1
|
Karim MS, Teranishi M, Nakagawa K, Mitsuhara T, Kurose T. High frequency exercise after human cranial bone-derived mesenchymal stem cells transplantation enhances motor functional recovery following traumatic brain injury in mice. Brain Res 2025; 1853:149527. [PMID: 39986415 DOI: 10.1016/j.brainres.2025.149527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Traumatic brain injury (TBI) causes a neurological impairment of the central nervous system that may induce severe motor deficits. In this study, human cranial bone-derived mesenchymal stem cells (hcMSCs) were transplanted into a mouse TBI model, and the effects of differences in exercise frequency were examined as a rehabilitation approach to improve motor function after cell transplantation. Twenty-four hours after TBI induction, phosphate-buffered saline or hcMSCs were intravenously injected into mice that were divided into a non-exercise group, a low-frequency exercise group (LF Ex), and a high-frequency exercise group (HF Ex). Beam walking tests and rotarod tests were performed over time to assess motor function. Injured brain tissues were collected for mRNA and protein expression analysis on days 8 and 35 after TBI induction. On days 28 and 35 after TBI induction, significant associations were found between hcMSC transplantation (T) and exercise factors. Notably, the T + HF Ex group exhibited a significant improvement in motor function compared with the other groups. Moreover, we found that the mRNA and protein expression levels of growth associated protein 43 (GAP-43), hepatocyte growth factor (HGF), and nerve growth factor (NGF) were significantly higher in the T + HF Ex group than in other groups. Increased expression of GAP-43 enhances synaptic regeneration and promotes functional recovery. High expression of NGF accelerates neural differentiation, and HGF ensures the efficacy of hcMSCs. These data suggest that hcMSC transplantation combined with high-frequency exercise is a promising option for TBI treatment.
Collapse
Affiliation(s)
- Md Salimul Karim
- Department of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masataka Teranishi
- Department of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Nakagawa
- Department of Biomechanics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Kurose
- Department of Anatomy and Histology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
2
|
An F, Jia X, Shi Y, Xiao X, Yang F, Su J, Peng X, Geng G, Yan C. The ultimate microbial composition for correcting Th17/Treg cell imbalance and lipid metabolism disorders in osteoporosis. Int Immunopharmacol 2025; 144:113613. [PMID: 39571271 DOI: 10.1016/j.intimp.2024.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Osteoporosis is a systemic bone disease characterised by decreased bone mass and a deteriorated bone microstructure, leading to increased bone fragility and fracture risk. Disorders of the intestinal microbiota may be key inducers of osteoporosis. Furthermore, such disorders may contribute to osteoporosis by influencing immune function and lipid metabolism. Therefore, in this review, we aimed to summarise the molecular mechanisms through which the intestinal microbiota affect the onset and development of osteoporosis by regulating Th17/Treg imbalance and lipid metabolism disorders. We also discussed the regulatory mechanisms underlying the effect of intestinal microbiota-related modulators on Th17/Treg imbalance and lipid metabolism disorders in osteoporosis, to explore new molecular targets for its treatment and provide a theoretical basis for clinical management.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| | - Xueru Jia
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaolong Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Fan Yang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junchang Su
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xia Peng
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Guangqin Geng
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
3
|
Kuwabara M, Mitsuhara T, Teranishi M, Okazaki T, Takeda M, Ishii D, Kondo H, Shimizu K, Hosogai M, Hara T, Maeda Y, Kurose T, Kawahara Y, Yuge L, Horie N. Human cranial bone-derived mesenchymal stem cells cultured under simulated microgravity can improve cerebral infarction in rats. Exp Neurol 2024; 382:114947. [PMID: 39265921 DOI: 10.1016/j.expneurol.2024.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The efficacy of transplanting human cranial bone-derived mesenchymal stem cells (hcMSCs) cultured under simulated microgravity (sMG) conditions has been previously reported; however, their effect on cerebral infarction remains unknown. Here, we examined the efficacy of transplanting hcMSCs cultured in an sMG environment into rat models of cerebral infarction. For evaluating neurological function, hcMSCs cultured in either a normal gravity (1G) or an sMG environment were transplanted in rats 1 day after inducing cerebral infarction. The expression of endogenous neurotrophic, axonal, neuronal, synaptogenic, angiogenic, and apoptosis-related factors in infarcted rat brain tissue was examined using real-time polymerase chain reaction and western blotting 35 days after stroke induction. The RNAs of hcMSCs cultured under 1G or sMG environments were sequenced. The results showed that neurological function was significantly improved after transplantation of hcMSCs from the sMG group compared with that from the 1G group. mRNA expressions of nerve growth factor, fibroblast growth factor 2, and synaptophysin were significantly higher in the sMG group than in the 1G group, whereas sortilin 1 expression was significantly lower. RNA sequencing analysis revealed that genes related to cell proliferation, angiogenesis, neurotrophy, neural and synaptic organization, and inhibition of cell differentiation were significantly upregulated in the sMG group. In contrast, genes promoting microtubule and extracellular matrix formation and cell adhesion, signaling, and differentiation were downregulated. These results demonstrate that hcMSCs cultured in the sMG environment may be a useful source of stem cells for the recovery of neurological function after cerebral infarction.
Collapse
Affiliation(s)
- Masashi Kuwabara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masataka Teranishi
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takahito Okazaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaaki Takeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daizo Ishii
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kondo
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyoharu Shimizu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Hosogai
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Hara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuyo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Kurose
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Space Bio-Laboratories Co., Ltd., Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
5
|
Wang Y, Hong J, Ge S, Wang T, Mei Z, He M, Liu Y, Fang J, Liu C, Yang L, Yuan Y. 9-O-monoethyl succinate berberine effectively blocks the PI3K/AKT signaling pathway by targeting Wnt5a protein in inhibiting osteosarcoma growth. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155430. [PMID: 39047413 DOI: 10.1016/j.phymed.2024.155430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary bone malignancy, mainly affecting children, adolescents, and young adults, followed by the elderly, with a high propensity for local invasion and metastasis. Although surgery combined with chemotherapy has greatly improved the prognosis of patients with OS, the prognosis for metastatic or recurrent OS is still unsatisfactory. The research community has struggled to develop an effective chemotherapy treatment regimen for this tumor. For the creation of an OS drug, our research team has effectively developed and manufactured a new drug named 9-O-monoethyl succinate berberine (B2). PURPOSE In this study, we aimed to investigate the roles and functions of B2 in the treatment of OS. METHODS Human OS cell lines and mouse OS cell lines were used in vitro cell experiments, while BALB/c mice and BALB/c nude mice were used in vivo animal experiments. To investigate the molecular mechanism of B2 treatment, antibody microarray analysis, proteomic analysis, quantitative real-time PCR, immunohistochemical labeling, and western blotting analysis were mostly carried out. We assessed the impact of B2 on OS therapy and the underlying molecular pathways based on in vivo and in vitro studies. RESULTS Our findings demonstrated that B2 has the ability to inhibit the proliferation, migration, and invasion of OS cell lines, while also induce apoptosis in vitro. Additionally, our results suggested that B2 could effectively impede the growth of OS and has less heart and lung damage than cisplatin in vivo. In terms of mechanism, we discovered that the Wnt5a protein is significantly expressed in OS cell lines. Knockdown of Wnt5a can restrict OS cell lines proliferation, and overexpression of Wnt5a had the opposite results. B2 also had a strong affinity with Wnt5a and can inhibit the PI3K/AKT signaling pathway by targeting Wnt5a. Tumor cells proliferation can be inhibited by blocking the PI3K/AKT signaling pathway, and Wnt5a-mediated inactivation of the PI3K/AKT signaling pathway after B2 treatment. In vitro and in vivo experiments with Wnt5a overexpression, B2 significantly inhibited tumor growth, migration, and invasion. Moreover, B2 and Wnt5a also have a strong structural binding ability (binding energy of -7.567 ± 0.084 kcal/mol, binding values of 2.860 ± 0.434 µM), and three hydrogen bonds are generated at the docking positions of amino acids GLN286, ASN288, and ASN292. CONCLUSION In summary, our study confirmed for the first time that the growth of OS is related to abnormal overexpression of Wnt5a protein, and designed a novel small molecule inhibitor named B2 targeting Wnt5a protein, which inhibits OS growth by mediating PI3K/AKT signaling pathway by targeting Wnt5a protein. Our research laid the groundwork for the promotion of B2 as a new anticancer drug and revealed an innovative chemotherapeutic strategy for OS therapy.
Collapse
Affiliation(s)
- Yanquan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jinhuan Hong
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shiyu Ge
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Zhongting Mei
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Mingyu He
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Ying Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jiaxin Fang
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chuang Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery of Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ye Yuan
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Zheng K, Deng M, Yu Y, Zhou J, Hou Y, Chen L, Ma Y, Chen Y, Chen H, Guo X, Luo R, Liao J, Meng S, Zhang J, Yan P, Zhang Y, Hu L, Qian A, Yin C. Basic knowledge and research methods. BONE CELL BIOMECHANICS, MECHANOBIOLOGY AND BONE DISEASES 2024:3-29. [DOI: 10.1016/b978-0-323-96123-3.00001-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Cecerska-Heryć E, Pękała M, Serwin N, Gliźniewicz M, Grygorcewicz B, Michalczyk A, Heryć R, Budkowska M, Dołęgowska B. The Use of Stem Cells as a Potential Treatment Method for Selected Neurodegenerative Diseases: Review. Cell Mol Neurobiol 2023:10.1007/s10571-023-01344-6. [PMID: 37027074 DOI: 10.1007/s10571-023-01344-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Stem cells have been the subject of research for years due to their enormous therapeutic potential. Most neurological diseases such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are incurable or very difficult to treat. Therefore new therapies are sought in which autologous stem cells are used. They are often the patient's only hope for recovery or slowing down the progress of the disease symptoms. The most important conclusions arise after analyzing the literature on the use of stem cells in neurodegenerative diseases. The effectiveness of MSC cell therapy has been confirmed in ALS and HD therapy. MSC cells slow down ALS progression and show early promising signs of efficacy. In HD, they reduced huntingtin (Htt) aggregation and stimulation of endogenous neurogenesis. MS therapy with hematopoietic stem cells (HSCs) inducted significant recalibration of pro-inflammatory and immunoregulatory components of the immune system. iPSC cells allow for accurate PD modeling. They are patient-specific and therefore minimize the risk of immune rejection and, in long-term observation, did not form any tumors in the brain. Extracellular vesicles derived from bone marrow mesenchymal stromal cells (BM-MSC-EVs) and Human adipose-derived stromal/stem cells (hASCs) cells are widely used to treat AD. Due to the reduction of Aβ42 deposits and increasing the survival of neurons, they improve memory and learning abilities. Despite many animal models and clinical trial studies, cell therapy still needs to be refined to increase its effectiveness in the human body.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland.
