1
|
Ho BHT, Spicer BA, Dunstone MA. Action of the Terminal Complement Pathway on Cell Membranes. J Membr Biol 2025:10.1007/s00232-025-00343-6. [PMID: 40122920 DOI: 10.1007/s00232-025-00343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The complement pathway is one of the most ancient elements of the host's innate response and includes a set of protein effectors that rapidly react against pathogens. The late stages of the complement reaction are broadly categorised into two major outcomes. Firstly, C5a receptors, expressed on membranes of host cells, are activated by C5a to generate pro-inflammatory responses. Secondly, target cells are lysed by a hetero-oligomeric pore known as the membrane attack complex (MAC) that punctures the cellular membrane, causing ion and osmotic flux. Generally, several membrane-bound and soluble inhibitors protect the host membrane from complement damage. This includes inhibitors against the MAC, such as clusterin and CD59. This review addresses the most recent molecular and structural insights behind the activation and modulation of the integral membrane proteins, the C5a receptors (C5aR1 and C5aR2), as well as the regulation of MAC assembly. The second aspect of the review focuses on the molecular basis behind inflammatory diseases that are reflective of failure to regulate the terminal complement effectors. Although each arm is unique in its function, both pathways may share similar outcomes in these diseases. As such, the review outlines potential synergy and crosstalk between C5a receptor activation and MAC-mediated cellular responses.
Collapse
Affiliation(s)
- Bill H T Ho
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michelle A Dunstone
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Antibodies Specific to Membrane Proteins Are Effective in Complement-Mediated Killing of Mycoplasma bovis. Infect Immun 2019; 87:IAI.00740-19. [PMID: 31548318 PMCID: PMC6867846 DOI: 10.1128/iai.00740-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
The metabolic inhibition (MI) test is a classic test for the identification of mycoplasmas, used for measuring the growth-inhibiting antibodies directed against acid-producing mycoplasmas, although their mechanism still remains obscure. To determine the major antigens involved in the immune killing of Mycoplasma bovis, we used a pulldown assay with anti-M. bovis antibodies as bait and identified nine major antigens. The metabolic inhibition (MI) test is a classic test for the identification of mycoplasmas, used for measuring the growth-inhibiting antibodies directed against acid-producing mycoplasmas, although their mechanism still remains obscure. To determine the major antigens involved in the immune killing of Mycoplasma bovis, we used a pulldown assay with anti-M. bovis antibodies as bait and identified nine major antigens. Among these antigens, we performed the MI test and determined that the growth of M. bovis could be inhibited effectively in the presence of complement by antibodies against specifically membrane protein P81 or UgpB in the presence of complement. Using a complement killing assay, we demonstrated that M. bovis can be killed directly by complement and that antibody-dependent complement-mediated killing is more effective than that by complement alone. Complement lysis and scanning electron microscopy results revealed M. bovis rupture in the presence of complement. Together, these results suggest that the metabolic inhibition of M. bovis is antibody-dependent complement-mediated killing. This study provides new insights into mycoplasma killing by the complement system and may guide future vaccine development studies for the treatment of mycoplasma infection. Furthermore, our findings also indicate that mycoplasmas may be an appropriate new model for studying the lytic activity of membrane attack complex (MAC).
Collapse
|
3
|
Liu WJ, Li ZH, Chen XC, Zhao XL, Zhong Z, Yang C, Wu HL, An N, Li WY, Liu HF. Blockage of the lysosome-dependent autophagic pathway contributes to complement membrane attack complex-induced podocyte injury in idiopathic membranous nephropathy. Sci Rep 2017; 7:8643. [PMID: 28819100 PMCID: PMC5561110 DOI: 10.1038/s41598-017-07889-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 07/05/2017] [Indexed: 11/21/2022] Open
Abstract
Dysregulation of autophagy-mediated podocyte homeostasis is proposed to play a role in idiopathic membranous nephropathy (IMN). In the present study, autophagic activity and lysosomal alterations were investigated in podocytes of IMN patients and in cultured podocytes exposed to sublytic terminal complement complex, C5b-9. C5b-9 upregulated the number of LC3 positive puncta and the expression of p62 in patient podocytes and in C5b-9 injuried podocyte model. The lysosomal turnover of LC3-II was not influenced, although the BECN1 expression level was upregulated after exposure of podocytes to C5b-9. C5b-9 also caused a significant increase in the number of autophagosomes but not autolysosomes, suggesting that C5b-9 impairs the lysosomal degration of autophagosomes. Moreover, C5b-9 exacerbated the apoptosis of podocytes, which could be mimicked by chloroquine treatment, indicating that C5b-9 triggered podocyte injury, at least partially through inhibiting autophagy. Subsequent studies revealed that C5b-9 triggered lysosomal membrane permeabilization, which likely caused the decrease in enzymatic activity, defective acidification of lysosomes, and suppression of DQ-ovalbumin degradation. Taken together, our results suggest that the lysosomal-dependent autophagic pathway is blocked by C5b-9, which may play a key role in podocyte injury during the development of IMN.
Collapse
Affiliation(s)
- Wei Jing Liu
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.,Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Zhi-Hang Li
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xiao-Cui Chen
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xiao-Lu Zhao
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zhen Zhong
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Chen Yang
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Hong-Luan Wu
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Ning An
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Wei-Yan Li
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Hua-Feng Liu
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
4
|
Antić-Stanković J, Stanković S. THE COMPLEMENT SYSTEM: PATHWAYS OF ACTIVATIONS AND FUNCTION. ACTA MEDICA MEDIANAE 2017. [DOI: 10.5633/amm.2017.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Cook EM, Lindorfer MA, van der Horst H, Oostindie S, Beurskens FJ, Schuurman J, Zent CS, Burack R, Parren PWHI, Taylor RP. Antibodies That Efficiently Form Hexamers upon Antigen Binding Can Induce Complement-Dependent Cytotoxicity under Complement-Limiting Conditions. THE JOURNAL OF IMMUNOLOGY 2016; 197:1762-75. [PMID: 27474078 DOI: 10.4049/jimmunol.1600648] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/28/2016] [Indexed: 11/19/2022]
Abstract
Recently, we demonstrated that IgG Abs can organize into ordered hexamers after binding their cognate Ags expressed on cell surfaces. This process is dependent on Fc:Fc interactions, which promote C1q binding, the first step in classical pathway complement activation. We went on to engineer point mutations that stimulated IgG hexamer formation and complement-dependent cytotoxicity (CDC). The hexamer formation-enhanced (HexaBody) CD20 and CD38 mAbs support faster, more robust CDC than their wild-type counterparts. To further investigate the CDC potential of these mAbs, we used flow cytometry, high-resolution digital imaging, and four-color confocal microscopy to examine their activity against B cell lines and primary chronic lymphocytic leukemia cells in sera depleted of single complement components. We also examined the CDC activity of alemtuzumab (anti-CD52) and mAb W6/32 (anti-HLA), which bind at high density to cells and promote substantial complement activation. Although we observed little CDC for mAb-opsonized cells reacted with sera depleted of early complement components, we were surprised to discover that the Hexabody mAbs, as well as ALM and W6/32, were all quite effective at promoting CDC in sera depleted of individual complement components C6 to C9. However, neutralization studies conducted with an anti-C9 mAb verified that C9 is required for CDC activity against cell lines. These highly effective complement-activating mAbs efficiently focus activated complement components on the cell, including C3b and C9, and promote CDC with a very low threshold of MAC binding, thus providing additional insight into their enhanced efficacy in promoting CDC.
