expression of many proteins involved in both the ubiquitin (Ub) tagging of damaged proteins as well as the different complexes of the 26S proteasome were measured to examine whether there is thermal compensation of the Ub-proteasome pathway in Antarctic fishes to better understand the efficiency of the protein degradation machinery in polar species. Both Antarctic (Trematomus bernacchii, Pagothenia borchgrevinki) and non-Antarctic (Notothenia angustata, Bovichtus variegatus) notothenioids were included in this study to investigate the mechanisms of cold adaptation of this pathway in polar species. Overall, there were significant differences in the levels of Ub-conjugated proteins between the Antarctic notothenioids and B. variegatus, with N. angustata possessing levels very similar to the Antarctic fishes. Proteasome activity in the gills of Antarctic fishes demonstrated a high degree of temperature compensation such that activity levels were similar to activities measured in their temperate relatives at ecologically relevant temperatures. A similar level of thermal compensation of proteasome activity was not present in the liver of two Antarctic fishes. Higher gill proteasome activity is likely due in part to higher cellular levels of proteins involved in the Ub-proteasome pathway, as evidenced by high mRNA expression of relevant genes. Reduced activity of the Ub-proteasome pathway does not appear to be the mechanism responsible for elevated levels of denatured proteins in Antarctic fishes, at least in the gills.
Collapse
Affiliation(s)
- Anne E. Todgham
- Department of Animal Science, University of California, Davis, USA
| | | | - Gretchen E. Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, USA
| |
Collapse
|
20
|
Jackson AGS, Leu SY, Ford NB, Hicks JW. Patterns of oxygen consumption during simultaneously occurring elevated metabolic states in the viviparous snake Thamnophis marcianus. ACTA ACUST UNITED AC 2015; 218:3570-9. [PMID: 26417014 DOI: 10.1242/jeb.115477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 09/07/2015] [Indexed: 11/20/2022]
Abstract
Snakes exhibit large factorial increments in oxygen consumption during digestion and physical activity, and long-lasting sub-maximal increments during reproduction. Under natural conditions, all three physiological states may occur simultaneously, but the integrated response is not well understood. Adult male and female checkered gartersnakes (Thamnophis marcianus) were used to examine increments in oxygen consumption (i.e. V̇(O2)) and carbon dioxide production (i.e. V̇(CO2)) associated with activity (Act), digestion (Dig) and post-prandial activity (Act+Dig). For females, we carried out these trials in the non-reproductive state, and also during the vitellogenic (V) and embryogenic (E) phases of a reproductive cycle. Endurance time (i.e. time to exhaustion, TTE) was recorded for all groups during Act and Act+Dig trials. Our results indicate that male and non-reproductive female T. marcianus exhibit significant increments in V̇(O2) during digestion (∼5-fold) and activity (∼9-fold), and that Act+Dig results in a similar increment in V̇(O2) (∼9- to 10-fold). During reproduction, resting V̇(O2) increased by 1.6- to 1.7-fold, and peak increments during digestion were elevated by 30-50% above non-reproductive values, but values associated with Act and Act+Dig were not significantly different from non-reproductive values. During Act+Dig, endurance time remained similar for all of the groups in the present study. Overall, our results indicate that prioritization is the primary pattern of interaction in oxygen delivery exhibited by this species. We propose that the metabolic processes associated with digestion, and perhaps reproduction, are temporarily compromised during activity.
Collapse
Affiliation(s)
- Alexander G S Jackson
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92627, USA
| | - Szu-Yun Leu
- Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA 92687, USA Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA 92868, USA
| | - Neil B Ford
- Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA
| | - James W Hicks
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92627, USA
| |
Collapse
|
21
|
Chaperone roles for TMAO and HSP70 during hyposmotic stress in the spiny dogfish shark (Squalus acanthias). J Comp Physiol B 2015; 185:729-40. [PMID: 26050212 DOI: 10.1007/s00360-015-0916-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/19/2015] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
Abstract
Salinity decreases are experienced by many marine elasmobranchs. To understand how these fishes cope with hyposmotic stress on a cellular level, we used the spiny dogfish shark (Squalus acanthias) as a model to test whether a reciprocal relationship exists between the cell's two primary protein protection mechanisms, the chemical (e.g., trimethylamine oxide, TMAO) and molecular (e.g., heat shock protein 70, HSP70) chaperone systems. This relationship is interesting given that many elasmobranchs are expected to gain water and lose osmolytes, chemical chaperones, and ions as they osmoconform to new, lowered salinity. Dogfish were cannulated for repeated blood sampling and exposed to 70% seawater (SW) for 48 h. These hyposmotic conditions had no effect on red blood cell (RBC) and white muscle TMAO concentrations, and did not result in HSP70 induction or signs of protein damage (i.e., increased ubiquitin), suggesting that TMAO levels were sufficiently protective in these tissues. However, in the gill, we observed a significant decrease in TMAO concentration and a significant induction of HSP70 as well as signs of protein damage. In the face of this cellular stress response, gill Na(+)/K(+)-ATPase (NKA) activity significantly increased during hyposmotic conditions, as expected. We suggest that this functional preservation in the gill is partly the result of HSP70 induction with lowered salinity. We conclude a reciprocal relationship between TMAO and HSP70 in the gills of dogfish as a result of in vivo hyposmotic stress. When osmotically induced protein damage surpasses the protective capacity of remaining TMAO, HSP70 is induced to preserve tissue and organismal function.
Collapse
|
22
|
Wilson WN, Baumgarner BL, Watanabe WO, Alam MS, Kinsey ST. Effects of resveratrol on growth and skeletal muscle physiology of juvenile southern flounder. Comp Biochem Physiol A Mol Integr Physiol 2015; 183:27-35. [DOI: 10.1016/j.cbpa.2014.12.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 01/28/2023]
|
23
|
Killen SS. Growth trajectory influences temperature preference in fish through an effect on metabolic rate. J Anim Ecol 2014; 83:1513-22. [PMID: 24806155 PMCID: PMC4277333 DOI: 10.1111/1365-2656.12244] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/15/2014] [Indexed: 11/30/2022]
Abstract
Most animals experience temperature variations as they move through the environment. For ectotherms, in particular, temperature has a strong influence on habitat choice. While well studied at the species level, less is known about factors affecting the preferred temperature of individuals; especially lacking is information on how physiological traits are linked to thermal preference and whether such relationships are affected by factors such feeding history and growth trajectory.