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
8
|
Administration of stem cells against cardiovascular diseases with a focus on molecular mechanisms: Current knowledge and prospects. Tissue Cell 2023; 81:102030. [PMID: 36709696 DOI: 10.1016/j.tice.2023.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases (CVDs) are a serious global concern for public and human health. Despite the emergence of significant therapeutic advances, it is still the leading cause of death and disability worldwide. As a result, extensive efforts are underway to develop practical therapeutic approaches. Stem cell-based therapies could be considered a promising strategy for the treatment of CVDs. The efficacy of stem cell-based therapeutic approaches is demonstrated through recent laboratory and clinical studies due to their inherent regenerative properties, proliferative nature, and their capacity to differentiate into different cells such as cardiomyocytes. These properties could improve cardiovascular functioning leading to heart regeneration. The two most common types of stem cells with the potential to cure heart diseases are induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs). Several studies have demonstrated the use, efficacy, and safety of MSC and iPSCs-based therapies for the treatment of CVDs. In this study, we explain the application of stem cells, especially iPSCs and MSCs, in the treatment of CVDs with a focus on cellular and molecular mechanisms and then discuss the advantages, disadvantages, and perspectives of using this technology in the treatment of these diseases.
Collapse
|
9
|
Zhang YL, Liu L, Su YW, Xian CJ. miR-6315 Attenuates Methotrexate Treatment-Induced Decreased Osteogenesis and Increased Adipogenesis Potentially through Modulating TGF-β/Smad2 Signalling. Biomedicines 2021; 9:biomedicines9121926. [PMID: 34944742 PMCID: PMC8698410 DOI: 10.3390/biomedicines9121926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
Methotrexate (MTX) treatment for childhood malignancies has shown decreased osteogenesis and increased adipogenesis in bone marrow stromal cells (BMSCs), leading to bone loss and bone marrow adiposity, for which the molecular mechanisms are not fully understood. Currently, microRNAs (miRNAs) are emerging as vital mediators involved in bone/bone marrow fat homeostasis and our previous studies have demonstrated that miR-6315 was upregulated in bones of MTX-treated rats, which might be associated with bone/fat imbalance by directly targeting Smad2. However, the underlying mechanisms by which miR-6315 regulates osteogenic and adipogenic differentiation require more investigations. Herein, we further explored and elucidated the regulatory roles of miR-6315 in osteogenesis and adipogenesis using in vitro cell models. We found that miR-6315 promotes osteogenic differentiation and it alleviates MTX-induced increased adipogenesis. Furthermore, our results suggest that the involvement of miR-6315 in osteogenesis/adipogenesis regulation might be partially through modulating the TGF-β/Smad2 signalling pathway. Our findings indicated that miR-6315 may be important in regulating osteogenesis and adipogenesis and might be a therapeutic target for preventing/attenuating MTX treatment-associated bone loss and marrow adiposity.
Collapse
|
10
|
Sung SE, Seo MS, Kang KK, Choi JH, Lee S, Sung M, Kim K, Lee GW, Lim JH, Yang SY, Yim SG, Kim SK, Park S, Kwon YS, Yun S. Mesenchymal Stem Cell Exosomes Derived from Feline Adipose Tissue Enhance the Effects of Anti-Inflammation Compared to Fibroblasts-Derived Exosomes. Vet Sci 2021; 8:182. [PMID: 34564576 PMCID: PMC8473240 DOI: 10.3390/vetsci8090182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (AD-MSCs) release extracellular vesicles such as exosomes, apoptotic bodies, and microparticles. In particular, exosomes are formed inside cells via multivesicular bodies (MVBs), thus their protein, DNA, and RNA content are similar to those of the parent cells. Exosome research is rapidly expanding, with an increase in the number of related publications observed in recent years; therefore, the function and application of MSC-derived exosomes could emerge as cell-free therapeutics. Exosomes have been isolated from feline AD-MSCs and feline fibroblast cell culture media using ultracentrifugation. Feline exosomes have been characterized by FACS, nanoparticle tracking analysis, and transmission electron microscopy imaging. Moreover, cytokine levels were detected by sandwich enzyme-linked immunosorbent assay in exosomes and LPS-induced THP-1 macrophages. The size of the isolated exosomes was that of a typical exosome, i.e., approximately 150 nm, and they expressed tetraspanins CD9 and CD81. The anti-inflammatory factor IL-10 was increased in feline AD-MSC-derived exosomes. However, pro-inflammatory factors such as IL-1β, IL-8, IL-2, RANTES, and IFN-gamma were significantly decreased in feline AD-MSC-derived exosomes. This was the first demonstration that feline AD-MSC-derived exosomes enhance the inflammatory suppressive effects and have potential for the treatment of immune diseases or as an inflammation-inhibition therapy.
Collapse
Affiliation(s)
- Soo-Eun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Korea; (S.Y.Y.); (S.-G.Y.)
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
| | - Kyung-Ku Kang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
| | - Joo-Hee Choi
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
| | - Sijoon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
| | - Minkyoung Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
| | - Kilsoo Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
- College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Daegu 41566, Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, 170 Hyochung-ro, Daegu 42415, Korea; (G.W.L.); (J.-H.L.)
| | - Ju-Hyeon Lim
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, 170 Hyochung-ro, Daegu 42415, Korea; (G.W.L.); (J.-H.L.)
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Korea; (S.Y.Y.); (S.-G.Y.)
| | - Sang-Gu Yim
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Korea; (S.Y.Y.); (S.-G.Y.)
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD., 61Heolleungro 8-gil, Seoul 06800, Korea;
| | - Sangbum Park
- Institute for Quantitative Health Science & Engineering (IQ), Michigan State University, Auditorium Road 775 Woodlot Drive, East Lansing, MI 48824, USA;
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, Auditorium Road 775 Woodlot Drive, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48824, USA
| | - Young-Sam Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sungho Yun
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
11
|
Sivaraj KK, Jeong HW, Dharmalingam B, Zeuschner D, Adams S, Potente M, Adams RH. Regional specialization and fate specification of bone stromal cells in skeletal development. Cell Rep 2021; 36:109352. [PMID: 34260921 PMCID: PMC8293626 DOI: 10.1016/j.celrep.2021.109352] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/30/2020] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Bone stroma contributes to the regulation of osteogenesis and hematopoiesis but also to fracture healing and disease processes. Mesenchymal stromal cells from bone (BMSCs) represent a heterogenous mixture of different subpopulations with distinct molecular and functional properties. The lineage relationship between BMSC subsets and their regulation by intrinsic and extrinsic factors are not well understood. Here, we show with mouse genetics, ex vivo cell differentiation assays, and transcriptional profiling that BMSCs from metaphysis (mpMSCs) and diaphysis (dpMSCs) are fundamentally distinct. Fate-tracking experiments and single-cell RNA sequencing indicate that bone-forming osteoblast lineage cells and dpMSCs, including leptin receptor-positive (LepR+) reticular cells in bone marrow, emerge from mpMSCs in the postnatal metaphysis. Finally, we show that BMSC fate is controlled by platelet-derived growth factor receptor β (PDGFRβ) signaling and the transcription factor Jun-B. The sum of our findings improves our understanding of BMSC development, lineage relationships, and differentiation.
Collapse
Affiliation(s)
- Kishor K Sivaraj
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Backialakshmi Dharmalingam
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Susanne Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Michael Potente
- Max Planck Institute for Heart and Lung Research, Angiogenesis and Metabolism Laboratory, 61231 Bad Nauheim, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany.
| |
Collapse
|
12
|
Wang LM, Jung S, Serban M, Chatterjee A, Lee S, Jeyaseelan K, El Naqa I, Seuntjens J, Ybarra N. Comparison of quantitative and qualitative scoring approaches for radiation-induced pulmonary fibrosis as applied to a preliminary investigation into the efficacy of mesenchymal stem cell delivery methods in a rat model. BJR Open 2021; 2:20210006. [PMID: 34381940 PMCID: PMC8320116 DOI: 10.1259/bjro.20210006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 11/05/2022] Open
Abstract
Objectives Compare a quantitative, algorithm-driven, and qualitative, pathologist-driven, scoring of radiation-induced pulmonary fibrosis (RIPF). And using these scoring models to derive preliminary comparisons on the effects of different mesenchymal stem cell (MSC) administration modalities in reducing RIPF. Methods 25 rats were randomized into 5 groups: non-irradiated control (CG), irradiated control (CR), intraperitoneally administered granulocyte-macrophage colony stimulating factor or GM-CSF (Drug), intravascularly administered MSC (IV), and intratracheally administered MSC (IT). All groups, except CG, received an 18 Gy conformal dose to the right lung. Drug, IV and IT groups were treated immediately after irradiation. After 24 weeks of observation, rats were euthanized, their lungs excised, fixed and stained with Masson's Trichrome. Samples were anonymized and RIPF was scored qualitatively by a certified pathologist and quantitatively using ImageScope. An analysis of association was conducted, and two binary classifiers trained to validate the integrity of both qualitative and quantitative scoring. Differences between the treatment groups, as assessed by the pathologist score, were then tested by variance component analysis and mixed models for differences in RIPF outcomes. Results There is agreement between qualitative and quantitative scoring for RIPF grades from 4 to 7. Both classifiers performed similarly on the testing set (AUC = 0.923) indicating accordance between the qualitative and quantitative scoring. For comparisons between MSC infusion modalities, the Drug group had better outcomes (mean pathologist scoring of 3.96), correlating with significantly better RIPF outcomes than IV [lower by 0.97, p = 0.047, 95% CI = (0.013, 1.918)] and resulting in an improvement over CR [lower by 0.93, p = 0.037, 95% CI = (0.062, 1.800]. Conclusion Quantitative image analysis may help in the assessment of therapeutic interventions for RIPF and can serve as a scoring surrogate in differentiating between severe and mild cases of RIPF. Preliminary data demonstrate that the use of GM-CSF was best correlated with lower RIPF severity. Advances in knowledge Quantitative image analysis can be a viable supplemental system of quality control and triaging in situations where pathologist work hours or resources are limited. The use of different MSC administration methods can result in different degrees of MSC efficacy and study outcomes.