Collapse
Affiliation(s)
- Erika M Cook
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | | | | | | | | | - Clive S Zent
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642
| | - Richard Burack
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642; and
| | - Paul W H I Parren
- Genmab, 3584 CM Utrecht, the Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908;
| |
Collapse
|
6
|
Fu X, Ju J, Lin Z, Xiao W, Li X, Zhuang B, Zhang T, Ma X, Li X, Ma C, Su W, Wang Y, Qin X, Liang S. Target deletion of complement component 9 attenuates antibody-mediated hemolysis and lipopolysaccharide (LPS)-induced acute shock in mice. Sci Rep 2016; 6:30239. [PMID: 27444648 PMCID: PMC4957234 DOI: 10.1038/srep30239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/01/2016] [Indexed: 12/28/2022] Open
Abstract
Terminal complement membrane attack complex (MAC) formation is induced initially by
C5b, followed by the sequential condensation of the C6, C7, C8. Polymerization of C9
to the C5b-8 complex forms the C5b-9 (or MAC). The C5b-9 forms lytic or non lytic
pores in the cell membrane destroys membrane integrity. The biological
functionalities of MAC has been previously investigated by using either the mice
deficient in C5 and C6, or MAC’s regulator CD59. However, there is no
available C9 deficient mice (mC9−/−)
for directly dissecting the role of C5b-9 in the pathogenesis of human diseases.
Further, since C5b-7 and C5b-8 complexes form non lytic pore, it may also plays
biological functionality. To better understand the role of terminal complement
cascades, here we report a successful generation of
mC9−/−. We demonstrated that lack
of C9 attenuates anti-erythrocyte antibody-mediated hemolysis or LPS-induced acute
shock. Further, the rescuing effect on the acute shock correlates with the less
release of IL-1β in
mC9−/−, which is associated with
suppression of MAC-mediated inflammasome activation in
mC9−/−. Taken together, these
results not only confirm the critical role of C5b-9 in complement-mediated hemolysis
and but also highlight the critical role of C5b-9 in inflammasome activation.
Collapse
Affiliation(s)
- Xiaoyan Fu
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Jiyu Ju
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Zhijuan Lin
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Weiling Xiao
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xiaofang Li
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Baoxiang Zhuang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Tingting Zhang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xiaojun Ma
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xiangyu Li
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Chao Ma
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Weiliang Su
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Yuqi Wang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xuebin Qin
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA19140, USA
| | - Shujuan Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| |
Collapse
|
7
|
Suresh R, Chandrasekaran P, Sutterwala FS, Mosser DM. Complement-mediated 'bystander' damage initiates host NLRP3 inflammasome activation. J Cell Sci 2016; 129:1928-39. [PMID: 27006116 DOI: 10.1242/jcs.179291] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
Complement activation has long been associated with inflammation, primarily due to the elaboration of the complement anaphylotoxins C5a and C3a. In this work, we demonstrate that the phagocytosis of complement-opsonized particles promotes host inflammatory responses by a new mechanism that depends on the terminal complement components (C5b-C9). We demonstrate that during the phagocytosis of complement-opsonized particles, the membrane attack complex (MAC) of complement can be transferred from the activating particle to the macrophage plasma membrane by a 'bystander' mechanism. This MAC-mediated bystander damage initiates NLRP3 inflammasome activation, resulting in caspase-1 activation and IL-1β and IL-18 secretion. Inflammasome activation is not induced when macrophages phagocytize unopsonized particles or particles opsonized with serum deficient in one of the terminal complement components. The secretion of IL-1β and IL-18 by macrophages depends on NLRP3, ASC (also known as PYCARD) and caspase-1, as macrophages deficient in any one of these components fail to secrete these cytokines following phagocytosis. The phagocytosis of complement-opsonized particles increases leukocyte recruitment and promotes T helper 17 cell (TH17) biasing. These findings reveal a new mechanism by which complement promotes inflammation and regulates innate and adaptive immunity.
Collapse
Affiliation(s)
- Rahul Suresh
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Prabha Chandrasekaran
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Fayyaz S Sutterwala
- The Inflammation Program, Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
8
|
Kuo HH, Morrell CN, Baldwin WM. Alloantibody induced platelet responses in transplants: potent mediators in small packages. Hum Immunol 2012; 73:1233-8. [PMID: 22789623 PMCID: PMC3496803 DOI: 10.1016/j.humimm.2012.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/11/2012] [Accepted: 06/29/2012] [Indexed: 12/11/2022]
Abstract
The early histological studies of organ allografts noted platelets attached to vascular endothelium. Platelets adhere to vessels before any morphological evidence of endothelial injury. Subsequently, in vitro and in vivo experiments have demonstrated that alloantibodies can induce exocytosis of von Willebrand factor and P-selectin from endothelial cells and attachment of platelets within minutes. Platelets also adhere to and stimulate leukocytes. These interactions are increased by complement activation. After attachment platelets degranulate, releasing preformed mediators. Some chemokines stored together in platelet granules can form heteromers with synergistic functions. Heteromers containing platelet factor 4 (PF4; CXCL4) are specific to platelets and provide insights to unique platelet functions and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Hsiao-Hsuan Kuo
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, New York 14642
| | - William M. Baldwin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
9
|
Bjørge L, Stoiber H, Dierich MP, Meri S. Minimal residual disease in ovarian cancer as a target for complement-mediated mAb immunotherapy. Scand J Immunol 2006; 63:355-64. [PMID: 16640659 DOI: 10.1111/j.1365-3083.2006.01751.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ovarian cancer is potentially well suited for local monoclonal antibody (mAb) immunotherapy, because it remains within the peritoneal cavity for a long period of time before giving rise to distant metastases. At the stage of minimal residual disease, the cells appear to be in a state of dormancy (G(0)) or at least have lower rates of tumour cell proliferation. They should be a promising target for immunotherapy. Here we first examined the cell-cycle expression of CD59 and decay-accelerating factor (DAF; CD55) on four different ovarian carcinoma cell lines, using simultaneous flow cytometric analysis of DNA content or the cell-cycle-specific nuclear proliferation protein Ki67 and CD59 or DAF surface expression. We found that CD59 and DAF are stably expressed throughout the cell cycle. The polyvalent approach to target-independent antigens to improve the efficiency of mAb complement (C)-mediated damages was promising, and tumour cells become sensitive to C damage, when incubated with cross-linked mAb against different tumour-associated antigens. Although, such immune complex-mediated C activation was rather ineffective in killing the cells, it could be potentiated by the addition of blocking mAb against CD59 and DAF. Our results suggest that the activities of intrinsic C regulators must be neutralized to make minimal residual disease a promising target for antibody therapy.
Collapse
Affiliation(s)
- L Bjørge
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, Haukeland University Hospital, Bergen, Norway.
| | | | | | | |
Collapse
|
10
|
Omidvar N, Wang ECY, Brennan P, Longhi MP, Smith RAG, Morgan BP. Expression of glycosylphosphatidylinositol-anchored CD59 on target cells enhances human NK cell-mediated cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2006; 176:2915-23. [PMID: 16493049 PMCID: PMC2843080 DOI: 10.4049/jimmunol.176.5.2915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cell-mediated cytotoxicity of target cells is the result of a balance between the activating and inhibitory signals provided by their respective ligand-receptor interactions. In our current study, we have investigated the significance of CD59 on human target cells in modulating this process. A range of CD59 site-specific Abs were used in NK cytotoxicity blocking studies against the CD59-expressing K562 target cell line. Significantly reduced cytotoxicity was observed in the presence of Abs previously shown to lack blocking capacity for C-mediated lysis. We investigated the consequences for alternative membrane attachment modalities, namely bis-myristoylated-peptidyl (BiMP) and GPI anchoring, on CD59-negative U937 cells. Expression of GPI-anchored CD59 either via transfection or incorporation rendered U937 targets more susceptible to NK cytotoxicity, whereas incorporation of CD59 via a BiMP anchor to similar levels did not alter susceptibility to NK cytotoxicity. Localization of both BiMP- and GPI-anchored CD59 proteins was shown to be within the lipid raft microdomain. A role for the GPI anchor and independence from glycosylation status was confirmed by expression of transmembrane-anchored CD59 or unglycosylated CD59 and by testing in NK cytotoxicity assays. To investigate mechanisms, we compared the signaling capacity of the various forms of expressed and incorporated CD59 following Ab cross-linking in calcium flux assays. GPI-anchored CD59, with or without glycosylation, mediated activation events, whereas CD59 forms lacking the GPI anchor did not. The data show that the increased susceptibility of target cells expressing CD59 to NK cytotoxicity requires GPI anchor-mediating signaling events, likely mediated by interactions between GPI-anchored CD59 on targets and NK receptors.
