1
|
Magnuson MA, Osipovich AB. Ca 2+ signaling and metabolic stress-induced pancreatic β-cell failure. Front Endocrinol (Lausanne) 2024; 15:1412411. [PMID: 39015185 PMCID: PMC11250477 DOI: 10.3389/fendo.2024.1412411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Early in the development of Type 2 diabetes (T2D), metabolic stress brought on by insulin resistance and nutrient overload causes β-cell hyperstimulation. Herein we summarize recent studies that have explored the premise that an increase in the intracellular Ca2+ concentration ([Ca2+]i), brought on by persistent metabolic stimulation of β-cells, causes β-cell dysfunction and failure by adversely affecting β-cell function, structure, and identity. This mini-review builds on several recent reviews that also describe how excess [Ca2+]i impairs β-cell function.
Collapse
Affiliation(s)
- Mark A. Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
2
|
Tan SC, Rajendran R, Bhattamisra SK, Krishnappa P, Davamani F, Chitra E, Ambu S, Furman B, Candasamy M. Protective effects of madecassoside, a triterpenoid from Centella asiatica, against oxidative stress in INS-1E cells. Nat Prod Res 2024:1-8. [PMID: 38340357 DOI: 10.1080/14786419.2024.2315499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Progressive decline in β cell function and reduction in the β cell mass is important in type 2 diabetes. Here, we tested the hypothesis that madecassoside's previously demonstrated in vivo protective effects on the β cell in experimental diabetes were exerted directly. We investigated the effects of madecassoside in protecting a β cell line (INS-1E) against a variety of agents. INS-1E cells were treated with madecassoside in the presence of high glucose (HG), a cytokine mixture, hydrogen peroxide (H2O2), or streptozotocin (STZ). HG, the cytokine mixture, H2O2 and STZ each produced a significant decrease in cell viability; this was significantly reversed by madecassoside. Pre-treatment with madecassoside reduced the number of apoptotic cells induced by HG, the cytokine mixture, H2O2, and STZ, and concentration-dependently reduced ROS production. Madecassoside also significantly enhanced glucose-induced insulin secretion. The results suggest that madecassoside's in vivo effects are exerted directly on the β cell.
Collapse
Affiliation(s)
- Swee Ching Tan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ramkumar Rajendran
- Faculty of Medicine, University of Adelaide, Adelaide, Australia
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, India
| | - Purushotham Krishnappa
- Department of Pathology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Fabian Davamani
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ebenezer Chitra
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Stephen Ambu
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Brian Furman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Centre for Bioactive Molecules & Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
4
|
Kolic J, Sun WG, Johnson JD, Guess N. Amino acid-stimulated insulin secretion: a path forward in type 2 diabetes. Amino Acids 2023; 55:1857-1866. [PMID: 37966501 DOI: 10.1007/s00726-023-03352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
Qualitative and quantitatively appropriate insulin secretion is essential for optimal control of blood glucose. Beta-cells of the pancreas produce and secrete insulin in response to glucose and non-glucose stimuli including amino acids. In this manuscript, we review the literature on amino acid-stimulated insulin secretion in oral and intravenous in vivo studies, in addition to the in vitro literature, and describe areas of consensus and gaps in understanding. We find promising evidence that the synergism of amino acid-stimulated insulin secretion could be exploited to develop novel therapeutics, but that a systematic approach to investigating these lines of evidence is lacking. We highlight evidence that supports the relative preservation of amino acid-stimulated insulin secretion compared to glucose-stimulated insulin secretion in type 2 diabetes, and make the case for the therapeutic potential of amino acids. Finally, we make recommendations for research and describe the potential clinical utility of nutrient-based treatments for type 2 diabetes including remission services.
Collapse
Affiliation(s)
- Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - WenQing Grace Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Nicola Guess
- Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Rd, Oxford, OX2 6GG, UK.
| |
Collapse
|
5
|
Xu L, Cheng F, Bu D, Li X. The Effects of Prolonged Basic Amino Acid Exposures on Mitochondrial Enzyme Gene Expressions, Metabolic Profiling and Insulin Secretions and Syntheses in Rat INS-1 β-Cells. Nutrients 2023; 15:4026. [PMID: 37764809 PMCID: PMC10538135 DOI: 10.3390/nu15184026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In order to investigate the chronic effects of basic amino acids (BAA) on β-cell metabolism and insulin secretion, INS-1 β-cells were randomly assigned to cultures in standard medium (Con), standard medium plus 10 mM L-Arginine (Arg), standard medium plus 10 mM L-Histidine (His) or standard medium plus 10 mM L-Lysine (Lys) for 24 h. Results showed that insulin secretion was decreased by the Arg treatment but was increased by the His treatment relative to the Con group (p < 0.05). Higher BAA concentrations reduced the high glucose-stimulated insulin secretions (p < 0.001), but only Lys treatment increased the intracellular insulin content than that in the Con group (p < 0.05). Compared with Arg and Lys, the His treatment increased the mitochondrial key enzyme gene expressions including Cs, mt-Atp6, mt-Nd4l and Ogdh, and caused a greater change in the metabolites profiling (p < 0.05). The most significant pathways affected by Arg, His and Lys were arginine and proline metabolism, aminoacyl-tRNA biosynthesis and pyrimidine metabolism, respectively. Regression analysis screened 7 genes and 9 metabolites associated with insulin releases during BAA stimulations (p < 0.05). Together, different BAAs exerted dissimilar effects on β-cell metabolism and insulin outputs.
Collapse
Affiliation(s)
- Lianbin Xu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengqi Cheng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Dengpan Bu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiuli Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
6
|
Xu L, Lin X, Li X, Hu Z, Hou Q, Wang Y, Wang Z. Metabolic profilings of rat INS-1 β-cells under changing levels of essential amino acids. Sci Data 2022; 9:299. [PMID: 35701423 PMCID: PMC9198089 DOI: 10.1038/s41597-022-01436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Application of mass spectrometry enables the detection of metabolic differences between organisms with different nutritional settings. Divergence in the metabolic fingerprints of rat pancreatic INS-1 β-cells were systematically captured with regard to ten individual essential amino acid (EAA) availability. A high-resolution tandem mass spectrometry system coupled to liquid chromatography produced a horizontal comparison of metabolic profilings of β-cells with individual EAA elevated to 10 mmol/L by turn or removal individual EAA from the medium one by one. Quality control samples were injected at regular intervals throughout the analytical run to monitor and evaluate the stability of the system. The raw data of samples and reference compounds including study protocols have been deposited in the open metabolomics database MetaboLights to enable efficient reuse of the datasets, such as investigating the difference in metabolic process between diverse EAAs as well as screening and verifying potential metabolites affecting insulin secretion and β-cell function.
Collapse
Affiliation(s)
- Lianbin Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Xueyan Lin
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Xiuli Li
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P. R. China
| | - Zhiyong Hu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Qiuling Hou
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Yun Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Zhonghua Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China.
| |
Collapse
|
7
|
Xu L, Lin X, Li X, Hu Z, Hou Q, Wang Y, Wang Z. Integration of transcriptomics and metabolomics provides metabolic and functional insights into reduced insulin secretion in MIN6 β-cells exposed to deficient and excessive arginine. FASEB J 2022; 36:e22206. [PMID: 35199385 DOI: 10.1096/fj.202101723r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 01/17/2023]
Abstract
Previous work demonstrated that arginine is one of the strongest insulin secretagogues. However, knowledge of the mechanisms linking chronic arginine metabolism with β-cell function and insulin secretion is relatively limited. After preliminary selection of concentration according to the cell proliferation, the MIN6 pancreatic β-cells were randomly assigned to culture in 0.04 mM (low-arginine, LA), 0.4 mM (standard-arginine, SA), or 8 mM arginine (high-arginine, HA) for 24 h. Following the treatment, a combination of transcriptomics and metabolomics, together with a series of molecular biological tests were performed to investigate the responses of β-cells to varied arginine availability. Our results showed that HA treatment reduced the chronic insulin releases, and LA and HA treatments decreased the glucose-stimulated insulin secretions (GSIS) of β-cells relative to the SA group (p < .05). Transcriptomics analysis indicated that LA administration significantly inhibited oxidative phosphorylation and ATP metabolic process but promoted DNA repair and mRNA processing in β-cells, while HA administration affected ammonium ion metabolic process and mRNA export (p < .05). Both LA and HA regulated the expressions of genes involved in DNA replication, cell-cycle phase transition, and response to oxidative stress (p < .05). Protein-protein interaction and transcription factor analyses suggested that Trp53 and Nr4a2 genes may play key roles during arginine stimulation. On the contrary, metabolomics analysis demonstrated that the differentially expressed metabolites (DEM) of MIN6 β-cells induced by LA were mainly enriched in glycerophospholipid metabolism, linoleic acid metabolism, and purine metabolism, while most DEMs between LA vs. SA comparison belonged to amino acid metabolism. When combined the three groups, co-expression analysis suggested that insulin secretions had strong associations with L-pyroglutamic acid, L-glutamate, and creatine concentrations, while intracellular insulin contents were mainly correlated to L-arginine, argininosuccinic acid, and phosphorylcholine. At last, integrated analysis of transcriptomics and metabolomics showed that glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids, and amino acid metabolism were the most relevant pathways in β-cells exposed to abnormal arginine supply. This descriptive bioinformatics analysis suggested that the disturbed carbohydrate, lipid, and amino acid metabolisms, as well as the increased apoptosis and elevated oxidative stress, contributed to the reduced insulin secretion and lower GSIS in β-cells induced by LA or HA treatments, while some underlying mechanisms need to be further explored.