Collapse
Affiliation(s)
- Li Ming Wang
- Research Institute of the McGill University Healthcare Centre, Montréal, Canada
| | - Sungmi Jung
- Department of Pathology, McGill University Healthcare Centre, Montréal, Canada
| | - Monica Serban
- Medical Physics Unit, Cedars Cancer Centre, McGill University Healthcare Centre, Montréal, Canada
| | - Avishek Chatterjee
- Medical Physics Unit, Cedars Cancer Centre, McGill University Healthcare Centre, Montréal, Canada
| | - Sangkyu Lee
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Krishinima Jeyaseelan
- Medical Physics Unit, Cedars Cancer Centre, McGill University Healthcare Centre, Montréal, Canada
| | - Issam El Naqa
- Radiation Oncology, University of Michigan - Ann Arbor, Ann Arbor, MI, USA
| | - Jan Seuntjens
- Medical Physics Unit, Cedars Cancer Centre, Montréal University Healthcare Centre, Montreal, Canada
| | - Norma Ybarra
- Research Institute of the McGill University Healthcare Centre & Medical Physics Unit, CedarsCancer Centre, McGill University Healthcare Centre, Montreal, Canada
| |
Collapse
|
13
|
Zhang YL, Liu L, Peymanfar Y, Anderson P, Xian CJ. Roles of MicroRNAs in Osteogenesis or Adipogenesis Differentiation of Bone Marrow Stromal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22137210. [PMID: 34281266 PMCID: PMC8269269 DOI: 10.3390/ijms22137210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are multipotent cells which can differentiate into chondrocytes, osteoblasts, and fat cells. Under pathological stress, reduced bone formation in favour of fat formation in the bone marrow has been observed through a switch in the differentiation of BMSCs. The bone/fat switch causes bone growth defects and disordered bone metabolism in bone marrow, for which the mechanisms remain unclear, and treatments are lacking. Studies suggest that small non-coding RNAs (microRNAs) could participate in regulating BMSC differentiation by disrupting the post-transcription of target genes, leading to bone/fat formation changes. This review presents an emerging concept of microRNA regulation in the bone/fat formation switch in bone marrow, the evidence for which is assembled mainly from in vivo and in vitro human or animal models. Characterization of changes to microRNAs reveals novel networks that mediate signalling and factors in regulating bone/fat switch and homeostasis. Recent advances in our understanding of microRNAs in their control in BMSC differentiation have provided valuable insights into underlying mechanisms and may have significant potential in development of new therapeutics.
Collapse
|
14
|
Perez-Tejeiro JM, Csukasi F. DEPTOR in Skeletal Development and Diseases. Front Genet 2021; 12:667283. [PMID: 34122519 PMCID: PMC8191632 DOI: 10.3389/fgene.2021.667283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Discovered in 2009, the DEP-domain containing mTOR-interacting protein, DEPTOR, is a known regulator of the mechanistic target of rapamycin (mTOR), an evolutionarily conserved kinase that regulates diverse cellular processes in response to environmental stimuli. DEPTOR was originally identified as a negative regulator of mTOR complexes 1 (mTORC1) and 2 (mTORC2). However, recent discoveries have started to unravel the roles of DEPTOR in mTOR-independent responses. In the past few years, mTOR emerged as an important regulator of skeletal development, growth, and homeostasis; the dysregulation of its activity contributes to the development of several skeletal diseases, both chronic and genetic. Even more recently, several groups have reported on the relevance of DEPTOR in skeletal biology through its action on mTOR-dependent and mTOR-independent pathways. In this review, we summarize the current understanding of DEPTOR in skeletal development and disease.
Collapse
Affiliation(s)
- Jose Miguel Perez-Tejeiro
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| | - Fabiana Csukasi
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| |
Collapse
|
15
|
Sung K, Patel NR, Ashammakhi N, Nguyen KL. 3-Dimensional Bioprinting of Cardiovascular Tissues: Emerging Technology. JACC Basic Transl Sci 2021; 6:467-482. [PMID: 34095635 PMCID: PMC8165127 DOI: 10.1016/j.jacbts.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) bioprinting may overcome challenges in tissue engineering. Unlike conventional tissue engineering approaches, 3D bioprinting has a proven ability to support vascularization of larger scale constructs and has been used for several cardiovascular applications. An overview of 3D bioprinting techniques, in vivo translation, and challenges are described.
Collapse
Affiliation(s)
- Kevin Sung
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Nisha R. Patel
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois, USA
| | - Nureddin Ashammakhi
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California-Los Angeles, Los Angeles, California, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Physics and Biology in Medicine Graduate Program, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
16
|
Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. Theranostics 2021; 11:5675-5685. [PMID: 33897874 PMCID: PMC8058725 DOI: 10.7150/thno.46436] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Aging frailty is a complex geriatric syndrome that becomes more prevalent with advancing age. It constitutes a major health problem due to frequent adverse outcomes. Frailty is characterized by disruption of physiological homeostasis and progressive decline of health status. Multiple factors contribute to development of frailty with advancing age, including genome instability, DNA damage, epigenetic alternations, stem cell exhaustion, among others. These interrelated factors comprehensively result in loss of tissue homeostasis and diminished reserve capacity in frailty. Therefore, the aged organism gradually represents symptoms of frailty with decline in physiological functions of organs. Notably, the brain, cardiovascular system, skeletal muscle, and endocrine system are intrinsically interrelated to frailty. The patients with frailty may display the diminished reserves capacity of organ systems. Due to the complex pathophysiology, no specific treatments have been approved for prevention of this syndrome. At such, effective strategies for intervening in pathogenic process to improve health status of frail patients are highly needed. Recent progress in cell-based therapy has greatly contributed to the amelioration of degenerative diseases related to age. Mesenchymal stem cells (MSCs) can exert regenerative effects and possess anti-inflammatory properties. Transplantation of MSCs represents as a promising therapeutic strategy to address the pathophysiologic problems of frail syndrome. Currently, MSC therapy have undergone the phase I and II trials in human subjects that have endorsed the safety and efficacy of MSCs for aging frailty. However, despite these positive results, caution is still needed with regard to potential to form tumors, and further large-scale studies are warranted to confirm the therapeutic efficacy of MSC therapy.
Collapse
|
17
|
Sung SE, Kang KK, Choi JH, Lee SJ, Kim K, Lim JH, Yang SY, Kim SK, Seo MS, Lee GW. Comparisons of Extracellular Vesicles from Human Epidural Fat-Derived Mesenchymal Stem Cells and Fibroblast Cells. Int J Mol Sci 2021; 22:2889. [PMID: 33809214 PMCID: PMC8000612 DOI: 10.3390/ijms22062889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are generated and secreted by cells into the circulatory system. Stem cell-derived EVs have a therapeutic effect similar to that of stem cells and are considered an alternative method for cell therapy. Accordingly, research on the characteristics of EVs is emerging. EVs were isolated from human epidural fat-derived mesenchymal stem cells (MSCs) and human fibroblast culture media by ultracentrifugation. The characterization of EVs involved the typical evaluation of cluster of differentiation (CD antigens) marker expression by fluorescence-activated cell sorting, size analysis with dynamic laser scattering, and morphology analysis with transmission electron microscopy. Lastly, the secreted levels of cytokines and chemokines in EVs were determined by a cytokine assay. The isolated EVs had a typical size of approximately 30-200 nm, and the surface proteins CD9 and CD81 were expressed on human epidural fat MSCs and human fibroblast cells. The secreted levels of cytokines and chemokines were compared between human epidural fat MSC-derived EVs and human fibroblast-derived EVs. Human epidural fat MSC-derived EVs showed anti-inflammatory effects and promoted macrophage polarization. In this study, we demonstrated for the first time that human epidural fat MSC-derived EVs exhibit inflammatory suppressive potency relative to human fibroblast-derived EVs, which may be useful for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Soo-Eun Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea;
| | - Kyung-Ku Kang
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
| | - Joo-Hee Choi
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
| | - Si-Joon Lee
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
| | - KilSoo Kim
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
- College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea
| | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, Korea;
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea;
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD, 61Heolleungro 8-gil, Seocho-gu, Seoul 06800, Korea;
| | - Min-Soo Seo
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| |
Collapse
|
18
|
Ushakov RE, Skvortsova EV, Vitte MA, Vassilieva IO, Shatrova AN, Kotova AV, Kenis VM, Burova EB. Chondrogenic differentiation followed IGFBP3 loss in human endometrial mesenchymal stem cells. Biochem Biophys Res Commun 2020; 531:133-139. [DOI: 10.1016/j.bbrc.2020.07.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
|
19
|
Sutjarit N, Thongon N, Weerachayaphorn J, Piyachaturawat P, Suksamrarn A, Suksen K, Papachristou DJ, Blair HC. Inhibition of Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by a Phytoestrogen Diarylheptanoid from Curcuma comosa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9993-10002. [PMID: 32838526 DOI: 10.1021/acs.jafc.0c04063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigated the effect of a phytoestrogen, (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (DPHD), from Curcuma comosa Roxb. (Zingiberaceae family) on the adipogenic differentiation of mesenchymal progenitors, human bone marrow-derived mesenchymal stem cells (hBMSCs). DPHD inhibited adipocyte differentiation of hBMSCs by suppressing the expression of genes involved in adipogenesis. DPHD at concentrations of 0.1, 1, and 10 μM significantly decreased triglyceride accumulation in hBMSCs to 7.1 ± 0.2, 6.3 ± 0.4, and 4.9 ± 0.2 mg/dL, respectively, compared to the nontreated control (10.1 ± 0.9 mg/dL) (p < 0.01). Based on gene expression profiling, DPHD increased the expression of several genes involved in the Wnt/β-catenin signaling pathway, a negative regulator of adipocyte differentiation in hBMSCs. DPHD also increased the levels of essential signaling proteins which are extracellular signal-regulated kinases 1 and 2 (ERK1/2) and glycogen synthase kinase 3 beta (GSK-3β) that link estrogen receptor (ER) signaling to Wnt/β-catenin signaling. In conclusion, DPHD exhibited the anti-adipogenic effect in hBMSCs by suppression of adipogenic markers in hBMSCs through the activation of ER and Wnt/β catenin signaling pathways. This finding suggests the potential role of DPHD in preventing bone marrow adiposity which is one of the major factors that exacerbates osteoporosis in postmenopause.
