1
|
Yang YM, Ma HB, Xiong Y, Wu Q, Gao XK. PEX11B palmitoylation couples peroxisomal dysfunction with Schwann cells fail in diabetic neuropathy. J Biomed Sci 2025; 32:20. [PMID: 39934809 DOI: 10.1186/s12929-024-01115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/22/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Diabetic neuropathy (DN) is a prevalent and painful complication of diabetes; however, the mechanisms underlying its pathogenesis remain unclear, and effective clinical treatments are lacking. This study aims to explore the role of peroxisomes in Schwann cells in DN. METHODS The abundance of peroxisomes in the sciatic nerves of mice or Schwann cells was analyzed using laser confocal super-resolution imaging and western blotting. The RFP-GFP-SKL (Ser-Lys-Leu) probe was utilized to assess pexophagy (peroxisomes autophagy) levels. To evaluate the palmitoylation of PEX11B, the acyl-resin assisted capture (acyl-RAC) assay and the Acyl-Biotin Exchange (ABE) assay were employed. Additionally, MR (Mendelian randomization) analysis was conducted to investigate the potential causal relationship between DN and MS (Multiple sclerosis). RESULTS There was a decrease in peroxisomal abundance in the sciatic nerves of diabetic mice, and palmitic acid (PA) induced a reduction in peroxisomal abundance by inhibiting peroxisomal biogenesis in Schwann cells. Mechanistically, PA induced the palmitoylation of PEX11B at C25 site, disrupting its self-interaction and impeding peroxisome elongation. Fenofibrate, a PPARα agonist, effectively rescued peroxisomal dysfunction caused by PA and restored the peroxisomal abundance in diabetic mice. Lastly, MR analysis indicates a notable causal influence of DN on MS, with its onset and progression intricately linked to peroxisomal dysfunction. CONCLUSIONS Targeting the peroxisomal biogenesis pathway may be an effective strategy for preventing and treating DN, underscoring the importance of addressing MS risk at the onset of DN.
Collapse
Affiliation(s)
- Yu Mei Yang
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Hang Bin Ma
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yue Xiong
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Xiu Kui Gao
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
2
|
Hsueh YS, Chen SH, Tseng WL, Lin SC, Chen DQ, Huang CC, Hsueh YY. Leptin deficiency leads to nerve degeneration and impairs axon remyelination by inducing Schwann cell apoptosis and demyelination in type 2 diabetic peripheral neuropathy in rats. Neurochem Int 2025; 182:105908. [PMID: 39608454 DOI: 10.1016/j.neuint.2024.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Diabetic peripheral neuropathy, characterized by symptoms such as paresthesia, neuropathic pain, and potential lower limb amputation, poses significant clinical management challenges. Recent studies suggest that chronic hyperglycemia-induced Schwann cells (SCs) apoptosis contributes to neurodegeneration and impaired nerve regeneration, but the detailed mechanisms are still unknown. Our study investigated a mixed-sex type 2 diabetes mellitus (T2DM) rat model using leptin knockout (KO) to simulate obesity and diabetes-related conditions. Through extensive assessments, including mechanical allodynia, electrophysiology, and microcirculation analyses, along with myelin degradation studies in KO versus wild-type rats, we focused on apoptosis, autophagy, and SCs dedifferentiation in the sciatic nerve and examined nerve regeneration in KO rats. KO rats exhibited notable reductions in mechanical withdrawal force, prolonged latency, decreased compound muscle action potential (CMAP) amplitude, reduced microcirculation, myelin sheath damage, and increases in apoptosis, autophagy, and SCs dedifferentiation. Moreover, leptin KO was found to impair peripheral nerve regeneration postinjury, as indicated by reduced muscle weight, lower CMAP amplitude, extended latency, and decreased remyelination and SCs density. These findings underscore the effectiveness of the T2DM rat model in clarifying the impact of leptin KO on SCs apoptosis, dedifferentiation, and demyelination, providing valuable insights into new therapeutic avenues for treating T2DM-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Yuan-Shuo Hsueh
- Department of Physiology, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wan-Ling Tseng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan, 709, Taiwan
| | - De-Quan Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
3
|
Pham VM. Targeting PI3K/AKT and MEK/ERK pathways for synergic effects on improving features of peripheral diabetic neuropathy. J Diabetes Investig 2024; 15:1537-1544. [PMID: 39162579 PMCID: PMC11527830 DOI: 10.1111/jdi.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
Diabetic neuropathy is one of the most serious and common complications of diabetes with a wide spectrum, affecting 30-50% of diabetic patients. However, the current treatments of this disorder, mainly based on controlling blood glucose level, show an inadequate clinical outcome. Better approaches are needed. In this fashion, it is noted that promoting nerve regeneration and preventing nerve degeneration should be focused on equally and appropriately. In this mini review, how more effective approaches are in targeting PI3K/AKT and MEK/ERK pathways in the treatment of peripheral diabetic neuropathy is discussed. Future treatment of peripheral diabetic neuropathy should consider these approaches.
Collapse
Affiliation(s)
- Vuong M. Pham
- Faculty of Biology and EnvironmentHo Chi Minh City University of Industry and TradeHo Chi Minh CityVietnam
| |
Collapse
|
4
|
Tian L, Yang M, Tu S, Chang K, Jiang H, Jiang Y, Ding L, Weng Z, Wang Y, Tan X, Zong C, Chen B, Dou X, Wang X, Qi X. Xiaoke Bitong capsule alleviates inflammatory impairment via inhibition of the TNF signaling pathway to against diabetic peripheral neuropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155867. [PMID: 39047415 DOI: 10.1016/j.phymed.2024.155867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Xiaoke Bitong capsule (XBC) is a crude herbal compound believed to tonify qi, improve blood circulation, and alleviate blood stasis. It has been used as an herbal formula for the prevention and treatment of diabetic peripheral neuropathy (DPN) under the guidance of traditional Chinese medicine (TCM). However, the pharmacological mechanisms by which XBC ameliorates DPN remain poorly understood. The interaction between pro-inflammatory factors and the activation of tumor necrosis factor (TNF) plays a critical role in the underlying mechanisms of DPN. XBC may protect against DPN through the regulation of the TNF pathway. PURPOSE Many studies show the association between DPN and nerve dysfunction, however, treatment options are limited. To identify specific therapeutic targets and active components of XBC that contribute to its anti-DPN effects, our study aimed to investigate the potential mechanism of action of XBC during the progression of DPN using a system pharmacology approach. METHODS An approach involving UPLC-Q-TOF/MS and network pharmacology was used to analyze the compositions, potential targets, and active pathways of XBC. Further, models of streptozocin (STZ) induced mouse and glucose induced RSC96 cells were established to explore the therapeutic effects of XBC. High glucose induced RSC96 cells were pretreated with small interfering RNA (siRNA) to identify potential therapeutic targets of DPN. RESULTS Seventy-one active compositions of XBC and five potential targets, including mitogen-activated protein kinase 8 (MAPK), interleukin-6 (IL-6), poly-ADP-ribose polymerase-1 (PARP1), vascular endothelial growth factor A (VEGFA), and transcription factor p65 (NF-κB), were considered as the potential regulators of DPN. In addition, the results revealed that the TNF signaling pathway was closely related to DPN. Moreover, DPN contributed to the decreased expressions of PI3K and AKT, increased TNF-α and IL-1β in RSC96 cells, which were both reversed by XBC or TNF-α siRNA. CONCLUSION XBC could protect against DPN by inhibiting the release of pro-inflammatory cytokines and regulating the activation of the TNF signaling pathway, further accelerating neurogenesis, and alleviating peripheral nerve lesions. Therefore, this study highlights the therapeutic value of XBC for DPN.
Collapse
Affiliation(s)
- Lulu Tian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Meiqi Yang
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning, PR China
| | - Shanjie Tu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Huanyu Jiang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yuwei Jiang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Lu Ding
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Zhiwei Weng
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yueqiang Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaolong Tan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Chunxiao Zong
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Buyang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Xiuge Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, PR China.
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, PR China.
| |
Collapse
|
5
|
Wu L, Wang XJ, Luo X, Zhang J, Zhao X, Chen Q. Diabetic peripheral neuropathy based on Schwann cell injury: mechanisms of cell death regulation and therapeutic perspectives. Front Endocrinol (Lausanne) 2024; 15:1427679. [PMID: 39193373 PMCID: PMC11348392 DOI: 10.3389/fendo.2024.1427679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a complication of diabetes mellitus that lacks specific treatment, its high prevalence and disabling neuropathic pain greatly affects patients' physical and mental health. Schwann cells (SCs) are the major glial cells of the peripheral nervous system, which play an important role in various inflammatory and metabolic neuropathies by providing nutritional support, wrapping axons and promoting repair and regeneration. Increasingly, high glucose (HG) has been found to promote the progression of DPN pathogenesis by targeting SCs death regulation, thus revealing the specific molecular process of programmed cell death (PCD) in which SCs are disrupted is an important link to gain insight into the pathogenesis of DPN. This paper is the first to review the recent progress of HG studies on apoptosis, autophagy, pyroptosis, ferroptosis and necroptosis pathways in SCs, and points out the crosstalk between various PCDs and the related therapeutic perspectives, with the aim of providing new perspectives for a deeper understanding of the mechanisms of DPN and the exploration of effective therapeutic targets.
