1
|
Zheng L, Wang S, Ling M, Lv Z, Lin S. Salmonella enteritidis Hcp distribute in the cytoplasm and regulate TNF signaling pathway in BHK-21 cells. 3 Biotech 2020; 10:301. [PMID: 32550118 PMCID: PMC7292845 DOI: 10.1007/s13205-020-02296-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Hemolysin-coregulated protein (Hcp) of Salmonella enteritidis is known to be a structural and effector protein of the T6SS, but little is known about the role of Hcp in host cells. In this study, Hcp was expressed by plasmid pEGFP-N1-hcp in BHK-21 cells and the results showed that the subcellular localization of Hcp was predominantly in the cytoplasm of BHK-21 cells. When Hcp was over-expressed by transfecting plasmid pCI-neo-hcp in BHK-21 cells and mRNA sequencing was performed to analyze differentially expressed genes, the results showed a change in the expression levels of 307 mRNAs (fold change > 2, and p < 0.01). Amongst these, 125 mRNAs were up-regulated and 182 mRNAs were down-regulated. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that differentially expressed genes were enriched in tumor necrosis factor (TNF) signaling pathway, IL-17 signaling pathway, and cytokine-cytokine receptor interaction. Subsequently, we selected differentially expressed genes of TNF signaling pathway and verified the changes by real-time PCR. The results were consistent with the trend observed for the sequencing results. In conclusion, we demonstrated that Hcp of Salmonella enteritidis caused the change of mRNAs expression of TNF signaling pathway in the cytoplasm of BHK-21 cells.
Collapse
Affiliation(s)
- Liming Zheng
- Anhui Medical University, Hefei, 230032 People’s Republic of China
| | - Shenghua Wang
- Anhui Medical University, Hefei, 230032 People’s Republic of China
| | - Mengyu Ling
- Anhui Medical University, Hefei, 230032 People’s Republic of China
| | - Zhengmei Lv
- Anhui Medical University, Hefei, 230032 People’s Republic of China
| | - Shuai Lin
- Anhui Medical University, Hefei, 230032 People’s Republic of China
| |
Collapse
|
2
|
Patel S, Wall DM, Castillo A, McCormick BA. Caspase-3 cleavage of Salmonella type III secreted effector protein SifA is required for localization of functional domains and bacterial dissemination. Gut Microbes 2019; 10:172-187. [PMID: 30727836 PMCID: PMC6546311 DOI: 10.1080/19490976.2018.1506668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SifA is a bi-functional Type III Secretion System (T3SS) effector protein that plays an important role in Salmonella virulence. The N-terminal domain of SifA binds SifA-Kinesin-Interacting-Protein (SKIP), and via an interaction with kinesin, forms tubular membrane extensions called Sif filaments (Sifs) that emanate from the Salmonella Containing Vacuole (SCV). The C-terminal domain of SifA harbors a WxxxE motif that functions to mimic active host cell GTPases. Taken together, SifA functions in inducing endosomal tubulation in order to maintain the integrity of the SCV and promote bacterial dissemination. Since SifA performs multiple, unrelated functions, the objective of this study was to determine how each functional domain of SifA becomes processed. Our work demonstrates that a linker region containing a caspase-3 cleavage motif separates the two functional domains of SifA. To test the hypothesis that processing of SifA by caspase-3 at this particular site is required for function and proper localization of the effector protein domains, we developed two tracking methods to analyze the intracellular localization of SifA. We first adapted a fluorescent tag called phiLOV that allowed for type-III secretion system (T3SS) mediated delivery of SifA and observation of its intracellular colocalization with caspase-3. Additionally, we created a dual-tagging strategy that permitted tracking of each of the SifA functional domains following caspase-3 cleavage to different subcellular locations. The results of this study reveal that caspase-3 cleavage of SifA is required for the proper localization of functional domains and bacterial dissemination. Considering the importance of these events in Salmonella pathogenesis, we conclude that caspase-3 cleavage of effector proteins is a more broadly applicable effector processing mechanism utilized by Salmonella to invade and persist during infection.
