1
|
Abstract
Schizophrenia spectrum disorders are brain diseases that are developmental dementias (dementia praecox). Their pathology begins in utero with psychosis most commonly becoming evident in adolescence and early adulthood. It is estimated they afflict the U.S. population at a prevalence rate of approximately 0.8%. Genetic studies indicate that these brain diseases are about 80% determined by genes and about 20% determined by environmental risk factors. Inheritance is polygenic with some 270 gene loci having been identified as contributing to the risk for schizophrenia. Interestingly, many of the identified gene loci and gene polymorphisms are involved in brain formation and maturation. The identified genetic and epigenetic risks give rise to a brain in which neuroblasts migrate abnormally, assume abnormal locations and orientations, and are vulnerable to excessive neuronal and synaptic loss, resulting in overt psychotic illness. The illness trajectory of schizophrenia then is one of loss of brain mass related to the number of active psychotic exacerbations and the duration of untreated illness. In this context, molecules such as dopamine, glutamate, and serotonin play critical roles with respect to positive, negative, and cognitive domains of illness. Acutely, antipsychotics ameliorate active psychotic illness, especially positive signs and symptoms. The long-term effects of antipsychotic medications have been debated; however, the bulk of imaging data suggest that antipsychotics slow but do not reverse the illness trajectory of schizophrenia. Long-acting injectable antipsychotics (LAI) appear superior in this regard. Clozapine remains the "gold standard" in managing treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Michael A Cummings
- University of California, Irvine, CA, USA
- University of California, Riverside, CA, USA
| | - Ai-Li W Arias
- University of California, Irvine, CA, USA
- University of California, Riverside, CA, USA
| | - Stephen M Stahl
- University of California, San Diego, CA, USA
- University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Pizzo F, Fichera V, Zanghì A, Praticò AD, Vecchio M, Falsaperla R, Lavalle S, Marino F, Palmucci S, Belfiore G, Polizzi A. Focal Cortical Dysplasia: Diagnosis, Classification, and Treatment Options. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:166-171. [DOI: 10.1055/s-0044-1786781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractFocal cortical dysplasias (FCDs) include a spectrum of anomalies of cortical development that consist in one or more areas with altered lamination and in some cases, neurons of abnormal morphology. Clinically, these structural anomalies led to arise of epilepsy, which is more often a focal, drug-resistant type with onset in pediatric or adolescent age. Occasionally, other symptoms have been reported in patients with FCDs, such as headache, movement disorders, and cognitive impairment. According to International League against Epilepsy scheme of 2011, three main subtypes of FCD can be distinguished, based of anatomopathological feature, radiological signs, and clinical expression. Magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography, and neurophysiology are the cornerstones of diagnosis, although their negativity cannot exclude FCD in symptomatic patients, especially in FCD type I which often is elusive. In MRI, the main finding is the irregularity of the cortical–subcortical signal, specifically reduction of cortical thickness and absence of clear demarcation between gray and white matters, which is strongly diagnostic for FCD. Epilepsy related to FCD is difficult to manage and until now there is not a clear direction for treatment's rules. FCD shows poor response to antiepileptic drugs (AEDs), and there is no evidence of some AED that has proved more efficacy than others in patients with FCDs. Considering genetical and pathophysiological recent acquisitions, mammalian target of rapamycin inhibitors may play a fundamental role in future treatment of FCDs, but nowadays, surgery still remains the main weapon, with 50% of patients who undergo neurosurgery.
Collapse
Affiliation(s)
- Francesco Pizzo
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Valeria Fichera
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Neonatology and Neonatal Intensive Care Unit, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Salvatore Lavalle
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Francesco Marino
- Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Stefano Palmucci
- IPTRA Unit, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Giuseppe Belfiore
- Unit of Radiology 1, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Rivera Alvarez J, Asselin L, Tilly P, Benoit R, Batisse C, Richert L, Batisse J, Morlet B, Levet F, Schwaller N, Mély Y, Ruff M, Reymann AC, Godin JD. The kinesin Kif21b regulates radial migration of cortical projection neurons through a non-canonical function on actin cytoskeleton. Cell Rep 2023; 42:112744. [PMID: 37418324 DOI: 10.1016/j.celrep.2023.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023] Open
Abstract
Completion of neuronal migration is critical for brain development. Kif21b is a plus-end-directed kinesin motor protein that promotes intracellular transport and controls microtubule dynamics in neurons. Here we report a physiological function of Kif21b during radial migration of projection neurons in the mouse developing cortex. In vivo analysis in mouse and live imaging on cultured slices demonstrate that Kif21b regulates the radial glia-guided locomotion of newborn neurons independently of its motility on microtubules. We show that Kif21b directly binds and regulates the actin cytoskeleton both in vitro and in vivo in migratory neurons. We establish that Kif21b-mediated regulation of actin cytoskeleton dynamics influences branching and nucleokinesis during neuronal locomotion. Altogether, our results reveal atypical roles of Kif21b on the actin cytoskeleton during migration of cortical projection neurons.