Collapse
Affiliation(s)
- Nareerat Sutjarit
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natthakan Thongon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Pawinee Piyachaturawat
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Dionysios J Papachristou
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, University Patras Medical School, Patras 26504, Greece
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Harry C Blair
- The Pittsburgh Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15261, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
20
|
Skiles ML, Marzan AJ, Brown KS, Shamonki JM. Comparison of umbilical cord tissue-derived mesenchymal stromal cells isolated from cryopreserved material and extracted by explantation and digestion methods utilizing a split manufacturing model. Cytotherapy 2020; 22:581-591. [PMID: 32718875 DOI: 10.1016/j.jcyt.2020.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Umbilical cord (UC) tissue is recognized as an advantageous source of mesenchymal stromal cells (MSCs), whose therapeutic properties are being actively evaluated in pre-clinical and clinical trials. In recognition of its potential value, storage of UC tissue or cells from UC tissue in newborn stem cell banks is now commonplace; however, strategies for isolating UC-derived MSCs (UCMSCs) from UC tissue have not been standardized. The majority of newborn stem cell banks take one of two approaches to cord tissue processing and cryopreservation: enzymatic digestion of the fresh tissue with cryopreservation of the subsequent cell suspension or cryopreservation of the tissue as a composite whole with later, post-thaw isolation of cells by explantation. Evaluation of UCMSCs derived by these two principal preparation and cryopreservation strategies is important to understanding whether the methods currently employed by newborn stem cell banks retain the desirable clinical attributes of UC cells. METHODS UCMSCs were isolated from 10 UC tissue samples by both explantation and enzymatic digestion methods to allow for comparison of cells from the same donor. Cell isolates from both methods were compared pre- and post-cryopreservation as well as after serial passaging. Cell viability, morphology, growth kinetics, immunophenotype, cytokine secretion and differentiation capacity were evaluated. RESULTS UCMSCs could be derived from fresh UC tissue by both explantation and digestion methods and from thawed UC tissue by explantation. Initial cell populations isolated by digestion were heterogeneous and took longer to enrich for UCMSCs in culture than populations obtained by explantation. However, once isolated and enriched, UCMSCs obtained by either method showed no significant difference in viability, morphology, rate of proliferation, surface marker expression, levels of cytokine secretion or differentiation capacity. CONCLUSIONS Derivation of UCMSCs by explantation after thawing UC cryopreserved as a composite tissue may be favorable in terms of initial purity and number of cells achievable by a specific passage. However, we observed no evidence of functional difference between UCMSCs derived by explanation or digestion, suggesting that cells isolated from cryopreserved material obtained by either method maintain their therapeutic properties.
Collapse
Affiliation(s)
- Matthew L Skiles
- Research and Development, Generate Life Sciences, Los Angeles, California, USA.
| | - Allen J Marzan
- Research and Development, Generate Life Sciences, Los Angeles, California, USA
| | - Katherine S Brown
- Research and Development, Generate Life Sciences, Los Angeles, California, USA
| | - Jaime M Shamonki
- Research and Development, Generate Life Sciences, Los Angeles, California, USA
| |
Collapse
|
21
|
Morganti C, Bonora M, Marchi S, Ferroni L, Gardin C, Wieckowski MR, Giorgi C, Pinton P, Zavan B. Citrate Mediates Crosstalk between Mitochondria and the Nucleus to Promote Human Mesenchymal Stem Cell In Vitro Osteogenesis. Cells 2020; 9:cells9041034. [PMID: 32326298 PMCID: PMC7226543 DOI: 10.3390/cells9041034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022] Open
Abstract
Citrate, generated in the mitochondria, is a key metabolite that might link metabolism with signaling, chromatin structure and transcription to orchestrate mesenchymal stem cells (MSCs) fate determination. Based on a detailed morphological analysis of 3D reconstruction of mitochondria and nuclei in single cells, we identified contact sites between these organelles that drastically increase in volume and number during the early stage of mesenchymal stem cell differentiation. These contact sites create a microdomain that facilitates exchange of signals from mitochondria to the nucleus. Interestingly, we found that the citrate derived from mitochondria is necessary for osteogenic lineage determination. Indeed, inhibition of the citrate transporter system dramatically affected osteogenesis, reduced citrate levels that could be converted in α-ketoglutarate, and consequently affected epigenetic marker H3K9me3 associated with the osteogenesis differentiation process. These findings highlight that mitochondrial metabolites play key regulatory roles in the MSCs differentiation process. Further in-depth investigation is needed to provide novel therapeutic strategies in the field of regenerative medicine.
Collapse
Affiliation(s)
- Claudia Morganti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (M.B.); (S.M.); (C.G.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Bonora
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (M.B.); (S.M.); (C.G.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Saverio Marchi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (M.B.); (S.M.); (C.G.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy; (L.F.); (C.G.)
| | - Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy; (L.F.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (M.B.); (S.M.); (C.G.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (M.B.); (S.M.); (C.G.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy; (L.F.); (C.G.)
- Correspondence: (P.P.); (B.Z.)
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy; (L.F.); (C.G.)
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (P.P.); (B.Z.)
| |
Collapse
|
22
|
Chen G, Kawazoe N. Regulation of Stem Cell Functions by Micro-Patterned Structures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:141-155. [PMID: 32601943 DOI: 10.1007/978-981-15-3262-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Micro-patterned surfaces have been broadly used to control the morphology of stem cells for investigation of the influence of physiochemical and biological cues on stem cell functions. Different structures of micro-patterned surfaces can be prepared by photolithography through designing the photomask features. Cell spreading area, geometry, aspect ratio, and alignment can be regulated by the micro-patterned structures. Their influences on adipogenic, osteogenic, and smooth muscle differentiation of the human bone marrow-derived mesenchymal stem cells are compared and investigated in details. Variation of cell morphology can trigger rearrangement of cytoskeleton, generating cytoskeletal mechanical stimulation and consequently inducing differentiation of mesenchymal stem cells into different lineages. This chapter summarizes the latest development of regulation of mesenchymal stem cell morphology by micro-patterns and the influence on the behaviors and differentiation of the mesenchymal stem cells.
Collapse
Affiliation(s)
- Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
Sen S. Adult Stem Cells: Beyond Regenerative Tool, More as a Bio-Marker in Obesity and Diabetes. Diabetes Metab J 2019; 43:744-751. [PMID: 31902144 PMCID: PMC6943270 DOI: 10.4093/dmj.2019.0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/17/2019] [Indexed: 12/23/2022] Open
Abstract
Obesity, diabetes, and cardiovascular diseases are increasing rapidly worldwide and it is therefore important to know the effect of exercise and medications for diabetes and obesity on adult stem cells. Adult stem cells play a major role in remodeling and tissue regeneration. In this review we will focus mainly on two adult stem/progenitor cells such as endothelial progenitor cells and mesenchymal stromal cells in relation to aerobic exercise and diabetes medications, both of which can alter the course of regeneration and tissue remodelling. These two adult precursor and stem cells are easily obtained from peripheral blood or adipose tissue depots, as the case may be and are precursors to endothelium and mesenchymal tissue (fat, bone, muscle, and cartilage). They both are key players in maintenance of cardiovascular and metabolic homeostasis and can act also as useful biomarkers.
Collapse
Affiliation(s)
- Sabyasachi Sen
- Division of Endocrinology, Department of Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
24
|
Kanjevac T, Gustafson C, Ivanovska A, Ravanetti F, Cacchioli A, Bosnakovski D. Inflammatory Cytokines and Biodegradable Scaffolds in Dental Mesenchymal Stem Cells Priming. Curr Stem Cell Res Ther 2019; 14:320-326. [PMID: 30608044 DOI: 10.2174/1574888x14666190103170109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with wide-ranging clinical applications due to their ability to regenerate tissue from mesenchymal origin and their capability of suppressing immune responses, thus reducing the likelihood of graft versus host disease after transplantation. MSCs can be isolated from a variety of sources including bone marrow, adipose tissue, umbilical cord blood, and immature teeth. Dental stem cells (DSCs) possess progenitor and immunomodulatory abilities as the other MSC types and because they can be easily isolated, are considered as attractive therapeutic agents in regenerative dentistry. Recently, it has been shown that DSCs seeded onto newly developed synthetic biomaterial scaffolds have retained their potential for proliferation and at the same time have enhanced capabilities for differentiation and immunosuppression. The scaffolds are becoming more efficient at MSC priming as researchers learn how short peptide sequences alter the adhesive and proliferative capabilities of the scaffolds by stimulating or inhibiting classical osteogenic pathways. New findings on how to modulate the inflammatory microenvironment, which can prime DSCs for differentiation, combined with the use of next generation scaffolds may significantly improve their therapeutic potential. In this review, we summarize current findings regarding DSCs as a potential regenerative therapy, including stem cell priming with inflammatory cytokines, types of scaffolds currently being explored and the modulation of scaffolds to regulate immune response and promote growth.
Collapse
Affiliation(s)
- Tatjana Kanjevac
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Collin Gustafson
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, United States
| | - Ana Ivanovska
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | - Darko Bosnakovski
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, United States.,Faculty of Medical Sciences, University Goce Delcev, Stip, R. Macedonia
| |
Collapse
|
25
|
Rahimzadeh S, Rahbarghazi R, Aslani S, Rajabi H, Latifi Z, Farshdousti Hagh M, Nourazarian A, Nozad Charoudeh H, Nouri M, Abhari A. Promoter methylation and expression pattern of DLX3, ATF4, and FRA1 genes during osteoblastic differentiation of adipose-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2019; 10:243-250. [PMID: 32983940 PMCID: PMC7502906 DOI: 10.34172/bi.2020.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022]
Abstract
![]()
Introduction: Nowadays, mesenchymal stem cells are touted as suitable cell supply for the restoration of injured bone tissue. The existence of osteogenic differentiation makes these cells capable of replenishing damaged cells in the least possible time. It has been shown that epigenetic modifications, especially DNA methylation, contribute to the regulation of various transcription factors during phenotype acquisition. Hence, we concentrated on the correlation between the promoter methylation and the expression of genes DLX3, ATF4 , and FRA1 during osteoblastic differentiation of adipose-derived mesenchymal stem cells in vitro after 21 days.