Collapse
Affiliation(s)
- Lijiao Wu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Jin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, China
| | - Xi Luo
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingqi Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Zhao
- College of lntegrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Guo G, Chen J, Shen Q, Chen Z. Single-cell transcriptome analysis reveals distinct cell populations in dorsal root ganglia and their potential roles in diabetic peripheral neuropathy. PLoS One 2024; 19:e0306424. [PMID: 39083491 PMCID: PMC11290642 DOI: 10.1371/journal.pone.0306424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication associated with diabetes, and can affect quality of life considerably. Dorsal root ganglion (DRG) plays an important role in the development of DPN. However, the relationship between DRG and the pathogenesis of DPN still lacks a thorough exploration. Besides, a more in-depth understanding of the cell type composition of DRG, and the roles of different cell types in mediating DPN are needed. Here we conducted single-cell RNA-seq (scRNA-seq) for DRG tissues isolated from healthy control and DPN rats. Our results demonstrated DRG includes eight cell-type populations (e.g., neurons, satellite glial cells (SGCs), Schwann cells (SCs), endothelial cells, fibroblasts). In the heterogeneity analyses of cells, six neuron sub-types, three SGC sub-types and three SC sub-types were identified, additionally, biological functions related to cell sub-types were further revealed. Cell communication analysis showed dynamic interactions between neurons, SGCs and SCs. We also found that the aberrantly expressed transcripts in sub-types of neurons, SGCs and SCs with DPN were associated with diabetic neuropathic pain, cell apoptosis, oxidative stress, etc. In conclusion, this study provides a systematic perspective of the cellular composition and interactions of DRG tissues, and suggests that neurons, SGCs and SCs play vital roles in the progression of DPN. Our data may provide a valuable resource for future studies regarding the pathophysiological effect of particular cell type in DPN.
Collapse
Affiliation(s)
- Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Chen
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qixiao Shen
- Department of Orthopedics, Yangxin People’s Hospital, Huangshi, Hubei, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Yum Y, Park S, Nam YH, Yoon J, Song H, Kim HJ, Lim J, Jung SC. Therapeutic Effect of Schwann Cell-Like Cells Differentiated from Human Tonsil-Derived Mesenchymal Stem Cells on Diabetic Neuropathy in db/db Mice. Tissue Eng Regen Med 2024; 21:761-776. [PMID: 38619758 PMCID: PMC11187028 DOI: 10.1007/s13770-024-00638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Diabetic neuropathy (DN) is the most common complication of diabetes, and approximately 50% of patients with this disease suffer from peripheral neuropathy. Nerve fiber loss in DN occurs due to myelin defects and is characterized by symptoms of impaired nerve function. Schwann cells (SCs) are the main support cells of the peripheral nervous system and play important roles in several pathways contributing to the pathogenesis and development of DN. We previously reported that human tonsil-derived mesenchymal stem cells differentiated into SCs (TMSC-SCs), named neuronal regeneration-promoting cells (NRPCs), which cells promoted nerve regeneration in animal models with peripheral nerve injury or hereditary peripheral neuropathy. METHODS In this study, NRPCs were injected into the thigh muscles of BKS-db/db mice, a commonly used type 2 diabetes model, and monitored for 26 weeks. Von Frey test, sensory nerve conduction study, and staining of sural nerve, hind foot pad, dorsal root ganglia (DRG) were performed after NRPCs treatment. RESULTS Von Frey test results showed that the NRPC treatment group (NRPC group) showed faster responses to less force than the vehicle group. Additionally, remyelination of sural nerve fibers also increased in the NRPC group. After NRPCs treatment, an improvement in response to external stimuli and pain sensation was expected through increased expression of PGP9.5 in the sole and TRPV1 in the DRG. CONCLUSION The NRPCs treatment may alleviate DN through the remyelination and the recovery of sensory neurons, could provide a better life for patients suffering from complications of this disease.
Collapse
Affiliation(s)
- Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Juhee Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Hyeryung Song
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Ho Jin Kim
- Cellatoz Therapeutics Lnc., 17, Pangyo-ro 228beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea
| | - Jaeseung Lim
- Cellatoz Therapeutics Lnc., 17, Pangyo-ro 228beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
- Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
8
|
Zhang J, Xie D, Jiao D, Zhou S, Liu S, Ju Z, Hu L, Qi L, Yao C, Zhao C. From inflammatory signaling to neuronal damage: Exploring NLR inflammasomes in ageing neurological disorders. Heliyon 2024; 10:e32688. [PMID: 38975145 PMCID: PMC11226848 DOI: 10.1016/j.heliyon.2024.e32688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
The persistence of neuronal degeneration and damage is a major obstacle in ageing medicine. Nucleotide-binding oligomerization domain (NOD)-like receptors detect environmental stressors and trigger the maturation and secretion of pro-inflammatory cytokines that can cause neuronal damage and accelerate cell death. NLR (NOD-like receptors) inflammasomes are protein complexes that contain NOD-like receptors. Studying the role of NLR inflammasomes in ageing-related neurological disorders can provide valuable insights into the mechanisms of neurodegeneration. This includes investigating their activation of inflammasomes, transcription, and capacity to promote or inhibit inflammatory signaling, as well as exploring strategies to regulate NLR inflammasomes levels. This review summarizes the use of NLR inflammasomes in guiding neuronal degeneration and injury during the ageing process, covering several neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and peripheral neuropathies. To improve the quality of life and slow the progression of neurological damage, NLR-based treatment strategies, including inhibitor-related therapies and physical therapy, are presented. Additionally, important connections between age-related neurological disorders and NLR inflammasomes are highlighted to guide future research and facilitate the development of new treatment options.
Collapse
Affiliation(s)
- Jingwen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Xie
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuang Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
9
|
Ferreira DT, Shen BQ, Mwirigi JM, Shiers S, Sankaranarayanan I, Kotamarti M, Inturi NN, Mazhar K, Ubogu EE, Thomas G, Lalli T, Wukich D, Price TJ. Deciphering the molecular landscape of human peripheral nerves: implications for diabetic peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599167. [PMID: 38915676 PMCID: PMC11195245 DOI: 10.1101/2024.06.15.599167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes mellitus that is caused by metabolic toxicity to peripheral axons. We aimed to gain deep mechanistic insight into the disease process using bulk and spatial RNA sequencing on tibial and sural nerves recovered from lower leg amputations in a mostly diabetic population. First, our approach comparing mixed sensory and motor tibial and purely sensory sural nerves shows key pathway differences in affected nerves, with distinct immunological features observed in sural nerves. Second, spatial transcriptomics analysis of sural nerves reveals substantial shifts in endothelial and immune cell types associated with severe axonal loss. We also find clear evidence of neuronal gene transcript changes, like PRPH, in nerves with axonal loss suggesting perturbed RNA transport into distal sensory axons. This motivated further investigation into neuronal mRNA localization in peripheral nerve axons generating clear evidence of robust localization of mRNAs such as SCN9A and TRPV1 in human sensory axons. Our work gives new insight into the altered cellular and transcriptomic profiles in human nerves in DPN and highlights the importance of sensory axon mRNA transport as an unappreciated potential contributor to peripheral nerve degeneration.