Collapse
Affiliation(s)
- Samir Patel
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA,CONTACT Beth McCormick Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street AS8-2011, Worcester, MA 01605, USA
| | - Daniel M. Wall
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Antonio Castillo
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
3
|
Mercado-Lubo R, Zhang Y, Zhao L, Rossi K, Wu X, Zou Y, Castillo A, Leonard J, Bortell R, Greiner DL, Shultz LD, Han G, McCormick BA. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat Commun 2016; 7:12225. [PMID: 27452236 PMCID: PMC5512628 DOI: 10.1038/ncomms12225] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics.
Collapse
Affiliation(s)
- Regino Mercado-Lubo
- Department of Microbiology and Physiological Systems, 368 Plantation Street, Worcester, Massachusetts 01655, USA
| | - Yuanwei Zhang
- Department of Biochemistry &Molecular Pharmacology, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Liang Zhao
- Department of Biochemistry &Molecular Pharmacology, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Kyle Rossi
- Department of Microbiology and Physiological Systems, 368 Plantation Street, Worcester, Massachusetts 01655, USA
| | - Xiang Wu
- Department of Biochemistry &Molecular Pharmacology, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Yekui Zou
- Department of Biochemistry &Molecular Pharmacology, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Antonio Castillo
- Department of Microbiology and Physiological Systems, 368 Plantation Street, Worcester, Massachusetts 01655, USA
| | - Jack Leonard
- Department of Microbiology and Physiological Systems, 368 Plantation Street, Worcester, Massachusetts 01655, USA
| | - Rita Bortell
- Program in Molecular Medicine, University of Massachusetts Medical School, 55 Lake Avenue North Worcester, Massachusetts 01655, USA
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, 55 Lake Avenue North Worcester, Massachusetts 01655, USA
| | | | - Gang Han
- Department of Biochemistry &Molecular Pharmacology, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, 368 Plantation Street, Worcester, Massachusetts 01655, USA
| |
Collapse
|
4
|
Abstract
Bacteriophage genomes found in a range of bacterial pathogens encode a diverse array of virulence factors ranging from superantigens or pore forming lysins to numerous exotoxins. Recent studies have uncovered an entirely new class of bacterial virulence factors, called effector proteins or effector toxins, which are encoded within phage genomes that reside among several pathovars of Escherichia coli and Salmonella enterica. These effector proteins have multiple domains resulting in proteins that can be multifunctional. The effector proteins encoded within phage genomes are translocated directly from the bacterial cytosol into their eukaryotic target cells by specialized bacterial type three secretion systems (T3SSs). In this review, we will give an overview of the different types of effector proteins encoded within phage genomes and examine their roles in bacterial pathogenesis.
Collapse
Affiliation(s)
- E Fidelma Boyd
- Department of Biological Sciences; University of Delaware; Newark, DE USA
| | | | | |
Collapse
|
5
|
Yoshida Y, Miki T, Ono S, Haneda T, Ito M, Okada N. Functional characterization of the type III secretion ATPase SsaN encoded by Salmonella pathogenicity island 2. PLoS One 2014; 9:e94347. [PMID: 24722491 PMCID: PMC3983159 DOI: 10.1371/journal.pone.0094347] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/12/2014] [Indexed: 02/07/2023] Open
Abstract
A type III secretion system (T3SS) is utilized by a large number of gram-negative bacteria to deliver effectors directly into the cytosol of eukaryotic host cells. One essential component of a T3SS is an ATPase that catalyzes the unfolding of proteins, which is followed by the translocation of effectors through an injectisome. Here we demonstrate a functional role of the ATPase SsaN, a component of Salmonella pathogenicity island 2 T3SS (T3SS-2) in Salmonella enterica serovar Typhimurium. SsaN hydrolyzed ATP in vitro and was essential for T3SS function and Salmonella virulence in vivo. Protein-protein interaction analyses revealed that SsaN interacted with SsaK and SsaQ to form the C ring complex. SsaN and its complex co-localized to the membrane fraction under T3SS-2 inducing conditions. In addition, SsaN bound to Salmonella pathogenicity island 2 (SPI-2) specific chaperones, including SsaE, SseA, SscA, and SscB that facilitated translocator/effector secretion. Using an in vitro chaperone release assay, we demonstrated that SsaN dissociated a chaperone-effector complex, SsaE and SseB, in an ATP-dependent manner. Effector release was dependent on a conserved arginine residue at position 192 of SsaN, and this was essential for its enzymatic activity. These results strongly suggest that the T3SS-2-associated ATPase SsaN contributes to T3SS-2 effector translocation efficiency.