Collapse
Affiliation(s)
- Lianbin Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Xueyan Lin
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Xiuli Li
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Zhiyong Hu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Qiuling Hou
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Yun Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Zhonghua Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| |
Collapse
|
8
|
Janssen JAMJL. Hyperinsulinemia and Its Pivotal Role in Aging, Obesity, Type 2 Diabetes, Cardiovascular Disease and Cancer. Int J Mol Sci 2021; 22:ijms22157797. [PMID: 34360563 PMCID: PMC8345990 DOI: 10.3390/ijms22157797] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
For many years, the dogma has been that insulin resistance precedes the development of hyperinsulinemia. However, recent data suggest a reverse order and place hyperinsulinemia mechanistically upstream of insulin resistance. Genetic background, consumption of the “modern” Western diet and over-nutrition may increase insulin secretion, decrease insulin pulses and/or reduce hepatic insulin clearance, thereby causing hyperinsulinemia. Hyperinsulinemia disturbs the balance of the insulin–GH–IGF axis and shifts the insulin : GH ratio towards insulin and away from GH. This insulin–GH shift promotes energy storage and lipid synthesis and hinders lipid breakdown, resulting in obesity due to higher fat accumulation and lower energy expenditure. Hyperinsulinemia is an important etiological factor in the development of metabolic syndrome, type 2 diabetes, cardiovascular disease, cancer and premature mortality. It has been further hypothesized that nutritionally driven insulin exposure controls the rate of mammalian aging. Interventions that normalize/reduce plasma insulin concentrations might play a key role in the prevention and treatment of age-related decline, obesity, type 2 diabetes, cardiovascular disease and cancer. Caloric restriction, increasing hepatic insulin clearance and maximizing insulin sensitivity are at present the three main strategies available for managing hyperinsulinemia. This may slow down age-related physiological decline and prevent age-related diseases. Drugs that reduce insulin (hyper) secretion, normalize pulsatile insulin secretion and/or increase hepatic insulin clearance may also have the potential to prevent or delay the progression of hyperinsulinemia-mediated diseases. Future research should focus on new strategies to minimize hyperinsulinemia at an early stage, aiming at successfully preventing and treating hyperinsulinemia-mediated diseases.
Collapse
Affiliation(s)
- Joseph A M J L Janssen
- Department of internal Medicine, Division of Endocrinology, Erasmus Medical Center, 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
9
|
Zhou F, Zhang L, Zhu K, Bai M, Zhang Y, Zhu Q, Wang S, Sheng C, Yuan M, Liu Y, Lu J, Shao L, Wang X, Zhou L. SIRT2 ablation inhibits glucose-stimulated insulin secretion through decreasing glycolytic flux. Am J Cancer Res 2021; 11:4825-4838. [PMID: 33754030 PMCID: PMC7978320 DOI: 10.7150/thno.55330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/06/2021] [Indexed: 11/30/2022] Open
Abstract
Rationale: Sirtuins are NAD+-dependent protein deacylases known to have protective effects against age-related diseases such as diabetes, cancer, and neurodegenerative disease. SIRT2 is the only primarily cytoplasmic isoform and its overall role in glucose homeostasis remains uncertain. Methods: SIRT2-knockout (KO) rats were constructed to evaluate the role of SIRT2 in glucose homeostasis. The effect of SIRT2 on β-cell function was detected by investigating the morphology, insulin secretion, and metabolomic state of islets. The deacetylation and stabilization of GKRP in β-cells by SIRT2 were determined by western blot, adenoviral infection, and immunoprecipitation. Results: SIRT2-KO rats exhibited impaired glucose tolerance and glucose-stimulated insulin secretion (GSIS), without change in insulin sensitivity. SIRT2 deficiency or inhibition by AGK2 decreased GSIS in isolated rat islets, with lowered oxygen consumption rate. Adenovirus-mediated overexpression of SIRT2 enhanced insulin secretion from rat islets. Metabolomics analysis revealed a decrease in metabolites of glycolysis and tricarboxylic acid cycle in SIRT2-KO islets compared with control islets. Our study further demonstrated that glucokinase regulatory protein (GKRP), an endogenous inhibitor of glucokinase (GCK), was expressed in rat islets. SIRT2 overexpression deacetylated GKRP in INS-1 β-cells. SIRT2 knockout or inhibition elevated GKRP protein stability in islet β-cells, leading to an increase in the interaction of GKRP and GCK. On the contrary, SIRT2 inhibition promoted the protein degradation of ALDOA, a glycolytic enzyme. Conclusions: SIRT2 ablation inhibits GSIS through blocking GKRP protein degradation and promoting ALDOA protein degradation, resulting in a decrease in glycolytic flux.
Collapse
|
10
|
Gao R, Yang T, Zhang Q. δ-Cells: The Neighborhood Watch in the Islet Community. BIOLOGY 2021; 10:biology10020074. [PMID: 33494193 PMCID: PMC7909827 DOI: 10.3390/biology10020074] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022]
Abstract
Somatostatin-secreting δ-cells have aroused great attention due to their powerful roles in coordination of islet insulin and glucagon secretion and maintenance of glucose homeostasis. δ-cells exhibit neuron-like morphology with projections which enable pan-islet somatostatin paracrine regulation despite their scarcity in the islets. The expression of a range of hormone and neurotransmitter receptors allows δ-cells to integrate paracrine, endocrine, neural and nutritional inputs, and provide rapid and precise feedback modulations on glucagon and insulin secretion from α- and β-cells, respectively. Interestingly, the paracrine tone of δ-cells can be effectively modified in response to factors released by neighboring cells in this interactive communication, such as insulin, urocortin 3 and γ-aminobutyric acid from β-cells, glucagon, glutamate and glucagon-like peptide-1 from α-cells. In the setting of diabetes, defects in δ-cell function lead to suboptimal insulin and glucagon outputs and lift the glycemic set-point. The interaction of δ-cells and non-δ-cells also becomes defective in diabetes, with reduces paracrine feedback to β-cells to exacerbate hyperglycemia or enhanced inhibition of α-cells, disabling counter-regulation, to cause hypoglycemia. Thus, it is possible to restore/optimize islet function in diabetes targeting somatostatin signaling, which could open novel avenues for the development of effective diabetic treatments.
Collapse
Affiliation(s)
- Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK;
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK;
- Correspondence:
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW High-protein intake is commonly recommended to help people manage body weight. However, high-protein intake could have adverse health consequences. Here we review the latest findings concerning the effect of high-protein intake on cardiometabolic health. RECENT FINDINGS Calorie-reduced, high-protein, low-carbohydrate diets lower plasma glucose in people with type 2 diabetes (T2D). However, when carbohydrate intake is not markedly reduced, high-protein intake often does not alter plasma glucose and increases insulin and glucagon concentrations, which are risk factors for T2D and ischemic heart disease. High-protein intake does not alter plasma triglyceride and cholesterol concentrations but promotes atherogenesis in animal models. The effect of high-protein intake on liver fat remains unclear. In population studies, high-protein intake is associated with increased risk for T2D, nonalcoholic fatty liver disease, and possibly cardiovascular diseases. SUMMARY The relationship between protein intake and cardiometabolic health is complex and influenced by concomitant changes in body weight and overall diet composition. Although a high-protein, low-carbohydrate, reduced-energy diet can have beneficial effects on body weight and plasma glucose, habitual high-protein intake, without marked carbohydrate and energy restriction, is associated with increased cardiometabolic disease risk, presumably mediated by the changes in the hormonal milieu after high-protein intake.
Collapse
Affiliation(s)
- Alan Fappi
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
12
|
van Sloun B, Goossens GH, Erdos B, Lenz M, van Riel N, Arts ICW. The Impact of Amino Acids on Postprandial Glucose and Insulin Kinetics in Humans: A Quantitative Overview. Nutrients 2020; 12:E3211. [PMID: 33096658 PMCID: PMC7594055 DOI: 10.3390/nu12103211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022] Open
Abstract
Different amino acids (AAs) may exert distinct effects on postprandial glucose and insulin concentrations. A quantitative comparison of the effects of AAs on glucose and insulin kinetics in humans is currently lacking. PubMed was queried to identify intervention studies reporting glucose and insulin concentrations after acute ingestion and/or intravenous infusion of AAs in healthy adults and those living with obesity and/or type 2 diabetes (T2DM). The systematic literature search identified 55 studies that examined the effects of l-leucine, l-isoleucine, l-alanine, l-glutamine, l-arginine, l-lysine, glycine, l-proline, l-phenylalanine, l-glutamate, branched-chain AAs (i.e., l-leucine, l-isoleucine, and l-valine), and multiple individual l-AAs on glucose and insulin concentrations. Oral ingestion of most individual AAs induced an insulin response, but did not alter glucose concentrations in healthy participants. Specific AAs (i.e., leucine and isoleucine) co-ingested with glucose exerted a synergistic effect on the postprandial insulin response and attenuated the glucose response compared to glucose intake alone in healthy participants. Oral AA ingestion as well as intravenous AA infusion was able to stimulate an insulin response and decrease glucose concentrations in T2DM and obese individuals. The extracted information is publicly available and can serve multiple purposes such as computational modeling.
Collapse
Affiliation(s)
- Bart van Sloun
- TiFN, 6700 AN Wageningen, The Netherlands; (G.H.G.); (B.E.); (I.C.W.A.)
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Gijs H. Goossens
- TiFN, 6700 AN Wageningen, The Netherlands; (G.H.G.); (B.E.); (I.C.W.A.)
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Balazs Erdos
- TiFN, 6700 AN Wageningen, The Netherlands; (G.H.G.); (B.E.); (I.C.W.A.)
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Michael Lenz
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, D 55099 Mainz, Germany;
- Preventive Cardiology and Preventive Medicine-Centre for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, D 55131 Mainz, Germany
| | - Natal van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
| | - Ilja C. W. Arts
- TiFN, 6700 AN Wageningen, The Netherlands; (G.H.G.); (B.E.); (I.C.W.A.)