This study examined these issues in the common minnow Phoxinus phoxinus, to determine the extent to which feeding history, standard metabolic rate (SMR) and aerobic scope (AS), interact to affect temperature preference.
Individuals were either: 1) food deprived (FD) for 21 days, then fed ad libitum for the next 74 days; or 2) fed ad libitum throughout the entire period. All animals were then allowed to select preferred temperatures using a shuttle-box, and then measured for SMR and AS at 10 °C, estimated by rates of oxygen uptake. Activity within the shuttle-box under a constant temperature regime was also measured.
In both FD and control fish, SMR was negatively correlated with preferred temperature. The SMR of the FD fish was increased compared with the controls, probably due to the effects of compensatory growth, and so these growth-compensated fish preferred temperatures that were on average 2·85 °C cooler than controls fed a maintenance ration throughout the study. Fish experiencing compensatory growth also displayed a large reduction in activity. In growth-compensated fish and controls, activity measured at 10 °C was positively correlated with preferred temperature.
Individual fish prefer temperatures that vary predictably with SMR and activity level, which are both plastic in response to feeding history and growth trajectories. Cooler temperatures probably allow individuals to reduce maintenance costs and divert more energy towards growth. A reduction in SMR at cooler temperatures, coupled with a decrease in spontaneous activity, could also allow individuals to increase surplus AS for coping with environmental stressors. In warming climates, however, aquatic ectotherms could experience frequent fluctuations in food supply with long-lasting effects on metabolic rate due to compensatory growth, while simultaneously having limited access to preferred cooler habitats.
Collapse
Affiliation(s)
- Shaun S Killen
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
24
|
Targeted 13C enrichment of lipid and protein pools in the body reveals circadian changes in oxidative fuel mixture during prolonged fasting: A case study using Japanese quail. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:546-54. [DOI: 10.1016/j.cbpa.2013.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 11/21/2022]
|
25
|
Measurements of substrate oxidation using 13CO2-breath testing reveals shifts in fuel mix during starvation. J Comp Physiol B 2013; 183:1039-52. [DOI: 10.1007/s00360-013-0774-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/01/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
|
26
|
McCarthy ID, Fuiman LA. Post-prandial changes in protein synthesis in red drum (Sciaenops ocellatus) larvae. ACTA ACUST UNITED AC 2011; 214:1821-8. [PMID: 21562168 DOI: 10.1242/jeb.052753] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein synthesis is one of the major energy-consuming processes in all living organisms. Post-prandial changes in protein synthesis have been studied in a range of animal taxa but have been little studied in fish larvae. Using the flooding-dose method, we measured post-prandial changes in whole-body rates of protein synthesis in regularly fed red drum Sciaenops ocellatus (Linnaeus) larvae for 24-28 h following their daily meal. Fractional rates of protein synthesis increased from a baseline (pre-feeding) rate of 16% day(-1) to a post-prandial peak of 48% day(-1) ca. 8 h after feeding before declining to 12% day(-1) after 24-28 h. The overall mean daily rate of protein synthesis was calculated as 27% day(-1). Although suggested as energetically impossible in larval poikilotherms, our results show that rates in excess of 30% day(-1) can be attained by larval fishes for a few hours but are not sustained. The average daily energetic cost of protein synthesis was estimated as 34% of daily total oxygen consumption, ranging from 19% immediately before feeding to 61% during the post-prandial peak in protein synthesis. This suggests that during the post-prandial peak, protein synthesis will require a large proportion of the hourly energy production, which, given the limited metabolic scope in fish larvae, may limit the energy that could otherwise be allocated to other energy-costly functions, such as foraging and escape responses.
Collapse
Affiliation(s)
- Ian D McCarthy
- School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey, UK.
| | | |
Collapse
|
27
|
Ciotti BJ, Targett TE, Nash RDM, Batty RS, Burrows MT, Geffen AJ. Development, validation and field application of an RNA-based growth index in juvenile plaice Pleuronectes platessa. JOURNAL OF FISH BIOLOGY 2010; 77:2181-2209. [PMID: 21155778 DOI: 10.1111/j.1095-8649.2010.02786.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A general mechanism relating RNA concentration and growth rate is derived from four physiological assumptions and developed into a growth index for juvenile plaice Pleuronectes platessa. The index describing instantaneous growth rates (G, day⁻¹) in the laboratory with the lowest Akaike information criterion with small-sample bias adjustment was a function of RNA concentration (R, g(RNA)g⁻¹(wet mass)), temperature (T, ° K), body mass (M, g) and DNA concentration (D, g(DNA)g⁻¹(wet mass)): G = β₀ + β(R) R + β(T)T + β(T2)T² + β(M)M + β(D)D + β(RT)RT. RNA concentration began to respond to changes in feeding conditions within 8 days, suggesting that the index reflects growth rate in the short-term. Furthermore, the index distinguished between rapid growth and negative growth of juvenile P. platessa measured directly in laboratory and field enclosures, respectively. An application of the RNA-based growth index at two beaches on the west coast of Scotland suggested that the growth of juvenile P. platessa varies considerably in space and time and is submaximum in late summer.
Collapse
Affiliation(s)
- B J Ciotti
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Katersky RS, Carter CG. The effect of temperature on post-prandial protein synthesis in juvenile barramundi, Lates calcarifer. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:529-36. [PMID: 20406695 DOI: 10.1016/j.cbpa.2010.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 11/16/2022]
Abstract
The experiment aimed to measure post-prandial protein synthesis at three different temperatures. Juvenile barramundi (10.81+/-3.46 g) were held at 21, 27 and 33 degrees C and fed to satiation daily. Samples were taken over a 24h period at 0 (24h after the previous meal) and then at 4, 8, 12 and 24h after feeding to measure protein synthesis in the white muscle, liver and remaining carcass. Protein synthesis at 27 and 33 degrees C peaked 4h after feeding in all tissues and returned to pre-feeding rates by 12h. At 21 degrees C protein synthesis remained constant over 24h in all tissues. While the concentration of RNA remained stable over the 24h cycle and across temperatures, the ribosomal activity increased after feeding. This meant k(RNA), not the absolute amount of RNA, was the driving force underlying the post-prandial increase in protein synthesis. However, relative differences in protein synthesis between tissues were attributed to differences in RNA concentration. There was a significant positive relationship between white muscle and whole body protein synthesis. This was the first study to show an interaction between temperature and the time after feeding on protein synthesis for an ectotherm, and that a post-prandial peak in protein synthesis only occurred under optimum temperature conditions.