Collapse
Affiliation(s)
- Yukie Yoshida
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Sayaka Ono
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
6
|
Infection of mice by Salmonella enterica serovar Enteritidis involves additional genes that are absent in the genome of serovar Typhimurium. Infect Immun 2011; 80:839-49. [PMID: 22083712 DOI: 10.1128/iai.05497-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica serovar Enteritidis causes a systemic, typhoid-like infection in newly hatched poultry and mice. In the present study, a library of 54,000 transposon mutants of S. Enteritidis phage type 4 (PT4) strain P125109 was screened for mutants deficient in the in vivo colonization of the BALB/c mouse model using a microarray-based negative-selection screening. Mutants in genes known to contribute to systemic infection (e.g., Salmonella pathogenicity island 2 [SPI-2], aro, rfa, rfb, phoP, and phoQ) and enteric infection (e.g., SPI-1 and SPI-5) in this and other Salmonella serovars displayed colonization defects in our assay. In addition, a strong attenuation was observed for mutants in genes and genomic islands that are not present in S. Typhimurium or in most other Salmonella serovars. These genes include a type I restriction/modification system (SEN4290 to SEN4292), the peg fimbrial operon (SEN2144A to SEN2145B), a putative pathogenicity island (SEN1970 to SEN1999), and a type VI secretion system remnant SEN1001, encoding a hypothetical protein containing a lysin motif (LysM) domain associated with peptidoglycan binding. Proliferation defects for mutants in these individual genes and in exemplar genes for each of these clusters were confirmed in competitive infections with wild-type S. Enteritidis. A ΔSEN1001 mutant was defective for survival within RAW264.7 murine macrophages in vitro. Complementation assays directly linked the SEN1001 gene to phenotypes observed in vivo and in vitro. The genes identified here may perform novel virulence functions not characterized in previous Salmonella models.
Collapse
|
7
|
QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. Infect Immun 2009; 78:914-26. [PMID: 20028809 DOI: 10.1128/iai.01038-09] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The autoinducer-3 (AI-3)/epinephrine (Epi)/norepinephrine (NE) interkingdom signaling system mediates chemical communication between bacteria and their mammalian hosts. The three signals are sensed by the QseC histidine kinase (HK) sensor. Salmonella enterica serovar Typhimurium is a pathogen that uses HKs to sense its environment and regulate virulence. Salmonella serovar Typhimurium invades epithelial cells and survives within macrophages. Invasion of epithelial cells is mediated by the type III secretion system (T3SS) encoded in Salmonella pathogenicity island 1 (SPI-1), while macrophage survival and systemic disease are mediated by the T3SS encoded in SPI-2. Here we show that QseC plays an important role in Salmonella serovar Typhimurium pathogenicity. A qseC mutant was impaired in flagellar motility, in invasion of epithelial cells, and in survival within macrophages and was attenuated for systemic infection in 129x1/SvJ mice. QseC acts globally, regulating expression of genes within SPI-1 and SPI-2 in vitro and in vivo (during infection of mice). Additionally, dopamine beta-hydroxylase knockout (Dbh(-)(/)(-)) mice that do not produce Epi or NE showed different susceptibility to Salmonella serovar Typhimurium infection than wild-type mice. These data suggest that the AI-3/Epi/NE signaling system is a key factor during Salmonella serovar Typhimurium pathogenesis in vitro and in vivo. Elucidation of the role of this interkingdom signaling system in Salmonella serovar Typhimurium should contribute to a better understanding of the complex interplay between the pathogen and the host during infection.