Methods: Adipose-derived mesenchymal stem cells were cultured in osteogenesis differentiation medium supplemented with 0.1 µM dexamethasone, 10 mM β-glycerol phosphate, and 50 µM ascorbate-2-phosphate for 21 days. RNA and DNA extraction was done on days 0, 7, 14, and 21. Promoter methylation and expression levels of genes DLX3 , ATF4 , and FRA1 were analyzed by methylation-specific quantitative PCR and real-time PCR assays, respectively.
Results: We found an upward expression trend with the increasing time for genes DLX3, ATF4, and FRA1 in stem cells committed to osteoblast-like lineage compared to the control group (P <0.05). On the contrary, methylation-specific quantitative PCR displayed decreased methylation rates of DLX3 and ATF4 genes, but not FRA1 , over time compared to the non-treated control cells (P <0.05). Bright-field images exhibited red-colored calcified deposits around Alizarin Red S-stained cells after 21 days compared to the control group. Statistical analysis showed a strong correlation between the transcription of genes DLX3 and ATF4 and methylation rate (P <0.05).
Conclusion: In particular, osteoblastic differentiation of adipose-derived mesenchymal stem cells enhances DLX3 and ATF4 transcriptions by reducing methylation rate for 21 days.
Collapse
Affiliation(s)
- Sevda Rahimzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Aslani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Farshdousti Hagh
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Gilbert W, Bragg R, Elmansi AM, McGee-Lawrence ME, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123:154783. [PMID: 31336263 PMCID: PMC6948927 DOI: 10.1016/j.cyto.2019.154783] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.
Collapse
Affiliation(s)
- William Gilbert
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Robert Bragg
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
| | - Meghan E McGee-Lawrence
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States
| | - Mark W Hamrick
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
27
|
Li Y, Huang L, Cai Z, Deng W, Wang P, Su H, Wu Y, Shen H. A Study of the Immunoregulatory Function of TLR3 and TLR4 on Mesenchymal Stem Cells in Ankylosing Spondylitis. Stem Cells Dev 2019; 28:1398-1412. [PMID: 31456484 DOI: 10.1089/scd.2019.0039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yuxi Li
- Department of Orthopedics and Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Huang
- Department of Orthopedics and Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaopeng Cai
- Department of Orthopedics, Sun Yat-sen University Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wen Deng
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Department of Orthopedics, Sun Yat-sen University Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongjun Su
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanfeng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyong Shen
- Department of Orthopedics, Sun Yat-sen University Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
28
|
Zhang X, Liu L, Dou C, Cheng P, Liu L, Liu H, Ren S, Wang C, Jia S, Chen L, Zhang H, Chen M. PPAR Gamma-Regulated MicroRNA 199a-5p Underlies Bone Marrow Adiposity in Aplastic Anemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:678-687. [PMID: 31400610 PMCID: PMC6700432 DOI: 10.1016/j.omtn.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/02/2023]
Abstract
Increased propensity of bone marrow-derived mesenchymal stem cells (BM-MSCs) toward adipogenic differentiation has been implicated in the fatty bone marrow and defective hematopoiesis of aplastic anemia (AA). However, the underlying molecular mechanism remains to be investigated. In this study, we found that microRNA 199a-5p (miR-199a-5p) exhibits significantly higher expression in AA BM-MSCs compared with the normal control and is demonstrated to facilitate adipogenic differentiation of BM-MSCs through lentivirus-mediated miR-199a overexpression. Mechanistic investigation reveals that miR-199a-5p could be regulated by PPAR gamma (PPARγ) in a transcription-independent manner and regulates adipogenic differentiation by targeting the expression of transforming growth factor beta induced (TGFBI), which is subsequently validated as a negative regulator of adipogenesis. Besides, the positive correlation between PPARγ and miR-199a-5p expression as well as the inverse relationship between miR-199a-5p and TGFBI expression in normal and AA BM-MSCs was observed. Altogether, our work demonstrates that PPARγ-regulated miR-199a-5p promotes adipogenesis of BM-MSCs by inhibiting TGFBI expression, which might be a novel mechanism underlying the bone marrow adiposity in AA, and provides promising therapeutic targets for AA treatment.
Collapse
Affiliation(s)
- Xianning Zhang
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Lulu Liu
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Cuiyun Dou
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Lei Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Haihui Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Cuiling Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Shu Jia
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Lulu Chen
- Department of Graduate School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China.
| | - Mingtai Chen
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China.
| |
Collapse
|
29
|
Rosiglitazone Enhances Browning Adipocytes in Association with MAPK and PI3-K Pathways During the Differentiation of Telomerase-Transformed Mesenchymal Stromal Cells into Adipocytes. Int J Mol Sci 2019; 20:ijms20071618. [PMID: 30939750 PMCID: PMC6480475 DOI: 10.3390/ijms20071618] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity is a major risk for diabetes. Brown adipose tissue (BAT) mediates production of heat while white adipose tissue (WAT) function in the storage of fat. Roles of BAT in the treatment of obesity and related disorders warrants more investigation. Peroxisome proliferator activator receptor gamma (PPAR-γ) is the master regulator of both BAT and WAT adipogenesis and has roles in glucose and fatty acid metabolism. Adipose tissue is the major expression site for PPAR-γ. In this study, the effects of rosiglitazone on the brown adipogenesis and the association of MAPK and PI3K pathways was investigated during the in vitro adipogenic differentiation of telomerase transformed mesenchymal stromal cells (iMSCs). Our data indicate that 2 µM rosiglitazone enhanced adipogenesis by over-expression of PPAR-γ and C/EBP-α. More specifically, brown adipogenesis was enhanced by the upregulation of EBF2 and UCP-1 and evidenced by multilocular fatty droplets morphology of the differentiated adipocytes. We also found that rosiglitazone significantly activated MAPK and PI3K pathways at the maturation stage of differentiation. Overall, the results indicate that rosiglitazone induced overexpression of PPAR-γ that in turn enhanced adipogenesis, particularly browning adipogenesis. This study reports the browning effects of rosiglitazone during the differentiation of iMSCs into adipocytes in association with the activation of MAPK and PI3K signaling pathways.
Collapse
|
30
|
Huang P, Ge P, Tian QF, Huang GB. Prediction of key transcription factors during skin regeneration by combining gene expression data and regulatory network information analysis. INT J BIOMATH 2019. [DOI: 10.1142/s1793524519500244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose: Burn is one of the most common injuries in clinical practice. The use of transcription factors (TFs) has been reported to reverse the epigenetic rewiring process and has great promise for skin regeneration. To better identify key TFs for skin reprogramming, we proposed a predictive system that conjoint analyzed gene expression data and regulatory network information. Methods: Firstly, the gene expression data in skin tissues were downloaded and the LIMMA package was used to identify differential-expressed genes (DEGs). Then three ways, including identification of TFs from the DEGs, enrichment analysis of TFs by a Fisher’s test, the direct and network-based influence degree analysis of TFs, were used to identify the key TFs related to skin regeneration. Finally, to obtain most comprehensive combination of TFs, the coverage extent of all the TFs were analyzed by Venn diagrams. Results: The top 30 TFs combinations with higher coverage were acquired. Especially, TFAP2A, ZEB1, and NFKB1 exerted greater regulatory influence on other DEGs in the local network and presented relatively higher degrees in the protein–protein interaction (PPI) networks. Conclusion: These TFs identification could give a deeper understanding of the molecular mechanism of cell trans-differentiation, and provide a reference for the skin regeneration and burn treatment.
Collapse
Affiliation(s)
- Ping Huang
- Medical Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, P. R. China
| | - Peng Ge
- Department of Burn and Plastic Surgery, The People’s Hospital of Zhangqiu Area, Jinan 250200, Shandong, P. R. China
| | - Qing-Fen Tian
- Department of Burn and Plastic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, P. R. China
| | - Guo-Bao Huang
- Department of Burn and Plastic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, P. R. China
| |
Collapse
|
31
|
Fariyike B, Singleton Q, Hunter M, Hill WD, Isales CM, Hamrick MW, Fulzele S. Role of MicroRNA-141 in the Aging Musculoskeletal System: A Current Overview. Mech Ageing Dev 2019; 178:9-15. [PMID: 30528652 PMCID: PMC6998035 DOI: 10.1016/j.mad.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
MicroRNA's are small non-coding RNAs that regulate the expression of genes by targeting the 3' UTR's of mRNA. Studies reveal that miRNAs play a pivotal role in normal musculoskeletal function such as mesenchymal stem cell differentiation, survivability and apoptosis, osteogenesis, and chondrogenesis. Changes in normal miRNA expression have been linked to a number of pathological disease processes. Additionally, with aging, it is noted that there is dysregulation in the normal function of stem cell differentiation, bone formation/degradation, chondrocyte function, and muscle degeneration. Due to the change in expression of miRNA in degenerative musculoskeletal pathology, it is believed that these molecules may be at least partially responsible for cellular dysfunction. A number of miRNAs have already been identified to play a role in osteoarthritis, osteoporosis and sarcopenia. One miRNA that has become of interest recently is miRNA 141. The purpose of this article is to review the current literature available on miRNA 141 and how it could play a role in osteoporosis, osteoarthritis and musculoskeletal pathology overall.
Collapse
Affiliation(s)
- Babatunde Fariyike
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - Quante Singleton
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - Monte Hunter
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - William D Hill
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Medicine, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States.
| |
Collapse
|
32
|
Tew BY, Legendre C, Gooden GC, Johnson KN, Martinez RA, Kiefer J, Bernstein M, Glen J, Butry L, Hinek A, Toms SA, Salhia B. Isolation and characterization of patient-derived CNS metastasis-associated stromal cell lines. Oncogene 2019; 38:4002-4014. [PMID: 30700832 PMCID: PMC6756000 DOI: 10.1038/s41388-019-0680-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
Abstract
The functional role of human derived stromal cells in the tumor microenviornment of CNS metastases (CM) remain understudied. The purpose of the current study was to isolate and characterize stromal cells of the tumor microenvironment in CM. Four different patient-derived cell lines (PDCs) of stromal and one PDC of tumorigenic origin were generated from breast or lung CM. PDCs were analyzed by DNA/RNA sequencing, DNA methylation profiling, and immunophenotypic assays. The stromal derived PDCs were termed CNS metastasis-associated stromal cells (cMASCs). Functional analysis of cMASCs was tested by co-implanting them with tumorigenic cells in mice. cMASCs displayed normal genotypes compared with tumorigenic cell lines. RNA-seq and DNA methylation analyses demonstrated that cMASCs highly resembled each other, suggesting a common cell of origin. Additionally, cMASCs revealed gene expression signatures associated with cancer associated fibroblasts (CAFs), epithelial to mesenchymal transition, mesenchymal stem cells and expressed high levels of collagen. Functionally, cMASCs restricted tumor growth, and induced desmoplasia in vivo, suggesting that cMASCs may promote a protective host response to impede tumor growth. In summary, we demonstrated the isolation, molecular characterization and functional role of human derived cMASCs, a subpopulation of cells in the microenvironment of CM that have tumor inhibitory functions.