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
13
|
Chaudhary JK, Mudgal S. Antidiabetic and Hypolipidaemic Action of Finger Millet ( Eleusine coracana) -Enriched Probiotic Fermented Milk: An in vivo Rat Study. Food Technol Biotechnol 2020; 58:192-202. [PMID: 32831571 PMCID: PMC7416116 DOI: 10.17113/ftb.58.02.20.6308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Research background Diabetes is a chronic multi-system disease having long term consequences to the health of people suffering from it. This study investigates the role of finger millet (Eleusine coracana)-enriched probiotic fermented milk in alleviating the diabetic complications in streptozotocin-induced diabetic rats. Experimental approach The probiotic strain used in the study was Lactobacillus helveticus MTCC 5463. Study comprised six groups each containing 6 Sprague Dawley rats: two controls (nondiabetic and diabetic), and four diabetic groups fed finger millet-enriched probiotic fermented milk, probiotic fermented milk, finger millet flour or metformin (standard drug). Samples were administered orally for four weeks, and parameters associated with diabetic disorders were studied. Results and conclusions Oral administration of finger millet-enriched milk significantly (p<0.001) decreased (64.26%) the fasting blood glucose level of diabetic rats compared to metformin (56.43%) and diabetic groups receiving the probiotic fermented milk (18.88%) and finger millet flour (47.14%) after four weeks of treatment. The finger millet-enriched milk significantly ameliorated the diabetic symptoms polyphagia and polydipsia and improved body mass. In diabetic control group, body mass was reduced up to 15.60% at the end of experiment, while in the group receiving the probiotic fermented milk, body mass significantly (p<0.0001) increased by about 5-30%. Significant (p<0.0001) reduction in total cholesterol, triglyceride levels in the groups treated with finger millet flour, finger millet-enriched probiotic fermented milk and probiotic fermented milk was observed compared to diabetic control rats. The probiotic fermented milk enriched with finger millet caused significant (p<0.05) decrease in low-density lipoprotein and very-low-density lipoprotein levels (p<0.0001) and insignificant increase in high-density lipoprotein level. A reversal of altered activities of hepatic marker enzymes aspartate transaminase and alanine transaminase was observed in the group receiving the probiotic milk enriched with finger millet. Histological observations of pancreatic tissues and liver showed that the enriched milk prevents more severe changes in the acinar cells and ameliorated the inflammation and alteration in the liver structure to some extent. Therefore, the finger millet-enriched probiotic fermented milk can be a potential functional food in the management of diabetes. Novelty and scientific contribution This is the only paper reporting about the antidiabetic potential of finger millet-enriched milk fermented using probiotic Lactobacillus helveticus MTCC 5463 and Streptococcus thermophilus MTCC 5460. It also shows the synergistic antidiabetic effect of milk and finger millet used in combination, thus offering a novel functional food.
Collapse
Affiliation(s)
- Jinal Kesharbhai Chaudhary
- Dairy Microbiology Department, SMC College of Dairy Science, Anand Agricultural University, Anand 388 110, Gujarat, India
| | - Sreeja Mudgal
- Dairy Microbiology Department, SMC College of Dairy Science, Anand Agricultural University, Anand 388 110, Gujarat, India
| |
Collapse
|
14
|
Marchetti P, Suleiman M, De Luca C, Baronti W, Bosi E, Tesi M, Marselli L. A direct look at the dysfunction and pathology of the β cells in human type 2 diabetes. Semin Cell Dev Biol 2020; 103:83-93. [PMID: 32417220 DOI: 10.1016/j.semcdb.2020.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/25/2022]
Abstract
β cells uniquely produce and secrete insulin under the control of several, integrated signals, to maintain blood glucose concentrations within a narrow physiological interval. β cell failure is key to the onset and progression of type 2 diabetes, due to impaired function and reduced mass. In this review we focus on several features of human β cell dysfunction and pathology in type 2 diabetes, as revealed by direct assessment of isolated islet traits and examination of pancreatic tissue from organ donors, surgical samples or autoptic specimens. Insulin secretion defects and pathology findings are discussed in relation to some of the major underlying mechanisms, to also provide clues for conceiving better prevention and treatment of type 2 diabetes by targeting the pancreatic β cells.
Collapse
Affiliation(s)
- Piero Marchetti
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy.
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Walter Baronti
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Emanuele Bosi
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| |
Collapse
|
15
|
Yoon CW, Lee NS, Koo KM, Moon S, Goo K, Jung H, Yoon C, Lim HG, Shung KK. Investigation of Ultrasound-Mediated Intracellular Ca 2+ Oscillations in HIT-T15 Pancreatic β-Cell Line. Cells 2020; 9:E1129. [PMID: 32375298 PMCID: PMC7290496 DOI: 10.3390/cells9051129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/17/2022] Open
Abstract
In glucose-stimulated insulin secretion (GSIS) of pancreatic β-cells, the rise of free cytosolic Ca2+ concentration through voltage-gated calcium channels (VGCCs) triggers the exocytosis of insulin-containing granules. Recently, mechanically induced insulin secretion pathways were also reported, which utilize free cytosolic Ca2+ ions as a direct regulator of exocytosis. In this study, we aimed to investigate intracellular Ca2+ responses on the HIT-T15 pancreatic β-cell line upon low-intensity pulsed ultrasound (LIPUS) stimulation and found that ultrasound induces two distinct types of intracellular Ca2+ oscillation, fast-irregular and slow-periodic, from otherwise resting cells. Both Ca2+ patterns depend on the purinergic signaling activated by the rise of extracellular ATP or ADP concentration upon ultrasound stimulation, which facilitates the release through mechanosensitive hemichannels on the plasma membrane. Further study demonstrated that two subtypes of purinergic receptors, P2X and P2Y, are working in a competitive manner depending on the level of glucose in the cell media. The findings can serve as an essential groundwork providing an underlying mechanism for the development of a new therapeutic approach for diabetic conditions with further validation.
Collapse
Affiliation(s)
- Chi Woo Yoon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Nan Sook Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Kweon Mo Koo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Sunho Moon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Kyosuk Goo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Hayong Jung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Changhan Yoon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam 50834, Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
- Department of Creative IT Engineering and Future IT Innovation Lab, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| |
Collapse
|
16
|
Li GH, Chen XF, Liang XY, Lin H, Zhang L, Xu XQ, Wu W, Huang K, Dong GP, Zhang JW, Rose SR, Ullah R, Zeitler P, Fu JF. β-Cell function in obese children and adolescents with metabolic syndrome compared to isolated obesity. Pediatr Diabetes 2019; 20:861-870. [PMID: 31408243 DOI: 10.1111/pedi.12905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To evaluate β-cell function in obese children and adolescents meeting clinical criteria for isolated obesity (iOB), isolated components of dysmetabolism (cMD), or metabolic syndrome (MS), and in obese children and adolescents with normal glucose tolerance (NGT), impaired glucose regulation (IGR), or type 2 diabetes (T2DM). STUDY DESIGN We undertook a prospective study of Han Chinese children and adolescents aged 8-16 years (median 11 ± 1.4) seen in an obesity clinic between May 2013 and 2018. Patients were classified as iOB (53), cMD (139), and MS (139) groups based on clinical criteria. The same patients were also classified as NGT (212), IGR (111), or T2DM (8) based on results of an oral glucose tolerance test (OGTT). The MS patients were classified as NGT [MS](59) and IGR [MS](72) for the further study. All participants also completed a mixed-meal tolerance test (MMTT). RESULTS Compared with the iOB group, the MS group had significantly higher area under the curve of C-peptide up to the 2 hours (AUC CP) (P = .03) and peak C-peptide (P = .03), adjusted for BMI, age and Tanner stage, on MMTT. However, there was no difference in the insulinogenic index (ΔI30/ΔG30) or oral disposition index (oDI) derived from the OGTT among the three groups. However, 52% of participants with MS had IGR, compared to 28% in the cMD group. Compared with the NGT group, the individuals with IGR had significantly lower ΔI30/ΔG30 (P = .001) and oDI (P < .001). Compared with the iOB group, the NGT[MS] had significantly higher AUC CP (P = .004), peak C-peptide (P = .004) and ΔI30/ΔG30 (P = .007) adjusted for age, but no difference in oDI. Compared with the NGT[MS], the IGR[MS] had significantly lower ΔI30/ΔG30 (P = .005) and oDI (P < .001), but the AUC CP and peak C-peptide had no difference. CONCLUSION Although the MS youth have β-cell hyperfunction as a whole, β-cell dysfunction is present in the early stages of dysmetabolism in obese youth with cMD or MS and worsened across the spectrum from iOB to cMD and MS, contributing to development of T2DM.
Collapse
Affiliation(s)
- Guo-Hua Li
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Feng Chen
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Yi Liang
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| | - Hu Lin
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhang
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Qin Xu
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wu
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Huang
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| | - Guan-Ping Dong
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Wei Zhang
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| | - Susan R Rose
- Pediatric Endocrinology and Metabolism, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rahim Ullah
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| | - Phil Zeitler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Jun-Fen Fu
- Department of Endocrinology, The Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Hashimoto T, Mogami H, Tsuriya D, Morita H, Sasaki S, Kumada T, Suzuki Y, Urano T, Oki Y, Suda T. G-protein-coupled receptor 40 agonist GW9508 potentiates glucose-stimulated insulin secretion through activation of protein kinase Cα and ε in INS-1 cells. PLoS One 2019; 14:e0222179. [PMID: 31498851 PMCID: PMC6733457 DOI: 10.1371/journal.pone.0222179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The mechanism by which G-protein-coupled receptor 40 (GPR40) signaling amplifies glucose-stimulated insulin secretion through activation of protein kinase C (PKC) is unknown. We examined whether a GPR40 agonist, GW9508, could stimulate conventional and novel isoforms of PKC at two glucose concentrations (3 mM and 20 mM) in INS-1D cells. METHODS Using epifluorescence microscopy, we monitored relative changes in the cytosolic fluorescence intensity of Fura2 as a marker of change in intracellular Ca2+ ([Ca2+]i) and relative increases in green fluorescent protein (GFP)-tagged myristoylated alanine-rich C kinase substrate (MARCKS-GFP) as a marker of PKC activation in response to GW9508 at 3 mM and 20 mM glucose. To assess the activation of the two PKC isoforms, relative increases in membrane fluorescence intensity of PKCα-GFP and PKCε-GFP were measured by total internal reflection fluorescence microscopy. Specific inhibitors of each PKC isotype were constructed and synthesized as peptide fusions with the third α-helix of the homeodomain of Antennapedia. RESULTS At 3 mM glucose, GW9508 induced sustained MARCKS-GFP translocation to the cytosol, irrespective of changes in [Ca2+]i. At 20 mM glucose, GW9508 induced sustained MARCKS-GFP translocation but also transient translocation that followed sharp increases in [Ca2+]i. Although PKCα translocation was rarely observed, PKCε translocation to the plasma membrane was sustained by GW9508 at 3 mM glucose. At 20 mM glucose, GW9508 induced transient translocation of PKCα and sustained translocation as well as transient translocation of PKCε. While the inhibitors (75 μM) of each PKC isotype reduced GW9508-potentiated, glucose-stimulated insulin secretion in INS-1D cells, the PKCε inhibitor had a more potent effect. CONCLUSION GW9508 activated PKCε but not PKCα at a substimulatory concentration of glucose. Both PKC isotypes were activated at a stimulatory concentration of glucose and contributed to glucose-stimulated insulin secretion in insulin-producing cells.