Collapse
Affiliation(s)
- Nader Omidvar
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Eddie C. Y. Wang
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Paul Brennan
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - M. Paula Longhi
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - B. Paul Morgan
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Address correspondence and reprint requests to Dr. B. Paul Morgan, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, U.K.
| |
Collapse
|
11
|
Abstract
Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. Active and passive Heymann nephritis (HN) in rats are valuable experimental models because their features so closely resemble human MN. In HN, subepithelial immune deposits form in situ as a result of circulating antibodies. Complement activation leads to assembly of C5b-9 on glomerular epithelial cell (GEC) plasma membranes and is essential for sublethal GEC injury and the onset of proteinuria. This review revisits HN and focuses on areas of substantial progress in recent years. The response of the GEC to sublethal C5b-9 attack is not simply due to disruption of the plasma membrane but is due to the activation of specific signaling pathways. These include activation of protein kinases, phospholipases, cyclooxygenases, transcription factors, growth factors, NADPH oxidase, stress proteins, proteinases, and others. Ultimately, these signals impact on cell metabolic pathways and the structure/function of lipids and key proteins in the cytoskeleton and slit-diaphragm. Some signals affect GEC adversely. Thus C5b-9 induces partial dissolution of the actin cytoskeleton. There is a decline in nephrin expression, reduction in F-actin-bound nephrin, and loss of slit-diaphragm integrity. Other signals, such as endoplasmic reticulum stress, may limit complement-induced injury, or promote recovery. The extent of complement activation and GEC injury is dependent, in part, on complement-regulatory proteins, which act at early or late steps within the complement cascade. Identification of key steps in complement activation, the cellular signaling pathways, and the targets will facilitate therapeutic intervention in reversing GEC injury in human MN.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Renal Section, EBRC 504, Boston Univ. Medical Ctr., 650 Albany St., Boston, MA 02118, USA
| | | | | |
Collapse
|
12
|
Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol 2005; 17:1239-48. [PMID: 16091382 DOI: 10.1093/intimm/dxh300] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The membrane attack complex (MAC) of the complement system is causing membrane damage and cell death. For protection, cells have adopted several resistance mechanisms, including removal of the membrane-inserted MAC by vesiculation. To identify proteins involved in MAC vesiculation, extracellular proteins released from K562 cells in response to treatment with sub-lytic complement were separated by acrylamide gel electrophoresis and protein bands were extracted, digested into peptides and the peptides were analyzed by mass spectrometry. A 75-kDa protein that was abundant in the supernatant of complement-treated cells was identified as mortalin/GRP75. Analysis by western blotting demonstrated that as early as 5 min after exposure to sub-lytic doses of complement, mortalin was released from K562 cells. Mortalin was released after complete activation of the complement system and formation of C5b-8, and even more so when C5b-9 was formed. Other pore formers, such as streptolysin O and melittin, did not induce release of mortalin. As shown, mortalin can bind to complement C8 and C9 and is shed in vesicles containing C9 and complement MACs. Anti-mortalin antibodies reduced mortalin release from complement-treated cells and elevated the extent of cell death by complement. Inhibitors of protein kinase C and extracellular signal-regulated protein kinase also prevented mortalin release from complement-activated cells. These results suggest that mortalin/GRP75 promotes the shedding of membrane vesicles loaded with complement MAC and protects cells from complement-mediated lysis.
Collapse
Affiliation(s)
- David Pilzer
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
13
|
Cybulsky AV, Takano T, Papillon J, Bijian K, Guillemette J. Activation of the extracellular signal-regulated kinase by complement C5b-9. Am J Physiol Renal Physiol 2005; 289:F593-603. [PMID: 15855657 DOI: 10.1152/ajprenal.00066.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Extracellular signals may be transmitted to nuclear or cytoplasmic effectors via the mitogen-activated protein kinases. In the passive Heymann nephritis (PHN) model of membranous nephropathy, complement C5b-9 induces glomerular epithelial cell (GEC) injury, proteinuria, and activation of phospholipases and protein kinases. This study addresses the complement-mediated activation of the extracellular signal-regulated kinase (ERK). C5b-9 induced ERK threonine202/tyrosine204 phosphorylation (which correlates with activation) in GEC in culture and PHN in vivo. Expression of a dominant-inhibitory mutant of Ras reduced complement-mediated activation of ERK, but activation was not affected significantly by downregulation of protein kinase C. Complement-induced ERK activation resulted in phosphorylation of cytosolic phospholipase A2 and was, in part, responsible for phosphorylation of mitogen-activated protein kinase-associated protein kinase-2, but did not induce phosphorylation of the transcription factor, Elk-1. Activation of ERK was attenuated by drugs that disassemble the actin cytoskeleton (cytochalasin D, latrunculin B), and these compounds interfered with the activation of ERK by mitogen-activated protein kinase kinase (MEK). Overexpression of a constitutively active RhoA as well as inhibition of Rho-associated kinase blocked complement-mediated ERK activation. Complement cytotoxicity was enhanced after disassembly of the actin cytoskeleton but was unaffected after inhibition of complement-induced ERK activation. However, complement cytotoxicity was enhanced in GEC that stably express constitutively active MEK. Thus complement-induced ERK activation depends on cytoskeletal remodelling and affects the regulation of distinct downstream substrates, while chronic, constitutive ERK activation exacerbates complement-mediated GEC injury.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
14
|
Bjørge L, Hakulinen J, Vintermyr OK, Jarva H, Jensen TS, Iversen OE, Meri S. Ascitic complement system in ovarian cancer. Br J Cancer 2005; 92:895-905. [PMID: 15726105 PMCID: PMC2361909 DOI: 10.1038/sj.bjc.6602334] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ovarian cancer spreads intraperitoneally and forms fluid, whereby the diagnosis and therapy often become delayed. As the complement (C) system may provide a cytotoxic effector arm for both immunological surveillance and mAb-therapy, we have characterised the C system in the intraperitoneal ascitic fluid (AF) from ovarian cancer patients. Most of the AF samples showed alternative and classical pathway haemolytic activity. The levels of C3 and C4 were similar to or in the lower normal range when compared to values in normal sera, respectively. However, elevated levels of C3a and soluble C5b-9 suggested C activation in vivo. Malignant cells isolated from the AF samples had surface deposits of C1q and C3 activation products, but not of C5b-9 (the membrane attack complex; MAC). Activation could have become initiated by anti-tumour cell antibodies that were detected in the AFs and/or by changes on tumour cell surfaces. The lack of MAC was probably due to the expression of C membrane regulators CD46, CD55 and CD59 on the tumour cells. Soluble forms of C1 inhibitor, CD59 and CD46, and the alternative pathway inhibitors factor H and FHL-1 were present in the AF at concentrations higher than in serum samples. Despite the presence of soluble C inhibitors it was possible to use AF as a C source in antibody-initiated killing of ovarian carcinoma cells. These results demonstrate that although the ovarian ascitic C system fails as an effective immunological surveillance mechanism, it could be utilised as an effector mechanism in therapy with intraperitoneally administrated mAbs, especially if the intrinsic C regulators are neutralised.
Collapse
Affiliation(s)
- L Bjørge
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, FIN-00014 Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Xu C, Jung M, Burkhardt M, Stephan C, Schnorr D, Loening S, Jung K, Dietel M, Kristiansen G. Increased CD59 protein expression predicts a PSA relapse in patients after radical prostatectomy. Prostate 2005; 62:224-32. [PMID: 15389793 DOI: 10.1002/pros.20134] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Human protectin (CD59) is a regulator of complement activation that inhibits complement-mediated cell lysis, and thus might confer immune resistance to tumor cells. CD59 expression has been described in a variety of human malignancies, including breast cancer. Since a comprehensive investigation of CD59 expression in prostate cancer has not been conducted yet, we aimed to determine the significance of CD59 expression in prostate cancer. METHODS Eighty-six primary adenocarcinomas of the prostate were immunostained using a monoclonal CD59 antibody (clone MEM-43) and a standard detection system. The immunoreactivity of the tumor was evaluated as low versus high for statistical analysis. Additionally, CD59 mRNA levels were determined by real-time PCR in matched (tumor/normal) microdissected tissues from 26 cases. RESULTS Cytoplasmic CD59 immunoreactivity was found in epithelia of prostate cancer, prostatic intraepithelial neoplasia, benign hyperplasia, atrophic, and normal glands. High rates of CD59 expression were noted in 36% of prostate cancer cases and were significantly associated with tumor pT stage (P = 0.043), Gleason grade (P = 0.013) and earlier biochemical (PSA) relapse in Kaplan-Meier analysis (P = 0.0013). On RNA level, we found an upregulation in 19.2% (five cases), although the general rate of CD59 transcript was significantly lower in tumor tissue (P = 0.03). CONCLUSION CD59 protein is strongly expressed in 36% of adenocarcinomas of the prostate and and is associated with disease progression and adverse patient prognosis.