Collapse
Affiliation(s)
- Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | - Gerald C Gooden
- Department of Translational Genomics, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.,Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Kyle N Johnson
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Jeff Kiefer
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Mark Bernstein
- Division of Neurosurgery, University Health Network, Toronto, ON, Canada
| | - Jennifer Glen
- Division of Neurosurgery, University Health Network, Toronto, ON, Canada
| | - Loren Butry
- Department of Neurosurgery, Geisinger Health System, Danville, PA, USA
| | - Aleksander Hinek
- Peter Gilgan Centre for Research and Learning, Hospital for Sickkids, Toronto, ON, Canada
| | - Steven A Toms
- Department of Neurosurgery, Lifespan Health System and Warren Alpert School of Medicine, Brown University, Providence, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA. .,Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
33
|
Chiarella E, Aloisio A, Scicchitano S, Lucchino V, Montalcini Y, Galasso O, Greco M, Gasparini G, Mesuraca M, Bond HM, Morrone G. ZNF521 Represses Osteoblastic Differentiation in Human Adipose-Derived Stem Cells. Int J Mol Sci 2018; 19:ijms19124095. [PMID: 30567301 PMCID: PMC6321315 DOI: 10.3390/ijms19124095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023] Open
Abstract
Human adipose-derived stem cells (hADSCs) are multipotent mesenchymal cells that can differentiate into adipocytes, chondrocytes, and osteocytes. During osteoblastogenesis, the osteoprogenitor cells differentiate into mature osteoblasts and synthesize bone matrix components. Zinc finger protein 521 (ZNF521/Zfp521) is a transcription co-factor implicated in the regulation of hematopoietic, neural, and mesenchymal stem cells, where it has been shown to inhibit adipogenic differentiation. The present study is aimed at determining the effects of ZNF521 on the osteoblastic differentiation of hADSCs to clarify whether it can influence their osteogenic commitment. The enforced expression or silencing of ZNF521 in hADSCs was achieved by lentiviral vector transduction. Cells were cultured in a commercial osteogenic medium for up to 20 days. The ZNF521 enforced expression significantly reduced osteoblast development as assessed by the morphological and molecular criteria, resulting in reduced levels of collagen I, alkaline phosphatase, osterix, osteopontin, and calcium deposits. Conversely, ZNF521 silencing, in response to osteoblastic stimuli, induced a significant increase in early molecular markers of osteogenesis and, at later stages, a remarkable enhancement of matrix mineralization. Together with our previous findings, these results show that ZNF521 inhibits both adipocytic and osteoblastic maturation in hADSCs and suggest that its expression may contribute to maintaining the immature properties of hADSCs.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Annamaria Aloisio
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Stefania Scicchitano
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Valeria Lucchino
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany.
| | - Ylenia Montalcini
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Olimpio Galasso
- Department of Orthopedic & Trauma Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Manfredi Greco
- Department of Plastic Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Giorgio Gasparini
- Department of Orthopedic & Trauma Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Maria Mesuraca
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Heather M Bond
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Giovanni Morrone
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| |
Collapse
|
34
|
Otsuka T, Imura T, Nakagawa K, Shrestha L, Takahashi S, Kawahara Y, Sueda T, Kurisu K, Yuge L. Simulated Microgravity Culture Enhances the Neuroprotective Effects of Human Cranial Bone-Derived Mesenchymal Stem Cells in Traumatic Brain Injury. Stem Cells Dev 2018; 27:1287-1297. [DOI: 10.1089/scd.2017.0299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Takashi Otsuka
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Imura
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Nakagawa
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Looniva Shrestha
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinya Takahashi
- Department of Cardiovascular Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | | | - Taijiro Sueda
- Department of Cardiovascular Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Space Bio-Laboratories Co., Ltd., Hiroshima, Japan
| |
Collapse
|
35
|
Aliyari Ghasabeh M, Te Riele ASJM, James CA, Chen HSV, Tichnell C, Murray B, Eng J, Kral BG, Tandri H, Calkins H, Kamel IR, Zimmerman SL. Epicardial Fat Distribution Assessed with Cardiac CT in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Radiology 2018; 289:641-648. [PMID: 30129902 DOI: 10.1148/radiol.2018180224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose To compare epicardial fat in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) with that in healthy subjects. Materials and Methods In this retrospective study, cardiac CT scans in 44 patients with ARVD/C (mean age, 39 years ± 12; 23 men) were compared with those in 45 control group participants between January 2008 and July 2015. Volumes of intrathoracic adipose tissue, mediastinal adipose tissue (MAT), and total epicardial adipose tissue (EAT) were quantified. EAT was subdivided into three regions-right ventricular (RV) EAT, left ventricular (LV) EAT, and peri-atrial EAT (atrial EAT)-and normalized to MAT for all regions. Logistic regression and receiver operating characteristic analysis were performed to evaluate the association between epicardial fat with the diagnosis of ARVD/C. Results Total EAT volume was higher in patients with ARVD/C than in healthy control group participants (median, 98 mL vs 76 mL, respectively; P = .04). Regionally, LV and RV EAT volumes were higher in patients with ARVD/C than in control group participants, most notably when indexed to MAT (median LV EAT index: 0.49 vs 0.15, respectively; median RV EAT index: 0.91 vs 0.52; P ˂ .0005 for both). The optimal cutoff for diagnosis of ARVD/C was an LV EAT index of 0.24, with a sensitivity and specificity of 91% and 71%, respectively. Atrial EAT volume and total intrathoracic adipose tissue volume were not different between groups. RV diameter showed a positive correlation with total EAT index and LV EAT index (r = 0.21, P = .05 and r = 0.33, P = .002, respectively). Conclusion Higher amounts of right ventricular and left ventricular epicardial fat are found in hearts with arrhythmogenic right ventricular dysplasia/cardiomyopathy, particularly adjacent to the left ventricle, which correlates with disease severity and helps differentiate patients from healthy subjects. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Mounes Aliyari Ghasabeh
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| | - Anneline S J M Te Riele
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| | - Cynthia A James
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| | - H S Vincent Chen
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| | - Crystal Tichnell
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| | - Brittney Murray
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| | - John Eng
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| | - Brian G Kral
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| | - Harikrishna Tandri
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| | - Hugh Calkins
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| | - Ihab R Kamel
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| | - Stefan L Zimmerman
- From the Russell H. Morgan Department of Radiology and Radiological Sciences (M.A.G., J.E., I.R.K., S.L.Z.) and Division of Cardiology (A.S.J.M.T.R., C.A.J., C.T., B.M., B.G.K., H.T., H.C.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Halsted B180, Baltimore, MD 21287; Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (A.S.J.M.T.R.); Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.T.R.); and Department of Medicine/Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Ind (H.S.V.C.)
| |
Collapse
|
36
|
Zhang S, Wan H, Wang P, Liu M, Li G, Zhang C, Sun Y. Extracellular matrix protein DMP1 suppresses osteogenic differentiation of Mesenchymal Stem Cells. Biochem Biophys Res Commun 2018; 501:968-973. [PMID: 29775615 DOI: 10.1016/j.bbrc.2018.05.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023]
Abstract
Mesenchymal Stem Cells (MSCs) are self-renewing and multipotent stem cells which was investigated for diverse clinical applications. However, complex mechanism of MSCs fate determination is still not fully disclosed. Extracellular matrix (ECM) proteins contribute to maintain MSCs stemness by providing extracellular microenvironment. Increasing evidences show that ECM proteins could also regulate the fate of MSCs directly. Dentin matrix protein 1 (DMP1) is an ECM protein enrich in bone tissue and terminal cells, which well-known in promoting osteoblasts and osteocytes maturation, and facilitate mineralization. Recently, our experiment indicated that DMP1 was also expressed in MSCs of long bone. In present study, it is found that DMP1 expressed in Prx1 positive MSCs. And, DMP1 is down-regulated in early osteoblasts and up-regulated again in mature osteoblasts. DMP1 conditional knockout mice model under Prx1cre was generated to explore whether DMP1 regulates MSCs osteogenic differentiation. Specific ablation of DMP1 in Prx1 positive MSCs increased bone mass in vivo and promoted osteoblasts activity in vitro. This study provides a new understanding of DMP1's function in regulation of osteogenesis: not only an enhancer of bone formation, but also a negative regulator of MSCs differentiation in bone.
Collapse
Affiliation(s)
- Shufan Zhang
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Huixuan Wan
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Peng Wang
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Mengmeng Liu
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Gongchen Li
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Chunxue Zhang
- Tongji University School of Medicine, Stem Cell Translational Research Center, Tongji Hospital, Shanghai, 200065, China
| | - Yao Sun
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| |
Collapse
|
37
|
Wilson KM, Jagger AM, Walker M, Seinkmane E, Fox JM, Kröger R, Genever P, Ungar D. Glycans modify mesenchymal stem cell differentiation to impact on the function of resulting osteoblasts. J Cell Sci 2018; 131:jcs.209452. [PMID: 29361539 PMCID: PMC5868951 DOI: 10.1242/jcs.209452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
Glycans are inherently heterogeneous, yet glycosylation is essential in eukaryotes, and glycans show characteristic cell type-dependent distributions. By using an immortalized human mesenchymal stromal cell (MSC) line model, we show that both N- and O-glycan processing in the Golgi functionally modulates early steps of osteogenic differentiation. We found that inhibiting O-glycan processing in the Golgi prior to the start of osteogenesis inhibited the mineralization capacity of the formed osteoblasts 3 weeks later. In contrast, inhibition of N-glycan processing in MSCs altered differentiation to enhance the mineralization capacity of the osteoblasts. The effect of N-glycans on MSC differentiation was mediated by the phosphoinositide-3-kinase (PI3K)/Akt pathway owing to reduced Akt phosphorylation. Interestingly, by inhibiting PI3K during the first 2 days of osteogenesis, we were able to phenocopy the effect of inhibiting N-glycan processing. Thus, glycan processing provides another layer of regulation that can modulate the functional outcome of differentiation. Glycan processing can thereby offer a novel set of targets for many therapeutically attractive processes. Summary: Both N- and O-glycan processing modulate MSC differentiation early during osteogenesis to influence mineral formation. Inhibition of N-glycan processing increases mineralization.