Collapse
Affiliation(s)
- Robin S Katersky
- University of Tasmania, National Centre for Marine Conservation and Resource Sustainability, Locked Bag 1370, Launceston, Tasmania 7250, Australia.
| | | |
Collapse
|
29
|
McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:1-18. [PMID: 20060056 DOI: 10.1016/j.cbpa.2010.01.002] [Citation(s) in RCA: 450] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/30/2009] [Accepted: 01/03/2010] [Indexed: 11/26/2022]
Abstract
All animals face the possibility of limitations in food resources that could ultimately lead to starvation-induced mortality. The primary goal of this review is to characterize the various physiological strategies that allow different animals to survive starvation. The ancillary goals of this work are to identify areas in which investigations of starvation can be improved and to discuss recent advances and emerging directions in starvation research. The ubiquity of food limitation among animals, inconsistent terminology associated with starvation and fasting, and rationale for scientific investigations into starvation are discussed. Similarities and differences with regard to carbohydrate, lipid, and protein metabolism during starvation are also examined in a comparative context. Examples from the literature are used to underscore areas in which reporting and statistical practices, particularly those involved with starvation-induced changes in body composition and starvation-induced hypometabolism can be improved. The review concludes by highlighting several recent advances and promising research directions in starvation physiology. Because the hundreds of studies reviewed here vary so widely in their experimental designs and treatments, formal comparisons of starvation responses among studies and taxa are generally precluded; nevertheless, it is my aim to provide a starting point from which we may develop novel approaches, tools, and hypotheses to facilitate meaningful investigations into the physiology of starvation in animals.
Collapse
Affiliation(s)
- Marshall D McCue
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| |
Collapse
|
30
|
Protein synthesis in a solitary benthic cephalopod, the Southern dumpling squid (Euprymna tasmanica). Comp Biochem Physiol A Mol Integr Physiol 2009; 153:185-90. [PMID: 19223018 DOI: 10.1016/j.cbpa.2009.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 11/22/2022]
Abstract
Rates of protein synthesis were measured in the whole body and tissues of southern dumpling squid Euprymna tasmanica to validate the use of a flooding-dose of (3)H phenylalanine for the measurement of protein synthesis with different size squid and to make a preliminary investigation into the effects of feeding regime. In smaller (2.8+/-0.5 g, mean+/-SE) and larger (14.8+/-2.2 g) squid whole body fractional rates of protein synthesis were 9.45+/-1.21 and 1.49+/-0.29% d(-1), respectively. Differences in total whole body protein content meant there was no difference in absolute rates of whole body protein synthesis between the larger and smaller squid. In larger squid, fractional rates of protein synthesis were significantly higher in the digestive gland (9.24+/-1.63% d(-1)) than in the arm tissue (1.43+/-0.31% d(-1)), which were significantly higher than in the anterior (0.56+/-0.13% d(-1)) and posterior (0.36+/-0.04% d(-1)) mantle. In smaller squid there were no differences in protein synthesis between tissues and high individual variation, due to differences in feeding, was a likely cause. Consequently, the effect of feeding regime on protein synthesis was compared between two groups of individually held squid: daily-feeding and minimal-feeding squid. The daily-feeding squid had significantly higher feed intake, gained mass and had a significantly higher growth rate than the minimal-feeding squid which lost mass. Whole body protein synthesis was significantly higher in the daily-feeding squid as was the protein content of the digestive gland, anterior and posterior mantle. There were few other differences in indices of protein metabolism. Individual squid showed differences in growth and protein metabolism, and there were significant relationships between growth rate and both rates of protein synthesis and protein degradation. Thus, higher individual growth was a consequence of increased protein synthesis, decreased protein degradation and, therefore, increased efficiency of retaining synthesised protein.
Collapse
|
31
|
RUNGRUANGSAK-TORRISSEN KRISNA, FOSSEIDENGEN JANE. EFFECT OF ARTIFICIAL FEEDING ON DIGESTIVE EFFICIENCY, GROWTH AND QUALITIES OF MUSCLE AND OOCYTE OF MATURING ATLANTIC MACKEREL (SCOMBER SCOMBRUS L.). J Food Biochem 2007. [DOI: 10.1111/j.1745-4514.2007.00139.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Li Y, Qin JG, Abbott CA, Li X, Benkendorff K. Synergistic impacts of heat shock and spawning on the physiology and immune health ofCrassostrea gigas: an explanation for summer mortality in Pacific oysters. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2353-62. [PMID: 17898119 DOI: 10.1152/ajpregu.00463.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mass mortality is often observed in cultured oysters during the period following spawning in the summer season. To examine the underlying causes leading to this phenomenon, thermotolerance of the Pacific oyster Crassostrea gigas was assessed using pre- and postspawning oysters that were sequentially treated with sublethal (37°C) and lethal heat shocks (44°C). The effects were examined on a range of immune and metabolic parameters in addition to mortality rate. A preventative 37°C significantly reduced oyster mortality after exposure to a second heat shock of 44°C, but in postspawning oysters mortality remained at 80%, compared with < 10% in prespawning oysters. Levels of the 72 kDa and 69 kDa heat shock proteins were low in the gill tissue from postspawning oysters stimulated by heat shock, indicating spawning reduced heat shock protein synthesis. The postspawning oysters had depleted glycogen stores in the mantle tissue and reduced adenylate energy charge after heat shock, indicative of lower energy for metabolic activity. A cumulative effect of spawning and heat shock was observed on the immunocompetence of oysters, demonstrated by reduced hemocyte phagocytosis and hemolymph antimicrobial activity. These results support the hypothesis that the energy expended during reproduction compromises the thermotolerance and immune status of oysters, leaving them easily subject to mortality if heat stress occurs in postspawning stage. This study improves our understanding of oyster summer mortality and has implications for the long-term persistence of mollusks under the influence of global warming.