Collapse
Affiliation(s)
- José Rivera Alvarez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 67404 Illkirch, France; Centre National de la Recherche Scientifique, CNRS, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laure Asselin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 67404 Illkirch, France; Centre National de la Recherche Scientifique, CNRS, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Peggy Tilly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 67404 Illkirch, France; Centre National de la Recherche Scientifique, CNRS, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Roxane Benoit
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 67404 Illkirch, France; Centre National de la Recherche Scientifique, CNRS, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Claire Batisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 67404 Illkirch, France; Centre National de la Recherche Scientifique, CNRS, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Ludovic Richert
- Université de Strasbourg, 67000 Strasbourg, France; Laboratoire de Bioimagerie et Pathologies, Centre National de la Recherche Scientifique, UMR 7021, 67404 Illkirch, France
| | - Julien Batisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 67404 Illkirch, France; Centre National de la Recherche Scientifique, CNRS, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 67404 Illkirch, France; Centre National de la Recherche Scientifique, CNRS, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Florian Levet
- University of Bordeaux, CNRS, UMR 5297, Interdisciplinary Institute for Neuroscience, IINS, 33000 Bordeaux, France; University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33600 Pessac, France
| | - Noémie Schwaller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 67404 Illkirch, France; Centre National de la Recherche Scientifique, CNRS, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Yves Mély
- Université de Strasbourg, 67000 Strasbourg, France; Laboratoire de Bioimagerie et Pathologies, Centre National de la Recherche Scientifique, UMR 7021, 67404 Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 67404 Illkirch, France; Centre National de la Recherche Scientifique, CNRS, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Anne-Cécile Reymann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 67404 Illkirch, France; Centre National de la Recherche Scientifique, CNRS, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Juliette D Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 67404 Illkirch, France; Centre National de la Recherche Scientifique, CNRS, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
4
|
Proshchina A, Kharlamova A, Krivova Y, Godovalova O, Otlyga D, Gulimova V, Otlyga E, Junemann O, Sonin G, Saveliev S. Neuromorphological Atlas of Human Prenatal Brain Development: White Paper. Life (Basel) 2023; 13:life13051182. [PMID: 37240827 DOI: 10.3390/life13051182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent morphological data on human brain development are quite fragmentary. However, they are highly requested for a number of medical practices, educational programs, and fundamental research in the fields of embryology, cytology and histology, neurology, physiology, path anatomy, neonatology, and others. This paper provides the initial information on the new online Human Prenatal Brain Development Atlas (HBDA). The Atlas will start with forebrain annotated hemisphere maps, based on human fetal brain serial sections at the different stages of prenatal ontogenesis. Spatiotemporal changes in the regional-specific immunophenotype profiles will also be demonstrated on virtual serial sections. The HBDA can serve as a reference database for the neurological research, which provides opportunity to compare the data obtained by noninvasive techniques, such as neurosonography, X-ray computed tomography and magnetic resonance imaging, functional magnetic resonance imaging, 3D high-resolution phase-contrast computed tomography visualization techniques, as well as spatial transcriptomics data. It could also become a database for the qualitative and quantitative analysis of individual variability in the human brain. Systemized data on the mechanisms and pathways of prenatal human glio- and neurogenesis could also contribute to the search for new therapy methods for a large spectrum of neurological pathologies, including neurodegenerative and cancer diseases. The preliminary data are now accessible on the special HBDA website.
Collapse
Affiliation(s)
- Alexandra Proshchina
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Anastasia Kharlamova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Yuliya Krivova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Olga Godovalova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Dmitriy Otlyga
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Victoria Gulimova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Ekaterina Otlyga
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Olga Junemann
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Gleb Sonin
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Sergey Saveliev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| |
Collapse
|
5
|
Takahashi E, Allan N, Peres R, Ortug A, van der Kouwe AJW, Valli B, Ethier E, Levman J, Baumer N, Tsujimura K, Vargas-Maya NI, McCracken TA, Lee R, Maunakea AK. Integration of structural MRI and epigenetic analyses hint at linked cellular defects of the subventricular zone and insular cortex in autism: Findings from a case study. Front Neurosci 2023; 16:1023665. [PMID: 36817099 PMCID: PMC9935943 DOI: 10.3389/fnins.2022.1023665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, communication and repetitive, restrictive behaviors, features supported by cortical activity. Given the importance of the subventricular zone (SVZ) of the lateral ventrical to cortical development, we compared molecular, cellular, and structural differences in the SVZ and linked cortical regions in specimens of ASD cases and sex and age-matched unaffected brain. Methods We used magnetic resonance imaging (MRI) and diffusion tractography on ex vivo postmortem brain samples, which we further analyzed by Whole Genome Bisulfite Sequencing (WGBS), Flow Cytometry, and RT qPCR. Results Through MRI, we observed decreased tractography pathways from the dorsal SVZ, increased pathways from the posterior ventral SVZ to the insular cortex, and variable cortical thickness within the insular cortex in ASD diagnosed case relative to unaffected controls. Long-range tractography pathways from and to the insula were also reduced in the ASD case. FACS-based cell sorting revealed an increased population of proliferating cells in the SVZ of ASD case relative to the unaffected control. Targeted qPCR assays of SVZ tissue demonstrated significantly reduced expression levels of genes involved in differentiation and migration of neurons in ASD relative to the control counterpart. Finally, using genome-wide DNA methylation analyses, we identified 19 genes relevant to neurological development, function, and disease, 7 of which have not previously been described in ASD, that were significantly differentially methylated in autistic SVZ and insula specimens. Conclusion These findings suggest a hypothesis that epigenetic changes during neurodevelopment alter the trajectory of proliferation, migration, and differentiation in the SVZ, impacting cortical structure and function and resulting in ASD phenotypes.
Collapse
Affiliation(s)
- Emi Takahashi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nina Allan
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Rafael Peres
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Alpen Ortug
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Andre J. W. van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Briana Valli
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Elizabeth Ethier
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Jacob Levman
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Nicole Baumer
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Keita Tsujimura
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nauru Idalia Vargas-Maya
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Trevor A. McCracken
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Rosa Lee
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Alika K. Maunakea
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
6
|
Schaaf ZA, Tat L, Cannizzaro N, Panoutsopoulos AA, Green R, Rülicke T, Hippenmeyer S, Zarbalis KS. WDFY3 mutation alters laminar position and morphology of cortical neurons. Mol Autism 2022; 13:27. [PMID: 35733184 PMCID: PMC9219247 DOI: 10.1186/s13229-022-00508-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology. METHODS Here, in an effort to untangle the origins of NMDs in Wdfy3lacZ mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques. RESULTS We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. LIMITATIONS While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation. CONCLUSIONS Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.
Collapse
Affiliation(s)
- Zachary A Schaaf
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
- Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Lyvin Tat
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
| | - Noemi Cannizzaro
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
| | - Alexios A Panoutsopoulos
- Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
- University of California at Davis, Department of Physiology and Membrane Biology, Sacramento, CA, 95817, USA
| | - Ralph Green
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Konstantinos S Zarbalis
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA.
- Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA.