Collapse
Affiliation(s)
- Takuya Hashimoto
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
- * E-mail:
| | - Hideo Mogami
- Department of Health and Nutrition, Tokoha University, Shizuoka, Japan
| | - Daisuke Tsuriya
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hiroshi Morita
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shigekazu Sasaki
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tatsuro Kumada
- Department of Occupational Therapy, Tokoha University, Shizuoka, Japan
| | - Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yutaka Oki
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Family and Community Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takafumi Suda
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
18
|
Liu Y, Han J, Zhou Z, Li D. Paeoniflorin protects pancreatic β cells from STZ-induced damage through inhibition of the p38 MAPK and JNK signaling pathways. Eur J Pharmacol 2019; 853:18-24. [DOI: 10.1016/j.ejphar.2019.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022]
|
19
|
Zhang Y, Zhou F, Bai M, Liu Y, Zhang L, Zhu Q, Bi Y, Ning G, Zhou L, Wang X. The pivotal role of protein acetylation in linking glucose and fatty acid metabolism to β-cell function. Cell Death Dis 2019; 10:66. [PMID: 30683850 PMCID: PMC6347623 DOI: 10.1038/s41419-019-1349-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/16/2023]
Abstract
Protein acetylation has a crucial role in energy metabolism. Here we performed the first large-scale profiling of acetylome in rat islets, showing that almost all enzymes in core metabolic pathways related to insulin secretion were acetylated. Label-free quantitative acetylome of islets in response to high glucose revealed hyperacetylation of enzymes involved in fatty acid β-oxidation (FAO), including trifunctional enzyme subunit alpha (ECHA). Acetylation decreased the protein stability of ECHA and its ability to promote FAO. The overexpression of SIRT3, a major mitochondrial deacetylase, prevented the degradation of ECHA via decreasing its acetylation level in β-cells. SIRT3 expression was upregulated in rat islets upon exposure to low glucose or fasting. SIRT3 overexpression in islets markedly decreased palmitate-potentiated insulin secretion, whereas islets from SIRT3 knockout mice secreted more insulin, with an opposite action on FAO. ECHA overexpression partially reversed SIRT3 deficiency-elicited insulin hypersecretion. Our study highlights the potential role of protein acetylation in insulin secretion.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.,Center for Reproductive Medicine, Shandong University, Jinan, 250000, China.,Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, Jinan, 250000, China
| | - Feiye Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Mengyao Bai
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yun Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Linlin Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Qin Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Libin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
20
|
Gorjao R, Dos Santos CMM, Serdan TDA, Diniz VLS, Alba-Loureiro TC, Cury-Boaventura MF, Hatanaka E, Levada-Pires AC, Sato FT, Pithon-Curi TC, Fernandes LC, Curi R, Hirabara SM. New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacol Ther 2018; 196:117-134. [PMID: 30521881 DOI: 10.1016/j.pharmthera.2018.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer cachexia is a multifactorial syndrome that develops during malignant tumor growth. Changes in plasma levels of several hormones and inflammatory factors result in an intense catabolic state, decreased activity of anabolic pathways, anorexia, and marked weight loss, leading to cachexia development and/or accentuation. Inflammatory mediators appear to be related to the control of a highly regulated process of muscle protein degradation that accelerates the process of cachexia. Several mediators have been postulated to participate in this process, including TNF-α, myostatin, and activated protein degradation pathways. Some interventional therapies have been proposed, including nutritional (dietary, omega-3 fatty acid supplementation), hormonal (insulin), pharmacological (clenbuterol), and nonpharmacological (physical exercise) therapies. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid, are recognized for their anti-inflammatory properties and have been used in therapeutic approaches to treat or attenuate cancer cachexia. In this review, we discuss recent findings on cellular and molecular mechanisms involved in inflammation in the cancer cachexia syndrome and the effectiveness of n-3 PUFAs to attenuate or prevent cancer cachexia.
Collapse
Affiliation(s)
- Renata Gorjao
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | | | | | | | | | - Elaine Hatanaka
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Fábio Takeo Sato
- Institute of Biology, State University of Campinas, Campinas, Brazil; School of Biomedical Sciences, Monash University, Melbourne, Australia
| | | | | | - Rui Curi
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
21
|
Burg AR, Tse HM. Redox-Sensitive Innate Immune Pathways During Macrophage Activation in Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1373-1398. [PMID: 29037052 PMCID: PMC6166692 DOI: 10.1089/ars.2017.7243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Type 1 diabetes (T1D) is an autoimmune disease resulting in β-cell destruction mediated by islet-infiltrating leukocytes. The role of oxidative stress in human and murine models of T1D is highly significant as these noxious molecules contribute to diabetic complications and β-cell lysis, but their direct impact on dysregulated autoimmune responses is highly understudied. Pro-inflammatory macrophages play a vital role in the initiation and effector phases of T1D by producing free radicals and pro-inflammatory cytokines to facilitate β-cell destruction and to present antigen to autoreactive T cells. Recent Advances: Redox modulation of macrophage functions may play critical roles in autoimmunity. These include enhancing pro-inflammatory innate immune signaling pathways in response to environmental triggers, enforcing an M1 macrophage differentiation program, controlling antigen processing, and altering peptide recognition by oxidative post-translational modification. Therefore, an oxidative environment may act on multiple macrophage functions to orchestrate T1D pathogenesis. CRITICAL ISSUES Mechanisms involved in the initiation of T1D remain unclear, making preventive and early therapeutics difficult to develop. Although many of these advances in the redox regulation of macrophages are in their infancy, they provide insight into how oxidative stress aids in the precipitating event of autoimmune activation. FUTURE DIRECTIONS Future studies should be aimed at mechanistically determining which redox-regulated macrophage functions are pertinent in T1D pathogenesis, as well as at investigating potential targetable therapeutics to halt and/or dampen innate immune activation in T1D.
Collapse
Affiliation(s)
- Ashley R Burg
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
22
|
Xu L, Lin X, White RR, Hanigan MD, Hu Z, Hou Q, Wang Y, Wang Z. Plasma and Pancreas Islet Hormone Concentrations in Lactating Rats Are Associated with Dietary Protein Amounts. J Nutr 2018; 148:364-372. [PMID: 29546314 DOI: 10.1093/jn/nxx068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/12/2017] [Indexed: 01/05/2023] Open
Abstract
Background Circulating amino acid (AA) and nitric oxide (NO) concentrations and hepatic gluconeogenesis are affected by previous protein intake. However, information about their relations and islet hormone responses is limited. Objective This study investigated the associations between islet hormone concentrations with circulating AA and NO concentrations as well as with hepatic gluconeogenesis in lactating rats. Methods At delivery, 18 Wistar rats aged 14 wk were assigned either to low-protein (LP; 9% protein), standard-protein (SP; 21% protein), or high-protein (HP; 35% protein) diets for 15 d in groups of 6 pups/dam. Circulating AA and NO concentrations, circulating and pancreas islet hormone concentrations, and the activities and gene expressions of hepatic phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were measured at the end of treatment. Results Circulating insulin and glucagon concentrations were greater in the HP than in the LP (25% and 17%, respectively) and SP (37% and 31%) diet groups, whereas compared with the SP group, pancreatic concentrations were lower in the LP (32% and 49%) and HP (34% and 46%) groups (P < 0.01). Hepatic PEPCK and G6Pase activities in the HP group were greater than those in the SP (15% and 15%) and LP (8% and 19%) groups (P < 0.05). In all groups, plasma NO concentrations were correlated negatively to circulating insulin (r = -0.77, P = 0.0003) and positively to pancreas insulin and glucagon concentrations and the insulin-to-glucagon ratio (r = 0.50-0.63; P < 0.05). Some circulating AAs correlated positively to circulating insulin and pancreas insulin and glucagon (r = 0.50-0.82, P < 0.05) but negatively to circulating glucagon (r = -0.53-0.68, P < 0.05). Conclusion Variations in circulating AA and NO concentrations and hepatic gluconeogenic enzyme activities are likely intermediary responses involved in the effects of dietary protein amounts on the synthesis and secretion of islet hormones in lactating rats.
Collapse
Affiliation(s)
- Lianbin Xu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Xueyan Lin
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Robin R White
- Department of Dairy Science, Virginia Tech, Blacksburg, VA
| | - Mark D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA
| | - Zhiyong Hu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Qiuling Hou
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yun Wang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhonghua Wang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
23
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
24
|
Carlessi R, Keane KN, Mamotte C, Newsholme P. Nutrient regulation of β-cell function: what do islet cell/animal studies tell us? Eur J Clin Nutr 2017; 71:890-895. [DOI: 10.1038/ejcn.2017.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022]
|
25
|
Somvanshi PR, Patel AK, Bhartiya S, Venkatesh KV. Influence of plasma macronutrient levels on hepatic metabolism: role of regulatory networks in homeostasis and disease states. RSC Adv 2016. [DOI: 10.1039/c5ra18128c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multilevel regulations by metabolic, signaling and transcription pathways form a complex network that works to provide robust metabolic regulation in the liver. This analysis indicates that dietary perturbations in these networks can lead to insulin resistance.