Collapse
Affiliation(s)
| | | | - Matthew Walker
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - James M Fox
- Department of Biology, University of York, York YO10 5DD, UK
| | - Roland Kröger
- Department of Physics, University of York, York YO10 5DD, UK
| | - Paul Genever
- Department of Biology, University of York, York YO10 5DD, UK
| | - Daniel Ungar
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
38
|
Kang JM, Yeon BK, Cho SJ, Suh YH. Stem Cell Therapy for Alzheimer's Disease: A Review of Recent Clinical Trials. J Alzheimers Dis 2018; 54:879-889. [PMID: 27567851 DOI: 10.3233/jad-160406] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem cell therapy has been noted to be a disease-modifying treatment for Alzheimer's disease (AD). After the failure to develop new drugs for AD, the number of studies on stem cells, such as mesenchymal stem cells (MSCs) and neural stem cells (NSCs), has increased from the early 2000 s. Issues pertaining to stem cells have been investigated in many animal studies in terms of stem cell origin, differentiation potency, method of culture, tumor formation, injection route, and mobility. Since 2010, mainly in East Asia, researchers began clinical trials investigating the use of stem cells for AD. Two phase I trials on moderate AD have been completed; though they revealed no severe acute or long-term side effects, no significant clinical efficacy was observed. Several studies, which involve more sophisticated study designs using different injection routes, well-established scales, and biomarkers such as amyloid positron emission tomography, are planned for mild to moderate AD patients. Here, we review the concept of stem cell therapy for AD and the progress of recent clinical trials.
Collapse
Affiliation(s)
- Jae Myeong Kang
- Department of Psychiatry, Gil Medical Center, Gachon University, College of Medicine, Incheon, Korea
| | - Byeong Kil Yeon
- Department of Psychiatry, Gil Medical Center, Gachon University, College of Medicine, Incheon, Korea.,Incheon Metropolitan Dementia Center, Incheon, Korea
| | - Seong-Jin Cho
- Department of Psychiatry, Gil Medical Center, Gachon University, College of Medicine, Incheon, Korea
| | - Yoo-Hun Suh
- Neuroscience Research Institute, Gachon University, College of Medicine, Incheon, Korea
| |
Collapse
|
39
|
Doro DH, Grigoriadis AE, Liu KJ. Calvarial Suture-Derived Stem Cells and Their Contribution to Cranial Bone Repair. Front Physiol 2017; 8:956. [PMID: 29230181 PMCID: PMC5712071 DOI: 10.3389/fphys.2017.00956] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022] Open
Abstract
In addition to the natural turnover during life, the bones in the skeleton possess the ability to self-repair in response to injury or disease-related bone loss. Based on studies of bone defect models, both processes are largely supported by resident stem cells. In the long bones, the source of skeletal stem cells has been widely investigated over the years, where the major stem cell population is thought to reside in the perivascular niche of the bone marrow. In contrast, we have very limited knowledge about the stem cells contributing to the repair of calvarial bones. In fact, until recently, the presence of specific stem cells in adult craniofacial bones was uncertain. These flat bones are mainly formed via intramembranous rather than endochondral ossification and thus contain minimal bone marrow space. It has been previously proposed that the overlying periosteum and underlying dura mater provide osteoprogenitors for calvarial bone repair. Nonetheless, recent studies have identified a major stem cell population within the suture mesenchyme with multiple differentiation abilities and intrinsic reparative potential. Here we provide an updated review of calvarial stem cells and potential mechanisms of regulation in the context of skull injury repair.
Collapse
Affiliation(s)
- Daniel H Doro
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Agamemnon E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
40
|
Rocca A, Tafuri D, Paccone M, Giuliani A, Zamboli AGI, Surfaro G, Paccone A, Compagna R, Amato M, Serra R, Amato B. Cell Based Therapeutic Approach in Vascular Surgery: Application and Review. Open Med (Wars) 2017; 12:308-322. [PMID: 29071303 PMCID: PMC5651406 DOI: 10.1515/med-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023] Open
Abstract
Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs) and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs) and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, ItalyVia Sergio Pansini, 80131Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Antonio Giuliani
- A.O.R.N. A. Cardarelli Hepatobiliary and Liver Transplatation Center, Naples, Italy
| | | | - Giuseppe Surfaro
- Antonio Cardarelli Hospital, General Surgery Unit, Campobasso, Italy
| | - Andrea Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Rita Compagna
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Maurizo Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Bruno Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
41
|
Moon JS, Ko HM, Park JI, Kim JH, Kim SH, Kim MS. Inhibition of human mesenchymal stem cell proliferation via Wnt signaling activation. J Cell Biochem 2017; 119:1670-1678. [PMID: 28776719 DOI: 10.1002/jcb.26326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023]
Abstract
Human mesenchymal stem cells (hMSCs), characterized by rapid in vitro expandability and multi-differentiation potential, have been widely used in the clinical field of tissue engineering. Recent studies have shown that various signaling networks are involved in the growth and differentiation of hMSCs. Although Wnts and their downstream signaling components have been implicated in the regulation of hMSCs, the role of Wnt signaling in hMSC self-renewal is still controversial. Here, it was observed that activation of endogenous canonical Wnt signaling with LiCl, which decreased β-catenin phosphorylation, leads to a decrease in hMSC proliferation. The fact that this growth arrest is not linked to apoptosis was verified by annexin V-FITC/propidium iodide assay. It was associated with sealing off of the cells in the G1 phase of the cell cycle accompanied by changes in expression of cell cycle-associated genes such as cyclin A and D. In addition, activation of Wnt signaling during hMSC proliferation seemed to reduce their clonogenic potential. On the contrary, Wnt signaling activation during hMSC proliferation had little effect on the osteogenic differentiation capability of cells. These findings show that canonical Wnt signaling is a critical regulator of hMSC proliferation and clonogenicity.
Collapse
Affiliation(s)
| | - Hyun-Mi Ko
- Department of Microbiology, College of Medicine, Seonam University, Namwon, Korea
| | - Ji-Il Park
- Department of Dental Hygiene, Gwangju Health College, Gwangju, Korea
| | - Jae-Hyung Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
42
|
Lin YM, Lim JFY, Lee J, Choolani M, Chan JKY, Reuveny S, Oh SKW. Expansion in microcarrier-spinner cultures improves the chondrogenic potential of human early mesenchymal stromal cells. Cytotherapy 2017; 18:740-53. [PMID: 27173750 DOI: 10.1016/j.jcyt.2016.03.293] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/26/2016] [Accepted: 03/20/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Cartilage tissue engineering with human mesenchymal stromal cells (hMSC) is promising for allogeneic cell therapy. To achieve large-scale hMSC propagation, scalable microcarrier-based cultures are preferred over conventional static cultures on tissue culture plastic. Yet it remains unclear how microcarrier cultures affect hMSC chondrogenic potential, and how this potential is distinguished from that of tissue culture plastic. Hence, our study aims to compare the chondrogenic potential of human early MSC (heMSC) between microcarrier-spinner and tissue culture plastic cultures. METHODS heMSC expanded on either collagen-coated Cytodex 3 microcarriers in spinner cultures or tissue culture plastic were harvested for chondrogenic pellet differentiation with empirically determined chondrogenic inducer bone morphogenetic protein 2 (BMP2). Pellet diameter, DNA content, glycosaminoglycan (GAG) and collagen II production, histological staining and gene expression of chondrogenic markers including SOX9, S100β, MMP13 and ALPL, were investigated and compared in both conditions. RESULTS BMP2 was the most effective chondrogenic inducer for heMSC. Chondrogenic pellets generated from microcarrier cultures developed larger pellet diameters, and produced more DNA, GAG and collagen II per pellet with greater GAG/DNA and collagen II/DNA ratios compared with that of tissue culture plastic. Moreover, they induced higher expression of chondrogenic genes (e.g., S100β) but not of hypertrophic genes (e.g., MMP13 and ALPL). A similar trend showing enhanced chondrogenic potential was achieved with another microcarrier type, suggesting that the mechanism is due to the agitated nature of microcarrier cultures. CONCLUSIONS This is the first study demonstrating that scalable microcarrier-spinner cultures enhance the chondrogenic potential of heMSC, supporting their use for large-scale cell expansion in cartilage cell therapy.
Collapse
Affiliation(s)
- Youshan Melissa Lin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Jessica Fang Yan Lim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jialing Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Jerry Kok Yen Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Steve Kah Weng Oh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
43
|
Inhibition of Protein Kinase CK2 Prevents Adipogenic Differentiation of Mesenchymal Stem Cells Like C3H/10T1/2 Cells. Pharmaceuticals (Basel) 2017; 10:ph10010022. [PMID: 28208768 PMCID: PMC5374426 DOI: 10.3390/ph10010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/20/2017] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
Protein kinase CK2 as a holoenzyme is composed of two catalytic α- or α'-subunits and two non-catalytic β-subunits. Knock-out experiments revealed that CK2α and CK2β are required for embryonic development. Little is known about the role of CK2 during differentiation of stem cells. Mesenchymal stem cells (MSCs) are multipotent cells which can be differentiated into adipocytes in vitro. Thus, MSCs and in particular C3H/10T1/2 cells are excellent tools to study a possible role of CK2 in adipogenesis. We found downregulation of the CK2 catalytic subunits as well as a decrease in CK2 kinase activity with progression of differentiation. Inhibition of CK2 using the potent inhibitor CX-4945 impeded differentiation of C3H/10T1/2 cells into adipocytes. The inhibited cells lacked the observed decrease in CK2 expression, but showed a constant expression of all three CK2 subunits. Furthermore, inhibition of CK2 resulted in decreased cell proliferation in the early differentiation phase. Analysis of the main signaling cascade revealed an elevated expression of C/EBPβ and C/EBPδ and reduced expression of the adipogenic master regulators C/EBPα and PPARγ2. Thus, CK2 seems to be implicated in the regulation of different steps early in the adipogenic differentiation of MSC.