- UC Davis MIND Institute, Sacramento, CA, 95817, USA.
| |
Collapse
|
7
|
Heng JIT, Viti L, Pugh K, Marshall OJ, Agostino M. Understanding the impact of ZBTB18 missense variation on transcription factor function in neurodevelopment and disease. J Neurochem 2022; 161:219-235. [PMID: 35083747 PMCID: PMC9302683 DOI: 10.1111/jnc.15572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/01/2022]
Abstract
Mutations to genes that encode DNA‐binding transcription factors (TFs) underlie a broad spectrum of human neurodevelopmental disorders. Here, we highlight the pathological mechanisms arising from mutations to TF genes that influence the development of mammalian cerebral cortex neurons. Drawing on recent findings for TF genes including ZBTB18, we discuss how functional missense mutations to such genes confer non‐native gene regulatory actions in developing neurons, leading to cell‐morphological defects, neuroanatomical abnormalities during foetal brain development and functional impairment. Further, we discuss how missense variation to human TF genes documented in the general population endow quantifiable changes to transcriptional regulation, with potential cell biological effects on the temporal progression of cerebral cortex neuron development and homeostasis. We offer a systematic approach to investigate the functional impact of missense variation in brain TFs and define their direct molecular and cellular actions in foetal neurodevelopment, tissue homeostasis and disease states.![]()
Collapse
Affiliation(s)
- Julian I-T Heng
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Neuroscience Laboratories, Sarich Neuroscience Institute, Crawley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Leon Viti
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Kye Pugh
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Owen J Marshall
- Menzies Institute for Medical Research, The University of Tasmania, Hobart, Australia
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Institute for Computation, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
8
|
A Novel De Novo TUBB3 Variant Causing Developmental Delay, Epilepsy and Mild Ophthalmological Symptoms in a Chinese Child. J Mol Neurosci 2021; 72:37-44. [PMID: 34562182 DOI: 10.1007/s12031-021-01909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Heterozygous missense mutations in TUBB3 have been implicated in various neurological disorders encompassing either isolated congenital fibrosis of the extraocular muscles type 3 (CFEOM3) or complex cortical dysplasia with other brain malformations 1 (CDCBM1). The description of seizures in patients with TUBB3 mutations is rare. Here, we reported a patient who had febrile seizures before and focal seizure this time, which was diagnosed as epilepsy in combination with an abnormal EEG. MRI showed hypoplastic corpus callosum. Mutation analysis showed a novel de novo heterozygous variant of the TUBB3 gene (NM_006086), c.763G > A (p.V255I). The patient had global developmental delay, photophobia and elliptic pupils, but lacking extraocular muscle involvement and malformations of cortical development, which might be a less severe phenotype of TUBB3 mutations. This is the first report of elliptic pupils in a patient with TUBB3 mutations and expands the spectrum of TUBB3 phenotypes. It indicates that the phenotypic range of TUBB3 mutations might exist on more of a continuum than as a discrete entity, with severity ranging from mild to severe. Further studies are needed to elucidate the complete spectrum of TUBB3-related phenotypes.
Collapse
|
9
|
Alteration of Neural Stem Cell Functions in Ataxia and Male Sterility Mice: A Possible Role of β-Tubulin Glutamylation in Neurodegeneration. Cells 2021; 10:cells10010155. [PMID: 33466875 PMCID: PMC7830091 DOI: 10.3390/cells10010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Ataxia and Male Sterility (AMS) is a mutant mouse strain that contains a missense mutation in the coding region of Nna1, a gene that encodes a deglutamylase. AMS mice exhibit early cerebellar Purkinje cell degeneration and an ataxic phenotype in an autosomal recessive manner. To understand the underlying mechanism, we generated neuronal stem cell (NSC) lines from wild-type (NMW7), Nna1 mutation heterozygous (NME), and Nna1 mutation homozygous (NMO1) mouse brains. The NNA1 levels were decreased, and the glutamylated tubulin levels were increased in NMO1 cultures as well as in the cerebellum of AMS mice at both 15 and 30 days of age. However, total β-tubulin protein levels were not altered in the AMS cerebellum. In NMO1 neurosphere cultures, β-tubulin protein levels were increased without changes at the transcriptional level. NMO1 grew faster than other NSC lines, and some of the neurospheres were attached to the plate after 3 days. Immunostaining revealed that SOX2 and nestin levels were decreased in NMO1 neurospheres and that the neuronal differentiation potentials were reduced in NMO1 cells compared to NME or NMW7 cells. These results demonstrate that the AMS mutation decreased the NNA1 levels and increased glutamylation in the cerebellum of AMS mice. The observed changes in glutamylation might alter NSC properties and the neuron maturation process, leading to Purkinje cell death in AMS mice.
Collapse
|
10
|
do Canto AM, Donatti A, Geraldis JC, Godoi AB, da Rosa DC, Lopes-Cendes I. Neuroproteomics in Epilepsy: What Do We Know so Far? Front Mol Neurosci 2021; 13:604158. [PMID: 33488359 PMCID: PMC7817846 DOI: 10.3389/fnmol.2020.604158] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Epilepsies are chronic neurological diseases that affect approximately 2% of the world population. In addition to being one of the most frequent neurological disorders, treatment for patients with epilepsy remains a challenge, because a proportion of patients do not respond to the antiseizure medications that are currently available. This results in a severe economic and social burden for patients, families, and the healthcare system. A characteristic common to all forms of epilepsy is the occurrence of epileptic seizures that are caused by abnormal neuronal discharges, leading to a clinical manifestation that is dependent on the affected brain region. It is generally accepted that an imbalance between neuronal excitation and inhibition generates the synchronic electrical activity leading to seizures. However, it is still unclear how a normal neural circuit becomes susceptible to the generation of seizures or how epileptogenesis is induced. Herein, we review the results of recent proteomic studies applied to investigate the underlying mechanisms leading to epilepsies and how these findings may impact research and treatment for these disorders.