Collapse
Affiliation(s)
- Pramod R. Somvanshi
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - Anilkumar K. Patel
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - Sharad Bhartiya
- Control Systems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - K. V. Venkatesh
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| |
Collapse
|
26
|
Dolenšek J, Špelič D, Skelin Klemen M, Žalik B, Gosak M, Slak Rupnik M, Stožer A. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis. SENSORS 2015; 15:27393-419. [PMID: 26516866 PMCID: PMC4701238 DOI: 10.3390/s151127393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel physiological insights and reassessment of current concepts in unprecedented detail.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
| | - Denis Špelič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (D.Š.); (B.Ž.)
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
| | - Borut Žalik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (D.Š.); (B.Ž.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +386-2-2345843
| |
Collapse
|
27
|
Dhumpa R, Truong TM, Wang X, Roper MG. Measurement of the entrainment window of islets of Langerhans by microfluidic delivery of a chirped glucose waveform. Integr Biol (Camb) 2015. [PMID: 26211670 DOI: 10.1039/c5ib00156k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Within single islets of Langerhans, the endocrine portion of the pancreas, intracellular metabolites, as well as insulin secretion, oscillate with a period of ∼5 min. In vivo, pulsatile insulin oscillations are also observed with periods ranging from 5-15 minutes. In order for oscillations of insulin to be observed in vivo, the majority of islets in the pancreas must synchronize their output. It is known that populations of islets can be synchronized via entrainment of the individual islets to low amplitude glucose oscillations that have periods close to islets' natural period. However, the range of glucose periods and amplitudes that can entrain islets has not been rigorously examined. To find the range of glucose periods that can entrain islets, a microfluidic system was utilized to produce and deliver a chirped glucose waveform to populations of islets while their individual intracellular [Ca(2+)] ([Ca(2+)]i) oscillations were imaged. Waveforms with amplitudes of 0.5, 1, and 1.5 mM above a median value of 11 mM were applied while the period was swept from 20-2 min. Oscillations of [Ca(2+)]i resonated the strongest when the period of the glucose wave was within 2 min of the natural period of the islets, typically close to 5 min. Some examples of 1 : 2 and 2 : 1 entrainment were observed during exposure to long and short glucose periods, respectively. These results shed light on the dynamic nature of islet behavior and may help to understand dynamics observed in vivo.
Collapse
Affiliation(s)
- Raghuram Dhumpa
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, USA.
| | | | | | | |
Collapse
|
28
|
Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:181643. [PMID: 26257839 PMCID: PMC4516838 DOI: 10.1155/2015/181643] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023]
Abstract
The prevalence of diabetes mellitus (DM) is increasing worldwide, a consequence of the alarming rise in obesity and metabolic syndrome (MetS). Oxidative stress and inflammation are key physiological and pathological events linking obesity, insulin resistance, and the progression of type 2 DM (T2DM). Unresolved inflammation alongside a “glucolipotoxic” environment of the pancreatic islets, in insulin resistant pathologies, enhances the infiltration of immune cells which through secretory activity cause dysfunction of insulin-secreting β-cells and ultimately cell death. Recent molecular investigations have revealed that mechanisms responsible for insulin resistance associated with T2DM are detected in conditions such as obesity and MetS, including impaired insulin receptor (IR) signalling in insulin responsive tissues, oxidative stress, and endoplasmic reticulum (ER) stress. The aim of the present review is to describe the evidence linking oxidative stress and inflammation with impairment of insulin secretion and action, which result in the progression of T2DM and other conditions associated with metabolic dysregulation.
Collapse
|
29
|
Abstract
Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual's lifetime is far more complicated than previously thought. An improved comprehension of the relationships between taste, palatability, taste receptors and hedonic responses to food might lead to increased understanding of the biological underpinnings of energy acquisition, as well as why humans sometimes eat more than is needed and more than we know is healthy. This Review discusses the role of taste receptors in the tongue, gut, pancreas and brain and their hormonal involvement in taste perception, as well as the relationship between taste perception, overeating and the development of obesity.
Collapse
Affiliation(s)
- Sara Santa-Cruz Calvo
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| |
Collapse
|
30
|
Koletzko B, Chourdakis M, Grote V, Hellmuth C, Prell C, Rzehak P, Uhl O, Weber M. Regulation of early human growth: impact on long-term health. ANNALS OF NUTRITION AND METABOLISM 2014; 65:101-9. [PMID: 25413647 DOI: 10.1159/000365873] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Growth and development are central characteristics of childhood. Deviations from normal growth can indicate serious health challenges. The adverse impact of early growth faltering and malnutrition on later health has long been known. In contrast, the impact of rapid early weight and body fat gain on programming of later disease risk have only recently received increased attention. Numerous observational studies related diet in early childhood and rapid early growth to the risk of later obesity and associated disorders. Causality was confirmed in a large, double-blind randomised trial testing the 'Early Protein Hypothesis'. In this trial we found that attenuation of protein supply in infancy normalized early growth and markedly reduced obesity prevalence in early school age. These results indicate the need to describe and analyse growth patterns and their regulation through diet in more detail and to characterize the underlying metabolic and epigenetic mechanisms, given the potential major relevance for public health and policy. Better understanding of growth patterns and their regulation could have major benefits for the promotion of public health, consumer-orientated nutrition recommendations, and the development of improved food products for specific target populations.
Collapse
Affiliation(s)
- Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Pancreatic β-cell function is of critical importance in the regulation of fuel homoeostasis, and metabolic dysregulation is a hallmark of diabetes mellitus (DM). The β-cell is an intricately designed cell type that couples metabolism of dietary sources of carbohydrates, amino acids and lipids to insulin secretory mechanisms, such that insulin release occurs at appropriate times to ensure efficient nutrient uptake and storage by target tissues. However, chronic exposure to high nutrient concentrations results in altered metabolism that impacts negatively on insulin exocytosis, insulin action and may ultimately lead to development of DM. Reduced action of insulin in target tissues is associated with impairment of insulin signalling and contributes to insulin resistance (IR), a condition often associated with obesity and a major risk factor for DM. The altered metabolism of nutrients by insulin-sensitive target tissues (muscle, adipose tissue and liver) can result in high circulating levels of glucose and various lipids, which further impact on pancreatic β-cell function, IR and progression of the metabolic syndrome. Here, we have considered the role played by the major nutrient groups, carbohydrates, amino acids and lipids, in mediating β-cell insulin secretion, while also exploring the interplay between amino acids and insulin action in muscle. We also focus on the effects of altered lipid metabolism in adipose tissue and liver resulting from activation of inflammatory processes commonly observed in DM pathophysiology. The aim of this review is to describe commonalities and differences in metabolism related to insulin secretion and action, pertinent to the development of DM.
Collapse
Affiliation(s)
- Philip Newsholme
- School of Biomedical SciencesCHIRI Biosciences Research Precinct, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| | - Vinicius Cruzat
- School of Biomedical SciencesCHIRI Biosciences Research Precinct, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| | - Frank Arfuso
- School of Biomedical SciencesCHIRI Biosciences Research Precinct, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| | - Kevin Keane
- School of Biomedical SciencesCHIRI Biosciences Research Precinct, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| |
Collapse
|
32
|
Abstract
OBJECTIVE Several studies have reported that the transient receptor potential melastatin-like subtype 5 (TRPM5) channel, a Ca(2+)-activated monovalent cation channel, is involved in the stimulus-secretion coupling in the mouse pancreatic β-cells. We have studied the role of the TRPM5 channel in regulating insulin secretion and cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) in the rat β-cells by using triphenylphosphine oxide, a selective inhibitor of the channel. METHODS Insulin secretion from islets from Sprague-Dawley rats was measured in batch incubations. Cytoplasmic free Ca(2+) concentration was measured from single β-cells by fura-2-based microfluorometry. RESULTS Triphenylphosphine oxide did not alter insulin secretion and [Ca(2+)](i) response triggered by KCl or fructose. It inhibited insulin secretion in response to glucose, L-arginine, and glucagon-like peptide 1. It also inhibited glucose-induced insulin secretion by mechanisms that are independent of the adenosine triphosphate-sensitive potassium channels and [Ca(2+)](i) increase. CONCLUSIONS Our results suggest that in the rat islets, TRPM5 is involved in mediating insulin secretion by glucose and l-arginine and in potentiating the glucose-induced insulin secretion by glucagon-like peptide 1.
Collapse
|
33
|
Insight into insulin secretion from transcriptome and genetic analysis of insulin-producing cells of Drosophila. Genetics 2014; 197:175-92. [PMID: 24558258 PMCID: PMC4012477 DOI: 10.1534/genetics.113.160663] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Insulin-producing cells (IPCs) in the Drosophila brain produce and release insulin-like peptides (ILPs) to the hemolymph. ILPs are crucial for growth and regulation of metabolic activity in flies, functions analogous to those of mammalian insulin and insulin-like growth factors (IGFs). To identify components functioning in IPCs to control ILP production, we employed genomic and candidate gene approaches. We used laser microdissection and messenger RNA sequencing to characterize the transcriptome of larval IPCs. IPCs highly express many genes homologous to genes active in insulin-producing β-cells of the mammalian pancreas. The genes in common encode ILPs and proteins that control insulin metabolism, storage, secretion, β-cell proliferation, and some not previously linked to insulin production or β-cell function. Among these novelties is unc-104, a kinesin 3 family gene, which is more highly expressed in IPCs compared to most other neurons. Knockdown of unc-104 in IPCs impaired ILP secretion and reduced peripheral insulin signaling. Unc-104 appears to transport ILPs along axons. As a complementary approach, we tested dominant-negative Rab genes to find Rab proteins required in IPCs for ILP production or secretion. Rab1 was identified as crucial for ILP trafficking in IPCs. Inhibition of Rab1 in IPCs increased circulating sugar levels, delayed development, and lowered weight and body size. Immunofluorescence labeling of Rab1 showed its tight association with ILP2 in the Golgi of IPCs. Unc-104 and Rab1 join other proteins required for ILP transport in IPCs.