Collapse
Affiliation(s)
- Yan Li
- School of Biological Sciences, Flinders Univ., GPO Box 2100, Adelaide, 5001, SA, Australia.
| | | | | | | | | |
Collapse
|
33
|
Fraser KPP, Clarke A, Peck LS. Growth in the slow lane: protein metabolism in the Antarctic limpet Nacella concinna (Strebel 1908). ACTA ACUST UNITED AC 2007; 210:2691-9. [PMID: 17644683 DOI: 10.1242/jeb.003715] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growth rates in Antarctic ectotherms are generally considered to be low in comparison to temperate and tropical species. Food consumption plays a major role in determining animal growth rates, but once food is ingested soft tissue growth rates are largely determined by the protein synthesis retention efficiency (PSRE), a measure of the efficiency with which proteins are synthesised and retained as protein growth. The effect of water temperatures on the PSRE of polar organisms has not previously been investigated, and it is possible that reduced PSRE at polar water temperatures may at least partially explain low growth rates in Antarctic organisms. We also currently lack any information on the potential effects of predicted increases in seawater temperatures on protein metabolism in Antarctic ectotherms. We have measured seasonal protein synthesis, degradation and growth rates in free-ranging Antarctic limpets (Nacella concinna), together with protein synthesis rates at temperatures ranging between -1.5 degrees C and 6.0 degrees C. PSRE were not significantly different in summer (15.69+/-4.41%) or winter (20.59+/-4.45%), but values were considerably lower than those previously reported in temperate and tropical species. A meta-analysis of published ectotherm PSRE suggested there was a positive relationship with temperature (y=449.9-114.9x, r(2)=28.8%, P<0.05). In turn, this suggests that temperature may be an important factor in determining ectotherm growth efficiency via an influence on PSRE. Maximal fractional and absolute protein synthesis rates occurred at approximately 1 degrees C in N. concinna, the approximate summer water temperature at the study site, and protein synthesis rates decreased above this temperature. In the absence of adaptation, predicted increases in Antarctic water temperatures would result in reduced, rather than increased, rates of protein synthesis and, in turn, possibly growth.
Collapse
Affiliation(s)
- Keiron P P Fraser
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK.
| | | | | |
Collapse
|
34
|
RUNGRUANGSAK-TORRISSEN KRISNA. DIGESTIVE EFFICIENCY, GROWTH AND QUALITIES OF MUSCLE AND OOCYTE IN ATLANTIC SALMON (SALMO SALAR L.) FED ON DIETS WITH KRILL MEAL AS AN ALTERNATIVE PROTEIN SOURCE. J Food Biochem 2007. [DOI: 10.1111/j.1745-4514.2007.00127.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Fraser KPP, Rogers AD. Protein metabolism in marine animals: the underlying mechanism of growth. ADVANCES IN MARINE BIOLOGY 2007; 52:267-362. [PMID: 17298892 DOI: 10.1016/s0065-2881(06)52003-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Growth is a fundamental process within all marine organisms. In soft tissues, growth is primarily achieved by the synthesis and retention of proteins as protein growth. The protein pool (all the protein within the organism) is highly dynamic, with proteins constantly entering the pool via protein synthesis or being removed from the pool via protein degradation. Any net change in the size of the protein pool, positive or negative, is termed protein growth. The three inter-related processes of protein synthesis, degradation and growth are together termed protein metabolism. Measurement of protein metabolism is vital in helping us understand how biotic and abiotic factors affect growth and growth efficiency in marine animals. Recently, the developing fields of transcriptomics and proteomics have started to offer us a means of greatly increasing our knowledge of the underlying molecular control of protein metabolism. Transcriptomics may also allow us to detect subtle changes in gene expression associated with protein synthesis and degradation, which cannot be detected using classical methods. A large literature exists on protein metabolism in animals; however, this chapter concentrates on what we know of marine ectotherms; data from non-marine ectotherms and endotherms are only discussed when the data are of particular relevance. We first consider the techniques available to measure protein metabolism, their problems and what validation is required. Protein metabolism in marine organisms is highly sensitive to a wide variety of factors, including temperature, pollution, seasonality, nutrition, developmental stage, genetics, sexual maturation and moulting. We examine how these abiotic and biotic factors affect protein metabolism at the level of whole-animal (adult and larval), tissue and cellular protein metabolism. Available gene expression data, which help us understand the underlying control of protein metabolism, are also discussed. As protein metabolism appears to comprise a significant proportion of overall metabolic costs in marine organisms, accurate estimates of the energetic cost per unit of synthesised protein are important. Measured costs of protein metabolism are reviewed, and the very high variability in reported costs highlighted. Two major determinants of protein synthesis rates are the tissue concentration of RNA, often expressed as the RNA to protein ratio, and the RNA activity (k(RNA)). The effects of temperature, nutrition and developmental stage on RNA concentration and activity are considered. This chapter highlights our complete lack of knowledge of protein metabolism in many groups of marine organisms, and the fact we currently have only limited data for animals held under a narrow range of experimental conditions. The potential assistance that genomic methods may provide in increasing our understanding of protein metabolism is described.
Collapse
Affiliation(s)
- Keiron P P Fraser
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 OET, United Kingdom
| | | |
Collapse
|
36
|
Alami-Durante H, Olive N, Rouel M. Early thermal history significantly affects the seasonal hyperplastic process occurring in the myotomal white muscle of Dicentrarchus labrax juveniles. Cell Tissue Res 2006; 327:553-70. [PMID: 17036227 DOI: 10.1007/s00441-006-0321-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 08/04/2006] [Indexed: 11/28/2022]
Abstract
The effect of early (embryonic and larval) thermal history on subsequent (juvenile) white muscle hyperplasia was studied in a teleost fish, the European sea bass (Dicentrarchus labrax L.). D. labrax, incubated and reared at constant temperatures of 13 degrees C, 15 degrees C or 20 degrees C from the embryonic stage of half epiboly up to 18-19 mm in total length, were transferred to ambient seawater temperature and reared for the subsequent 14 months on commercial feed. The somatic growth of juveniles was linked to annual variations of ambient seawater temperature and inversely related to early rearing temperature, so that, after 14 months, the juveniles originally reared at low temperatures had compensated for the growth retardation experienced during early life. The white muscle growth process of juveniles was quantified after two periods of growth opportunity at ambient seawater temperature (100 and 400 days post-transfer) as well as, in order to follow total-length-dependent effects of early temperature and to discriminate total-length-independent effects of early temperature, on juveniles from the three batches sampled at six successive equivalent total lengths (31-33, 84-88, 141-145, 166-172, 196-206 and 211-220 mm). Our data demonstrate the existence of a seasonal recruitment of new white muscle fibres when seawater temperature increases and of a shrinkage of the largest white muscle fibres during the winter months. The seasonal recruitment of new white muscle fibres occurring in juveniles is linked to their early rearing temperature. Juveniles originating from low temperatures have a higher and longer capacity to recruit new white muscle fibres when seawater temperature increases, supporting their better somatic growth. This finding is discussed in relation to the early (embryonic and larval) myogenic processes of the three populations and is related to their sex ratio.