Collapse
Affiliation(s)
- Diana Tavares Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Breanna Q Shen
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Miriam Kotamarti
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Nikhil N Inturi
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Eroboghene E Ubogu
- Department of Neurology, Division of Neuromuscular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Geneva Thomas
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Trapper Lalli
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dane Wukich
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
10
|
Das M, Chakraborty M, Das P, Santra S, Mukherjee A, Das S, Banyai K, Roy S, Choudhury L, Gupta R, Dey T, Das D, Bose A, Ganesh B, Banerjee R. System biology approaches for systemic diseases: Emphasis on type II diabetes mellitus and allied metabolism. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 58:103176. [DOI: 10.1016/j.bcab.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Yorek M. Combination therapy is it in the future for successfully treating peripheral diabetic neuropathy? Front Endocrinol (Lausanne) 2024; 15:1357859. [PMID: 38812811 PMCID: PMC11133577 DOI: 10.3389/fendo.2024.1357859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
In 2022, the Center for Disease Control and Prevention reported that 11.3% of the United States population, 37.3 million people, had diabetes and 38% of the population had prediabetes. A large American study conducted in 2021 and supported by many other studies, concluded that about 47% of diabetes patients have peripheral neuropathy and that diabetic neuropathy was present in 7.5% of patients at the time of diabetes diagnosis. In subjects deemed to be pre-diabetes and impaired glucose tolerance there was a wide range of prevalence estimates (interquartile range (IQR): 6%-34%), but most studies (72%) reported a prevalence of peripheral neuropathy ≥10%. There is no recognized treatment for diabetic peripheral neuropathy (DPN) other than good blood glucose control. Good glycemic control slows progression of DPN in patients with type 1 diabetes but for patients with type 2 diabetes it is less effective. With obesity and type 2 diabetes at epidemic levels the need of a treatment for DPN could not be more important. In this article I will first present background information on the "primary" mechanisms shown from pre-clinical studies to contribute to DPN and then discuss mono- and combination therapies that have demonstrated efficacy in animal studies and may have success when translated to human subjects. I like to compare the challenge of finding an effective treatment for DPN to the ongoing work being done to treat hypertension. Combination therapy is the recognized approach used to normalize blood pressure often requiring two, three or more drugs in addition to lifestyle modification to achieve the desired outcome. Hypertension, like DPN, is a progressive disease caused by multiple mechanisms. Therefore, it seems likely as well as logical that combination therapy combined with lifestyle adjustments will be required to successfully treat DPN.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
12
|
Shi Y, Li H, Lin Y, Wang S, Shen G. Effective constituents and protective effect of Mudan granules against Schwann cell injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117692. [PMID: 38176668 DOI: 10.1016/j.jep.2023.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Mudan granules (MD) is a Chinese patent medicine for treating DPN, which is composed of nine Chinese medicinal herbs, including the radix of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. (Huangqi in Chinese), rhizome of Corydalis yanhusuo W.T. Wang (Yanhusuo), radix and rhizome of Panax notoginseng (Burk.) F. H. Chen (Sanqi), radix of Paeonia lactiflora Pall. or Paeonia veitchii Lynch (Chishao), radix and rhizome of Salvia miltiorrhiza Bge. (Danshen), rhizome of Ligusticum chuanxiong Hort. (Chuanxiong), flowers of Carthamus tinctorius L. (Honghua), lignum of Caesalpinia sappan L. (Sumu), and caulis of Spatholobus suberectus Dunn (Jixueteng). MD was reported to have a protective effect on Schwann cell (SC) that is considered as an important therapeutic target of DPN. However, the constituents of MD have not been reported, and the effective constituents and protective pathways for MD against SC injury remain unclear. AIM OF THE STUDY This study aimed to identify the constituents in MD, and to investigate the effective constituents and protective pathways of MD against high-glucose/lipid injury in SC. MATERIALS AND METHODS The chemical constituents of MD were identified using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Protective effect and effective constituents screening were performed in an in vitro SC injury model induced by high glucose and lipid levels. The protective pathways of MD and its effective constituents were investigated by western blotting assay of related proteins. RESULTS A total of 136 constituents were identified in MD. MD downregulated the phosphorylation of extracellular-regulated protein kinases 1/2 (ERK1/2) and expression of cyclooxygenase-2 (COX-2) and upregulated the expression of sirtuin 2 (SIRT2). Seven effective constituents were screened out, including three from Sanqi [20(R)-ginsenoside Rh2, 20(S)-ginsenoside Rh2, and ginsenoside Rk3], one from Huangqi (astragaloside II), one from Danshen (danshensu), and two from Chuanxiong (chlorogenic and cryptochlorogenic acid). Six of the seven compounds, excluding danshensu, inhibited the phosphorylation of ERK1/2. Both astragaloside II and chlorogenic acid upregulated the expression of SIRT2, and cryptochlorogenic acid and danshensu downregulated the expression of COX-2. CONCLUSIONS The constituents of MD were firstly identified, and seven effective constituents were found. MD can protect SC against high-glucose and -lipid injury by downregulating ERK1/2 phosphorylation and COX-2 expression and upregulating SIRT2 expression. Seven effective constituents regulated the expression of these proteins. This study presented an important advance toward elucidating the chemical constituents, and the effective constituents and protective pathways of MD against high-glucose/lipid injury in SC, which is very helpful for investigating the action mechanism of MD on treating DPN, and could ultimately inform the development of effective quality control procedures for MD production.
Collapse
Affiliation(s)
- Yingqiu Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoran Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yugang Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shufang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321016, China.
| | - Guofang Shen
- Hangzhou Institute for Food and Drug Control, Hangzhou, 310022, China
| |
Collapse
|
13
|
Wang Q, Li W, Zhang X, Chung SL, Dai J, Jin Z. Tauroursodeoxycholic acid protects Schwann cells from high glucose-induced cytotoxicity by targeting NLRP3 to regulate cell migration and pyroptosis. Biotechnol Appl Biochem 2024; 71:28-37. [PMID: 37749820 DOI: 10.1002/bab.2518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most prevalent complication of type 2 diabetes mellitus (T2DM), and it seriously affects the quality of life of patients. Tauroursodeoxycholic acid (TUDCA) is a bile acid that plays a protective role against various diseases. However, the function of TUDCA in DPN progression needs to be elucidated. Hence, this study clarified the action of TUDCA on DPN development and explored its mechanism of action. Fecal samples were collected from 50 patients with T2DM or DPN. Schwann cells induced by high levels were constructed to simulate an uncontrolled diabetic state. Cell viability and migration were measured using the CCK-8 and wound-healing assays, respectively. Reactive oxygen species and pyroptosis were detected using flow cytometry. Parabacteroides goldsteinii and Parabacteroides distasonis levels were decreased in the feces of patients with DPN. TUDCA enhanced the viability and migration ability of high glucose-stimulated Schwann cells. In addition, Schwann cell pyroptosis stimulated by high glucose levels was inhibited by TUDCA. Furthermore, the protective roles of TUDCA in cell viability, migration ability, and pyroptosis of Schwann cells stimulated by high glucose were suppressed by the overexpression of NLRP3. TUDCA enhanced cell viability and migration and suppressed pyroptosis in Schwann cells stimulated by high glucose levels by modulating NLRP3 expression. Thus, TUDCA may be a promising drug for DPN therapy.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Acupuncture and Moxibustion, Shanghai Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese medicine, Shanghai, China
| | - Wen Li
- Department of Acupuncture and Moxibustion, Shanghai Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese medicine, Shanghai, China
| | - Xiaozhuo Zhang
- Department of Acupuncture and Moxibustion, Shanghai Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese medicine, Shanghai, China
| | - Shuet Ling Chung
- Department of Acupuncture and Moxibustion, Shanghai Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese medicine, Shanghai, China
| | - Jinling Dai
- Department of Acupuncture and Moxibustion, Shanghai Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese medicine, Shanghai, China
| | - Zhu Jin
- Department of Acupuncture and Moxibustion, Shanghai Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese medicine, Shanghai, China
| |
Collapse
|
14
|
Bäckryd E, Themistocleous A, Stensson N, Rice ASC, Tesfaye S, Bennett DL, Gerdle B, Ghafouri B. Serum levels of endocannabinoids and related lipids in painful vs painless diabetic neuropathy: results from the Pain in Neuropathy Study. Pain 2024; 165:225-232. [PMID: 37578507 PMCID: PMC10723642 DOI: 10.1097/j.pain.0000000000003015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT N-arachidonoylethanolamine (also known as anandamide) and 2-arachidonoylglycerol are activators of the cannabinoid receptors. The endocannabinoid system also includes structurally and functionally related lipid mediators that do not target cannabinoid receptors, such as oleoylethanolamide, palmitoylethanolamide, and stearoylethanolamide. These bioactive lipids are involved in various physiological processes, including regulation of pain. The primary aim of the study was to analyze associations between serum levels of these lipids and pain in participants in the Pain in Neuropathy Study, an observational, cross-sectional, multicentre, research project in which diabetic patients with painless or painful neuropathy underwent deep phenotyping. Our hypothesis was that painful neuropathy would be associated with higher levels of the 5 lipids compared with painless neuropathy. Secondary aims were to analyze other patient-reported outcome measures and clinical data in relationship to lipid levels. The lipid mediators were analyzed in serum samples using liquid chromatography tandem mass spectrometry (LC-MS/MS). Serum levels of anandamide were significantly higher in the painful group, but the effect size was small (Cohen d = 0.31). Using cluster analysis of lipid data, patients were dichotomized into a "high-level" endocannabinoid group and a "low-level" group. In the high-level group, 61% of patients had painful neuropathy, compared with 45% in the low-level group ( P = 0.039). This work is of a correlative nature only, and the relevance of these findings to the search for analgesics targeting the endocannabinoid system needs to be determined in future studies.
Collapse
Affiliation(s)
- Emmanuel Bäckryd
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Niclas Stensson
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Andrew S. C. Rice
- Pain Research, Department Surgery and Cancer, Faculty of Medicine, Imperial College London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Björn Gerdle
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
15
|
Hu X, Buhl CS, Sjogaard MB, Schousboe K, Mizrak HI, Kufaishi H, Jensen TS, Hansen CS, Yderstræde KB, Zhang MD, Ernfors P, Nyengaard JR, Karlsson P. Structural changes in Schwann cells and nerve fibres in type 1 diabetes: relationship with diabetic polyneuropathy. Diabetologia 2023; 66:2332-2345. [PMID: 37728731 PMCID: PMC10627903 DOI: 10.1007/s00125-023-06009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023]
Abstract
AIMS/HYPOTHESIS Our aim was to investigate structural changes of cutaneous Schwann cells (SCs), including nociceptive Schwann cells (nSCs) and axons, in individuals with diabetic polyneuropathy. We also aimed to investigate the relationship between these changes and peripheral neuropathic symptoms in type 1 diabetes. METHODS Skin biopsies (3 mm) taken from carefully phenotyped participants with type 1 diabetes without polyneuropathy (T1D, n=25), type 1 diabetes with painless diabetic polyneuropathy (T1DPN, n=30) and type 1 diabetes with painful diabetic polyneuropathy (P-T1DPN, n=27), and from healthy control individuals (n=25) were immunostained with relevant antibodies to visualise SCs and nerve fibres. Stereological methods were used to quantify the expression of cutaneous SCs and nerve fibres. RESULTS There was a difference in the number density of nSCs not abutting to nerve fibres between the groups (p=0.004) but not in the number density of nSCs abutting to nerve fibres, nor in solitary or total subepidermal SC soma number density. The overall dermal SC expression (measured by dermal SC area fraction and subepidermal SC process density) and peripheral nerve fibre expression (measured by intraepidermal nerve fibre density, dermal nerve fibre area fraction and subepidermal nerve fibre density) differed between the groups (all p<0.05): significant differences were seen in participants with T1DPN and P-T1DPN compared with those without diabetic polyneuropathy (healthy control and T1D groups) (all p<0.05). No difference was found between participants in the T1DPN and P-T1DPN group, nor between participants in the T1D and healthy control group (all p>0.05). Correlational analysis showed that cutaneous SC processes and nerve fibres were highly associated, and they were weakly negatively correlated with different neuropathy measures. CONCLUSIONS/INTERPRETATION Cutaneous SC processes and nerves, but not SC soma, are degenerated and interdependent in individuals with diabetic polyneuropathy. However, an increase in structurally damaged nSCs was seen in individuals with diabetic polyneuropathy. Furthermore, dermal SC processes and nerve fibres correlate weakly with clinical measures of neuropathy and may play a partial role in the pathophysiology of diabetic polyneuropathy in type 1 diabetes.