Collapse
Affiliation(s)
- Amanda M. do Canto
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda Donatti
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C. Geraldis
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Alexandre B. Godoi
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Douglas C. da Rosa
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
11
|
Shrestha A, Sultana R, Adeniyi PA, Lee CC, Ogundele OM. Positive Modulation of SK Channel Impedes Neuron-Specific Cytoskeletal Organization and Maturation. Dev Neurosci 2020; 42:59-71. [PMID: 32580196 PMCID: PMC7486235 DOI: 10.1159/000507989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) modulates the structural plasticity of dendritic spines by impacting cytoskeletal organization and kinase signaling. In the developing nervous system, activation of NMDAR is pertinent for neuronal migration, neurite differentiation, and cellular organization. Given that small conductance potassium channels (SK2/3) repress NMDAR ionotropic signaling, this study highlights the impact of neonatal SK channel potentiation on adult cortical and hippocampal organization. Neonatal SK channel potentiation was performed by one injection of SK2/3 agonist (CyPPA) into the pallium of mice on postnatal day 2 (P2). When the animals reached adulthood (P55), the hippocampus and cortex were examined to assess neuronal maturation, lamination, and the distribution of synaptic cytoskeletal proteins. Immunodetection of neuronal markers in the brain of P2-treated P55 mice revealed the presence of immature neurons in the upper cortical layers (layers II-IV) and CA1 (hippocampus). Also, layer-dependent cortical-cell density was attenuated due to the ectopic localization of mature (NeuN+) and immature (Doublecortin+ [DCX+]) neurons in cortical layers II-IV. Similarly, the decreased count of NeuN+ neurons in the CA1 is accompanied by an increase in the number of immature DCX+ neurons. Ectopic localization of neurons in the upper cortex and CA1 caused the dramatic expression of neuron-specific cytoskeletal proteins. In line with this, structural deformity of neuronal projections and the loss of postsynaptic densities suggests that postsynaptic integrity is compromised in the SK2/3+ brain. From these results, we deduced that SK channel activity in the developing brain likely impacts neuronal maturation through its effects on cytoskeletal formation.
Collapse
Affiliation(s)
- Amita Shrestha
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Razia Sultana
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Philip A Adeniyi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA,
| |
Collapse
|
12
|
Sferra A, Petrini S, Bellacchio E, Nicita F, Scibelli F, Dentici ML, Alfieri P, Cestra G, Bertini ES, Zanni G. TUBB Variants Underlying Different Phenotypes Result in Altered Vesicle Trafficking and Microtubule Dynamics. Int J Mol Sci 2020; 21:ijms21041385. [PMID: 32085672 PMCID: PMC7073044 DOI: 10.3390/ijms21041385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/26/2022] Open
Abstract
Tubulinopathies are rare neurological disorders caused by alterations in tubulin structure and function, giving rise to a wide range of brain abnormalities involving neuronal proliferation, migration, differentiation and axon guidance. TUBB is one of the ten β-tubulin encoding genes present in the human genome and is broadly expressed in the developing central nervous system and the skin. Mutations in TUBB are responsible for two distinct pathological conditions: the first is characterized by microcephaly and complex structural brain malformations and the second, also known as “circumferential skin creases Kunze type” (CSC-KT), is associated to neurological features, excess skin folding and growth retardation. We used a combination of immunocytochemical and cellular approaches to explore, on patients’ derived fibroblasts, the functional consequences of two TUBB variants: the novel mutation (p.N52S), associated with basal ganglia and cerebellar dysgenesis, and the previously reported variant (p.M73T), linked to microcephaly, corpus callosum agenesis and CSC-KT skin phenotype. Our results demonstrate that these variants impair microtubule (MT) function and dynamics. Most importantly, our studies show an altered epidermal growth factor (EGF) and transferrin (Tf) intracellular vesicle trafficking in both patients’ fibroblasts, suggesting a specific role of TUBB in MT-dependent vesicular transport.
Collapse
Affiliation(s)
- Antonella Sferra
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
- Correspondence: (A.S.); (G.Z.)
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Emanuele Bellacchio
- Department of Research Laboratories, Bambino Gesù Children’s Hospital, 00146 Rome, Italy;
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
| | - Francesco Scibelli
- Unit of Child Neuropsychiatry, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (F.S.); (P.A.)
| | - Maria Lisa Dentici
- Unit of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Paolo Alfieri
- Unit of Child Neuropsychiatry, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (F.S.); (P.A.)
| | - Gianluca Cestra
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) and University of Rome “Sapienza”, Department of Biology and Biotechnology, 00185 Rome, Italy;
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
- Correspondence: (A.S.); (G.Z.)
| |
Collapse
|
13
|
Cepeda C, Oikonomou KD, Cummings D, Barry J, Yazon VW, Chen DT, Asai J, Williams CK, Vinters HV. Developmental origins of cortical hyperexcitability in Huntington's disease: Review and new observations. J Neurosci Res 2019; 97:1624-1635. [PMID: 31353533 PMCID: PMC6801077 DOI: 10.1002/jnr.24503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD), an inherited neurodegenerative disorder that principally affects striatum and cerebral cortex, is generally thought to have an adult onset. However, a small percentage of cases develop symptoms before 20 years of age. This juvenile variant suggests that brain development may be altered in HD. Indeed, recent evidence supports an important role of normal huntingtin during embryonic brain development and mutations in this protein cause cortical abnormalities. Functional studies also demonstrated that the cerebral cortex becomes hyperexcitable with disease progression. In this review, we examine clinical and experimental evidence that cortical development is altered in HD. We also provide preliminary evidence that cortical pyramidal neurons from R6/2 mice, a model of juvenile HD, are hyperexcitable and display dysmorphic processes as early as postnatal day 7. Further, some symptomatic mice present with anatomical abnormalities reminiscent of human focal cortical dysplasia, which could explain the occurrence of epileptic seizures in this genetic mouse model and in children with juvenile HD. Finally, we discuss recent treatments aimed at correcting abnormal brain development.
Collapse
Affiliation(s)
- Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Katerina D. Oikonomou
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Damian Cummings
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Barry
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Vannah-Wila Yazon
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Dickson T. Chen
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Janelle Asai
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
The Emerging Role of Sperm-Associated Antigen 6 Gene in the Microtubule Function of Cells and Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:101-107. [PMID: 31660426 PMCID: PMC6807308 DOI: 10.1016/j.omto.2019.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Accumulated evidence shows that sperm-associated antigen 6 (SPAG6) gene has multiple biological functions. It maintains the normal function of a variety of cells including ciliary/flagellar biogenesis and polarization, neurogenesis, and neuronal migration. Moreover, SPAG6 is found to be critically involved in auditory transduction and the fibroblast life cycle. Furthermore, SPAG6 plays an essential role in immuno-regulation. Notably, SPAG6 has been demonstrated to participate in the occurrence and progression of a variety of human cancers. New evidence shows that SPAG6 gene regulates tumor cell proliferation, apoptosis, invasion, and metastasis. Therefore, in this review, we describe the physiological function and mechanism of SPAG6 in human normal cells and cancer cells. We also highlight that SPAG6 gene may be an effective biomarker for the diagnosis of human cancer. Taken together, targeting SPAG6 could be a novel strategy for the treatment of human diseases including cancer.