Collapse
Affiliation(s)
- Chuanliang Xu
- Department of Urology, Charité University Hospital, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cybulsky AV, Takano T, Papillon J, Khadir A, Bijian K, Le Berre L. The actin cytoskeleton facilitates complement-mediated activation of cytosolic phospholipase A2. Am J Physiol Renal Physiol 2003; 286:F466-76. [PMID: 14644750 DOI: 10.1152/ajprenal.00260.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytosolic PLA(2)-alpha (cPLA(2)) and metabolites of arachidonic acid (AA) are key mediators of complement-dependent glomerular epithelial cell (GEC) injury. Assembly of C5b-9 increases cytosolic Ca(2+) concentration and results in transactivation of receptor tyrosine kinases and activation of PLC-gamma 1 and the 1,2-diacylglycerol (DAG)-PKC pathway. Ca(2+) and PKC are essential for membrane association and increased catalytic activity of cPLA(2). This study addresses the role of the actin cytoskeleton in cPLA(2) activation. Depolymerization of F-actin by cytochalasin D or latrunculin B reduced complement-dependent [(3)H]AA release, as well as the complement-induced increase in cPLA(2) activity. These effects were due to inhibition of [(3)H]DAG production and PKC activation, implying interference with PLC. Complement-dependent [(3)H]AA release was also reduced by jasplakinolide, a compound that stabilizes F-actin and organizes actin filaments at the cell periphery, and calyculin A, which induces condensation of actin filaments at the plasma membrane. The latter drugs did not affect [(3)H]DAG production, suggesting their inhibitory actions were downstream of PKC. Neither cytochalasin D, latrunculin B, nor calyculin A affected association of cPLA(2) with microsomal membranes, and cytochalasin D and latrunculin B did not alter the localization of the endoplasmic reticulum. Stable transfection of constitutively active RhoA induced formation of stress fibers, stabilized F-actin, and attenuated the complement-induced increase in [(3)H]AA. Thus in GEC, cPLA(2) activation is dependent, in part, on actin remodeling. By regulating complement-mediated activation of cPLA(2), the actin cytoskeleton may contribute to the pathophysiology of GEC injury.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada H3A 1A1.
| | | | | | | | | | | |
Collapse
|
17
|
Zhang J, Gerhardinger C, Lorenzi M. Early complement activation and decreased levels of glycosylphosphatidylinositol-anchored complement inhibitors in human and experimental diabetic retinopathy. Diabetes 2002; 51:3499-504. [PMID: 12453906 DOI: 10.2337/diabetes.51.12.3499] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic retinal microangiopathy is characterized by increased permeability, leukostasis, microthrombosis, and apoptosis of capillary cells, all of which could be caused or compounded by activation of complement. In this study, we observed deposition of C5b-9, the terminal product of complement activation, in the wall of retinal vessels of human eye donors with 9 +/- 3 years of type 2 diabetes, but not in the vessels of age-matched nondiabetic donors. C5b-9 often colocalized with von Willebrand factor in luminal endothelium. C1q and C4, the complement components unique to the classical pathway, were not detected in the diabetic retinas, suggesting that C5b-9 was generated via the alternative pathway, the spontaneous activation of which is regulated by complement inhibitors. The diabetic donors showed a prominent reduction in the retinal levels of CD55 and CD59, the two complement inhibitors linked to the plasma membrane by glycosylphosphatidylinositol anchors, but not in the levels of transmembrane CD46. Similar complement activation in retinal vessels and selective reduction in the levels of retinal CD55 and CD59 were observed in rats with a 10-week duration of streptozotocin-induced diabetes. Thus, diabetes causes defective regulation of complement inhibitors and complement activation that precede most other manifestations of diabetic retinal microangiopathy. These are novel clues for probing how diabetes affects and damages vascular cells.
Collapse
Affiliation(s)
- Jing Zhang
- Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
18
|
Zwaka TP, Manolov D, Ozdemir C, Marx N, Kaya Z, Kochs M, Höher M, Hombach V, Torzewski J. Complement and dilated cardiomyopathy: a role of sublytic terminal complement complex-induced tumor necrosis factor-alpha synthesis in cardiac myocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:449-57. [PMID: 12163370 PMCID: PMC1850743 DOI: 10.1016/s0002-9440(10)64201-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dilated cardiomyopathy is a syndrome characterized by cardiac enlargement and impaired systolic function of the heart. Tumor necrosis factor (TNF)-alpha, a pleiotropic cytokine, seems to play a central role in the progression of dilated cardiomyopathy. Recent data suggest that ongoing inflammation in the myocardium may, in many cases, contribute to the development of disease. Chronic generation of autoantibodies to myocardial antigens or, in some cases, viral infection are pathobiologically involved. Although both antibodies and some viruses activate the complement system, the role of innate immunity in dilated cardiomyopathy has as yet not been investigated systematically. In this study we demonstrate by analysis of myocardial biopsies from 28 patients that C5b-9, the terminal membrane attack complex of complement, accumulates in human myocardium in dilated cardiomyopathy. C5b-9 significantly correlates with immunoglobulin deposition and myocardial expression of TNF-alpha. In vitro, C5b-9 attack on cardiac myocytes induces nuclear factor (NF)-kappaB activation as well as transcription, synthesis, and secretion of TNF-alpha. We conclude that chronic immunoglobulin-mediated complement activation in the myocardium may contribute in part to the progression of dilated cardiomyopathy via C5b-9-induced TNF-alpha expression in cardiac myocytes.
Collapse
Affiliation(s)
- Thomas P Zwaka
- Department of Internal Medicine II-Cardiology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Walev I, Hombach M, Bobkiewicz W, Fenske D, Bhakdi S, Husmann M. Resealing of large transmembrane pores produced by streptolysin O in nucleated cells is accompanied by NF-kappaB activation and downstream events. FASEB J 2002; 16:237-9. [PMID: 11744625 DOI: 10.1096/fj.01-0572fje] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Streptolysin O (SLO), archetype of a cholesterol-binding bacterial cytolysin, forms large pores in the plasma membrane of mammalian cells. We have recently reported that when a limited number of pores are generated in a cell, they can be sealed in a Ca++-dependent process. Here, we show that resealing is followed by the release of IL-6 and IL-8 from keratinocytes and from endothelial cells, both relevant targets for SLO attack. Production of cytokines by these cells was preceded by activation of transcription factor nuclear factor kappaB, which thus emerges as a common denominator of stress responses to various pore-forming agents, including alpha-toxin of Staphylococcus aureus and complement. Furthermore, we show that activation and cytokine release in response to an agent that forms a pore in the plasma membrane do not depend on paracrine effects, because supernatants of cells perforated by SLO did not activate bystander cells. The study provides definitive evidence that a transient transmembrane pore suffices to trigger productive transcriptional activation in a target cell.