Collapse
Affiliation(s)
- Hélène Alami-Durante
- Nutrition Aquaculture and Genomic Research Unit, National Institute for Agronomic Research, Pôle d'Hydrobiologie, 64310 Saint Pée-sur-Nivelle, France.
| | | | | |
Collapse
|
37
|
Deitch EJ, Fletcher GL, Petersen LH, Costa IASF, Shears MA, Driedzic WR, Gamperl AK. Cardiorespiratory modifications, and limitations, in post-smolt growth hormone transgenic Atlantic salmon Salmo salar. ACTA ACUST UNITED AC 2006; 209:1310-25. [PMID: 16547302 DOI: 10.1242/jeb.02105] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years, there has been a great deal of interest in how growth hormone (GH) transgenesis affects fish physiology. However, the results of these studies are often difficult to interpret because the transgenic and non-transgenic fish had very different environmental/rearing histories. This study used a stable line of size-matched GH Atlantic salmon (Salmo salar) that were reared in a shared tank with controls (at 10 degrees C, for approximately 9 months) to perform a comprehensive examination of the cardiorespiratory physiology of GH transgenic salmon, and serves as a novel test of the theory of symmorphosis. The GH transgenic salmon had a 3.6x faster growth rate, and 21 and 25% higher values for mass-specific routine and standard oxygen consumption (M(O(2))), respectively. However, there was no concurrent increase in their maximum M(O(2)), which resulted in them having an 18% lower metabolic scope and a 9% reduction in critical swimming speed. This decreased metabolic capacity/performance was surprising given that the transgenics had a 29% larger heart with an 18% greater mass-specific maximum in situ cardiac output, a 14% greater post-stress blood haemoglobin concentration, 5-10% higher red muscle and heart aerobic enzyme (citrate synthase or cytochrome oxidase) activities, and twofold higher resting and 1.7x higher post-stress, catecholamine levels. However, gill surface area was the only cardiorespiratory parameter that was not enhanced, and our data suggest that gill oxygen transfer may have been limiting. Overall, this research: (1) shows that there are significant metabolic costs associated with GH transgenesis in this line of Atlantic salmon; (2) provides the first direct evidence that cardiac function is enhanced by GH transgenesis; (3) shows that a universal upregulation of post-smolt (adult) GH transgenic salmon cardiorespiratory physiology, as suggested by symmorphosis, does not occur; and (4) supports the idea that whereas differences in arterial oxygen transport (i.e. cardiac output and blood oxygen carrying capacity) are important determinants of inter-specific differences in aerobicity, diffusion-limited processes must be enhanced to achieve substantial intra-specific improvements in metabolic and swimming performance.
Collapse
Affiliation(s)
- E J Deitch
- Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Newfoundland A1C 5S7, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The ability of animals to survive food deprivation is clearly of considerable survival value. Unsurprisingly, therefore, all animals exhibit adaptive biochemical and physiological responses to the lack of food. Many animals inhabit environments in which food availability fluctuates or encounters with appropriate food items are rare and unpredictable; these species offer interesting opportunities to study physiological adaptations to fasting and starvation. When deprived of food, animals employ various behavioral, physiological, and structural responses to reduce metabolism, which prolongs the period in which energy reserves can cover metabolism. Such behavioral responses can include a reduction in spontaneous activity and a lowering in body temperature, although in later stages of food deprivation in which starvation commences, activity may increase as food-searching is activated. In most animals, the gastrointestinal tract undergoes marked atrophy when digestive processes are curtailed; this structural response and others seem particularly pronounced in species that normally feed at intermittent intervals. Such animals, however, must be able to restore digestive functions soon after feeding, and these transitions appear to occur at low metabolic costs.
Collapse
Affiliation(s)
- Tobias Wang
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
39
|
Schill RO, Pfannkuchen M, Fritz G, Köhler HR, Brümmer F. Quiescent gemmules of the freshwater sponge, Spongilla lacustris (Linnaeus, 1759), contain remarkably high levels of Hsp70 stress protein and hsp70 stress gene mRNA. ACTA ACUST UNITED AC 2006; 305:449-57. [PMID: 16506228 DOI: 10.1002/jez.a.281] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the onset of changing environmental conditions in autumn, the freshwater sponge Spongilla lacustris (Linnaeus, 1759) produces resistant stages (gemmules) which are in the state of quiescence. Gemmules stored at 8 degrees C remained quiescent; however, germination occurred within 24 hr after the water temperature was increased to 22.5 degrees C. Sponges hatched through the micropyle and subsequently built new spicules and a new canal system. The molecular and biochemical mechanisms which enable the gemmules to survive long periods of adverse conditions are not known. For the first time we focused on the role of the stress protein Hsp70 and the expression of hsp70 mRNA in S. lacustris during the development of gemmules in the state of quiescence into growing sponges. The partial sequence of hsp70 seems to be a true hsp gene since transcription could be clearly enhanced by temperature elevation. The results showed a large pool of cellular Hsp70 and hsp70 mRNA in gemmules during the state of quiescence. Within hours after a temperature trigger, the Hsp70 level decreased slowly and reached approximately the level of an adult sponge. Hsp70 presumably allows gemmules to stabilize their proteins and membranes during dormancy from autumn to spring when water temperatures change.