Collapse
|
8
|
Bernal-Bayard J, Ramos-Morales F. Salmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin. J Biol Chem 2009; 284:27587-95. [PMID: 19690162 DOI: 10.1074/jbc.m109.010363] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salmonella enterica encodes two virulence-related type III secretion systems in Salmonella pathogenicity islands 1 and 2, respectively. These systems mediate the translocation of protein effectors into the eukaryotic host cell, where they alter cell signaling and manipulate host cell functions. However, the precise role of most effectors remains unknown. Using a genetic screen, we identified the small, reduction/oxidation-regulatory protein thioredoxin as a mammalian binding partner of the Salmonella effector SlrP. The interaction was confirmed by affinity chromatography and coimmunoprecipitation. In vitro, SlrP was able to mediate ubiquitination of ubiquitin and thioredoxin. A Cys residue conserved in other effectors of the same family that also possess E3 ubiquitin ligase activity was essential for this catalytic function. Stable expression of SlrP in HeLa cells resulted in a significant decrease of thioredoxin activity and in an increase of cell death. The physiological significance of these results was strengthened by the finding that Salmonella was able to trigger cell death and inhibit thioredoxin activity in HeLa cells several hours post-infection. This study assigns a functional role to the Salmonella effector SlrP as a binding partner and an E3 ubiquitin ligase for mammalian thioredoxin.
Collapse
Affiliation(s)
- Joaquín Bernal-Bayard
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Sevilla, Spain
| | | |
Collapse
|
9
|
Halatsi K, Oikonomou I, Lambiri M, Mandilara G, Vatopoulos A, Kyriacou A. PCR detection of Salmonella spp. using primers targeting the quorum sensing gene sdiA. FEMS Microbiol Lett 2006; 259:201-7. [PMID: 16734780 DOI: 10.1111/j.1574-6968.2006.00266.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacteria communicate with one another and with their host using chemical signalling molecules. This phenomenon is generally described as quorum sensing. A set of primers for PCR detection of Salmonella spp. has been designed using as target the sdiA gene which encodes a signal receptor of the LuxR family. The PCR product (274 bp) was confirmed by sequencing. A number of 81 non-Salmonella strains (representing 24 different species) were tested and gave negative results, while a total of 101 different serotypes of Salmonella (155 strains) tested positive for the presence of the sdiA gene. The sensitivity and specificity of the sdiA-based PCR assay were also checked in artificially contaminated human faecal samples. In this study, we demonstrate that quorum sensing genes can be successfully exploited as diagnostic markers.
Collapse
Affiliation(s)
- Konstantia Halatsi
- Department of Dietetics and Nutritional Science, Harokopio University, Athens, Greece
| | | | | | | | | | | |
Collapse
|
10
|
Ellingson JLE, Koziczkowski JJ, Anderson JL, Carlson SA, Sharma VK. Rapid PCR detection of enterohemorrhagic Escherichia coli (EHEC) in bovine food products and feces. Mol Cell Probes 2005; 19:213-7. [PMID: 15797823 DOI: 10.1016/j.mcp.2005.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
Although Escherichia coli (E. coli) O157:H7 is a major cause of foodborne illness, other types of E. coli can also cause illness. E. coli that possess the eae gene for attachment and effacing have the potential to cause disease. Many real-time, molecular-based assays have been developed to detect Enterohemorrhagic E. coli (EHEC) including E. coli O157:H7. However, no assay currently exists to detect the eae gene present in E. coli O157:H7 and other EHEC strains with a confirmed positive or negative result in less than 12 h. Raw beef food products (raw ground beef and raw boneless beef) at 25 and 375 g samples and bovine fecal samples at 2 g were inoculated with 10(1), 10(3), 10(4), and 10(5) organisms of E. coli O157:H7 to test the sensitivity of this assay. Fourteen different foodborne bacteria (including E. coli O157:H7) and 19 various E. coli strains, obtained from the United States Department of Agriculture-Agricultural Research Service (USDA-ARS) were tested for specificity. E. coli O157:H7 was detected at the level of 10(1) organisms in both 25 and 375 g samples of raw ground and raw boneless beef products as well as 2 g samples of bovine feces after pre-enrichment and concentration. None of the 14 foodborne bacteria screened for cross-reactivity was detected. All USDA E. coli strains confirmed to contain the eae gene were detected.