Collapse
Affiliation(s)
- Iwan Walev
- Institute of Medical Microbiology, Johannes Gutenberg-University Mainz, D-55101 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Säljö A, Bao F, Hamberger A, Haglid KG, Hansson HA. Exposure to short-lasting impulse noise causes microglial and astroglial cell activation in the adult rat brain. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2001; 8:105-111. [PMID: 11720806 DOI: 10.1016/s0928-4680(01)00067-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to impulse noise, i.e. pressure waves, is above a certain intensity, harmful to auditory function. Intense, short-lasting impulse noise of 198 or 202 dB affects the heavy subunit of neurofilament proteins in neuronal perikarya of the cerebral cortex and hippocampus. There was as well an increased expression of immediate early gene products and induction of neuronal apoptosis. Here, we show that this range of exposure also affects glial cells. We identified microglial cells with an antibody against the complement receptor type 3 (OX-42) and astrocytes with an antibody against the glial fibrillary acidic protein (GFAP). The pattern of damage included microglial activation as early as 2 h after exposure to 202 dB. The activation increased further at 18 h. There was a significant increase of the area occupied by microglial cells in the anterior and posterior hypothalamus and in the lateral septal nucleus. Astrogliosis was observed in the cerebral cortex, the dentate gyrus and in the pyramidal cell layers as well as in white matter of the hippocampus. Both the microglial and astrocytic reactivities remained at 21 days. Exposure to 198 dB, caused similar, but less prominent activation in both cell types.
Collapse
Affiliation(s)
- Annette Säljö
- Departments of Anatomy and Cell Biology, Göteborg University, Box 420, SE 405 30, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
21
|
Monsinjon T, Richard V, Fontaine M. Complement and its implications in cardiac ischemia/reperfusion: strategies to inhibit complement. Fundam Clin Pharmacol 2001; 15:293-306. [PMID: 11903498 DOI: 10.1046/j.1472-8206.2001.00040.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although reperfusion of the ischemic myocardium is an absolute necessity to salvage tissue from eventual death, it is also associated with pathologic changes that represent either an acceleration of processes initiated during ischemia or new pathophysiological changes that were initiated after reperfusion. This so-called "reperfusion injury" is accompanied by a marked inflammatory reaction, which contributes to tissue injury. In addition to the well known role of oxygen free radicals and white blood cells, activation of the complement system probably represents one of the major contributors of the inflammatory reaction upon reperfusion. The complement may be activated through three different pathways: the classical, the alternative, and the lectin pathway. During reperfusion, complement may be activated by exposure to intracellular components such as mitochondrial membranes or intermediate filaments. Two elements of the activated complement contribute directly or indirectly to damages: anaphylatoxins (C3a and C5a) and the membrane attack complex (MAC). C5a, the most potent chemotactic anaphylatoxin, may attract neutrophils to the site of inflammation, leading to superoxide production, while MAC is deposited over endothelial cells and smooth vessel cells, leading to cell injury. Experimental evidence suggests that tissue salvage may be achieved by inhibition of the complement pathway. As the complement is composed of a cascade of proteins, it provides numerous sites for pharmacological interventions during acute myocardial infarction. Although various strategies aimed at modulating the complement system have been tested, the ideal approach probably consists of maintaining the activity of C3 (a central protein of the complement cascade) and inhibiting the later events implicated in ischemia/reperfusion and also in targeting inhibition in a tissue-specific manner.
Collapse
|
22
|
Viedt C, Hänsch GM, Brandes RP, Kübler W, Kreuzer J. The terminal complement complex C5b-9 stimulates interleukin-6 production in human smooth muscle cells through activation of transcription factors NF-kappa B and AP-1. FASEB J 2000; 14:2370-2. [PMID: 11024008 DOI: 10.1096/fj.00-0468fje] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activation of the complement system plays an important role in the pathogenesis of atherosclerosis. The proinflammatory cytokine interleukin (IL)-6 is potentially involved in the progression of the disease. We therefore investigated whether the terminal complement complex C5b-9 affects IL-6 production from vascular smooth-muscle cells (VSMC) and set out to determine the underlying signal transduction pathway. Stimulation of human VSMC with C5b-9 resulted in an increase of IL-6 transcript and production of IL-6 protein. Pretreatment with pertussis toxin or pyrrolidine dithiocarbamate inhibited complement-dependent IL-6 mRNA expression and IL-6 release, suggesting the involvement of Gi-proteins and nuclear factor-kB (NF-kB). C5b-9 also induced formation of reactive oxygen species, which, along with IL-6 release, was inhibited by the antioxidant N-acetylcysteine. C5b-9 activated the redox-sensitive transcription factors NF-kB and activator protein-1 (AP-1), which were both involved in the induction of IL-6 by C5b-9, as demonstrated by cis element double-stranded (decoy) oligonucleotides (ODN). The results demonstrate that activation of the complement system induces IL-6 release from human VSMC by a Gi-dependent pathway involving the generation of oxidative stressand the activation of the redox sensitive transcription factors NF-kB and AP-1. Our data support a new mechanism for the proatherogenic effect of the terminal complement complex.
Collapse
Affiliation(s)
- C Viedt
- Innere Medizin III, Universität Heidelberg, Germany
| | | | | | | | | |
Collapse
|
23
|
Schreck SF, Parker C, Plumb ME, Sodetz JM. Human complement protein C8 gamma. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:199-208. [PMID: 11058761 DOI: 10.1016/s0167-4838(00)00155-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human C8 gamma is a 22 kDa subunit of complement component C8, which is one of five components (C5b, C6, C7, C8, C9) that interact to form the cytolytic membrane attack complex (MAC) of complement. C8 contains three nonidentical subunits (alpha, beta, gamma) that are products of different genes. These subunits are arranged asymmetrically to form a disulfide-linked C8 alpha-gamma dimer that is noncovalently associated with C8 beta. C8 alpha and C8 beta are homologous to C6, C7 and C9 and together these proteins comprise what is referred to as the 'MAC protein family'. By comparison, C8 gamma is distinct in that it belongs to the lipocalin family of small, secreted proteins which have the common ability to bind small hydrophobic ligands. While specific roles have been identified for C8 alpha and C8 beta in the formation and function of the MAC, a function for C8 gamma and the identity of its ligand are unknown. This review summarizes the current status of C8 gamma structure and function and the progress made from efforts to determine its role in the complement system.
Collapse
Affiliation(s)
- S F Schreck
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
24
|
Pathmakanthan S, Hawkey CJ. A lay doctor's guide to the inflammatory process in the gastrointestinal tract. Postgrad Med J 2000; 76:611-7. [PMID: 11009574 PMCID: PMC1741771 DOI: 10.1136/pmj.76.900.611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- S Pathmakanthan
- Division of Gastroenterology, University Hospital, Queens Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
25
|
Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP. Complement components of the innate immune system in health and disease in the CNS. IMMUNOPHARMACOLOGY 2000; 49:171-86. [PMID: 10904116 DOI: 10.1016/s0162-3109(00)80302-1] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The innate immune system and notably the complement (C) system play important roles in host defense to recognise and kill deleterious invaders or toxic entities, but activation at inappropriate sites or to an excessive degree can cause severe tissue damage. C has been implicated as a factor in the exacerbation and propagation of tissue injury in numerous diseases including neurodegenerative disorders. In this article, we review the evidence indicating that brain cells can synthesise a full lytic C system and also express specific C inhibitors (to protect from C activation and C lysis) and C receptors (involved in cell activation, chemotaxis and phagocytosis). We also summarise the mechanisms involved in the antibody-independent activation of the classical pathway of C in Alzheimer's disease, Huntington's disease and Pick's disease. Although the primary role of C activation on a target cell is to induce cell lysis (particularly of neurons), we present evidence indicating that C (C3a, C5a, sublytic level of C5b-9) may also be involved in pro- as well as anti-inflammatory activities. Moreover, we discuss evidence suggesting that local C activation may contribute to tissue remodelling activities during repair in the CNS.