Collapse
Affiliation(s)
- Ralph O Schill
- Department of Zoology, Biological Institute, University of Stuttgart, 70569 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
40
|
de Souza SCR, Kuribara CM. Metabolic scaling associated with unusual size changes during larval development of the frog, Pseudis paradoxus. J Exp Biol 2006; 209:1651-61. [PMID: 16621946 DOI: 10.1242/jeb.02195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The early larvae of P. paradoxus grow large but metamorphose into relatively small frogs, the diminished post-metamorphic growth producing a marked contrast between maximum larval size and adult. Thus, O(2) uptake does not appear to limit the energy expenditure on growth processes, and unlike in other anuran larvae, may not be a surface area-related function in P. paradoxus larvae. The resting rates of metabolism (M(O(2))) and partitioning between aquatic (Mw(O(2))) and aerial O(2) uptake (Ma(O(2))) were measured on tadpoles and froglets by closed system respirometry, using water of P(O(2)) ranging from 145 to 40 mmHg. Correlative changes in body glycogen and lactate were examined by standard enzyme assays. Scaling patterns in the growth and degrowth stages were analysed on whole-body, log-transformed data using linear regressions. In normoxia, M(O(2)) was 2.1-2.5 mumol g(-1) h(-1) in the early larvae, increasing more than twofold on forelimb emergence and decreasing sharply in the froglets; M(O(2)) varies in strict proportion to body mass (M(b)), both in the growth (b=1.02) and degrowth (b=0.97) phases, according to the equation M(O(2))=aM(b)(b), where b is the scaling coefficient. Mw(O(2)) constitutes >90% of total uptake in the growth stages, increasing with b=1.02 while Ma(O(2)) increases with b=1.13; during degrowth there is a change in the pattern related to intensification of metamorphosis. Hypoxic water did not affect M(O(2)); however, in all larval stages Mw(O(2)) and Ma(O(2)) changed with a decrease in P(O(2)). At 60 mmHg, rates are more severely affected in the largest tadpoles, causing the b values for Mw(O(2)) and Ma(O(2)) to change to 0.11 and 1.44, respectively, in the growth phase. Glycogen and lactate levels increase out of proportion with body mass increase (b=2.05 and 1.47, respectively) in the growth stages, and increase anaerobic capacity in late metamorphosis. In hypoxic water, glycogen levels decrease in the growth stages and the largest tadpoles accumulate surplus lactate, possibly related to surfacing activity. Our results may reveal the consequences of size on energy demand at the tissue level in P. paradoxus larvae, indicating that air breathing must subsidise energy expenditure during larval development.
Collapse
Affiliation(s)
- Silvia Cristina R de Souza
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, n 321, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil.
| | | |
Collapse
|
41
|
McCue MD. Specific dynamic action: a century of investigation. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:381-94. [PMID: 16716621 DOI: 10.1016/j.cbpa.2006.03.011] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/15/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
Specific dynamic action (SDA) is the term used to refer to the increased metabolic expenditure that occurs in postprandial animals. Postprandial increases in metabolism were first documented in animals over two hundred years ago, and have since been observed in every species thus far examined. Ironically, the ubiquity of this physiological response to feeding understates its complex nature. This review is designed to summarize both classical and modern hypotheses regarding the causality of SDA as well as to review important findings from the past century of scientific research into SDA. A secondary aim of this work is to emphasize the importance of carefully designed experiments and systematic hypothesis testing to make more rapid progress in understanding the physiological processes that contribute to SDA. I also identify three areas in SDA research that deserve more detailed investigation. The first area is identification of the causality of SDA in 'model' organisms. The second area is characterization of SDA responses in novel species. The third area is exploration of the ecological and potential evolutionary significance of SDA in energy budgets of animals.
Collapse
Affiliation(s)
- M D McCue
- Department of Biology, University of Arkansas, 601 Science Engineering, Fayetteville, AR 72701, USA.
| |
Collapse
|
42
|
Pan ZC, Ji X, Lu HL, Ma XM. Metabolic response to feeding in the Chinese striped-necked turtle, Ocadia sinensis. Comp Biochem Physiol A Mol Integr Physiol 2005; 141:470-5. [PMID: 16095937 DOI: 10.1016/j.cbpb.2005.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/24/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
We measured oxygen consumption in juvenile Chinese striped-necked turtles (Ocadia sinensis) after they ingested food, either as a single meal or as double meals, to examine the influence of meal type and feeding frequency on specific dynamic action (SDA). Temporal variation in oxygen consumption after feeding was evident in the ingesting turtles but not in the unfed control turtles. In the single-meal experiment, the peak metabolic rate and the integrated SDA response (the whole energetic cost for the processes of digestion) both did not differ between turtles ingesting mealworms and shrimps when the influence of variation in ingested energy was removed, and the time to reach peak metabolic rate was not affected by meal type and the amount of food ingested. Turtles in the double-meal experiment ingested more energy and hence had a prolonged duration of SDA response than did those in the single-meal experiment, but the integrated SDA response did not differ between both experimental treatments when the influence of variation in ingested energy was removed. Our results show that meal type and feeding frequency have important consequences on the SDA response of juvenile O. sinensis. As the integrated SDA response remained remarkably constant either between turtles ingesting different food or between turtles ingesting the same food but at different frequencies when the influence of variation in ingested energy was removed, we therefore conclude that the energetic cost associated with ingestion is primarily determined by energy content of food ingested in juvenile O. sinensis.
Collapse
Affiliation(s)
- Zhi-Chong Pan
- Department of Biology, School of Life Sciences and Biotechnology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | | | | | | |
Collapse
|
43
|
Storch D, Lannig G, Pörtner HO. Temperature-dependent protein synthesis capacities in Antarctic and temperate (North Sea) fish (Zoarcidae). ACTA ACUST UNITED AC 2005; 208:2409-20. [PMID: 15939780 DOI: 10.1242/jeb.01632] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For an evaluation of effects of seasonal cold acclimation and evolutionary cold adaptation on protein synthesis capacity, the protein synthesis apparatus was isolated from the gills and white muscle of Antarctic eelpout Pachycara brachycephalum and North Sea eelpout Zoarces viviparus. Both species had been acclimated to 0 degrees C (control) and 5 degrees C (Antarctic) and 5 degrees C and 10 degrees C (North Sea control). The translational capacities of the protein synthesis machineries were determined in an optimised cell-free in vitro system. The results demonstrate that tissues from the polar zoarcid possess cold-adapted protein synthesis machineries, indicated by low activation energies and, especially, high RNA translational capacities at similar RNA:protein ratios when compared to temperate zoarcids at 10 degrees C. When both species were brought to 5 degrees C, the temperate species displayed cold compensated protein synthesis capacities caused by elevated RNA:protein ratios. Warm exposure (from 0 to 5 degrees C) of the Antarctic zoarcid revealed a capacity for thermal acclimation indicated by a reduction in protein synthesis capacities associated with lower RNA:protein ratios.