Collapse
Affiliation(s)
- Xiaoli Hu
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
| | | | - Marie Balle Sjogaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karoline Schousboe
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | | | | | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Pall Karlsson
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
16
|
Xia L, Li P, Bi W, Yang R, Zhang Y. CDK5R1 promotes Schwann cell proliferation, migration, and production of neurotrophic factors via CDK5/BDNF/TrkB after sciatic nerve injury. Neurosci Lett 2023; 817:137514. [PMID: 37848102 DOI: 10.1016/j.neulet.2023.137514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) is necessary for central nervous system development and neuronal migration. At present, there are few reports about the role of CDK5R1 in peripheral nerve injury, and these need to be further explored. The CCK-8 and EdU assay was performed to examine cell proliferation. The migration ability of Schwann cells was tested by the cell scratch test. The apoptosis of Schwann cells was detected by flow cytometry. Sciatic nerve injury model in rats was established by crush injury. The sciatic function index (SFI) and the paw withdrawal mechanical threshold (PWMT) were measured at different time points. The results revealed that overexpression of CDK5R1 promoted the proliferation and migration of Schwann cells, and inhibited the apoptosis. Further studies found that pcDNA3.1-CDK5R1 significantly upregulated the expression of CDK5, BDNF and TrkB. More importantly, CDK5R1 promoted the recovery of nerve injury in rats. In addition, the CDK5 mediated BDNF/TrkB pathway was involved in the molecular mechanism of CDK5R1 on Schwann cells. It is suggested that the mechanism by which CDK5R1 promotes functional recovery after sciatic nerve injury is by CDK5 mediated activation of BDNF/TrkB signaling pathways.
Collapse
Affiliation(s)
- Lei Xia
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Peng Li
- Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Wenchao Bi
- Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Ruize Yang
- Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yuelin Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
17
|
Xing WB, Wu ST, Wang XX, Li FY, Wang RX, He JH, Fu J, He Y. Potential of dental pulp stem cells and their products in promoting peripheral nerve regeneration and their future applications. World J Stem Cells 2023; 15:960-978. [PMID: 37970238 PMCID: PMC10631371 DOI: 10.4252/wjsc.v15.i10.960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
Peripheral nerve injury (PNI) seriously affects people's quality of life. Stem cell therapy is considered a promising new option for the clinical treatment of PNI. Dental stem cells, particularly dental pulp stem cells (DPSCs), are adult pluripotent stem cells derived from the neuroectoderm. DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages, such as easy isolation, multidifferentiation potential, low immunogenicity, and low transplant rejection rate. DPSCs are extensively used in tissue engineering and regenerative medicine, including for the treatment of sciatic nerve injury, facial nerve injury, spinal cord injury, and other neurodegenerative diseases. This article reviews research related to DPSCs and their advantages in treating PNI, aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.
Collapse
Affiliation(s)
- Wen-Bo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Shu-Ting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Xin-Xin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Fen-Yao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ruo-Xuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ji-Hui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
18
|
Wu KY, Deng F, Mao XY, Zhou D, Shen WG. Ferroptosis involves in Schwann cell death in diabetic peripheral neuropathy. Open Med (Wars) 2023; 18:20230809. [PMID: 37829841 PMCID: PMC10566555 DOI: 10.1515/med-2023-0809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Accumulating evidence shows that Schwann cells' (SCs) death caused by high glucose (HG) is involved in the pathological process of diabetic peripheral neuropathy (DPN). Ferroptosis is a novel form of regulatory cell death driven by iron-dependent lipid peroxidation. However, it is not clear whether ferroptosis is involved in the death process of SCs induced by HG. The expression of ferroptosis-related indicators in the serum of DPN patients was detected by ELISA. Subsequently, using cell counting kit‑8, western blot, real-time PCR, and Ki-67 staining, we investigated the effects of HG on the ferroptosis of SCs and initially explored the underlying mechanism. The results showed that the serum levels of glutathione peroxidase 4 (GPX4) and glutathione in patients with DPN decreased, while malondialdehyde levels increased significantly. Then, we observed that erastin and HG induced ferroptosis in SCs, resulting in the decrease in cell activity and the expression level of GPX4 and SLC7A11, which could be effectively reversed by the ferroptosis inhibitor Fer-1. Mechanistically, HG induced ferroptosis in SCs by inhibiting the NRF2 signaling pathway. Our results showed that ferroptosis was involved in the death process of SCs induced by HG. Inhibition of ferroptosis in SCs might create a new avenue for the treatment of DPN.
Collapse
Affiliation(s)
- Kai-yan Wu
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Fei Deng
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xin-yu Mao
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dan Zhou
- Department of Central Laboratory, Jintan Hospital, Jiangsu University, 500 Avenue Jintan, Jintan, Jiangsu, 213200, China
| | - Wei-gan Shen
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
19
|
Zhu X, Xie S, Chen J, Lu Q, Wang X, Duan F, Xu S, Zhang Y, Huang H, Wang Y, Wang H, Chen B, Huang H. Sildenafil Enhances the Therapeutic Effect of Islet Transplantation for Diabetic Peripheral Neuropathy via mTOR/S6K1 Pathway. Int J Endocrinol 2023; 2023:8199029. [PMID: 37841556 PMCID: PMC10576648 DOI: 10.1155/2023/8199029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose This study aimed to investigate the potential mechanism underlying the therapeutic effect of sildenafil in combination with islet transplantation for diabetic peripheral neuropathy. Methods A streptozotocin-induced diabetic mouse model was established to evaluate the effects of islet transplantation and sildenafil intervention. The mice were subjected to different interventions for 6 weeks, and histopathological staining and immunohistochemistry techniques were employed to examine the pathological changes and protein expressions of BDNF, MBP, and cleaved caspase-3 in the sciatic nerve tissue. Moreover, RSC96 cells were cocultured with islet cells and sildenafil under high glucose conditions to investigate the potential involvement of the mTOR/S6K1 pathway, BDNF, and MBP proteins. Western blotting was used to detect protein expression in each group. Results The results showed that islet transplantation can restore sciatic nerve injury in diabetic mice, and sildenafil can enhance the therapeutic effect of islet transplantation. In addition, the combination of sildenafil and islet cells significantly upregulated the expression levels of mTOR/S6K1, BDNF, and MBP in RSC96 cells under high glucose conditions. Conclusions Islet transplantation can reverse sciatic nerve injury in diabetic mice, and islet cells exhibit a protective effect on RSC96 cells under high glucose conditions via the activation of the mTOR/S6K1 pathway. Sildenafil enhances the therapeutic effect of islet transplantation, which may represent a potential treatment strategy for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Xiandong Zhu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Shangjing Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jiawei Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Qiaohong Lu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xiaowu Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Feixiang Duan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Sinian Xu
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yan Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yongqiang Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Huanjie Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
20
|
Wang X, Xu G, Liu H, Chen Z, Huang S, Yuan J, Xie C, Du L. Inhibiting apoptosis of Schwann cell under the high-glucose condition: A promising approach to treat diabetic peripheral neuropathy using Chinese herbal medicine. Biomed Pharmacother 2023; 157:114059. [PMID: 36462309 DOI: 10.1016/j.biopha.2022.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Glycemic control and lifestyle alterations cannot prevent the development of DPN; therefore, investigating effective treatments for DPN is crucial. Schwann cells (SCs) maintain the physiological function of peripheral nerves and promote the repair and regeneration of injured nerves. Inhibiting the apoptosis of SCs through various pathological pathways in a high-glucose environment plays an important role in developing DPN. Therefore, inhibiting the apoptosis of SCs can be a novel treatment strategy for DPN. Previous studies have indicated the potential of Chinese herbal medicine (CHM) in treating DPN. In this study, we have reviewed the effects of CHM (both monomers and extracts) on the apoptosis of SCs by interfering with the production of advanced glycation end products, oxidative stress, and endoplasmic reticulum stress pathological pathways. This review will demonstrate the potentialities of CHM in inhibiting apoptosis in SCs, providing new insights and perspectives for treating DPN.
Collapse
Affiliation(s)
- Xueru Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, Sichuan, China.
| | - Gang Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, Sichuan, China.
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China.
| | - Zhengtao Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China.
| | - Susu Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Jiushu Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China.