Collapse
Affiliation(s)
- P Gasque
- Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, UK.
| | | | | | | | | |
Collapse
|
26
|
Valeva A, Walev I, Gerber A, Klein J, Palmer M, Bhakdi S. Staphylococcal alpha-toxin: repair of a calcium-impermeable pore in the target cell membrane. Mol Microbiol 2000; 36:467-76. [PMID: 10792732 DOI: 10.1046/j.1365-2958.2000.01865.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcal alpha-toxin forms heptameric pores that render membranes permeable for monovalent cations. The pore is formed by an amphipathic beta-barrel encompassing amino acid residues 118-140 of each subunit of the oligomer. Human fibroblasts are susceptible to alpha-toxin but are able to repair the membrane lesions. Thereby, toxin oligomers remain embedded in the plasma membrane and exposed to the extracellular medium. In this study, we sought to detect structural changes occurring in the pore-forming sequence during lesion repair. Single cysteine substitution mutants were labelled with the environmentally sensitive fluorochrome acrylodan and, after mixing with wild-type toxin, incorporated into hybrid heptamers on fibroblast membranes. Formation of the lipid-inserted beta-barrel was accompanied by characteristic fluorescence emission shifts. After lesion repair, the environment of the residues at the outer surface of the beta-barrel remained unchanged, indicating continued contact with lipids. However, the labelled residues oriented towards the channel lumen underwent a green to blue shift in fluorescence, indicating reduced exposure to water. Pore closure proceeded in the presence of calmodulin inhibitors and of microtubule disruptors; however, it was prevented by cytochalasin D and by inhibitors of lipid metabolism. Our findings reveal the existence of a novel mechanism of membrane repair that may consist in constriction of the inserted proteinaceous pore within the lipid bilayer.
Collapse
Affiliation(s)
- A Valeva
- Institutes of Medical Microbiology and Hygiene, and Pharmacology, University of Mainz, Hochhaus am Augustusplatz, D-55101 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Quigg RJ, He C, Hack BK, Alexander JJ, Morgan BP. Production and functional analysis of rat CD59 and chimeric CD59-Crry as active soluble proteins in Pichia pastoris. Immunology 2000; 99:46-53. [PMID: 10651940 PMCID: PMC2327136 DOI: 10.1046/j.1365-2567.2000.00945.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Crry (CR1-related gene/protein) is a rodent complement regulator that inhibits C3 convertases. CD59 is a conserved protein inhibitor active towards C8 and C9. We have previously produced rat Crry as a recombinant soluble (rs) protein in Pichia pastoris. In this study we produced functionally active rat rsCD59 and a chimeric rsCD59-Crry protein in P. pastoris. The GPI anchor addition site of rat CD59 (Asn-79) was replaced either by a stop codon to produce rsCD59, or with the sequence of the first five short consensus repeats of Crry to produce rsCD59-Crry. Proteins were generated by fermentation and purified by affinity chromatography on an anti-CD59 column. In a standard classical pathway haemolysis assay, all three rs proteins had inhibitory activity, with 50% inhibition at 0.5 microM (rsCrry and rsCD59-Crry) and 4.4 microM (rsCD59). In an assay examining inhibition of C5b-9, in which C5b-7 was first formed, followed by purified C8 and C9, rsCD59 and rsCD59-Crry were active with 50% inhibition at 0.8 microM (rsCD59-Crry) and 1.3 microM (rsCD59). The degree of inhibition was independent of whether the C8 and C9 were of rat or human origin. Therefore, we have produced rsCD59 and rsCD59-Crry in P. pastoris. The rsCD59 retains its inhibitory activity towards C5b-9, while rsCD59-Crry appears to have the combined activities of Crry and CD59. In a haemolytic assay, the inclusion of CD59 to Crry is of no additional benefit to Crry, which may illustrate the overall importance of the C3 convertase step. Yet, inclusion of Crry to CD59 increases the potency of CD59 towards C5b-9.
Collapse
Affiliation(s)
- R J Quigg
- Department of Medicine, Section of Nephrology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
28
|
Plasticity and rigidity in the nervous system. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1064-6000(00)80009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
McGrath Y, Wilkinson GWG, Spiller OB, Morgan BP. Development of Adenovirus Vectors Encoding Rat Complement Regulators for Use in Therapy in Rodent Models of Inflammatory Diseases. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
C activation has been implicated in the pathogenesis of numerous inflammatory human diseases and disease models. A therapy based on C inhibition might therefore be of benefit to reduce inflammation and ameliorate disease. C inhibition in vivo can be accomplished by the delivery of soluble recombinant C regulators either systemically or directly to a target site, but effects are transitory. We have developed a strategy for the efficient delivery of the membrane-bound rat C inhibitors, CD59, Crry, and decay-accelerating factor (DAF), using replication-deficient adenovirus vectors with the intention of treating rat models of disease in which C is implicated. The adenovirus recombinants(RAd), RAdCD59, RAdCrry, and RAdDAF, respectively, have been tested for expression and function of the transgene in vitro. Infection of human fetal foreskin fibroblasts resulted in high levels of expression of each of the rat inhibitors. The constructs were also tested for inhibition of rat C-mediated cell lysis and C3b deposition. In a cell lysis assay, each inhibited to varying degrees of efficiency in the order RAdCD59 = RAdDAF > RAdCrry. In a C3b deposition assay, RAdDAF caused a greater reduction in C3b deposition than RAdCrry and RAdCD59 was ineffective. These agents, individually or in combination, provide the tools for testing the effects of prolonged inhibition of C at a target site on the progress of experimental models of disease.
Collapse
|
30
|
Cybulsky AV, Takano T, Papillon J, McTavish AJ. Complement C5b-9 induces receptor tyrosine kinase transactivation in glomerular epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1701-11. [PMID: 10550326 PMCID: PMC1866958 DOI: 10.1016/s0002-9440(10)65485-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the passive Heymann nephritis (PHN) model of membranous nephropathy, C5b-9 induces glomerular epithelial cell (GEC) injury and proteinuria, which is partially mediated via production of eicosanoids. Using rat GEC in culture, we demonstrated that sublytic C5b-9 induced tyrosine phosphorylation of the epidermal growth factor receptor (EGF-R), Neu, fibroblast growth factor receptor-2, and hepatocyte growth factor receptor. In addition, C5b-9 stimulated increases in tyrosine(204) phosphorylation of extracellular signal-regulated kinase-2 (ERK2), as well as free [(3)H]arachidonic acid (AA) and prostaglandin E(2) (PGE(2)). Phosphorylated EGF-R bound the adaptor protein, Grb2, and the EGF-R-selective tyrphostin, AG1478, blocked the C5b-9-induced ERK2 phosphorylation, [(3)H]AA release, and PGE(2) production by 45 to 65%, supporting a functional role for EGF-R kinase in mediating the activation of these pathways. Glomeruli isolated from rats with PHN demonstrated increases in ERK2 tyrosine(204) phosphorylation and PGE(2) production, as compared with glomeruli from control rats, and these increases were partially inhibited with AG1478. Thus, C5b-9 induces transactivation of receptor tyrosine kinases, in association with ERK2 activation, AA release, and PGE(2) production in cultured GEC and glomerulonephritis in vivo. Transactivated tyrosine kinases may serve as scaffolds for assembly and/or activation of proteins, which then lead to activation of the ERK2 cascade and AA metabolism.
Collapse
Affiliation(s)
- A V Cybulsky
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
31
|
Pasch MC, Bos JD, Daha MR, Asghar SS. Transforming growth factor-beta isoforms regulate the surface expression of membrane cofactor protein (CD46) and CD59 on human keratinocytes [corrected]. Eur J Immunol 1999; 29:100-8. [PMID: 9933091 DOI: 10.1002/(sici)1521-4141(199901)29:01<100::aid-immu100>3.0.co;2-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We studied the regulation of the expression of complement regulatory proteins, membrane cofactor protein (MCP), decay accelerating factor (DAF) and CD59, on human keratinocytes by supernatant of activated mononuclear cells and by some individual cytokines present therein. Cultured keratinocytes expressed MCP, DAF and CD59. Supernatant of activated mononuclear cells and recombinant forms of transforming growth factor (TGF)-beta variants (beta1, beta2 and beta3) up-regulated MCP and CD59 but not DAF. Recombinant IL-1alpha, IL-2, IL-6, TNF-alpha and IFN-gamma had no influence. TGF-beta present in the supernatant was likely responsible for up-regulation of MCP and CD59. A monoclonal anti-TGF-beta antibody, which neutralized TGF-beta1, -beta2 and -beta3, did not inhibit the up-regulation of MCP and CD59 by the supernatant. These results indicated that TGF-beta and an additional factor(s) present in the supernatant may be responsible for up-regulating the expression of MCP and CD59 on keratinocytes; both may be acting non-synergistically.