Collapse
|
15
|
Epilepsy in Tubulinopathy: Personal Series and Literature Review. Cells 2019; 8:cells8070669. [PMID: 31269740 PMCID: PMC6678821 DOI: 10.3390/cells8070669] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
Mutations in tubulin genes are responsible for a large spectrum of brain malformations secondary to abnormal neuronal migration, organization, differentiation and axon guidance and maintenance. Motor impairment, intellectual disability and epilepsy are the main clinical symptoms. In the present study 15 patients from a personal cohort and 75 from 21 published studies carrying mutations in TUBA1A, TUBB2B and TUBB3 tubulin genes were evaluated with the aim to define a clinical and electrophysiological associated pattern. Epilepsy shows a wide range of severity without a specific pattern. Mutations in TUBA1A (60%) and TUBB2B (74%) and TUBB3 (25%) genes are associated with epilepsy. The accurate analysis of the Electroencephalogram (EEG) pattern in wakefulness and sleep in our series allows us to detect significant abnormalities of the background activity in 100% of patients. The involvement of white matter and of the inter-hemispheric connection structures typically observed in tubulinopathies is evidenced by the high percentage of asynchronisms in the organization of sleep activity recorded. In addition to asymmetries of the background activity, excess of slowing, low amplitude and Magnetic Resonance (MR) imaging confirm the presence of extensive brain malformations involving subcortical and midline structures. In conclusion, epilepsy in tubulinopathies when present has a favorable evolution over time suggesting a not particularly aggressive therapeutic approach.
Collapse
|
16
|
Carrasco M, Stafstrom CE. How Early Can a Seizure Happen? Pathophysiological Considerations of Extremely Premature Infant Brain Development. Dev Neurosci 2019; 40:417-436. [PMID: 30947192 DOI: 10.1159/000497471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/04/2019] [Indexed: 11/19/2022] Open
Abstract
Seizures in neonates represent a neurologic emergency requiring prompt recognition, determination of etiology, and treatment. Yet, the definition and identification of neonatal seizures remain challenging and controversial, in part due to the unique physiology of brain development at this life stage. These issues are compounded when considering seizures in premature infants, in whom the complexities of brain development may engender different clinical and electrographic seizure features at different points in neuronal maturation. In extremely premature infants (< 28 weeks gestational age), seizure pathophysiology has not been explored in detail. This review discusses the physiological and structural development of the brain in this developmental window, focusing on factors that may lead to seizures and their consequences at this early time point. We hypothesize that the clinical and electrographic phenomenology of seizures in extremely preterm infants reflects the specific pathophysiology of brain development in that age window.
Collapse
Affiliation(s)
- Melisa Carrasco
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
17
|
Shi J, Gao Q, Cao Y, Fu J. Dennd1a, a susceptibility gene for polycystic ovary syndrome, is essential for mouse embryogenesis. Dev Dyn 2019; 248:351-362. [PMID: 30884041 DOI: 10.1002/dvdy.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The DENND1A has been identified as a guanine nucleotide exchange factor for small GTPase Rab35, which functions in endocytic trafficking to mediate the recycling of selective cargos. Genetic alterations within the DENND1A gene have been implicated in human disease such as polycystic ovary syndrome (PCOS). However, the role of DENND1A in developmental and reproductive processes is largely unknown. RESULTS Using Dennd1a gene knockout mice, we uncovered that homogeneous Dennd1a-/- mutants died around embryonic day (E) 14.5. The brain of Dennd1a-/- embryos exhibited defects, partially attributed to the dysregulation of cell division and survival in the telencephalon. The transcription of Fgf8 mRNA was ectopically elevated in the dorsal midline of telencephalon, concomitant with a decrease of active β-catenin and Axin2 in the brain of Dennd1a-/- embryos. During liver morphogenesis, the ablation of Dennd1a impaired hepatic cell proliferation, the differentiation of hepatocyte, and hepatic hematopoiesis. In addition, loss of Dennd1a also affected the development of primordial germ cells. CONCLUSIONS We demonstrate that Dennd1a, a susceptibility gene for PCOS, is essential for embryogenesis, probably through the mediation of endocytic recycling of selective cargos that are involved in cell signaling crucial for the development of multiple embryonic organ systems.
Collapse
Affiliation(s)
- Jingjing Shi
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Gao
- Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Jiang Fu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Abstract
Mutations causing dysfunction of the tubulins and microtubule-associated proteins, otherwise known as tubulinopathies, are a group of recently described entities, that lead to complex brain malformations. An understanding of the fundamental principles of operation of the cytoskeleton and compounds in particular microtubules, actin, and microtubule-associated proteins, can assist in the interpretation of the imaging findings of tubulinopathies. Somewhat consistent morphological imaging patterns have been described in tubulinopathies such as dysmorphic basal ganglia-the hallmark (found in 75% of cases), callosal dysgenesis, cerebellar hypoplasia/dysplasia, and cortical malformations, most notably lissencephaly. Recognizing the common imaging phenotypes present in tubulinopathies can prove invaluable in directing the genetic workup for a patient with brain malformations.