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, Sichuan, China.
| | - Lian Du
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
21
|
Ssempijja F, Dare SS, Bukenya EEM, Kasozi KI, Kenganzi R, Fernandez EM, Vicente-Crespo M. Attenuation of Seizures, Cognitive Deficits, and Brain Histopathology by Phytochemicals of Imperata cylindrica (L.) P. Beauv (Poaceae) in Acute and Chronic Mutant Drosophila melanogaster Epilepsy Models. J Evid Based Integr Med 2023; 28:2515690X231160191. [PMID: 36866635 PMCID: PMC9989407 DOI: 10.1177/2515690x231160191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/09/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Imperata cylindrica is a globally distributed plant known for its antiepileptic attributes, but there is a scarcity of robust evidence for its efficacy. The study investigated neuroprotective attributes of Imperata cylindrica root extract on neuropathological features of epilepsy in a Drosophila melanogaster mutant model of epilepsy. It was conducted on 10-day-old (at the initiation of study) male post-eclosion bang-senseless paralytic Drosophila (parabss1) involved acute (1-3 h) and chronic (6-18 days) experiments; n = 50 flies per group (convulsions tests); n = 100 flies per group (learning/memory tests and histological examination). Administrations were done in 1 g standard fly food, per os. The mutant flies of study (parabss1) showed marked age-dependent progressive brain neurodegeneration and axonal degeneration, significant (P < 0.05) bang sensitivity and convulsions, and cognitive deficits due to up-regulation of the paralytic gene in our mutants. The neuropathological findings were significantly (P < 0.05) alleviated in dose and duration-dependent fashions to near normal/normal after acute and chronic treatment with extract similar to sodium valproate. Therefore, para is expressed in neurons of brain tissues in our mutant flies to bring about epilepsy phenotypes and behaviors of the current juvenile and old-adult mutant D. melanogaster models of epilepsy. The herb exerts neuroprotection by anticonvulsant and antiepileptogenic mechanisms in mutant D. melanogaster due to plant flavonoids, polyphenols, and chromones (1 and 2) which exert antioxidative and receptor or voltage-gated sodium ion channels' inhibitory properties, and thus causing reduced inflammation and apoptosis, increased tissue repair, and improved cell biology in the brain of mutant flies. The methanol root extract provides anticonvulsant and antiepileptogenic medicinal values which protect epileptic D. melanogaster. Therefore, the herb should be advanced for more experimental and clinical studies to confirm its efficacy in treating epilepsy.
Collapse
Affiliation(s)
- Fred Ssempijja
- Department of Anatomy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Samuel Sunday Dare
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
- School of Medicine, Kabale University, P.O Box 317, Kabale, Uganda
| | - Edmund E. M. Bukenya
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
- School of Medicine, Kabale University, P.O Box 317, Kabale, Uganda
| | | | - Ritah Kenganzi
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Edgar Mario Fernandez
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Marta Vicente-Crespo
- Institute of Biomedical Research, Kampala International University Western Campus, P.O Box 71, Bushenyi, Uganda
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University Western Campus, P.O Box 71, Bushenyi, Uganda
| |
Collapse
|
22
|
Bajaj S, Gupta S. Nutraceuticals: A Promising Approach Towards Diabetic Neuropathy. Endocr Metab Immune Disord Drug Targets 2023; 23:581-595. [PMID: 36263482 DOI: 10.2174/1871530323666221018090024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various nutraceuticals from different sources have various beneficial actions and have been reported for many years. The important findings from the research conducted using various nutraceuticals exhibiting significant physiological and pharmacological activities have been summarized. METHODS An extensive investigation of literature was done using several worldwide electronic scientific databases like PUBMED, SCOPUS, Science Direct, Google Scholar, etc. The entire manuscript is available in the English language that is used for our various compounds of interest. These databases were thoroughly reviewed and summarized. RESULTS Nutraceuticals obtained from various sources play a vital role in the management of peripheral neuropathy associated with diabetes. Treatment with nutraceuticals has been beneficial as an alternative in preventing the progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DPN. CONCLUSION Nutraceuticals obtained from different sources like a plant, an animal, and marine have been properly utilized for the safety of health. In our opinion, this review could be of great interest to clinicians, as it offers a complementary perspective on the management of DPN. Trials with a well-defined patient and symptom selection have shown robust pharmacological design as pivotal points to let these promising compounds become better accepted by the medical community.
Collapse
Affiliation(s)
- Sakshi Bajaj
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| |
Collapse
|
23
|
Liraglutide Attenuates Glucolipotoxicity-Induced RSC96 Schwann Cells’ Inflammation and Dysfunction. Biomolecules 2022; 12:biom12101338. [PMID: 36291547 PMCID: PMC9599544 DOI: 10.3390/biom12101338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic neuropathy (DN) is a type of sensory nerve damage that can occur in patients with diabetes. Although the understanding of pathophysiology is incomplete, DN is often associated with structural and functional alterations of the affected neurons. Among all possible causes of nerve damage, Schwann cells (SCs) are thought to play a key role in repairing peripheral nerve injury, suggesting that functional deficits occurring in SCs may potentially exhibit their pathogenic roles in DN. Therefore, elucidating the mechanisms that underlie this pathology can be used to develop novel therapeutic targets. In this regard, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have recently attracted great attention in ameliorating SCs’ dysfunction. However, the detailed mechanisms remain uncertain. In the present study, we investigated how GLP-1 RA Liraglutide protects against RSC96 SCs dysfunction through a diabetic condition mimicked by high glucose and high free fatty acid (FFA). Our results showed that high glucose and high FFAs reduced the viability of RSC96 SCs by up to 51%, whereas Liraglutide reduced oxidative stress by upregulating antioxidant enzymes, and thus protected cells from apoptosis. Liraglutide also inhibited NFκB-mediated inflammation, inducing SCs to switch from pro-inflammatory cytokine production to anti-inflammatory cytokine production. Moreover, Liraglutide upregulated the production of neurotrophic factors and myelination-related proteins, and these protective effects appear to be synergistically linked to insulin signaling. Taken together, our findings demonstrate that Liraglutide ameliorates diabetes-related SC dysfunction through the above-mentioned mechanisms, and suggest that modulating GLP-1 signaling in SCs may be a promising strategy against DN.
Collapse
|
24
|
Neuritin Promotes Bone Marrow-Derived Mesenchymal Stem Cell Migration to Treat Diabetic Peripheral Neuropathy. Mol Neurobiol 2022; 59:6666-6683. [DOI: 10.1007/s12035-022-03002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
25
|
Sango K, Takaku S, Tsukamoto M, Niimi N, Yako H. Glucagon-Like Peptide-1 Receptor Agonists as Potential Myelination-Inducible and Anti-Demyelinating Remedies. Front Cell Dev Biol 2022; 10:950623. [PMID: 35874814 PMCID: PMC9298969 DOI: 10.3389/fcell.2022.950623] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) were developed as insulinotropic and anti-hyperglycemic agents for the treatment of type 2 diabetes, but their neurotrophic and neuroprotective activities have been receiving increasing attention. Myelin plays a key role in the functional maintenance of the central and peripheral nervous systems, and recent in vivo and in vitro studies have shed light on the beneficial effects of GLP-1RAs on the formation and protection of myelin. In this article, we describe the potential efficacy of GLP-1RAs for the induction of axonal regeneration and remyelination following nerve lesions and the prevention and alleviation of demyelinating disorders, particularly multiple sclerosis.
Collapse
Affiliation(s)
- Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Shizuka Takaku
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Masami Tsukamoto
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Naoko Niimi
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Hideji Yako
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
26
|
Smith S, Normahani P, Lane T, Hohenschurz-Schmidt D, Oliver N, Davies AH. Pathogenesis of Distal Symmetrical Polyneuropathy in Diabetes. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071074. [PMID: 35888162 PMCID: PMC9319251 DOI: 10.3390/life12071074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Distal symmetrical polyneuropathy (DSPN) is a serious complication of diabetes associated with significant disability and mortality. Although more than 50% of people with diabetes develop DSPN, its pathogenesis is still relatively unknown. This lack of understanding has limited the development of novel disease-modifying therapies and left the reasons for failed therapies uncertain, which is critical given that current management strategies often fail to achieve long-term efficacy. In this article, the pathogenesis of DSPN is reviewed, covering pathogenic changes in the peripheral nervous system, microvasculature and central nervous system (CNS). Furthermore, the successes and limitations of current therapies are discussed, and potential therapeutic targets are proposed. Recent findings on its pathogenesis have called the definition of DSPN into question and transformed the disease model, paving the way for new research prospects.