Collapse
Affiliation(s)
- Jay L E Ellingson
- Food Safety Services, Division of Laboratory Medicine, Marshfield Clinic Laboratories-Food Safety Services, 1000 North Oak Avenue, Marshfield, WI 54449, USA.
| | | | | | | | | |
Collapse
|
11
|
Locker JK, Kuehn A, Schleich S, Rutter G, Hohenberg H, Wepf R, Griffiths G. Entry of the two infectious forms of vaccinia virus at the plasma membane is signaling-dependent for the IMV but not the EEV. Mol Biol Cell 2000; 11:2497-511. [PMID: 10888684 PMCID: PMC14935 DOI: 10.1091/mbc.11.7.2497] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The simpler of the two infectious forms of vaccinia virus, the intracellular mature virus (IMV) is known to infect cells less efficiently than the extracellular enveloped virus (EEV), which is surrounded by an additional, TGN-derived membrane. We show here that when the IMV binds HeLa cells, it activates a signaling cascade that is regulated by the GTPase rac1 and rhoA, ezrin, and both tyrosine and protein kinase C phosphorylation. These cascades are linked to the formation of actin and ezrin containing protrusions at the plasma membrane that seem to be essential for the entry of IMV cores. The identical cores of the EEV also appear to enter at the cell surface, but surprisingly, without the need for signaling and actin/membrane rearrangements. Thus, in addition to its known role in wrapping the IMV and the formation of intracellular actin comets, the membrane of the EEV seems to have evolved the capacity to enter cells silently, without a need for signaling.
Collapse
Affiliation(s)
- J K Locker
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Two key steps control immune responses in mucosal tissues: the sampling and transepithelial transport of antigens, and their targeting into professional antigen-presenting cells in mucosa-associated lymphoid tissue. Live Salmonella bacteria use strategies that allow them to cross the epithelial barrier of the gut, to survive in antigen-presenting cells where bacterial antigens are processed and presented to the immune cells, and to express adjuvant activity that prevents induction of oral tolerance. Two Salmonella serovars have been used as vaccines or vectors, S. typhimurium in mice and S. typhi in humans. S. typhimurium causes gastroenteritis in a broad host range, including humans, while S. typhi infection is restricted to humans. Attenuated S. typhimurium has been used successfully in mice to induce systemic and mucosal responses against more than 60 heterologous antigens. This review aims to revisit S. typhimurium-based vaccination, as an alternative to S. typhi, with special emphasis on the molecular pathogenesis of S. typhimurium and the host response. We then discuss how such knowledge constitutes the basis for the rational design of novel live mucosal vaccines.
Collapse
Affiliation(s)
- J C Sirard
- Swiss Institute for Experimental Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | | | | |
Collapse
|
13
|
Kawakami T, Kaneko A, Okada N, Imajoh-Ohmi S, Nonaka T, Matsui H, Kawahara K, Danbara H. TTG as the initiation codon of Salmonella slyA, a gene required for survival within macrophages. Microbiol Immunol 1999; 43:351-7. [PMID: 10385201 DOI: 10.1111/j.1348-0421.1999.tb02415.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The slyA gene, which has been implicated in the virulence of Salmonella serovar Typhimurium and its survival in macrophages, is widely distributed among different Salmonella serovars. In this study, we cloned and sequenced the translational initiation region of the slyA gene from nine different serovars and found sequence differences in the previously proposed ATG initiation codon but not in a TTG triplet, another putative initiation codon in the slyA gene. Therefore, we determined the actual translational initiation site of the slyA gene by analyzing slyA genes with defined mutation in either the ATG or TTG sequences in an in vitro translation assay and a quantitative hemolytic assay in Escherichia coli. The replacement of TTG by TTC in the slyA gene significantly reduced both the amount of protein synthesized and the hemolytic activity of a transformed strain of E. coli, while replacement of ATG by ATC had no effect in these assays. In addition, the amino acid sequence analysis of the His-tagged SlyA protein showed that it was identical with the amino acid sequence deduced from the 5' end of the slyA gene with a TTG initiation codon. Our results suggest that TTG serves as the translational initiation codon for the slyA gene of Salmonella.