Collapse
|
34
|
Abstract
Regulation of metabolic fuel homeostasis is a critical function of β-cells, which are located in the islets of Langerhans of the animal pancreas. Impairment of this β-cell function is a hallmark of pancreatic β-cell failure and may lead to development of type 2 diabetes mellitus. β-Cells are essentially "fuel sensors" that monitor and react to elevated nutrient load by releasing insulin. This response involves metabolic activation and generation of metabolic coupling factors (MCFs) that relay the nutrient signal throughout the cell and induce insulin biosynthesis and secretion. Glucose is the most important insulin secretagogue as it is the primary fuel source in food. Glucose metabolism is central to generation of MCFs that lead to insulin release, most notably ATP. In addition, other classes of nutrients are able to augment insulin secretion and these include members of the lipid and amino acid family of nutrients. Therefore, it is important to investigate the interplay between glucose, lipid, and amino acid metabolism, as it is this mixed nutrient sensing that generate the MCFs required for insulin exocytosis. The mechanisms by which these nutrients are metabolized to generate MCFs, and how they impact on β-cell insulin release and function, are discussed in detail in this article.
Collapse
Affiliation(s)
- Kevin Keane
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia.
| |
Collapse
|
35
|
Zhu Y, You W, Wang H, Li Y, Qiao N, Shi Y, Zhang C, Bleich D, Han X. MicroRNA-24/MODY gene regulatory pathway mediates pancreatic β-cell dysfunction. Diabetes 2013; 62:3194-206. [PMID: 23761103 PMCID: PMC3749364 DOI: 10.2337/db13-0151] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overnutrition and genetics both contribute separately to pancreatic β-cell dysfunction, but how these factors interact is unclear. This study was aimed at determining whether microRNAs (miRNAs) provide a link between these factors. In this study, miRNA-24 (miR-24) was highly expressed in pancreatic β-cells and further upregulated in islets from genetic fatty (db/db) or mice fed a high-fat diet, and islets subject to oxidative stress. Overexpression of miR-24 inhibited insulin secretion and β-cell proliferation, potentially involving 351 downregulated genes. By using bioinformatic analysis combined with luciferase-based promoter activity assays and quantitative real-time PCR assays, we identified two maturity-onset diabetes of the young (MODY) genes as direct targets of miR-24. Silencing either of these MODY genes (Hnf1a and Neurod1) mimicked the cellular phenotype caused by miR-24 overexpression, whereas restoring their expression rescued β-cell function. Our findings functionally link the miR-24/MODY gene regulatory pathway to the onset of type 2 diabetes and create a novel network between nutrient overload and genetic diabetes via miR-24.
Collapse
Affiliation(s)
- Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Weiyan You
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongdong Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Nan Qiao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yuguang Shi
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - David Bleich
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Corresponding author: Xiao Han,
| |
Collapse
|
36
|
Abstract
The stimulation of insulin secretion by glucose can be modulated by multiple nutritive, hormonal, and pharmacological inputs. Fatty acids potentiate insulin secretion through the generation of intracellular signaling molecules and through the activation of cell surface receptors. The G-protein-coupled receptor 40 (GPR40), also known as free fatty acid receptor 1 (we will use GPR40 in this review), has emerged as an important component in the fatty acid augmentation of insulin secretion. By signaling predominantly through Gαq/11, GPR40 increases intracellular calcium and activates phospholipases to generate diacylglycerols resulting in increased insulin secretion. Synthetic small-molecule agonists of GPR40 enhance insulin secretion in a glucose-dependent manner in vitro and in vivo with a mechanism similar to that found with fatty acids. GPR40 agonists have shown efficacy in increasing insulin secretion and lowering blood glucose in rodent models of type 2 diabetes. Recent phase I and phase II clinical trials in humans have shown that the GPR40 agonist TAK-875 reduces fasting and postprandial blood glucose and lowers HbA1c with efficacy equal to that of the sulfonylurea glimepiride without inducing hypoglycemia or evidence of tachyphylaxis. These data suggest that targeting the GPR40 receptor can be a viable therapeutic option for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Charles F Burant
- Department of Internal Medicine and Michigan Metabolomics and Obesity Center, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
37
|
Losman JA, Kaelin WG. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 2013; 27:836-52. [PMID: 23630074 DOI: 10.1101/gad.217406.113] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in metabolic enzymes, including isocitrate dehydrogenase 1 (IDH1) and IDH2, in cancer strongly implicate altered metabolism in tumorigenesis. IDH1 and IDH2 catalyze the interconversion of isocitrate and 2-oxoglutarate (2OG). 2OG is a TCA cycle intermediate and an essential cofactor for many enzymes, including JmjC domain-containing histone demethylases, TET 5-methylcytosine hydroxylases, and EglN prolyl-4-hydroxylases. Cancer-associated IDH mutations alter the enzymes such that they reduce 2OG to the structurally similar metabolite (R)-2-hydroxyglutarate [(R)-2HG]. Here we review what is known about the molecular mechanisms of transformation by mutant IDH and discuss their implications for the development of targeted therapies to treat IDH mutant malignancies.
Collapse
Affiliation(s)
- Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
38
|
Grinev VV, Ramanouskaya TV, Gloushen SV. Multidimensional control of cell structural robustness. Cell Biol Int 2013; 37:1023-37. [PMID: 23686647 DOI: 10.1002/cbin.10128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/21/2013] [Indexed: 11/12/2022]
Abstract
Ample adaptive and functional opportunities of a living cell are determined by the complexity of its structural organisation. However, such complexity gives rise to a problem of maintenance of the coherence of inner processes in macroscopic interims and in macroscopic volumes which is necessary to support the structural robustness of a cell. The solution to this problem lies in multidimensional control of the adaptive and functional changes of a cell as well as its self-renewing processes in the context of environmental conditions. Six mechanisms (principles) form the basis of this multidimensional control: regulatory circuits with feedback loops, redundant inner diversity within a cell, multilevel distributed network organisation of a cell, molecular selection within a cell, continuous informational flows and functioning with a reserve of power. In the review we provide detailed analysis of these mechanisms, discuss their specific functions and the role of the superposition of these mechanisms in the maintenance of cell structural robustness in a wide range of environmental conditions.
Collapse
Affiliation(s)
- Vasily V Grinev
- Biology Faculty, Department of Genetics, Belarusian State University, 220030, Minsk, Belarus.
| | | | | |
Collapse
|
39
|
Antidiabetic effect and mode of action of cytopiloyne. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:685642. [PMID: 23573144 PMCID: PMC3610345 DOI: 10.1155/2013/685642] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 01/29/2013] [Indexed: 01/13/2023]
Abstract
Cytopiloyne was identified as a novel polyacetylenic compound. However, its antidiabetic properties are poorly understood. The aim of the present study was to investigate the anti-diabetic effect and mode of action of cytopiloyne on type 2 diabetes (T2D). We first evaluated the therapeutic effect of cytopiloyne on T2D in db/db mice. We found that one dose of cytopiloyne reduced postprandial glucose levels while increasing blood insulin levels. Accordingly, long-term treatment with cytopiloyne reduced postprandial blood glucose levels, increased blood insulin, improved glucose tolerance, suppressed the level of glycosylated hemoglobin A1c (HbA1c), and protected pancreatic islets in db/db mice. Next, we studied the anti-diabetic mechanism of action of cytopiloyne. We showed that cytopiloyne failed to decrease blood glucose in streptozocin- (STZ-)treated mice whose β cells were already destroyed. Additionally, cytopiloyne dose dependently increased insulin secretion and expression in β cells. The increase of insulin secretion/expression of cytopiloyne was regulated by protein kinase Cα (PKCα) and its activators, calcium, and diacylglycerol (DAG). Overall, our data suggest that cytopiloyne treats T2D via regulation of insulin production involving the calcium/DAG/PKCα cascade in β cells. These data thus identify the molecular mechanism of action of cytopiloyne and prove its therapeutic potential in T2D.
Collapse
|
40
|
Ferdaoussi M, Bergeron V, Zarrouki B, Kolic J, Cantley J, Fielitz J, Olson EN, Prentki M, Biden T, MacDonald PE, Poitout V. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 2012; 55:2682-2692. [PMID: 22820510 PMCID: PMC3543464 DOI: 10.1007/s00125-012-2650-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS Activation of the G protein-coupled receptor (GPR)40 by long-chain fatty acids potentiates glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells, and GPR40 agonists are in clinical development for type 2 diabetes therapy. GPR40 couples to the G protein subunit Gα(q/11) but the signalling cascade activated downstream is unknown. This study aimed to determine the mechanisms of GPR40-dependent potentiation of GSIS by fatty acids. METHODS Insulin secretion in response to glucose, oleate or diacylglycerol (DAG) was assessed in dynamic perifusions and static incubations in islets from wild-type (WT) and Gpr40 (-/-) mice. Depolymerisation of filamentous actin (F-actin) was visualised by phalloidin staining and epifluorescence. Pharmacological and molecular approaches were used to ascertain the roles of protein kinase D (PKD) and protein kinase C delta in GPR40-mediated potentiation of GSIS. RESULTS Oleate potentiates the second phase of GSIS, and this effect is largely dependent upon GPR40. Accordingly, oleate induces rapid F-actin remodelling in WT but not in Gpr40 (-/-) islets. Exogenous DAG potentiates GSIS in both WT and Gpr40 (-/-) islets. Oleate induces PKD phosphorylation at residues Ser-744/748 and Ser-916 in WT but not Gpr40 (-/-) islets. Importantly, oleate-induced F-actin depolymerisation and potentiation of GSIS are lost upon pharmacological inhibition of PKD1 or deletion of Prkd1. CONCLUSIONS/INTERPRETATION We conclude that the signalling cascade downstream of GPR40 activation by fatty acids involves activation of PKD1, F-actin depolymerisation and potentiation of second-phase insulin secretion. These results provide important information on the mechanisms of action of GPR40, a novel drug target for type 2 diabetes.