Collapse
|
19
|
Zhao X, Bhattacharyya A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. Am J Hum Genet 2018; 103:829-857. [PMID: 30526865 DOI: 10.1016/j.ajhg.2018.10.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The analysis of animal models of neurological disease has been instrumental in furthering our understanding of neurodevelopment and brain diseases. However, animal models are limited in revealing some of the most fundamental aspects of development, genetics, pathology, and disease mechanisms that are unique to humans. These shortcomings are exaggerated in disorders that affect the brain, where the most significant differences between humans and animal models exist, and could underscore failures in targeted therapeutic interventions in affected individuals. Human pluripotent stem cells have emerged as a much-needed model system for investigating human-specific biology and disease mechanisms. However, questions remain regarding whether these cell-culture-based models are sufficient or even necessary. In this review, we summarize human-specific features of neurodevelopment and the most common neurodevelopmental disorders, present discrepancies between animal models and human diseases, demonstrate how human stem cell models can provide meaningful information, and discuss the challenges that exist in our pursuit to understand distinctively human aspects of neurodevelopment and brain disease. This information argues for a more thoughtful approach to disease modeling through consideration of the valuable features and limitations of each model system, be they human or animal, to mimic disease characteristics.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| | - Anita Bhattacharyya
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| |
Collapse
|
20
|
Chang Q, Yang H, Wang M, Wei H, Hu F. Role of Microtubule-Associated Protein in Autism Spectrum Disorder. Neurosci Bull 2018; 34:1119-1126. [PMID: 29936584 PMCID: PMC6246838 DOI: 10.1007/s12264-018-0246-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction and communication, along with repetitive and restrictive patterns of behaviors or interests. Normal brain development is crucial to behavior and cognition in adulthood. Abnormal brain development, such as synaptic and myelin dysfunction, is involved in the pathogenesis of ASD. Microtubules and microtubule-associated proteins (MAPs) are important in regulating the processes of brain development, including neuron production and synaptic formation, as well as myelination. Increasing evidence suggests that the level of MAPs are changed in autistic patients and mouse models of ASD. Here, we discuss the roles of MAPs.
Collapse
Affiliation(s)
- Qiaoqiao Chang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Hua Yang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Min Wang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China.
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China.
| |
Collapse
|
21
|
Teng S, Thomson PA, McCarthy S, Kramer M, Muller S, Lihm J, Morris S, Soares DC, Hennah W, Harris S, Camargo LM, Malkov V, McIntosh AM, Millar JK, Blackwood DH, Evans KL, Deary IJ, Porteous DJ, McCombie WR. Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia. Mol Psychiatry 2018; 23:1270-1277. [PMID: 28630456 PMCID: PMC5984079 DOI: 10.1038/mp.2017.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWERacross), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWERacross P=0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWERacross P=0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.
Collapse
Affiliation(s)
- S Teng
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Biology, Howard University, Washington DC, USA
| | - P A Thomson
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Muller
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J Lihm
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Morris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D C Soares
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - W Hennah
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - S Harris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - L M Camargo
- UCB New Medicines, One Broadway, Cambridge, MA, USA
| | - V Malkov
- Genetics and Pharmacogenomics, MRL, Merck & Co, Boston, MA, USA
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J K Millar
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - K L Evans
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - D J Porteous
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
22
|
Potential Role of Microtubule Stabilizing Agents in Neurodevelopmental Disorders. Int J Mol Sci 2017; 18:ijms18081627. [PMID: 28933765 PMCID: PMC5578018 DOI: 10.3390/ijms18081627] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are characterized by neuroanatomical abnormalities indicative of corticogenesis disturbances. At the basis of NDDs cortical abnormalities, the principal developmental processes involved are cellular proliferation, migration and differentiation. NDDs are also considered “synaptic disorders” since accumulating evidence suggests that NDDs are developmental brain misconnection syndromes characterized by altered connectivity in local circuits and between brain regions. Microtubules and microtubule-associated proteins play a fundamental role in the regulation of basic neurodevelopmental processes, such as neuronal polarization and migration, neuronal branching and synaptogenesis. Here, the role of microtubule dynamics will be elucidated in regulating several neurodevelopmental steps. Furthermore, the correlation between abnormalities in microtubule dynamics and some NDDs will be described. Finally, we will discuss the potential use of microtubule stabilizing agents as a new pharmacological intervention for NDDs treatment.
Collapse
|
23
|
Qin L, Liu X, Liu S, Liu Y, Yang Y, Yang H, Chen Y, Chen L. Differentially expressed proteins underlying childhood cortical dysplasia with epilepsy identified by iTRAQ proteomic profiling. PLoS One 2017; 12:e0172214. [PMID: 28222113 PMCID: PMC5319751 DOI: 10.1371/journal.pone.0172214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Cortical dysplasia accounts for at least 14% of epilepsy cases, and is mostly seen in children. However, the understanding of molecular mechanisms and pathogenesis underlying cortical dysplasia is limited. The aim of this cross-sectional study is to identify potential key molecules in the mechanisms of cortical dysplasia by screening the proteins expressed in brain tissues of childhood cortical dysplasia patients with epilepsy using isobaric tags for relative and absolute quantitation-based tandem mass spectrometry compared to controls, and several differentially expressed proteins that are not reported to be associated with cortical dysplasia previously were selected for validation using real-time polymerase chain reaction, immunoblotting and immunohistochemistry. 153 out of 3340 proteins were identified differentially expressed between childhood cortical dysplasia patients and controls. And FSCN1, CRMP1, NDRG1, DPYSL5, MAP4, and FABP3 were selected for validation and identified to be increased in childhood cortical dysplasia patients, while PRDX6 and PSAP were identified decreased. This is the first report on differentially expressed proteins in childhood cortical dysplasia. We identified differential expression of FSCN1, CRMP1, NDRG1, DPYSL5, MAP4, FABP3, PRDX6 and PSAP in childhood cortical dysplasia patients, these proteins are involved in various processes and have various function. These results may provide new directions or targets for the research of childhood cortical dysplasia, and may be helpful in revealing molecular mechanisms and pathogenesis and/or pathophysiology of childhood cortical dysplasia if further investigated.