Collapse
|
44
|
Han KH, Kim AK, Kim DI. Therapeutic Potential of Human Mesenchymal Stem Cells for Treating Ischemic Limb Diseases. Int J Stem Cells 2016; 9:163-168. [PMID: 27871151 PMCID: PMC5155711 DOI: 10.15283/ijsc16053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 12/19/2022] Open
Abstract
Ischemic limb diseases are induced by different obstructions of peripheral arteries. These obstructions result in insufficient nutrient and oxygen supplies to the extremities, thereby leading to severe tissue damage that is in turn related to severe morbidities and mortalities. Mesenchymal stem cells (MSCs) have been isolated from various sources. These cells are multipotent with respect to differentiation and are also characterized by migration, immune suppression, and secretion of paracrine factors. Mesenchymal stem cells have been proposed to have therapeutic potential for the treatment of ischemic limb diseases. In preclinical experiments, injection of single MSCs has been shown to increase angiogenesis and blood flow in ischemic hindlimb animal models; several molecular mechanisms of angiogenesis have also been elucidated. Furthermore, modified strategies have been developed for enhancing angiogenesis and the efficacy of MSCs. These strategies have demonstrated significant effects in pre-clinical studies. In clinical trials, MSCs have shown significant effects in the treatment of ischemic limb diseases. In this review, we focus on the therapeutic properties of human MSCs and the modified methods for enhancing angiogenesis in pre-clinical experiments. We also discuss the clinical applications of MSCs for treating limb ischemia.
Collapse
Affiliation(s)
- Kyu-Hyun Han
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ae-Kyeong Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Ding S, Kingshott P, Thissen H, Pera M, Wang PY. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng 2016; 114:260-280. [DOI: 10.1002/bit.26075] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sheryl Ding
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | | | - Martin Pera
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
- CSIRO Manufacturing; Clayton Victoria Australia
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
- Graduate Institute of Nanomedicine and Medical Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
46
|
Tao H, Han Z, Han ZC, Li Z. Proangiogenic Features of Mesenchymal Stem Cells and Their Therapeutic Applications. Stem Cells Int 2016; 2016:1314709. [PMID: 26880933 PMCID: PMC4736816 DOI: 10.1155/2016/1314709] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/04/2015] [Accepted: 11/29/2015] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have shown their therapeutic potency for treatment of cardiovascular diseases owing to their low immunogenicity, ease of isolation and expansion, and multipotency. As multipotent progenitors, MSCs have revealed their ability to differentiate into various cell types and could promote endogenous angiogenesis via microenvironmental modulation. Studies on cardiovascular diseases have demonstrated that transplanted MSCs could engraft at the injured sites and differentiate into cardiomyocytes and endothelial cells as well. Accordingly, several clinical trials using MSCs have been performed and revealed that MSCs may improve relevant clinical parameters in patients with vascular diseases. To fully comprehend the characteristics of MSCs, understanding their intrinsic property and associated modulations in tuning their behaviors as well as functions is indispensable for future clinical translation of MSC therapy. This review will focus on recent progresses on endothelial differentiation and potential clinical application of MSCs, with emphasis on therapeutic angiogenesis for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Hongyan Tao
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin 300071, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University College of Life Science, Tianjin 300071, China
| | - Zhibo Han
- State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Zhong Chao Han
- State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Zongjin Li
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin 300071, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University College of Life Science, Tianjin 300071, China
| |
Collapse
|
47
|
Ragni E, Lommel M, Moro M, Crosti M, Lavazza C, Parazzi V, Saredi S, Strahl S, Lazzari L. Protein O-mannosylation is crucial for human mesencyhmal stem cells fate. Cell Mol Life Sci 2016; 73:445-58. [PMID: 26245304 PMCID: PMC11108538 DOI: 10.1007/s00018-015-2007-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Human mesenchymal stem cells (MSC) are promising cell types in the field of regenerative medicine. Although many pathways have been dissected in the effort to better understand and characterize MSC potential, the impact of protein N- or O-glycosylation has been neglected. Deficient protein O-mannosylation is a pathomechanism underlying severe congenital muscular dystrophies (CMD) that start to develop at the embryonic developmental stage and progress in the adult, often in tissues where MSC exert their function. Here we show that O-mannosylation genes, many of which are putative or verified glycosyltransferases (GTs), are expressed in a similar pattern in MSC from adipose tissue, bone marrow, and umbilical cord blood and that their expression levels are retained constant during mesengenic differentiation. Inhibition of the first players of the enzymatic cascade, POMT1/2, resulted in complete abolishment of chondrogenesis and alterations of adipogenic and osteogenic potential together with a lethal effect during myogenic induction. Since to date, no therapy for CMD is available, we explored the possibility of using MSC extracellular vesicles (EVs) as molecular source of functional GTs mRNA. All MSC secrete POMT1 mRNA-containing EVs that are able to efficiently fuse with myoblasts which are among the most affected cells by CMD. Intriguingly, in a pomt1 patient myoblast line EVs were able to partially revert O-mannosylation deficiency and contribute to a morphology recovery. Altogether, these results emphasize the crucial role of protein O-mannosylation in stem cell fate and properties and open the possibility of using MSC vesicles as a novel therapeutic approach to CMD.
Collapse
Affiliation(s)
- E Ragni
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M Lommel
- Centre for Organismal Studies, Cell Chemistry and Center for Molecular Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - M Moro
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - M Crosti
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - C Lavazza
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - V Parazzi
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Saredi
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - S Strahl
- Centre for Organismal Studies, Cell Chemistry and Center for Molecular Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - L Lazzari
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
48
|
Lazzarini R, Sorgentoni G, Caffarini M, Sayeed MA, Olivieri F, Di Primio R, Orciani M. New miRNAs network in human mesenchymal stem cells derived from skin and amniotic fluid. Int J Immunopathol Pharmacol 2015; 29:523-8. [PMID: 26684628 DOI: 10.1177/0394632015610228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs), isolated from different adult sources, have great appeal for therapeutic applications due to their simple isolation, extensive expansion potential, and high differentiative potential.In our previous studies we isolated MSCs form amniotic fluid (AF-MSCs) and skin (S-MSCs) and characterized them according to their phenotype, pluripotency, and mRNA/microRNAs (miRNAs) profiling using Card A from Life Technologies.Here, we enlarge the profiling of AF-MCSs and S-MSCs to the more recently discovered miRNAs (Card B by Life Technologies) to identify the miRNAs putative target genes and the relative signaling pathways. Card B, in fact, contains miRNAs whose role and target are not yet elucidated.The expression of the analyzed miRNAs is changing between S-MSCs and AF-MSCs, indicating that these two types of MSCs show differences potentially related to their source. Interestingly, the pathways targeted by the miRNAS deriving from Card B are the same found during the analysis of miRNAs from Card A.This result confirms the key role played by WNT and TGF-β pathways in stem cell fate, underlining as other miRNAs partially ignored up to now deserve to be reconsidered. In addition, this analysis allows including Adherens junction pathways among the mechanisms finely regulated in stem cell behavior.
Collapse
Affiliation(s)
- R Lazzarini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - G Sorgentoni
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M Caffarini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M A Sayeed
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - F Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - R Di Primio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M Orciani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
49
|
Pizzute T, Lynch K, Pei M. Impact of tissue-specific stem cells on lineage-specific differentiation: a focus on the musculoskeletal system. Stem Cell Rev Rep 2015; 11:119-32. [PMID: 25113801 DOI: 10.1007/s12015-014-9546-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue-specific stem cells are found throughout the body and, with proper intervention and environmental cues, these stem cells exercise their capabilities for differentiation into several lineages to form cartilage, bone, muscle, and adipose tissue in vitro and in vivo. Interestingly, it has been widely demonstrated that they do not differentiate with the same efficacy during lineage-specific differentiation studies, as the tissue-specific stem cells are generally more effective when differentiating toward the tissues from which they were derived. This review focuses on four mesodermal lineages for tissue-specific stem cell differentiation: adipogenesis, chondrogenesis, myogenesis, and osteogenesis. It is intended to give insight into current multilineage differentiation and comparative research, highlight and contrast known trends regarding differentiation, and introduce supporting evidence which demonstrates particular tissue-specific stem cells' superiority in lineage-specific differentiation, along with their resident tissue origins and natural roles. In addition, some epigenetic and transcriptomic differences between stem cells which may explain the observed trends are discussed.
Collapse
Affiliation(s)
- Tyler Pizzute
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, One Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | | | | |
Collapse
|
50
|
Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 2015; 99:62-8. [PMID: 26384580 DOI: 10.1016/j.ymeth.2015.09.016] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/14/2015] [Accepted: 09/15/2015] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells. Although they were originally identified in bone marrow and described as 'marrow stromal cells', they have since been identified in many other anatomical locations in the body. MSCs can be isolated from bone marrow, adipose tissue, umbilical cord and other tissues but the richest tissue source of MSCs is fat. Since they are adherent to plastic, they may be expanded in vitro. MSCs have a distinct morphology and express a specific set of CD (cluster of differentiation) molecules. The phenotypic pattern for the identification of MSCs cells requires expression of CD73, CD90, and CD105 and lack of CD34, CD45, and HLA-DR antigens. Under appropriate micro-environmental conditions MSCs can proliferate and give rise to other cell types. Therefore, they are ideally suited for the treatment of systemic inflammatory and autoimmune conditions. They have also been implicated as key players in regenerating injured tissue following injury and trauma. MSC populations isolated from adipose tissue may also contain regulatory T (Treg) cells, which have the capacity for modulating the immune system. The immunoregulatory and regenerative properties of MSCs make them ideal for use as therapeutic agents in vivo. In this paper we review the literature on the identification, phenotypic characterization and biological properties of MSCs and discuss their potential for applications in cell therapy and regenerative medicine. We also discuss strategies for biomaterial micro-engineering of the stem cell niche.
Collapse
Affiliation(s)
| | - Andras Dinnyes
- Biotalentum Ltd., Gödöllö 2100, Hungary; Szent István University, Gödöllö 2100, Hungary; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands.
| | - Adnan Memic
- Center for Nanotechnology, King AbdulAziz University, Jeddah 21589, Saudi Arabia.
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States; WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
| | - Ali Mobasheri
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|