Collapse
Affiliation(s)
- M C Pasch
- Department of Dermatology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
32
|
|
33
|
|
34
|
Miyake T, Gahara Y, Uwabe KI, Yamada H, Kitamura T. Gene expression of C1q A-chain in the rat facial nucleus after axotomy. Neuropathology 1998. [DOI: 10.1111/j.1440-1789.1998.tb00098.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Valeva A, Walev I, Pinkernell M, Walker B, Bayley H, Palmer M, Bhakdi S. Transmembrane beta-barrel of staphylococcal alpha-toxin forms in sensitive but not in resistant cells. Proc Natl Acad Sci U S A 1997; 94:11607-11. [PMID: 9326657 PMCID: PMC23553 DOI: 10.1073/pnas.94.21.11607] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Staphylococcal alpha-toxin is a 293-residue, single-chain polypeptide that spontaneously assembles into a heptameric pore in target cell membranes. To identify the pore-forming domain, substitution mutants have been produced in which single cysteine residues were introduced throughout the toxin molecule. By attaching the environmentally sensitive dye acrylodan to the sulfhydryl groups, the environment of individual amino acid side chains could be probed. In liposomes, a single 23-amino acid sequence (residues 118-140) was found to move from a polar to a nonpolar environment, indicating that this sequence forms the walls of the pore. However, periodicity in side chain environmental polarity could not be detected in the liposomal system. In the present study, the fluorimetric analyses were extended to physiological target cells. With susceptible cells such as rabbit erythrocytes and human lymphocytes, the 23 central amino acids 118-140 were again found to insert into the membrane; in contrast to the previous study with liposomes, the expected periodicity was now detected. Thus, every other residue in the sequence 126-140 entered a nonpolar environment in a striking display of an amphipathic transmembrane beta-barrel. In contrast, human granulocytes were found to bind alpha-toxin to a similar extent as lymphocytes, but the heptamers forming on these cells failed to insert their pore-forming domain into the membrane. As a consequence, nonfunctional heptamers assembled and the cells remained viable. The data resolve the molecular organization of a pore-forming toxin domain in living cells and reveal that resistant cells can prevent insertion of the functional domain into the bilayer.
Collapse
Affiliation(s)
- A Valeva
- Institute of Medical Microbiology and Hygiene, University of Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Jarvis GA, Li J, Hakulinen J, Brady KA, Nordling S, Dahiya R, Meri S. Expression and function of the complement membrane attack complex inhibitor protectin (CD59) in human prostate cancer. Int J Cancer 1997; 71:1049-55. [PMID: 9185710 DOI: 10.1002/(sici)1097-0215(19970611)71:6<1049::aid-ijc22>3.0.co;2-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protectin (CD59) inhibits homologous complement-mediated cytolysis by preventing formation of the membrane attack complex at the point of insertion and polymerization of C9 into cell membranes. The present study investigated the expression and function of CD59 on human prostatic tumor cells in situ and on 5 human prostate cell lines in vitro originating from either metastatic tumors or benign prostate hypertrophy epithelial cells. Immunohistochemical staining of prostate carcinoma tissue with monoclonal antibody (MAb) MEM43 revealed weak to moderately strong expression of CD59 by prostate glandular epithelial cells. Flow cytometry with MEM43 demonstrated that the 5 prostate cell lines expressed different relative quantities of CD59. Indirect immunofluorescence analysis revealed uniform membrane staining of DU145 and PC3 cell lines with no membranous granularity in the staining pattern. Western immunoblots with MAb BRIC 229 showed that PC3 and DU145 cells express CD59 with a m.w. of 18-25 kDa. Treatment of DU 145 and PC3 cells with phosphatidylinositol-specific phospholipase C caused a significant decrease of CD59 expression indicating that the CD59 expressed by prostate cancer cells is anchored to the cell membrane via a glycosylphosphatidylinositol (GPI) linkage. PC3 and DU145 cells were completely resistant to human complement-mediated cytolysis but became sensitive to killing in the presence of the CD59-neutralizing MAb YTH53.1. We conclude that malignant and benign human prostate cells express CD59 that is GPI-linked to the cell surface and that CD59 may regulate the immunological response to cancerous prostate cells by protecting the cells from the cytolytic activity of complement.
Collapse
Affiliation(s)
- G A Jarvis
- Center for Immunochemistry, VA Medical Center, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Ovarian cancer has features that makes it well-suited for MAb adjuvant immunotherapy. Several of the MAbs used in clinical trials mediate cancer cell destruction by activation of complement (C). In this study, therefore, we examined the ability of ovarian-tumor cells to resist C attack. We found that the C regulators membrane cofactor protein (MCP, CD46) and protectin (CD59) were strongly expressed in the tumor cells in all 28 benign and malignant tumors examined. Decay-accelerating factor (DAF; CD55) was more heterogeneously expressed, and only 75% of the tumors exhibited a moderate amount of DAF in the tumor cells. In adenoma cells, CD59 and DAF were preferentially located apically, while in adenocarcinoma cells they were expressed also at the basolateral cell surface. The ovarian-carcinoma cell lines SK-OV-3, Caov-3, SW626 and PA-1 expressed both the 58- and the 68-kDa isoforms of MCP. DAF was present as a glycosyl-phosphatidylinositol(GPI)-anchored 70-kDa glycoprotein. The surface-expression level of DAF varied, and correlated with the vulnerability of the cells to C-mediated lysis. CD59 was expressed as a GPI-linked 19- to 25-kDa protein exhibiting multiple glycosylation variants. The surface expression of CD59 correlated with the amount of the main 1.9 + 2.1-kb CD59 mRNA transcripts. Neutralization of CD59 with an anti-CD59 MAb significantly enhanced C-mediated killing of the cell lines. Low expression of C regulators on the PA-1 teratocarcinoma cell line was associated with high sensitivity to C lysis. Thus, the expression of C regulators on malignant ovarian cells may constitute a tumor escape mechanism, and is a critical parameter to be examined when MAb therapy is being considered.
Collapse
Affiliation(s)
- L Bjørge
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
38
|
Sadallah S, Schifferli JA, Pascual M. Proteolytic cleavage of leukocyte membrane proteins: lessons from CRI. IMMUNOLOGY TODAY 1996; 17:345. [PMID: 8763823 DOI: 10.1016/0167-5699(96)80795-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Liu L, Törnqvist E, Mattsson P, Eriksson NP, Persson JK, Morgan BP, Aldskogius H, Svensson M. Complement and clusterin in the spinal cord dorsal horn and gracile nucleus following sciatic nerve injury in the adult rat. Neuroscience 1995; 68:167-79. [PMID: 7477922 DOI: 10.1016/0306-4522(95)00103-p] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We provide evidence for activation of the complement cascade in the dorsal horn of the spinal cord and in the gracile nucleus in the brainstem following sciatic nerve transection in the adult rat. Immunocytochemical analyses showed immunoreactivity for endogenous immunoglobulin G as shown by immunostaining with F(ab')2 antibodies, as well as complement factors C1, C1q, C3, C3d and C9 in the appropriate central termination areas of the injured sciatic nerve. Results from double labelling immunocytochemistry showed a strong association between immunoglobulin and complement factors on the one hand and reactive microglia on the other. However, some complement immunoreactivity was also found in the neuropil, possibly representing secreted complement. In situ hybridization with an oligonucleotide probe showed a marked increase in C3 messenger RNA, indicating local synthesis of C3 protein. In parallel with activation of complement, there was an increased immunoreactivity for the putative complement inhibitor clusterin, which co-localized with glial fibrillary acidic protein-positive astrocytes. In situ hybridization showed an increased labelling of clusterin messenger RNA. These findings indicate that complement activation and up-regulation of complement inhibitors are prominent central responses to peripheral sensory nerve injury. These responses may therefore be important elements underlying so-called transganglionic degenerative changes in primary sensory axons and terminals.