Collapse
Affiliation(s)
- Lu Qin
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shiyong Liu
- Department of Neurosurgery, The Xinqiao Hospital of Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yixuan Yang
- Department of Infectious Disease, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hui Yang
- Department of Neurosurgery, The Xinqiao Hospital of Third Military Medical University, Chongqing, People’s Republic of China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
24
|
Gladwyn-Ng I, Huang L, Ngo L, Li SS, Qu Z, Vanyai HK, Cullen HD, Davis JM, Heng JIT. Bacurd1/Kctd13 and Bacurd2/Tnfaip1 are interacting partners to Rnd proteins which influence the long-term positioning and dendritic maturation of cerebral cortical neurons. Neural Dev 2016; 11:7. [PMID: 26969432 PMCID: PMC4788816 DOI: 10.1186/s13064-016-0062-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background The development of neural circuits within the embryonic cerebral cortex relies on the timely production of neurons, their positioning within the embryonic cerebral cortex as well as their terminal differentiation and dendritic spine connectivity. The RhoA GTPases Rnd2 and Rnd3 are important for neurogenesis and cell migration within the embryonic cortex (Nat Commun 4:1635, 2013), and we recently identified the BTB/POZ domain-containing Adaptor for Cul3-mediated RhoA Degradation family member Bacurd2 (also known as Tnfaip1) as an interacting partner to Rnd2 for the migration of embryonic mouse cortical neurons (Neural Dev 10:9, 2015). Findings We have extended this work and report that Bacurd1/Kctd13 and Bacurd2/Tnfaip1 are interacting partners to Rnd2 and Rnd3 in vitro. Given that these genes are expressed during cortical development, we performed a series of in utero electroporation studies in mice and found that disruptions to Bacurd1/Kctd13 or Bacurd2/Tnfaip1 expression impair the long-term positioning of E14.5-born cortical neurons within the postnatal (P17) mouse cerebral cortex. We also find that forced expression of Bacurd1/Kctd13 and Bacurd2/Tnfaip1 alters the branching and dendritic spine properties of layer II/III projection neurons. Conclusions We identify Bacurd1/Kctd13 and Bacurd2/Tnfaip1 as interacting partners to Rnd proteins which influence the development of cortical neurons. Their neurodevelopmental functions are likely to be relevant to human brain development and disease. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0062-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivan Gladwyn-Ng
- EMBL-Australia, The Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,The Harry Perkins Institute of Medical Research, 6 Verdun St, Crawley, WA, 6009, Australia.,The Centre for Medical Research, The University of Western Australia, Crawley Avenue, Crawley, WA, 6009, Australia
| | - Lieven Huang
- EMBL-Australia, The Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Linh Ngo
- EMBL-Australia, The Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,The Harry Perkins Institute of Medical Research, 6 Verdun St, Crawley, WA, 6009, Australia.,The Centre for Medical Research, The University of Western Australia, Crawley Avenue, Crawley, WA, 6009, Australia
| | - Shan Shan Li
- EMBL-Australia, The Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Zhengdong Qu
- EMBL-Australia, The Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Hannah Kate Vanyai
- The Harry Perkins Institute of Medical Research, 6 Verdun St, Crawley, WA, 6009, Australia.,The Centre for Medical Research, The University of Western Australia, Crawley Avenue, Crawley, WA, 6009, Australia
| | - Hayley Daniella Cullen
- The Harry Perkins Institute of Medical Research, 6 Verdun St, Crawley, WA, 6009, Australia.,The Centre for Medical Research, The University of Western Australia, Crawley Avenue, Crawley, WA, 6009, Australia
| | - John Michael Davis
- EMBL-Australia, The Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Julian Ik-Tsen Heng
- EMBL-Australia, The Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia. .,The Harry Perkins Institute of Medical Research, 6 Verdun St, Crawley, WA, 6009, Australia. .,The Centre for Medical Research, The University of Western Australia, Crawley Avenue, Crawley, WA, 6009, Australia.
| |
Collapse
|
25
|
Yan R, Hu X, Zhang Q, Song L, Zhang M, Zhang Y, Zhao S. Spag6 Negatively Regulates Neuronal Migration During Mouse Brain Development. J Mol Neurosci 2015; 57:463-9. [PMID: 26130477 DOI: 10.1007/s12031-015-0608-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/22/2015] [Indexed: 11/29/2022]
Abstract
Sperm-associated antigen 6 (Spag6) is a Chlamydomonas reinhardtii PF16 homologous gene detected in the human testis and is crucial for sperm motility. Neuronal migration is a dynamic process requiring coordinated cytoskeletal remodeling, and Spag6 is co-localized with microtubules in Chinese hamster ovary cells and COS-1 cells. However, the role of Spag6 in neuronal migration remains unclear. Here, we demonstrated that Spag6 was continuously expressed in the developing cerebral cortex. Using in utero electroporation (IUE), we found that overexpression of Spag6 delayed the rate of neuronal migration, rather than affecting the ultimate fate of cortical neurons. Furthermore, overexpression of Spag6 caused a significant decrease in neurite number and length of cortical neurons. Our results indicated that Spag6 controlled neuronal migration as well as neurite branching and elongation.
Collapse
Affiliation(s)
- Runchuan Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xinde Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lingzhen Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Mengdi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yamei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
26
|
Mao Z, Xu B, Ji X, Zhou K, Zhang X, Chen M, Han X, Tang Q, Wang X, Xia Y. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics. NANOSCALE 2015; 7:8466-8475. [PMID: 25891938 DOI: 10.1039/c5nr01448d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml(-1). Immunofluorescence detection showed disorder, disruption, retraction, and decreased intensity of the microtubules after TiO2 NPs treatment. Both α and β tubule expressions did not change in the TiO2 NP-treated group, but the percentage of soluble tubules was increased. A microtubule dynamic study in living cells indicated that TiO2 NPs caused a lower growth rate and a higher shortening rate of microtubules as well as shortened lifetimes of de novo microtubules. TiO2 NPs did not cause changes in the expression and phosphorylation state of tau proteins, but a tau-TiO2 NP interaction was observed. TiO2 NPs could interact with tubule heterodimers, microtubules and tau proteins, which led to the instability of microtubules, thus contributing to the neurotoxicity of TiO2 NPs.
Collapse
Affiliation(s)
- Zhilei Mao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yap CC, Winckler B. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Front Cell Neurosci 2015; 9:119. [PMID: 25904845 PMCID: PMC4389405 DOI: 10.3389/fncel.2015.00119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2).