Collapse
Affiliation(s)
- M Ferdaoussi
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - V Bergeron
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - B Zarrouki
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - J Kolic
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - J Cantley
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | - J Fielitz
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Medical Department, Division of Cardiology, Charité University, Campus Virchow-Klinikum, Berlin, Germany
| | - E N Olson
- Departments of Molecular Biology, Internal Medicine, and Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Prentki
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, QC, Canada
| | - T Biden
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | - P E MacDonald
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - V Poitout
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4.
- Department of Medicine, University of Montreal, Montreal, QC, Canada.
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
41
|
Abstract
Persistent nutrient excess results in a compensatory increase in the β-cell number in mammals. It is unknown whether this response occurs in nonmammalian vertebrates, including zebrafish, a model for genetics and chemical genetics. We investigated the response of zebrafish β-cells to nutrient excess and the underlying mechanisms by culturing transgenic zebrafish larvae in solutions of different nutrient composition. The number of β-cells rapidly increases after persistent, but not intermittent, exposure to glucose or a lipid-rich diet. The response to glucose, but not the lipid-rich diet, required mammalian target of rapamycin activity. In contrast, inhibition of insulin/IGF-1 signaling in β-cells blocked the response to the lipid-rich diet, but not to glucose. Lineage tracing and marker expression analyses indicated that the new β-cells were not from self-replication but arose through differentiation of postmitotic precursor cells. On the basis of transgenic markers, we identified two groups of newly formed β-cells: one with nkx2.2 promoter activity and the other with mnx1 promoter activity. Thus, nutrient excess in zebrafish induces a rapid increase in β-cells though differentiation of two subpopulations of postmitotic precursor cells. This occurs through different mechanisms depending on the nutrient type and likely involves paracrine signaling between the differentiated β-cells and the precursor cells.
Collapse
|
42
|
Esquirol Y, Bongard V, Ferrieres J, Verdier H, Perret B. Shiftwork and higher pancreatic secretion: early detection of an intermediate state of insulin resistance? Chronobiol Int 2012; 29:1258-66. [PMID: 23005602 DOI: 10.3109/07420528.2012.719959] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED Previous studies have suggested that shiftwork can affect the prevalence of metabolic syndrome. This is thought to be related to disturbance of lipid parameters rather than their effects on glucose metabolism. Several complex mechanisms are suspected to be involved and notably insulin resistance, though the available data are limited. The objective of the present study was to provide further evidence for the effects of shiftwork on glucose and lipid metabolism with a specific focus on insulin resistance. A cross-sectional study has recruited 97 shiftworkers (SWs) (three shifts, 8 h) and 95 strictly day workers (DWs) from the same plant for 2001-2002. Several indices of insulin sensitivity or resistance were calculated, based on formulas of the homeostasis model assessment for insulin resistance (HOMA-IR), the Revised-Quicki, McAuley and Disse indices. The HOMA-β-cell index was used as a reflection of pancreatic secretion. Characteristics of the occupation, habitual diet and lifestyles were recorded. Logistic regression analysis in which pancreatic function or insulin sensitivity was the dependent variable was used to compare alternative models. RESULTS SWs were characterized as having significantly higher triglycerides and free fatty acids and normal but lower blood glucose. The risk of a high β-cell activity was increased almost three-fold in SWs. By adjusting for many confounding factors, SWs had significantly lower insulin sensitivity according to several indices, whereas HOMA-IR was not meaningfully different between shift and DWs. Lower insulin sensitivity and a compensatory pancreas response to maintain a normal glucose tolerance may suggest an intermediate state before development of frank insulin resistance in SWs. Early detection of these moderate alterations of the insulin/glucose balance could be important in the prevention of diabetes.
Collapse
Affiliation(s)
- Yolande Esquirol
- UMR 1027: INSERM, University School of Medicine Paul-Sabatier Toulouse III, Toulouse F-31073, France.
| | | | | | | | | |
Collapse
|
43
|
Tan C, Voss U, Svensson S, Erlinge D, Olde B. High glucose and free fatty acids induce beta cell apoptosis via autocrine effects of ADP acting on the P2Y(13) receptor. Purinergic Signal 2012; 9:67-79. [PMID: 22941026 DOI: 10.1007/s11302-012-9331-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022] Open
Abstract
While high levels of glucose and saturated fatty acids are known to have detrimental effects on beta cell function and survival, the signalling pathways mediating these effects are not entirely known. In a previous study, we found that ADP regulates beta cell insulin secretion and beta cell apoptosis. Using MIN6c4 cells as a model system, we investigated if autocrine/paracrine mechanisms of ADP and purinergic receptors are involved in this process. High glucose (16.7 mmol/l) and palmitate (100 μmol/l) rapidly and potently elevated the extracellular ATP levels, while mannitol was without effect. Both tolbutamide and diazoxide were without effect, while the calcium channel blocker nifedipine, the volume-regulated anion channels (VRAC) inhibitor NPPB, and the pannexin inhibitor carbenoxolone could inhibit both effects. Similarly, silencing the MDR1 gene also blocked nutrient-generated ATP release. These results indicate that calcium channels and VRAC might be involved in the ATP release mechanism. Furthermore, high glucose and palmitate inhibited cAMP production, reduced cell proliferation in MIN6c4 and increased activated Caspase-3 cells in mouse islets and in MIN6c4 cells. The P2Y(13)-specific antagonist MRS2211 antagonized all these effects. Further studies showed that blocking the P2Y(13) receptor resulted in enhanced CREB, Bad and IRS-1 phosphorylation, which are known to be involved in beta cell survival and insulin secretion. These findings provide further support for the concept that P2Y(13) plays an important role in beta cell apoptosis and suggest that autocrine/paracrine mechanisms, related to ADP and P2Y(13) receptors, contribute to glucolipotoxicity.
Collapse
Affiliation(s)
- Chanyuan Tan
- Department of Cardiology, Lund University, 22185, Lund, Sweden
| | | | | | | | | |
Collapse
|
44
|
Ahmad HF, Simpson NE, Lawson AN, Sambanis A. Cryopreservation effects on intermediary metabolism in a pancreatic substitute: a (13)C nuclear magnetic resonance study. Tissue Eng Part A 2012; 18:2323-31. [PMID: 22697373 DOI: 10.1089/ten.tea.2011.0702] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cryopreservation is important for clinical translation of tissue-engineered constructs. With respect to a pancreatic substitute, encapsulated islets or beta cells have been widely studied for the treatment of insulin-dependent diabetes mellitus. Besides cell viability loss, cryopreservation may affect the function of the remaining viable cells in a pancreatic substitute by altering fundamental processes in glucose-stimulated insulin secretion, such as pathways associated with intermediary metabolism, potentially leading to insulin-secretion defects. In this study, we used (13)C nuclear magnetic resonance (NMR) spectroscopy and isotopomer analysis to determine the effects of conventional freezing and ice-free cryopreservation (vitrification) on carbon flow through tricarboxylic acid (TCA) cycle-associated pathways in encapsulated murine insulinoma βTC-tet cells; the secretory function of the encapsulated cells postpreservation was also evaluated. Specifically, calcium alginate-encapsulated βTC-tet cells were frozen or vitrified with a cryoprotectant cocktail. Beads were warmed and (13)C labeling and extraction were performed. Insulin secretion rates were determined during basal and labeling periods and during small-scale glucose stimulation and K(+)-induced depolarization. Relative metabolic fluxes were determined from (13)C NMR spectra using a modified single pyruvate pool model with the tcaCALC modeling program. Treatments were compared with nonpreserved controls. Results showed that relative carbon flow through TCA-cycle-associated pathways was not affected by conventional freezing or vitrification. However, vitrification, but not freezing, led to impaired insulin secretion on a per viable cell basis. The reduced secretion from the Vitrified group occurred irrespective of scale and was present whether secretion was stimulated by glucose or K(+)-induced depolarization, indicating that it might be due to a defect in late-stage secretion events.
Collapse
Affiliation(s)
- Hajira F Ahmad
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
45
|
Watson ML, Macrae K, Marley AE, Hundal HS. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 beta cells. PLoS One 2011; 6:e25975. [PMID: 21998735 PMCID: PMC3187833 DOI: 10.1371/journal.pone.0025975] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/14/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sustained exposure of pancreatic β cells to an increase in saturated fatty acids induces pleiotropic effects on β-cell function, including a reduction in stimulus-induced insulin secretion. The objective of this study was to investigate the effects of chronic over supply of palmitate upon glucose- and amino acid-stimulated insulin secretion (GSIS and AASIS, respectively) and autocrine-dependent insulin signalling with particular focus on the importance of ceramide, ERK and CaMKII signalling. PRINCIPAL FINDINGS GSIS and AASIS were both stimulated by >7-fold resulting in autocrine-dependent activation of protein kinase B (PKB, also known as Akt). Insulin release was dependent upon nutrient-induced activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) as their pharmacological inhibition suppressed GSIS/AASIS significantly. Chronic (48 h, 0.4 mM) palmitate treatment blunted glucose/AA-induced activation of CaMKII and ERK and caused a concomitant reduction (~75%) in GSIS/AASIS and autocrine-dependent activation of PKB. This inhibition could not be attributed to enhanced mitochondrial fatty acid uptake/oxidation or ceramide synthesis, which were unaffected by palmitate. In contrast, diacylglycerol synthesis was elevated suggesting increased palmitate esterification rather than oxidation may contribute to impaired stimulus-secretion coupling. Consistent with this, 2-bromopalmitate, a non-oxidisable palmitate analogue, inhibited GSIS as effectively as palmitate. CONCLUSIONS Our results exclude changes in ceramide content or mitochondrial fatty acid handling as factors initiating palmitate-induced defects in insulin release from MIN6 β cells, but suggest that reduced CaMKII and ERK activation associated with palmitate overload may contribute to impaired stimulus-induced insulin secretion.