Collapse
Affiliation(s)
- Sasha Smith
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Pasha Normahani
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Tristan Lane
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Department of Vascular Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - David Hohenschurz-Schmidt
- Pain Research Group, Department of Surgery and Cancer, Imperial College London, London SW10 9NH, UK;
| | - Nick Oliver
- Section of Metabolic Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1PG, UK;
- Division of Medicine and Integrated Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Alun Huw Davies
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London W6 8RF, UK
- Correspondence:
| |
Collapse
|
27
|
Bäckryd E, Themistocleous A, Larsson A, Gordh T, Rice AS, Tesfaye S, Bennett DL, Gerdle B. Hepatocyte growth factor, colony-stimulating factor 1, CD40, and 11 other inflammation-related proteins are associated with pain in diabetic neuropathy: exploration and replication serum data from the Pain in Neuropathy Study. Pain 2022; 163:897-909. [PMID: 34433766 PMCID: PMC9009322 DOI: 10.1097/j.pain.0000000000002451] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022]
Abstract
ABSTRACT One in 5 patients with diabetes suffers from chronic pain with neuropathic characteristics, but the pathophysiological mechanisms underlying the development of neuropathic pain in patients with diabetic distal symmetrical polyneuropathy (DSP) are poorly understood. Systemic low-grade inflammation has been implicated, but there is still a considerable knowledge gap concerning its scope and meaning in this context. The aim of the study was to establish the broad inflammatory signature of painful diabetic DSP in serum samples from the Pain in Neuropathy Study, an observational cross-sectional multicentre study in which participants underwent deep phenotyping. In the present two cohorts exploration-replication study (180 participants in each cohort), serum samples from Pain in Neuropathy Study participants were analyzed with the Olink INFLAMMATION panel (Olink Bioscience, Uppsala, Sweden) that enables the simultaneous measurement of 92 inflammation-related proteins (mainly cytokines, chemokines, and growth factors). In both the exploration and the replication cohort, we identified a high-inflammation subgroup where 14 inflammation-related proteins in particular were associated with more neuropathy and higher pain intensity. The top 3 proteins were hepatocyte growth factor, colony-stimulating factor 1, and CD40 in both cohorts. In the exploratory cohort, additional clinical data were available, showing an association of inflammation with insomnia and self-reported psychological distress. Hence, this cross-sectional exploration-replication study seems to confirm that low-grade systemic inflammation is related to the severity of neuropathy and neuropathic pain in a subgroup of patients with diabetic DSP. The pathophysiological relevance of these proteins for the development of neuropathic pain in patients with diabetic DSP must be explored in more depth in future studies.
Collapse
Affiliation(s)
- Emmanuel Bäckryd
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Andreas Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingom
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew S.C. Rice
- Pain Research, Departmennt Surgery and Cancer, Faculty of Medicine, Imperial College London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingom
| | - Björn Gerdle
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Spatial Distribution and Long-Term Alterations of Peripheral Nerve Lesions in Schwannomatosis. Diagnostics (Basel) 2022; 12:diagnostics12040780. [PMID: 35453828 PMCID: PMC9029522 DOI: 10.3390/diagnostics12040780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose To examine the spatial distribution and long-term alterations of peripheral nerve lesions in patients with schwannomatosis by in vivo high-resolution magnetic resonance neurography (MRN). Methods In this prospective study, the lumbosacral plexus as well as the right sciatic, tibial, and peroneal nerves were examined in 15 patients diagnosed with schwannomatosis by a standardized MRN protocol at 3 Tesla. Micro-, intermediate- and macrolesions were assessed according to their number, diameter and spatial distribution. Moreover, in nine patients, peripheral nerve lesions were compared to follow-up examinations after 39 to 71 months. Results In comparison to intermediate and macrolesions, microlesions were the predominant lesion entity at the level of the proximal (p < 0.001), mid- (p < 0.001), and distal thigh (p < 0.01). Compared to the proximal calf level, the lesion number was increased at the proximal (p < 0.05), mid- (p < 0.01), and distal thigh level (p < 0.01), while between the different thigh levels, no differences in lesion numbers were found. In the follow-up examinations, the lesion number was unchanged for micro-, intermediate and macrolesions. The diameter of lesions in the follow-up examination was decreased for microlesions (p < 0.01), not different for intermediate lesions, and increased for macrolesions (p < 0.01). Conclusion Microlesions represent the predominant type of peripheral nerve lesion in schwannomatosis and show a rather consistent distribution pattern in long-term follow-up. In contrast to the accumulation of nerve lesions, primarily in the distal nerve segments in NF2, the lesion numbers in schwannomatosis peak at the mid-thigh level. Towards more distal portions, the lesion number markedly decreases, which is considered as a general feature of other types of small fiber neuropathy.
Collapse
|
29
|
Wang Q, Chen FY, Ling ZM, Su WF, Zhao YY, Chen G, Wei ZY. The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front Cell Neurosci 2022; 16:836931. [PMID: 35350167 PMCID: PMC8957843 DOI: 10.3389/fncel.2022.836931] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral neuropathy is a common neurological issue that leads to sensory and motor disorders. Over time, the treatment for peripheral neuropathy has primarily focused on medications for specific symptoms and surgical techniques. Despite the different advantages of these treatments, functional recovery remains less than ideal. Schwann cells, as the primary glial cells in the peripheral nervous system, play crucial roles in physiological and pathological conditions by maintaining nerve structure and functions and secreting various signaling molecules and neurotrophic factors to support both axonal growth and myelination. In addition, stem cells, including mesenchymal stromal cells, skin precursor cells and neural stem cells, have the potential to differentiate into Schwann-like cells to perform similar functions as Schwann cells. Therefore, accumulating evidence indicates that Schwann cell transplantation plays a crucial role in the resolution of peripheral neuropathy. In this review, we summarize the literature regarding the use of Schwann cell/Schwann cell-like cell transplantation for different peripheral neuropathies and the potential role of promoting nerve repair and functional recovery. Finally, we discuss the limitations and challenges of Schwann cell/Schwann cell-like cell transplantation in future clinical applications. Together, these studies provide insights into the effect of Schwann cells/Schwann cell-like cells on cell therapy and uncover prospective therapeutic strategies for peripheral neuropathy.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang-Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Gang Chen,
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Zhong-Ya Wei,
| |
Collapse
|
30
|
Pessa JE. Ventricular Infusion and Nanoprobes Identify Cerebrospinal Fluid and Glymphatic Circulation in Human Nerves. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2022; 10:e4126. [PMID: 35198353 PMCID: PMC8856590 DOI: 10.1097/gox.0000000000004126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
Growing evidence suggests that cerebrospinal fluid circulates in human nerves. Several conditions encountered by the plastic surgeon may be related to dysregulation of this system, including nerve transection, stretch injuries, and peripheral neuropathy. The purpose of this study was to show how ventricular infusion and nanoprobes identify CSF and glymphatic circulation in neural sheaths of human nerves. METHODS The technique of ventricular infusion using buffered saline was developed in 2017. The technique was used in a series of eight fresh cadavers before dissection of the median nerve, and combined with fluorescent imaging and nanoprobe injections in selected specimens. RESULTS Eight cadaver specimens underwent ventricular infusion. There were six female and two male specimens, ages 46-97 (mean 76.6). Ventricular cannulation was performed successfully using coordinates 2 cm anterior to coronal suture and 2.5 cm lateral to sagittal suture. Depth of cannulation ranged from 44 to 56 mm (mean 49.7). Ventricular saline infusion complemented by nanoprobe injection suggests CSF flows in neural sheaths, including pia meninges, epineurial channels, perineurium, and myelin sheaths (neurolemma). CONCLUSIONS Ventricular infusion and nanoprobes identify CSF flow in neural sheaths of human nerves. CSF flow in nerves is an open circulatory system that occurs via channels, intracellular flow, and cell-to-cell transport associated with glial cells. Neural sheaths, including neurolemma, may participate in glucose and solute transport to axons. These techniques may be used in anatomic dissection and live animal models, and have been extended to the central nervous system to identify direct ventricle-to-pia meninges CSF pathways.
Collapse
|
31
|
Yorek M. Treatment for Diabetic Peripheral Neuropathy: What have we Learned from Animal Models? Curr Diabetes Rev 2022; 18:e040521193121. [PMID: 33949936 PMCID: PMC8965779 DOI: 10.2174/1573399817666210504101609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Animal models have been widely used to investigate the etiology and potential treatments for diabetic peripheral neuropathy. What we have learned from these studies and the extent to which this information has been adapted for the human condition will be the subject of this review article. METHODS A comprehensive search of the PubMed database was performed, and relevant articles on the topic were included in this review. RESULTS Extensive study of diabetic animal models has shown that the etiology of diabetic peripheral neuropathy is complex, with multiple mechanisms affecting neurons, Schwann cells, and the microvasculature, which contribute to the phenotypic nature of this most common complication of diabetes. Moreover, animal studies have demonstrated that the mechanisms related to peripheral neuropathy occurring in type 1 and type 2 diabetes are likely different, with hyperglycemia being the primary factor for neuropathology in type 1 diabetes, which contributes to a lesser extent in type 2 diabetes, whereas insulin resistance, hyperlipidemia, and other factors may have a greater role. Two of the earliest mechanisms described from animal studies as a cause for diabetic peripheral neuropathy were the activation of the aldose reductase pathway and increased non-enzymatic glycation. However, continuing research has identified numerous other potential factors that may contribute to diabetic peripheral neuropathy, including oxidative and inflammatory stress, dysregulation of protein kinase C and hexosamine pathways, and decreased neurotrophic support. In addition, recent studies have demonstrated that peripheral neuropathy-like symptoms are present in animal models, representing pre-diabetes in the absence of hyperglycemia. CONCLUSION This complexity complicates the successful treatment of diabetic peripheral neuropathy, and results in the poor outcome of translating successful treatments from animal studies to human clinical trials.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242 USA
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, 52246 USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|
32
|
Shi M, Zhang X, Zhang R, Zhang H, Zhu D, Han X. Glycyrrhizic acid promotes sciatic nerves recovery in type 1 diabetic rats and protects Schwann cells from high glucose-induced cytotoxicity. J Biomed Res 2022; 36:181-194. [PMID: 35578754 PMCID: PMC9179113 DOI: 10.7555/jbr.36.20210198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Min Shi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Xiangcheng Zhang
- Department of Intensive Care Unit, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Ridong Zhang
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Hong Zhang
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
- Hong Zhang, Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, 6 West Beijing Road, Huai'an, Jiangsu 223300, China. Tel: +86-517-80872128, E-mail:
| | - Dalong Zhu
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
- Dalong Zhu, Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China. Tel: +86-25-83304616, E-mail:
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Xiao Han, Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869426, E-mail:
| |
Collapse
|
33
|
Jia L, Liao M, Mou A, Zheng Q, Yang W, Yu Z, Cui Y, Xia X, Qin Y, Chen M, Xiao B. Rheb-regulated mitochondrial pyruvate metabolism of Schwann cells linked to axon stability. Dev Cell 2021; 56:2980-2994.e6. [PMID: 34619097 DOI: 10.1016/j.devcel.2021.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/12/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
The metabolic coupling of Schwann cells (SCs) and peripheral axons is poorly understood. Few molecules in SCs are known to regulate axon stability. Using SC-specific Rheb knockout mice, we demonstrate that Rheb-regulated mitochondrial pyruvate metabolism is critical for SC-mediated non-cell-autonomous regulation of peripheral axon stability. Rheb knockout suppresses pyruvate dehydrogenase (PDH) activity (independently of mTORC1) and shifts pyruvate metabolism toward lactate production in SCs. The increased lactate causes age-dependent peripheral axon degeneration, affecting peripheral nerve function. Lactate, as an energy substrate and a potential signaling molecule, enhanced neuronal mitochondrial metabolism and energy production of peripheral nerves. Albeit beneficial to injured peripheral axons in the short term, we show that persistently increased lactate metabolism of neurons enhances ROS production, eventually damaging mitochondria, neuroenergetics, and axon stability. This study highlights the complex roles of lactate metabolism to peripheral axons and the importance of lactate homeostasis in preserving peripheral nerves.