Collapse
Affiliation(s)
- T Kawakami
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee VT, Schneewind O. Type III secretion machines and the pathogenesis of enteric infections caused by Yersinia and Salmonella spp. Immunol Rev 1999; 168:241-55. [PMID: 10399078 DOI: 10.1111/j.1600-065x.1999.tb01296.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Salmonella and Yersinia spp. infect the intestinal tract of humans. Although these organisms cause fundamentally different diseases, each pathogen relies on type III secretion machines to either inject virulence factors into the cytosol of eukaryotic cells or release toxins into the extracellular milieu. Type III secretion machines are composed of many different subunits and export several polypeptides with unique substrate requirements. During Salmonella pathogenesis, the type III machine encoded by the Salmonella pathogenicity island (SPI)-1 genetic element functions to cause invasion of the intestinal epithelium, whereas another type III machine (SPI-2) is required for survival in macrophages. Yersinia enterocolitica and Yersinia pseudotuberculosis employ type III machines to resist macrophage phagocytosis and to manipulate the host's immune response, thereby colonizing intestinal lymphoid tissues. We describe what is known about the pathogenic functions of virulence factors secreted by type III machines. Furthermore, type III secretion machines may be exploited for the injection of recombinant proteins, a strategy that has already been successfully employed to elicit a cell-mediated immune response.
Collapse
Affiliation(s)
- V T Lee
- Department of Microbiology & Immunology, UCLA School of Medicine, USA
| | | |
Collapse
|
15
|
Goosney DL, Knoechel DG, Finlay BB. Enteropathogenic E. coli, Salmonella, and Shigella: masters of host cell cytoskeletal exploitation. Emerg Infect Dis 1999; 5:216-23. [PMID: 10221873 PMCID: PMC2640686 DOI: 10.3201/eid0502.990205] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bacterial pathogens have evolved numerous strategies to exploit their host's cellular processes so that they can survive and persist. Often, a bacterium must adhere very tightly to the cells and mediate its effects extracellularly, or it must find a way to invade the host's cells and survive intracellularly. In either case, the pathogen hijacks the host's cytoskeleton. The cytoskeleton provides a flexible framework for the cell and is involved in mediating numerous cellular functions, from cell shape and structure to programmed cell death. Altering the host cytoskeleton is crucial for mediating pathogen adherence, invasion, and intracellular locomotion. We highlight recent advances in the pathogenesis of enteropathogenic Escherichia coli, Salmonella Typhimurium, and Shigella flexneri. Each illustrates how bacterial pathogens can exert dramatic effects on the host cytoskeleton.
Collapse
Affiliation(s)
- D L Goosney
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
16
|
Barrett JF, Hoch JA. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob Agents Chemother 1998; 42:1529-36. [PMID: 9660978 PMCID: PMC105640 DOI: 10.1128/aac.42.7.1529] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/1998] [Accepted: 04/09/1998] [Indexed: 02/08/2023] Open
Affiliation(s)
- J F Barrett
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA
| | | |
Collapse
|
17
|
Rittig MG, Jagoda JC, Wilske B, Murgia R, Cinco M, Repp R, Burmester GR, Krause A. Coiling phagocytosis discriminates between different spirochetes and is enhanced by phorbol myristate acetate and granulocyte-macrophage colony-stimulating factor. Infect Immun 1998; 66:627-35. [PMID: 9453619 PMCID: PMC107950 DOI: 10.1128/iai.66.2.627-635.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mechanisms involved in coiling phagocytosis are not yet known, and it is not even clear whether this phenomenon is either an incidental event or a specific response. Therefore, the phagocytic uptake of Borrelia burgdorferi and other spirochetes by human monocytes in vitro was used to investigate the involvement of both sides--microbes and phagocytes--in coiling phagocytosis. As seen with electron microscopy, morphologically similar Borrelia, Leptospira and Treponema strains induced markedly different frequencies of coiling phagocytosis. The monocytes used coiling phagocytosis for both live (motile) and killed (nonmotile) B. burgdorferi, but pseudopod coils were observed neither with fragmented B. burgdorferi nor with cell-free supernatant from B. burgdorferi cultures. Investigation of the relationship of coiling phagocytosis with other pseudopod-based cellular mechanisms revealed that the use of bioreagents that inhibit conventional phagocytosis also inhibited coiling phagocytis but did not affect membrane ruffling. Bioreagents that increase membrane ruffling did not affect phagocytosis of B. burgdorferi, except for granulocyte-macrophage colony-stimulating factor and phorbol myristate acetate, which increased coiling phagocytosis selectively. These results demonstrate that coiling phagocytosis is not induced by microbial motility, viability, or a certain morphology and that it is not a random event. Rather, it is a selective uptake mechanism actively driven by the phagocytes. However, whether coiling phagocytosis represents an independent alternative to conventional phagocytosis or, alternatively, a fault in conventional phagocytosis remains to be determined.