Collapse
Affiliation(s)
- Daniela Storch
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | | | | |
Collapse
|
44
|
McCue MD, Bennett AF, Hicks JW. The effect of meal composition on specific dynamic action in burmese pythons (Python molurus). Physiol Biochem Zool 2005; 78:182-92. [PMID: 15778938 DOI: 10.1086/427049] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2004] [Indexed: 11/03/2022]
Abstract
We quantified the specific dynamic action (SDA) resulting from the ingestion of various meal types in Burmese pythons (Python molurus) at 30 degrees C. Each snake was fed a series of experimental meals consisting of amino acid mixtures, simple proteins, simple or complex carbohydrates, or lipids as well as meals of whole animal tissue (chicken breast, beef suet, and mouse). Rates of oxygen consumption were measured for approximately 4 d after feeding, and the increment above standard metabolic rate was determined and compared to energy content of the meals. While food type (protein, carbohydrate, and lipid) had a general influence, SDA was highly dependent on meal composition (i.e., amino acid composition and carbohydrate structure). For chicken breast and simple carbohydrates, the SDA coefficient was approximately one-third the energetic content of the meal. Lard, suet, cellulose, and starch were not digested and did not produce measurable SDA. We conclude that the cost of de novo protein synthesis is an important component of SDA after ingestion of protein meals because (1) simple proteins, such as gelatin and collagen, did not stimulate levels of SDA attained after consumption of complete protein, (2) incomplete mixtures of amino acids failed to elicit the SDA of a complete mixture, and (3) the inhibition of de novo protein synthesis with the drug cycloheximide caused a more than 70% decrease in SDA. Stomach distension and mechanical digestion of intact prey did not cause measurable SDA.
Collapse
Affiliation(s)
- M D McCue
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 92697-2525, USA.
| | | | | |
Collapse
|
45
|
Pan ZC, Ji X, Lu HL, Ma XM. Influence of food type on specific dynamic action of the Chinese skink Eumeces chinensis. Comp Biochem Physiol A Mol Integr Physiol 2005; 140:151-5. [PMID: 15664324 DOI: 10.1016/j.cbpb.2004.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Revised: 11/18/2004] [Accepted: 11/18/2004] [Indexed: 11/23/2022]
Abstract
We used the Chinese skink (Eumeces chinensis) as an experimental model to study influence of food type on specific dynamic action (SDA) of feeding. Thirty-three adult males collected from a natural population were divided equally into three (one control and two experimental) groups. We starved all skinks at 30 degrees C for 3 days and then provided the experimental skinks with a single meal consisting of either mealworms or meat [the flesh of the bullfrog (Rana catesbeiana)]. Food ingested by skinks of the two experimental groups differed in lipid content and lean dry mass but not in total dry mass and energy. Defecation following feeding occurred slightly earlier in skinks ingesting mealworms (mean=41.7 h) than in those ingesting meat (mean=47.7 h), but the difference was not significant. Analyses of variance (ANOVAs) with repeated measures showed that temporal variation in oxygen consumption over 72 h after feeding was evident in the experimental skinks but not in the control ones. Oxygen consumption was higher in the experimental skinks than in the control ones during the time interval between 4.5 and 36 h after feeding. The peak metabolic rate was greater but occurred later in skinks ingesting meat than in those ingesting mealworms. The estimated amounts of oxygen consumed by mealworm-fed, meat-fed and unfed skinks at 30 degrees C over 72 h after feeding were 356.5, 393.8 and 295.2 mL, respectively. Our results provide a support for the previous prediction that SDA is affected by types of food ingested by animals as skinks ingesting mealworms and meat differed in the time to reach a peak metabolic rate, the level of the peak metabolic rate and the magnitude of the SDA effect.
Collapse
Affiliation(s)
- Zhi-Chong Pan
- Department of Biology, School of Life Sciences and Biotechnology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Hicks JW, Bennett AF. Eat and run: prioritization of oxygen delivery during elevated metabolic states. Respir Physiol Neurobiol 2004; 144:215-24. [PMID: 15556104 DOI: 10.1016/j.resp.2004.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2004] [Indexed: 10/26/2022]
Abstract
The principal function of the cardiopulmonary system is the matching of oxygen and carbon dioxide transport to the metabolic requirements of different tissues. Increased oxygen demands (VO2), for example during physical activity, result in a rapid compensatory increase in cardiac output and redistribution of blood flow to the appropriate skeletal muscles. These cardiovascular changes are matched by suitable ventilatory increments. This matching of cardiopulmonary performance and metabolism during activity has been demonstrated in a number of different taxa, and is universal among vertebrates. In some animals, large increments in aerobic metabolism may also be associated with physiological states other than activity. In particular, VO2 may increase following feeding due to the energy requiring processes associated with prey handling, digestion and ensuing protein synthesis. This large increase in VO2 is termed "specific dynamic action" (SDA). In reptiles, the increase in VO2 during SDA may be 3-40-fold above resting values, peaking 24-36 h following ingestion, and remaining elevated for up to 7 days. In addition to the increased metabolic demands, digestion is associated with secretion of H+ into the stomach, resulting in a large metabolic alkalosis (alkaline tide) and a near doubling in plasma [HCO3-]. During digestion then, the cardiopulmonary system must meet the simultaneous challenges of an elevated oxygen demand and a pronounced metabolic alkalosis. This paper will compare and contrast the patterns of cardiopulmonary response to similar metabolic increments in these different physiological states (exercise and/or digestion) in a variety of reptiles, including the Burmese python, Python morulus, savannah monitor lizard, Varanus exanthematicus, and American alligator Alligator mississipiensis.