Collapse
Affiliation(s)
- Maria L. Watson
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Katherine Macrae
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Anna E. Marley
- AstraZeneca, CVGI, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Harinder S. Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
46
|
Zhang X, Daou A, Truong TM, Bertram R, Roper MG. Synchronization of mouse islets of Langerhans by glucose waveforms. Am J Physiol Endocrinol Metab 2011; 301:E742-7. [PMID: 21771970 PMCID: PMC3191549 DOI: 10.1152/ajpendo.00248.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/12/2011] [Indexed: 01/02/2023]
Abstract
Pancreatic islets secrete insulin in a pulsatile manner, and the individual islets are synchronized, producing in vivo oscillations. In this report, the ability of imposed glucose waveforms to synchronize a population of islets was investigated. A microfluidic system was used to deliver glucose waveforms to ∼20 islets while fura 2 fluorescence was imaged. All islets were entrained to a sinusoidal waveform of glucose (11 mM median, 1 mM amplitude, and a 5-min period), producing synchronized oscillations of fura 2 fluorescence. During perfusion with constant 11 mM glucose, oscillations of fura 2 fluorescence were observed in individual islets, but the average signal was nonoscillatory. Spectral analysis and a synchronization index (λ) were used to measure the period of fura 2 fluorescence oscillations and evaluate synchronization of islets, respectively. During perfusion with glucose waveforms, spectral analysis revealed a dominant frequency at 5 min, and λ, which can range from 0 (unsynchronized) to 1 (perfect synchronization), was 0.78 ± 0.15. In contrast, during perfusion with constant 11 mM glucose, the main peak in the spectral analysis corresponded to a period of 5 min but was substantially smaller than during perfusion with oscillatory glucose, and the average λ was 0.52 ± 0.09, significantly lower than during perfusion with sinusoidal glucose. These results indicated that an oscillatory glucose level synchronized the activity of a heterogeneous islet population, serving as preliminary evidence that islets could be synchronized in vivo through oscillatory glucose levels produced by a liver-pancreas feedback loop.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, 32306, USA
| | | | | | | | | |
Collapse
|
47
|
Godwin LA, Pilkerton ME, Deal KS, Wanders D, Judd RL, Easley CJ. Passively operated microfluidic device for stimulation and secretion sampling of single pancreatic islets. Anal Chem 2011; 83:7166-72. [PMID: 21806019 PMCID: PMC4980096 DOI: 10.1021/ac201598b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A passively operated polydimethylsiloxane (PDMS) microfluidic device was designed for sampling of hormone secretions from eight individual murine pancreatic islets in parallel. Flow control was achieved using a single hand-held syringe and by exploiting inherent fluidic resistances of the microchannels (R(sampling) = 700 ± 20 kPa s mm(-3) at 37 °C). Basal (3 mM) or stimulatory (11 mM) glucose levels were applied to islets, with stimulation timing (t(stim)) minimized to 15 ± 2 s using modified reservoirs. Using enzyme-linked immunosorbent assays (ELISA) for postsampling analyses, we measured statistically equal levels of 1 h insulin secretion (1.26 ± 0.26 and 6.55 ± 1.00 pg islet(-1) min(-1), basal and stimulated; 62 islets) compared to standard, bulk sampling methods (1.01 ± 0.224 and 6.04 ± 1.53 pg islet(-1) min(-1), basal and stimulated; 200 islets). Importantly, the microfluidic platform revealed novel information on single-islet variability. Islet volume measurements with confocal reflectance microscopy revealed that insulin secretion had only limited correlation to islet volume, suggesting a more significant role for cellular architecture and paracrine signaling within the tissue. Compared to other methods using syringe pumps or electroosmotic flow control, this approach provides significant advantages in ease-of-use and device disposability, easing the burden on nonexperts.
Collapse
Affiliation(s)
- Leah A. Godwin
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Meagan E. Pilkerton
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Kennon S. Deal
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Desiree Wanders
- Department of Anatomy Physiology and Pharmacology, Auburn University, 219 Greene Hall, Auburn, Alabama 36849, United States
| | - Robert L. Judd
- Department of Anatomy Physiology and Pharmacology, Auburn University, 219 Greene Hall, Auburn, Alabama 36849, United States
| | - Christopher J. Easley
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| |
Collapse
|
48
|
Li J, Liu J, Song J, Wang X, Weiss HL, Townsend CM, Gao T, Evers BM. mTORC1 inhibition increases neurotensin secretion and gene expression through activation of the MEK/ERK/c-Jun pathway in the human endocrine cell line BON. Am J Physiol Cell Physiol 2011; 301:C213-26. [PMID: 21508335 DOI: 10.1152/ajpcell.00067.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mammalian target of rapamycin (mTOR) signaling exists in two complexes: mTORC1 and mTORC2. Neurotensin (NT), an intestinal hormone secreted by enteroendocrine (N) cells in the small bowel, has important physiological effects in the gastrointestinal tract. The human endocrine cell line BON abundantly expresses the NT gene and synthesizes and secretes NT in a manner analogous to that of N cells. Here, we demonstrate that the inhibition of mTORC1 by rapamycin (mTORC1 inhibitor), torin1 (both mTORC1 and mTORC2 inhibitor) or short hairpin RNA-mediated knockdown of mTOR, regulatory associated protein of mTOR (RAPTOR), and p70 S6 kinase (p70S6K) increased basal NT release via upregulating NT gene expression in BON cells. c-Jun activity was increased by rapamycin or torin1 or p70S6K knockdown. c-Jun overexpression dramatically increased NT promoter activity, which was blocked by PD98059, an mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, overexpression of MEK1 or extracellular signal-regulated kinase 1 (ERK1) increased c-Jun expression and NT promoter activity. More importantly, PD98059 blocked rapamycin- or torin1-enhanced NT secretion. Consistently, rapamycin and torin1 also increased NT gene expression in Hep3B cells, a human hepatoma cell line that, similar to BON, expresses high levels of NT. Phosphorylation of c-Jun and ERK1/2 was also increased by rapamycin and torin1 in Hep3B cells. Finally, we showed activation of mTOR in BON cells treated with amino acids, high glucose, or serum and, concurrently, the attenuation of ERK1/2 and c-Jun phosphorylation and NT secretion. Together, mTORC1, as a nutrient sensor, negatively regulates NT secretion via the MEK/ERK/c-Jun signaling pathway. Our results identify a physiological link between mTORC1 and MEK/ERK signaling in controlling intestinal hormone gene expression and secretion.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Breitman I, Saraf N, Kakade M, Yellumahanthi K, White M, Hackett JA, Clements RH. The effects of an amino acid supplement on glucose homeostasis, inflammatory markers, and incretins after laparoscopic gastric bypass. J Am Coll Surg 2011; 212:617-25; discussion 625-7. [PMID: 21463799 PMCID: PMC3230243 DOI: 10.1016/j.jamcollsurg.2010.12.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND Protein supplements are routinely used after a laparoscopic gastric bypass (LGB). The aim of this study was to evaluate the impact of an amino acid supplement on glucose homeostasis and hormonal and inflammatory markers after LGB. STUDY DESIGN Thirty patients undergoing LGB were randomized to receive or not 24 g of an oral supplement containing a leucine metabolite, glutamine, and arginine twice daily. Changes in weight, glucose, insulin, C-peptide, insulin sensitivity, interleukin (IL) 6, C-reactive protein (CRP), leptin, insulin-like growth factor (IGF) 1, ghrelin, and incretins were assessed preoperatively and 2 weeks and 8 weeks postoperatively. RESULTS Thirty patients (96.7% female, age 46.9 ± 8.4 years, body mass index 43.3 ± 4.1 kg/m(2)) were randomized. The experimental (n = 14) and control (n = 16) groups were not significantly different at baseline. Weight loss was similar for the 2 groups. Fasting glucose decreased significantly at 2 and 8 weeks compared with base line (p < 0.0001) with no difference between the experimental and control groups (p = 0.8), but insulin and calculated insulin sensitivity, which were similar at baseline, became significantly worse in the experimental group 8 weeks after surgery (p = 0.02 for insulin; p = 0.04 for the homeostasis model assessment of insulin resistance). CRP and IL-6, which were similar at baseline, were found to be significantly higher at 8 weeks in the experimental group (p = 0.018 and p = 0.05, respectively). Leptin and IGF-1 levels decreased significantly from baseline at 2 and 8 weeks (p < 0.0001), but there was no difference between the 2 groups. No significant changes in GLP-1, ghrelin, or gastric inhibitory polypeptide were noticed after 8 weeks. CONCLUSIONS An amino acid supplement had no effect on the early postoperative incretins after LGB. It may have a negative influence on glucose kinetics and degree of inflammation. Future studies are needed to clarify these effects.
Collapse
Affiliation(s)
- Igal Breitman
- Department of Surgery, Division of General Surgery, Vanderbilt University, Nashville, TN
| | - Neha Saraf
- Department of Surgery, Division of Gastrointestinal Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Manasi Kakade
- Department of Surgery, Division of Gastrointestinal Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kishore Yellumahanthi
- Department of Surgery, Division of Gastrointestinal Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Merritt White
- Department of Surgery, Division of Gastrointestinal Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jo Ann Hackett
- Department of Surgery, Division of Gastrointestinal Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ronald H. Clements
- Department of Surgery, Division of General Surgery, Vanderbilt University, Nashville, TN
| |
Collapse
|
50
|
|