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
28
|
Almuriekhi M, Shintani T, Fahiminiya S, Fujikawa A, Kuboyama K, Takeuchi Y, Nawaz Z, Nadaf J, Kamel H, Kitam AK, Samiha Z, Mahmoud L, Ben-Omran T, Majewski J, Noda M. Loss-of-Function Mutation in APC2 Causes Sotos Syndrome Features. Cell Rep 2015; 10:1585-1598. [PMID: 25753423 DOI: 10.1016/j.celrep.2015.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/14/2015] [Accepted: 01/31/2015] [Indexed: 01/24/2023] Open
Abstract
Sotos syndrome, characterized by intellectual disability and characteristic facial features, is caused by haploinsufficiency in the NSD1 gene. We conducted an etiological study on two siblings with Sotos features without mutations in NSD1 and detected a homozygous frameshift mutation in the APC2 gene by whole-exome sequencing, which resulted in the loss of function of cytoskeletal regulation in neurons. Apc2-deficient (Apc2-/-) mice exhibited impaired learning and memory abilities along with an abnormal head shape. Endogenous Apc2 expression was downregulated by the knockdown of Nsd1, indicating that APC2 is a downstream effector of NSD1 in neurons. Nsd1 knockdown in embryonic mouse brains impaired the migration and laminar positioning of cortical neurons, as observed in Apc2-/- mice, and this defect was rescued by the forced expression of Apc2. Thus, APC2 is a crucial target of NSD1, which provides an explanation for the intellectual disability associated with Sotos syndrome.
Collapse
Affiliation(s)
- Mariam Almuriekhi
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Takafumi Shintani
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan; School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
| | - Somayyeh Fahiminiya
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Kazuya Kuboyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Yasushi Takeuchi
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Zafar Nawaz
- Cytogenetic and Molecular Cytogenetic Laboratory, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Javad Nadaf
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Hussein Kamel
- Department of Radiology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Abu Khadija Kitam
- Cytogenetic and Molecular Cytogenetic Laboratory, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Zaineddin Samiha
- Cytogenetic and Molecular Cytogenetic Laboratory, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Laila Mahmoud
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Tawfeg Ben-Omran
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Jacek Majewski
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan; School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan.
| |
Collapse
|
29
|
Svoboda DS, Clark A, Park DS, Slack RS. Induction of protein deletion through in utero electroporation to define deficits in neuronal migration in transgenic models. J Vis Exp 2015:51983. [PMID: 25650557 DOI: 10.3791/51983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Genetic deletion using the Cre-Lox system in transgenic mouse lines is a powerful tool used to study protein function. However, except in very specific Cre models, deletion of a protein throughout a tissue or cell population often leads to complex phenotypes resulting from multiple interacting mechanisms. Determining whether a phenotype results from disruption of a cell autonomous mechanism, which is intrinsic to the cell in question, or from a non-cell autonomous mechanism, which would result from impairment of that cell's environment, can be difficult to discern. To gain insight into protein function in an in vivo context, in utero electroporation (IUE) enables gene deletion in a small subset of cells within the developing cortex or some other selected brain region. IUE can be used to target specific brain areas, including the dorsal telencephalon, medial telencephalon, hippocampus, or ganglionic eminence. This facilitates observation of the consequences of cell autonomous gene deletion in the context of a healthy environment. The goal of this protocol is to show how IUE can be used to analyze a defect in radial migration in a floxed transgenic mouse line, with an emphasis on distinguishing between the cell autonomous and non-cell autonomous effects of protein deletion. By comparing the phenotype resulting from gene deletion within the entire cortex versus IUE-mediated gene deletion in a limited cell population, greater insight into protein function in brain development can be obtained than by using either technique in isolation.
Collapse
Affiliation(s)
- Devon S Svoboda
- Department of Cellular and Molecular Medicine, University of Ottawa;
| | - Alysen Clark
- Department of Cellular and Molecular Medicine, University of Ottawa
| | - David S Park
- Department of Cellular and Molecular Medicine, University of Ottawa
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa;
| |
Collapse
|
30
|
Abdijadid S, Mathern GW, Levine MS, Cepeda C. Basic mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci Ther 2014; 21:92-103. [PMID: 25404064 DOI: 10.1111/cns.12345] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Cortical dysplasia (CD) is a neurodevelopmental disorder due to aberrant cell proliferation and differentiation. Advances in neuroimaging have proven effective in early identification of the more severe lesions and timely surgical removal to treat epilepsy. However, the exact mechanisms of epileptogenesis are not well understood. This review examines possible mechanisms based on anatomical and electrophysiological studies. CD can be classified as CD type I consisting of architectural abnormalities, CD type II with the presence of dysmorphic cytomegalic neurons and balloon cells, and CD type III which occurs in association with other pathologies. Use of freshly resected brain tissue has allowed a better understanding of basic mechanisms of epileptogenesis and has delineated the role of abnormal cells and synaptic activity. In CD type II, it was demonstrated that balloon cells do not initiate epileptic activity, whereas dysmorphic cytomegalic and immature neurons play an important role in generation and propagation of epileptic discharges. An unexpected finding in pediatric CD was that GABA synaptic activity is not reduced, and in fact, it may facilitate the occurrence of epileptic activity. This could be because neuronal circuits display morphological and functional signs of dysmaturity. In consequence, drugs that increase GABA function may prove ineffective in pediatric CD. In contrast, drugs that counteract depolarizing actions of GABA or drugs that inhibit the mammalian target of rapamycin (mTOR) pathway could be more effective.
Collapse
Affiliation(s)
- Sara Abdijadid
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
31
|
Alcantara D, O'Driscoll M. Congenital microcephaly. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2014; 166C:124-39. [PMID: 24816482 DOI: 10.1002/ajmg.c.31397] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The underlying etiologies of genetic congenital microcephaly are complex and multifactorial. Recently, with the exponential growth in the identification and characterization of novel genetic causes of congenital microcephaly, there has been a consolidation and emergence of certain themes concerning underlying pathomechanisms. These include abnormal mitotic microtubule spindle structure, numerical and structural abnormalities of the centrosome, altered cilia function, impaired DNA repair, DNA Damage Response signaling and DNA replication, along with attenuated cell cycle checkpoint proficiency. Many of these processes are highly interconnected. Interestingly, a defect in a gene whose encoded protein has a canonical function in one of these processes can often have multiple impacts at the cellular level involving several of these pathways. Here, we overview the key pathomechanistic themes underlying profound congenital microcephaly, and emphasize their interconnected nature.
Collapse
|