Collapse
Affiliation(s)
- Lanlan Jia
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Maoxing Liao
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Aidi Mou
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Quanzhen Zheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Wanchun Yang
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zongyan Yu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Yiyuan Cui
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoqiang Xia
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Yue Qin
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Mina Chen
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China.
| |
Collapse
|
34
|
Kan HW, Chang CH, Chang YS, Ko YT, Hsieh YL. Genetic loss-of-function of activating transcription factor 3 but not C-type lectin member 5A prevents diabetic peripheral neuropathy. J Transl Med 2021; 101:1341-1352. [PMID: 34172832 PMCID: PMC8440213 DOI: 10.1038/s41374-021-00630-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
We investigated the mediating roles of activating transcription factor 3 (ATF3), an injury marker, or C-type lectin member 5A (CLEC5A), an inflammatory response molecule, in the induction of endoplasmic reticulum (ER) stress and neuroinflammation in diabetic peripheral neuropathy in ATF3 and CLEC5A genetic knockout (aft3-/- and clec5a-/-, respectively) mice. ATF3 was expressed intranuclearly and was upregulated in mice with diabetic peripheral neuropathy (DN) and clec5a-/- mice. The DN and clec5a-/- groups also exhibited neuropathic behavior, but not in the aft3-/- group. The upregulation profiles of cytoplasmic polyadenylation element-binding protein, a protein translation-regulating molecule, and the ER stress-related molecules of inositol-requiring enzyme 1α and phosphorylated eukaryotic initiation factor 2α in the DN and clec5a-/- groups were correlated with neuropathic behavior. Ultrastructural evidence confirmed ER stress induction and neuroinflammation, including microglial enlargement and proinflammatory cytokine release, in the DN and clec5a-/- mice. By contrast, the induction of ER stress and neuroinflammation did not occur in the aft3-/- mice. Furthermore, the mRNA of reactive oxygen species-removing enzymes such as superoxide dismutase, heme oxygenase-1, and catalase were downregulated in the DN and clec5a-/- groups but were not changed in the aft3-/- group. Taken together, the results indicate that intraneuronal ATF3, but not CLEC5A, mediates the induction of ER stress and neuroinflammation associated with diabetic neuropathy.
Collapse
Affiliation(s)
- Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ting Ko
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
35
|
Lee CY, Kwon YI, Jang HS, Lee S, Chun YL, Jung J, Kim S. Organocatalytic Enantioselective [4+3]‐Cycloadditions of Azaoxyallyl Cations with 2‐Aminophenyl Enones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chang Yoon Lee
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| | - Yong Il Kwon
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| | - Hyun Sun Jang
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| | - Sumin Lee
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University 26, Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Yoo Lim Chun
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University 26, Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University 26, Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Sung‐Gon Kim
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| |
Collapse
|
36
|
Fundamental changes in endogenous bone marrow mesenchymal stromal cells during Type I Diabetes is a pre-neuropathy event. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166187. [PMID: 34102256 DOI: 10.1016/j.bbadis.2021.166187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Deficiency of angiogenic and neurotrophic factors under long term diabetes is known to lead to Schwann cell degeneration, clinically manifested as Diabetic Neuropathy (DN). While the transplantation of exogenous allogenic Mesenchymal Stromal Cells (MSCs) has shown amelioration of DN through paracrine action, it is not known what functional changes occur in endogenous bone-marrow MSCs under chronic diabetes in terms of homing, migration and/or paracrine signalling with reference to the end-point clinical manifestation of Diabetic Neuropathy. We thus aimed at determining the changes in BM-MSCs under Type 1 Diabetes with respect to survival, self-renewal, oxidative status, paracrine activity, intracellular Ca2+ response and migration in response to pathological cytokine/chemokine, in reference to the time-point of decline in Nerve Conduction Velocity (NCV) in a rat model. Within one week of diabetes induction, BM-MSCs underwent apoptosis, and compromised their self-renewal capacity, antioxidant defence mechanism and migration toward cytokine/chemokine; whereas epineurial blood vessel thickening and demyelination resulting in NCV decline were observed only after three weeks. By two- and three-weeks post diabetes induction, BM-MSC apoptosis reduced and proliferative ability was restored; however, their self-renewal, migration and intracellular Ca2+ response toward pathological cytokine/chemokine remained impaired. These results indicate that T1D induced intrinsic functional impairments in endogenous BM-MSCs occur before neuropathy onset. This timeline of functional alterations in BM-MSCs also suggest that treatment strategies that target the bone marrow niche early on may help to modulate BM-MSC functional impairments and thus slow down the progression of neuropathy.
Collapse
|
37
|
Saiki T, Nakamura N, Miyabe M, Ito M, Minato T, Sango K, Matsubara T, Naruse K. The Effects of Insulin on Immortalized Rat Schwann Cells, IFRS1. Int J Mol Sci 2021; 22:ijms22115505. [PMID: 34071138 PMCID: PMC8197103 DOI: 10.3390/ijms22115505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/02/2023] Open
Abstract
Schwann cells play an important role in peripheral nerve function, and their dysfunction has been implicated in the pathogenesis of diabetic neuropathy and other demyelinating diseases. The physiological functions of insulin in Schwann cells remain unclear and therefore define the aim of this study. By using immortalized adult Fischer rat Schwann cells (IFRS1), we investigated the mechanism of the stimulating effects of insulin on the cell proliferation and expression of myelin proteins (myelin protein zero (MPZ) and myelin basic protein (MBP). The application of insulin to IFRS1 cells increased the proliferative activity and induced phosphorylation of Akt and ERK, but not P38-MAPK. The proliferative potential of insulin-stimulated IFRS1 was significantly suppressed by the addition of LY294002, a PI3 kinase inhibitor. The insulin-stimulated increase in MPZ expression was significantly suppressed by the addition of PD98059, a MEK inhibitor. Furthermore, insulin-increased MBP expression was significantly suppressed by the addition of LY294002. These findings suggest that both PI3-K/Akt and ERK/MEK pathways are involved in insulin-induced cell growth and upregulation of MPZ and MBP in IFRS1 Schwann cells.
Collapse
Affiliation(s)
- Tomokazu Saiki
- Department of Pharmacy, Aichi Gakuin University Dental Hospital, Nagoya 464-8651, Japan;
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; (M.M.); (M.I.); (T.M.); (K.N.)
- Correspondence: ; Tel.: +81-52-759-2111; Fax: +81-52-759-2168
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; (M.M.); (M.I.); (T.M.); (K.N.)
| | - Mizuho Ito
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; (M.M.); (M.I.); (T.M.); (K.N.)
| | - Tomomi Minato
- Department of Clinical Laboratory, Aichi Gakuin University Dental Hospital, Nagoya 464-8651, Japan;
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Tatsuaki Matsubara
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; (M.M.); (M.I.); (T.M.); (K.N.)
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; (M.M.); (M.I.); (T.M.); (K.N.)
| |
Collapse
|
38
|
Genetic and Epigenomic Modifiers of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms22094887. [PMID: 34063061 PMCID: PMC8124699 DOI: 10.3390/ijms22094887] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic neuropathy (DN), the most common chronic and progressive complication of diabetes mellitus (DM), strongly affects patients’ quality of life. DN could be present as peripheral, autonomous or, clinically also relevant, uremic neuropathy. The etiopathogenesis of DN is multifactorial, and genetic components play a role both in its occurrence and clinical course. A number of gene polymorphisms in candidate genes have been assessed as susceptibility factors for DN, and most of them are linked to mechanisms such as reactive oxygen species production, neurovascular impairments and modified protein glycosylation, as well as immunomodulation and inflammation. Different epigenomic mechanisms such as DNA methylation, histone modifications and non-coding RNA action have been studied in DN, which also underline the importance of “metabolic memory” in DN appearance and progression. In this review, we summarize most of the relevant data in the field of genetics and epigenomics of DN, hoping they will become significant for diagnosis, therapy and prevention of DN.