Collapse
Affiliation(s)
- James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
47
|
Dobly A, Martin SAM, Blaney SC, Houlihan DF. Protein growth rate in rainbow trout (Oncorhynchus mykiss) is negatively correlated to liver 20S proteasome activity. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:75-85. [PMID: 14720593 DOI: 10.1016/j.cbpb.2003.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The efficiency with which fish and other animals add and maintain body proteins is a balance between synthesis of proteins and their degradation. In fish that have similar food consumption and protein synthesis rates, a greater ratio of synthesis to degradation would be expected to produce more efficient conversion of food into growth. In addition, we hypothesised that high activities of the proteasome, a major pathway of protein degradation, would be negatively correlated with growth rate. In order to test this hypothesis we maintained rainbow trout for 62 days, during which repeat measurements of food consumption and growth were made. We selected fish for high and low growth efficiencies. Protein degradation was estimated from the difference between protein synthesis (determined by 15N flux) and protein growth. We found that protein synthesis rates were significantly higher in the low growth efficiency group, as were estimated protein degradation rates. In another group of fish that also did not differ in food consumption, the activity of the proteasome in the liver, but not in the muscle, was negatively correlated with growth rates. These two experiments showed that high proteasome activity is linked to decreased growth efficiency.
Collapse
Affiliation(s)
- A Dobly
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | | | | | | |
Collapse
|
48
|
Langenbuch M, Pörtner HO. Energy budget of hepatocytes from Antarctic fish (Pachycara brachycephalumandLepidonotothen kempi) as a function of ambient CO2: pH-dependent limitations of cellular protein biosynthesis? J Exp Biol 2003; 206:3895-903. [PMID: 14555731 DOI: 10.1242/jeb.00620] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYScenarios of rising CO2 concentration in surface waters due to atmospheric accumulation of anthropogenic CO2, or in the deep sea due to anticipated industrial dumping of CO2, suggest that hypercapnia (elevated partial pressure of CO2) will become a general stress factor in aquatic environments, with largely unknown effects on species survival and well being, especially in cold and deep waters. For an analysis of CO2 effects at the cellular level, isolated hepatocytes were prepared from two representatives of the Antarctic fish fauna, Pachycara brachycephalum and Lepidonotothen kempi. Correlated changes in energy and protein metabolism were investigated by determining the rates of oxygen consumption at various levels of PCO2, of intra- and extracellular pH, and after inhibition of protein synthesis by cycloheximide. A decrease in extracellular pH (pHe) from control levels (pHe 7.90) to pHe 6.50 caused a reduction in aerobic metabolic rate of 34-37% under both normocapnic and hypercapnic conditions. Concomitantly, protein biosynthesis was inhibited by about 80%under conditions of severe acidosis in hepatocytes from both species. A parallel drop in intracellular pH probably mediates this effect. In conclusion, the present data indicate that elevated PCO2 may limit the functional integrity of the liver due to a pronounced depression in protein anabolism. This process may contribute to the limits of whole-animal tolerance to raised CO2levels.
Collapse
Affiliation(s)
- M Langenbuch
- Alfred-Wegener-Institut für Polar- und Meeresforschung, Okophysiologie und Okotoxikologie, Postfach 120161, D-27515 Bremerhaven, Germany
| | | |
Collapse
|
49
|
Mente E, Legeay A, Houlihan DF, Massabuau JC. Influence of oxygen partial pressures on protein synthesis in feeding crabs. Am J Physiol Regul Integr Comp Physiol 2003; 284:R500-10. [PMID: 12529287 DOI: 10.1152/ajpregu.00193.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many water-breathing animals have a strategy that consists of maintaining low blood PO2 values in a large range of water oxygenation level (4-40 kPa). This study examines the postprandial changes in O2 consumption, arterial blood PO2, and tissue protein synthesis in the shore crab Carcinus maenas in normoxic, O2-depleted, and O2-enriched waters to study the effects of this strategy on the O2 consumption and peptide bond formation after feeding. In normoxic water (21 kPa), the arterial PO2 was 1.1 kPa before feeding and 1.2 kPa 24 h later. In water with a PO2 of 3 kPa (arterial PO2 0.6 kPa), postprandial stimulation of protein synthesis and O2 consumption were blocked. The blockade was partial at a water PO2 of 4 kPa (arterial PO2 0.8 kPa). An increase in environmental PO2 (60 kPa, arterial PO2 10 kPa) resulted in an increase in protein synthesis compared with normoxic rates. It is concluded that the arterial PO2 spontaneously set in normoxic Carcinus limits the rates of protein synthesis. The rationale for such a strategy is discussed.
Collapse
Affiliation(s)
- Eleni Mente
- Department of Zoology, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | | | | | | |
Collapse
|
50
|
Nakano K, Iwama G. The 70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: relationship of hsp70 and thermal tolerance. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:79-94. [PMID: 12160874 DOI: 10.1016/s1095-6433(02)00115-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The role that hsp70 plays in influencing thermal tolerance of a whole animal is not clearly understood. We explored this question by examining liver hsp70 response in the tidepool sculpin (Oligocottus maculosus) and fluffy sculpin (O. snyderi), which have distinct distribution patterns in the intertidal zone. The tidepool sculpin is in upper and lower tidepools, while the fluffy sculpin is exclusively in lower tidepools during a low tide. We conducted experiments in order to investigate: (1) habitat water temperatures; (2) upper thermal tolerance limits; (3) the cellular hsp70 response to changes in water temperature in nature; (4) induction temperatures for hepatic hsp70 and hsp70 mRNA; and (5) effects of long-term heat stress on liver hsp70 levels, in these sculpins. Accordingly, we found: (1) the tidepool sculpin was exposed to a wider temperature range in nature; (2) the tidepool sculpin had higher lethal and induction temperatures for hsp70; (3) the liver hsp70 level of the tidepool sculpin was less sensitive to changes in water temperatures; and (4) the tidepool sculpin had higher constitutive hsp70 levels in nature, compared with the fluffy sculpin. From these results, we proposed that the less thermally sensitive tidepool sculpin may enhance its thermal tolerance by having a large pool of cellular hsp70, thus allowing it to inhabit the upper intertidal zone with relatively large and unpredictable fluctuations in environmental variables.
Collapse
Affiliation(s)
- Kazumi Nakano
- Faculty of Agricultural Sciences and AquaNet, The University of British Columbia, Vancouver, B.C., Canada.
| | | |
Collapse
|