Collapse
Affiliation(s)
- M G Rittig
- Department of Anatomy, University of Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Richter-Dahlfors A, Buchan AM, Finlay BB. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 1997; 186:569-80. [PMID: 9254655 PMCID: PMC2199036 DOI: 10.1084/jem.186.4.569] [Citation(s) in RCA: 384] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Salmonella typhimurium is considered a facultative intracellular pathogen, but its intracellular location in vivo has not been demonstrated conclusively. Here we describe the development of a new method to study the course of the histopathological processes associated with murine salmonellosis using confocal laser scanning microscopy of immunostained sections of mouse liver. Confocal microscopy of 30-micron-thick sections was used to detect bacteria after injection of approximately 100 CFU of S. typhimurium SL1344 intravenously into BALB/c mice, allowing salmonellosis to be studied in the murine model using more realistic small infectious doses. The appearance of bacteria in the mouse liver coincided in time and location with the infiltration of neutrophils in inflammatory foci. At later stages of disease the bacteria colocalized with macrophages and resided intracellularly inside these macrophages. Bacteria were cytotoxic for phagocytic cells, and apoptotic nuclei were detected immunofluorescently, whether phagocytes harbored intracellular bacteria or not. These data argue that Salmonella resides intracellularly inside macrophages in the liver and triggers cell death of phagocytes, processes which are involved in disease. This method is also applicable to other virulence models to examine infections at a cellular and subcellular level in vivo.
Collapse
Affiliation(s)
- A Richter-Dahlfors
- Biotechnology Laboratory, University of British Columbia, Vancouver, B.C., Canada V6T 1Z3
| | | | | |
Collapse
|
19
|
Eckmann L, Stenson WF, Savidge TC, Lowe DC, Barrett KE, Fierer J, Smith JR, Kagnoff MF. Role of intestinal epithelial cells in the host secretory response to infection by invasive bacteria. Bacterial entry induces epithelial prostaglandin h synthase-2 expression and prostaglandin E2 and F2alpha production. J Clin Invest 1997; 100:296-309. [PMID: 9218506 PMCID: PMC508192 DOI: 10.1172/jci119535] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Increased intestinal fluid secretion is a protective host response after enteric infection with invasive bacteria that is initiated within hours after infection, and is mediated by prostaglandin H synthase (PGHS) products in animal models of infection. Intestinal epithelial cells are the first host cells to become infected with invasive bacteria, which enter and pass through these cells to initiate mucosal, and ultimately systemic, infection. The present studies characterized the role of intestinal epithelial cells in the host secretory response after infection with invasive bacteria. Infection of cultured human intestinal epithelial cell lines with invasive bacteria, but not noninvasive bacteria, is shown to induce the expression of one of the rate-limiting enzymes for prostaglandin formation, PGHS-2, and the production of PGE2 and PGF2alpha. Furthermore, increased PGHS-2 expression was observed in intestinal epithelial cells in vivo after infection with invasive bacteria, using a human intestinal xenograft model in SCID mice. In support of the physiologic importance of epithelial PGHS-2 expression, supernatants from bacteria-infected intestinal epithelial cells were shown to increase chloride secretion in an in vitro model using polarized epithelial cells, and this activity was accounted for by PGE2. These studies define a novel autocrine/paracrine function of mediators produced by intestinal epithelial cells in the rapid induction of increased fluid secretion in response to intestinal infection with invasive bacteria.