Collapse
Affiliation(s)
- L Liu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zaltzman AB, Van den Berg CW, Muzykantov VR, Morgan BP. Enhanced complement susceptibility of avidin-biotin-treated human erythrocytes is a consequence of neutralization of the complement regulators CD59 and decay accelerating factor. Biochem J 1995; 307 ( Pt 3):651-6. [PMID: 7537958 PMCID: PMC1136700 DOI: 10.1042/bj3070651] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Biotinylation of erythrocytes (E) followed by avidin cross-linking at specific sites has been suggested as a novel means of drug delivery. Upon avidin cross-linking, biotinylated E become complement-activating and highly susceptible to complement lysis, thus bringing about release of entrapped drug. We set out to examine the mechanisms of this biotin-avidin-induced lytic susceptibility, focusing on the effects of biotinylation and avidin cross-linking on the major E complement regulatory molecules, decay accelerating factor (DAF) and CD59. We demonstrate here that biotinylation of E, which does not render them complement activating, partially inhibits DAF but has little effect on CD59. Subsequent cross-linking with avidin causes complete inhibition of DAF and near complete loss of CD59 activity. Following cross-linking, DAF and CD59 become associated in high molecular mass avidin-containing complexes on the membrane. Incorporation of physiological amounts of CD59 into the membranes of biotinylated and avidin cross-linked E is sufficient to render these cells resistant to complement lysis whereas incorporation of DAF has relatively little effect. An understanding of the molecular mechanisms underlying complement susceptibility of biotin-avidin treated E should allow a rational design of strategies for drug delivery using E or other large, potentially complement-activating carriers.
Collapse
Affiliation(s)
- A B Zaltzman
- Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, Cardiff, U.K
| | | | | | | |
Collapse
|
41
|
Platonov AE, Beloborodov VB, Pavlova LI, Vershinina IV, Käyhty H. Vaccination of patients deficient in a late complement component with tetravalent meningococcal capsular polysaccharide vaccine. Clin Exp Immunol 1995; 100:32-9. [PMID: 7697919 PMCID: PMC1534267 DOI: 10.1111/j.1365-2249.1995.tb03600.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Eighteen patients with late complement component deficiency (LCCD) were immunized with meningococcal capsular polysaccharide vaccine. The LCCD patients had experienced one-to-five meningococcal infections before vaccination, but their immunological and clinical status was normal at the time of immunization. Serum samples from vaccinated complement-sufficient relatives of the LCCD patients and healthy Russian male adults were used as controls. Total and immunoglobulin-specific concentrations of antibodies to group A, C, W135, and Y capsular polysaccharides were determined by enzyme immunoassay in serum samples taken before and 1-108 weeks after immunization. The individual preimmunization and post-immunization antibody concentrations varied greatly. The median antibody concentrations of the LCCD patients increased significantly after vaccination, and were not significantly different from those of the control groups. The antibody concentrations remained elevated for at least 1 year after vaccination. The post-immunization antibody concentrations correlated with the number of meningococcal infections within 10 years before vaccination. In spite of the vaccination two LCCD patients experienced a meningococcal disease 9 and 12 months, respectively, after vaccination.
Collapse
Affiliation(s)
- A E Platonov
- Central Institute of Epidemiology, Moscow, Russia
| | | | | | | | | |
Collapse
|
42
|
Scolding NJ, Compston DA. Growth factors fail to protect rat oligodendrocytes against humoral injury in vitro. Neurosci Lett 1995; 183:75-8. [PMID: 7746491 DOI: 10.1016/0304-3940(94)11118-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CNS growth factors protect neurons and glia against a wide variety of insults in vitro and in vivo by mechanisms which include buffering toxic rises in intracellular calcium. Cytosolic calcium elevation also plays a key role in complement injury, but the possibility that growth factors protect against antibody-mediated complement attack has not hitherto been addressed. In multiple sclerosis, antibodies and complement appear to contribute to the selective targeting and damage of oligodendrocytes and myelin. Here we have investigated the possibility that growth factors active in oligodendrocyte development and differentiation might protect these cells against injury mediated by antibody and complement in vitro. None was found to be protective.
Collapse
Affiliation(s)
- N J Scolding
- University of Cambridge Neurology unit, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
43
|
Abstract
The complement system comprises a family of at least 20 plasma and membrane proteins that interact in a tightly regulated cascade system to destroy invading bacteria and prevent the deposition of immune complexes in the tissues. This brief review addresses the basic mechanisms of complement activation and control and describes the active fragments produced during complement activation. The biological importance of the complement system is amply illustrated in patients with complement deficiencies, who are susceptible to bacterial infections and immune complex diseases. The involvement of complement in other immunological diseases is an expanding area of clinical research, supported by the development of new assays for the identification of complement activation. This area is discussed here with particular reference to neurological diseases. A promising new prospect involves the use of complement inhibitory molecules in therapy of complement-mediated disease and this exciting area is also discussed. Novel physiological roles of complement also are being revealed and new evidence that complement and complement receptors play an important role in reproduction is summarized. It is hoped that this brief overview will convey some of the enthusiasm currently pervading research in this underappreciated area of immunology.
Collapse
Affiliation(s)
- B P Morgan
- Department of Medical Biochemistry, University of Wales College of Medicine, Health Park, Cardiff
| |
Collapse
|
44
|
Morgan BP, Meri S. Membrane proteins that protect against complement lysis. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1994; 15:369-96. [PMID: 8153873 DOI: 10.1007/bf01837366] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- B P Morgan
- Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | |
Collapse
|
45
|
Affiliation(s)
- B P Morgan
- Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, Cardiff, UK
| |
Collapse
|
46
|
Morgan BP, van den Berg CW, Davies EV, Hallett MB, Horejsi V. Cross-linking of CD59 and of other glycosyl phosphatidylinositol-anchored molecules on neutrophils triggers cell activation via tyrosine kinase. Eur J Immunol 1993; 23:2841-50. [PMID: 7693479 DOI: 10.1002/eji.1830231118] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many membrane proteins are attached via a glycosyl phosphatidylinositol (GPI) anchor. Proteins anchored in this way make no direct contact with the interior of the cell, therefore a role in signaling or activation would seem unlikely. Nevertheless, cross-linking of GPI-anchored proteins on human and murine T lymphocytes has been shown to cause calcium transients and cell activation. Our studies address the non-lethal events caused by the membrane attack complex of complement, which include release of Ca2+ from intracellular stores, and have suggested that the GPI-anchored complement inhibitor CD59 may be involved in signaling these events. We here report that cross-linking of CD59 on human neutrophils using specific monoclonal antibody and second antibody caused a rapid increase in intracellular free Ca2+ concentration (Ca2+ transient) due to release of Ca2+ from stores and also caused neutrophil oxidase activation. All antibodies against CD59 tested were effective and cross-linking of any other GPI-anchored protein expressed on neutrophils also initiated an increase in intracellular free Ca2+ concentration, whereas cross-linking of transmembrane proteins caused little or no response. A tyrosine kinase-dependent activation pathway was indicated by the demonstration of tyrosine phosphorylation on cross-linking and by blocking of the Ca2+ transient with the tyrosine kinase inhibitor herbimycin.
Collapse
Affiliation(s)
- B P Morgan
- Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, GB
| | | | | | | | | |
Collapse
|
47
|
Nicholson-Weller A, Halperin JA. Membrane signaling by complement C5b-9, the membrane attack complex. Immunol Res 1993; 12:244-57. [PMID: 8288945 DOI: 10.1007/bf02918256] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The terminal complement complexes C5b-7, C5b-8 and C5b-9 are able to generate nonlethal cell signals. One universal consequence of a cell being targeted by C5b-8 or C5b-9 is an influx of Ca2+. In addition, other second messengers, including cAMP, inositol phosphate intermediates and arachidonate metabolites, are generated by the terminal complement complexes in specific cell types. In vivo, terminal complement complexes have been found in a wide variety of inflammatory processes in humans and in experimental animal models. Some of these models of inflammation putatively induced by terminal complement complexes have been tested in complement-deficient animals, and indeed no inflammation results, which supports the critical role of the terminal complement complexes in the pathogenesis of the lesion.
Collapse
|