Collapse
Affiliation(s)
- L Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The genetic determinants that confer upon Salmonella the ability to enter non-phagocytic cells are largely encoded in a pathogenicity island located at centisome 63 of the bacterial chromosome. Molecular genetic analysis has revealed that this region encodes a specialized protein secretion system that mediates the export and/or translocation of putative signaling proteins into the host cell. This protein secretion system, which has been termed type III or contact-dependent, has also been identified in other plant and animal pathogens that have, in common, the ability to interact with eukaryotic host cells in an intimate manner.
Collapse
Affiliation(s)
- C M Collazo
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, 11794-5222, USA
| | | |
Collapse
|
21
|
Collazo CM, Galán JE. Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium. Infect Immun 1996; 64:3524-31. [PMID: 8751894 PMCID: PMC174258 DOI: 10.1128/iai.64.9.3524-3531.1996] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The inv and spa loci of Salmonella typhimurium encode a type III protein secretion system which is essential for the ability of this microorganism to gain access to cultured epithelial cells. These loci are located at centisome 63 in the Salmonella chromosome. We have carried out a functional analysis of several genes of these loci and have found that two exported proteins encoded in this region, InvJ and SpaO, are required for secretion through the invasion-associated type III secretion system. These findings suggest the existence of a hierarchy in the export process, since mutations in other targets of this secretory system have no effect on protein secretion. We have also shown that the spaO, spaP, spaQ, and spaR genes are required for protein secretion and for the ability of S. typhimurium to gain access to cultured epithelial cells. In addition, we investigated the ability of an invJ S. typhimurium mutant strain to present the SipB protein to the bacterial surface and demonstrated that, in contrast to Spa32, its putative Shigella homolog, InvJ is not involved in the surface presentation of the Sip proteins.
Collapse
Affiliation(s)
- C M Collazo
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook 11794-5222, USA
| | | |
Collapse
|
22
|
Kaniga K, Uralil J, Bliska JB, Galán JE. A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol Microbiol 1996; 21:633-41. [PMID: 8866485 DOI: 10.1111/j.1365-2958.1996.tb02571.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A number of bacterial pathogens have evolved sophisticated strategies to subvert host-cell signal-transduction pathways for their own benefit. These bacteria produce and export proteins capable of specific interactions with key mammalian cell regulatory molecules in order to derail the normal functions of the cells. In this study, we describe the identification of a modular effector protein secreted by the bacterial pathogen Salmonella typhimurium that is required for its full display of virulence. Sequence analysis revealed that a carboxy-terminal region of this protein, which we have termed SptP, is homologous to the catalytic domains of protein tyrosine phosphatases. Purified SptP protein efficiently dephosphorylated peptide substrates phosphorylated on tyrosine. An engineered mutant of SptP in which a critical Cys residue in the catalytic domain was changed to Ser was devoid of phosphatase activity, indicating a catalytic mechanism similar to that of other tyrosine phosphatases. In addition, an amino-terminal region of SptP exhibited sequence similarity to the ribosyltransferase exoenzyme S from Pseudomonas aeruginosa and the cytotoxin YopE from Yersinia spp. The modular nature of this effector protein may allow multiple interactions with host-cell signalling functions.
Collapse
Affiliation(s)
- K Kaniga
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook 11794-5222, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Salmonella spp. can enter into non-phagocytic cells, a property that is essential for their pathogenicity. Recently, considerable progress has been made in the understanding of the molecular genetic bases of this process. It is now evident that Salmonella entry functions are largely encoded on a 35-40 kb region of the Salmonella chromosome located at centisome 63. The majority of the loci in this region encode components of a type III or contact-dependent secretion system homologous to those described in a variety of animal and plant-pathogenic bacteria as well as a number of proteins that require this system for their export to the extracellular environment. A somewhat unexpected finding has been the remarkable homology between the Salmonella and Shigella proteins that mediate the entry of these organisms into cultured epithelial cells.
Collapse
Affiliation(s)
- J E Galán
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794-5222, USA.
| |
Collapse
|