Collapse
|
39
|
Liu BY, Li L, Bai LW, Xu CS. Long Non-coding RNA XIST Attenuates Diabetic Peripheral Neuropathy by Inducing Autophagy Through MicroRNA-30d-5p/ sirtuin1 Axis. Front Mol Biosci 2021; 8:655157. [PMID: 33996907 PMCID: PMC8113765 DOI: 10.3389/fmolb.2021.655157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent diabetes mellitus (Feldman et al., 2017) complication and the primary reason for amputation. Meanwhile, long non-coding RNAs (lncRNAs) are a type of regulatory non-coding RNAs (ncRNAs) that broadly participate in DPN development. However, the correlation of lncRNA X-inactive specific transcript (XIST) with DPN remains unclear. In this study, we were interested in the role of XIST in the modulation of DPN progression. Significantly, our data showed that the expression of XIST and sirtuin1 (SIRT1) was inhibited, and the expression of microRNA-30d-5p (miR-30d-5p) was enhanced in the trigeminal sensory neurons of the diabetic mice compared with the normal mice. The levels of LC3II and Beclin-1 were inhibited in the diabetic mice. The treatment of high glucose (HG) reduced the XIST expression in Schwann cells. The apoptosis of Schwann cells was enhanced in the HG-treated cells, but the overexpression of XIST could block the effect in the cells. Moreover, the levels of LC3II and Beclin-1 were reduced in the HG-treated Schwann cells, while the overexpression of XIST was able to reverse this effect. The HG treatment promoted the production of oxidative stress, while the XIST overexpression could attenuate this result in the Schwann cells. Mechanically, XIST was able to sponge miR-30d-5p and miR-30d-5p-targeted SIRT1 in the Schwann cells. MiR-30d-5p inhibited autophagy and promoted oxidative stress in the HG-treated Schwann cells, and SIRT1 presented a reversed effect. MiR-30d-5p mimic or SIRT1 depletion could reverse XIST overexpression-mediated apoptosis and autophagy of the Schwann cells. Thus, we concluded that XIST attenuated DPN by inducing autophagy through miR-30d-5p/SIRT1 axis. XIST and miR-30d-5p may be applied as the potential targets for DPN therapy.
Collapse
Affiliation(s)
- Bei-Yan Liu
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Lin Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Li-Wei Bai
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chang-Shui Xu
- Department of Neurology, Henan Province People's Hospital, Zhengzhou, China
| |
Collapse
|
40
|
Schwann-like cell conditioned medium promotes angiogenesis and nerve regeneration. Cell Tissue Bank 2021; 23:101-118. [PMID: 33837877 DOI: 10.1007/s10561-021-09920-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/27/2021] [Indexed: 12/29/2022]
Abstract
Vascular network reconstruction plays a pivotal role in the axonal regeneration and nerve function recovery after peripheral nerve injury. Increasing evidence indicates that Schwann cells (SCs) can promote nerve function repair, and the beneficial effects attributed to SCs therapy may exert their therapeutic effects through paracrine mechanisms. Recently, the previous research of our group demonstrated the promising neuroregenerative capacity of Schwann-like cells (SCLCs) derived from differentiated human embryonic stem cell-derived neural stem cells (hESC-NSCs) in vitro. Herein, the effects of SC-like cell conditioned medium (SCLC-CM) on angiogenesis and nerve regeneration were further explored. The assays were performed to show the pro-angiogenic effects of SCLC-CM, such as promoted endothelial cell proliferation, migration and tube formation in vitro. In addition, Sprague-Dawley rats were treated with SCLC-CM after sciatic nerve crush injury, SCLC-CM was conducive for the recovery of sciatic nerve function, which was mainly manifested in the SFI increase, the wet weight ratio of gastrocnemius muscle, as well as the number and thickness of myelin. The SCLC-CM treatment reduced the Evans blue leakage and increased the expression of CD34 microvessels. Furthermore, SCLC-CM upregulated the expressions of p-Akt and p-mTOR in endothelial cells. In conclusion, SCLC-CM promotes angiogenesis and nerve regeneration, it is expected to become a new treatment strategy for peripheral nerve injury.
Collapse
|
41
|
Al-Griw MA, Alghazeer RO, Awayn N, Shamlan G, Eskandrani AA, Alnajeebi AM, Babteen NA, Alansari WS. Selective adenosine A 2A receptor inhibitor SCH58261 reduces oligodendrocyte loss upon brain injury in young rats. Saudi J Biol Sci 2021; 28:310-316. [PMID: 33424311 PMCID: PMC7783643 DOI: 10.1016/j.sjbs.2020.09.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 11/21/2022] Open
Abstract
Cellular elements of maturing brain are vulnerable to insults, which lead to neurodevelopmental defects. There are no established treatments at present. Here we examined the efficacy of selective adenosine A2A receptor inhibitor SCH58261 to combat brain injury, particularly oligodendrocyte (OL) lineage cells, in young rats. Wistar rats (n = 24, 6.5 days old) were randomly divided into equal groups of four. The sham (SHAM) group received no treatment, the vehicle (VEHICLE) group received 0.1% dimethylsufoxide, the injury (INJ) group was exposed to oxygen-glucose deprivation insult, and the injury+SCH58261 (INJ+SCH58261) group was exposed to the insult and received 1 μM SCH58261. Immunocytochemical experiments revealed that there was a significant reduction in the populations of mature OL (MBP+ OLs) and immature OL precursors (NG2+ OPCs) in the INJ group compared to SHAM group. Furthermore, there was also a significant increase in the percent of apoptotic MBP+ OL and NG2+ OPC populations as evidenced by TUNEL assay. In addition, there was a significant reduction in the proliferation rate among NG2+ OPCs, which was confirmed by BrdU immunostaining. On the other hand, treatment with SCH58261 significantly enhanced survival, evidenced by the reduction in apoptotic indices for both cell types, and it is preserved the NG2+ OPC proliferation. Activation of adenosine A2A receptors may contribute to OL lineage cell loss in association with decreased mitotic behavior of OPCs in neonatal brains upon injury. Future investigations assessing ability of SCH58261 to regenerate myelin will provide insights into its wider clinical relevance.
Collapse
Affiliation(s)
- Mohamed A. Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli 13203, Libya
| | - Rabia O. Alghazeer
- Department of Chemistry, Faculty of Sciences, University of Tripoli, Tripoli 50676, Libya
| | - Nuri Awayn
- Department of Chemistry, Faculty of Sciences, University of Tripoli, Tripoli 50676, Libya
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Afnan M. Alnajeebi
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Nouf A. Babteen
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| |
Collapse
|
42
|
Cheng YC, Chu LW, Chen JY, Hsieh SL, Chang YC, Dai ZK, Wu BN. Loganin Attenuates High Glucose-Induced Schwann Cells Pyroptosis by Inhibiting ROS Generation and NLRP3 Inflammasome Activation. Cells 2020; 9:cells9091948. [PMID: 32842536 PMCID: PMC7564733 DOI: 10.3390/cells9091948] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is caused by hyperglycemia, which induces oxidative stress and inflammatory responses that damage nerve tissue. Excessive generation of reactive oxygen species (ROS) and NOD-like receptor protein 3 (NLRP3) inflammasome activation trigger the inflammation and pyroptosis in diabetes. Schwann cell dysfunction further promotes DPN progression. Loganin has been shown to have antioxidant and anti-inflammatory neuroprotective activities. This study evaluated the neuroprotective effect of loganin on high-glucose (25 mM)-induced rat Schwann cell line RSC96 injury, a recognized in vitro cell model of DPN. RSC96 cells were pretreated with loganin (0.1, 1, 10, 25, 50 μM) before exposure to high glucose. Loganin’s effects were examined by CCK-8 assay, ROS assay, cell death assay, immunofluorescence staining, quantitative RT–PCR and western blot. High-glucose-treated RSC96 cells sustained cell viability loss, ROS generation, NF-κB nuclear translocation, P2 × 7 purinergic receptor and TXNIP (thioredoxin-interacting protein) expression, NLRP3 inflammasome (NLRP3, ASC, caspase-1) activation, IL-1β and IL-18 maturation and gasdermin D cleavage. Those effects were reduced by loganin pretreatment. In conclusion, we found that loganin’s antioxidant effects prevent RSC96 Schwann cell pyroptosis by inhibiting ROS generation and suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yu-Chi Cheng
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.C.); (Y.-C.C.)
| | - Li-Wen Chu
- Department of Nursing, and Department of Cosmetic Application and Management, Yuh-Ing Junior College of Health Care and Management, Kaohsiung 80776, Taiwan;
| | - Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung 92847, Taiwan;
- School of Nursing, Fooyin University, Kaohsiung 83102, Taiwan
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Yu-Chin Chang
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.C.); (Y.-C.C.)
| | - Zen-Kong Dai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Pediatrics, Division of Pediatric Cardiology and Pulmonology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (Z.-K.D.); (B.-N.W.); Tel.: +886-7-3121101-6507 (Z.-K.D.); +886-7-3121101-2139 (B.-N.W.); Fax: +886-7-3208316 (Z.-K.D.); +886-7-3234686 (B.-N.W.)
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.C.); (Y.-C.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (Z.-K.D.); (B.-N.W.); Tel.: +886-7-3121101-6507 (Z.-K.D.); +886-7-3121101-2139 (B.-N.W.); Fax: +886-7-3208316 (Z.-K.D.); +886-7-3234686 (B.-N.W.)
| |
Collapse
|
43
|
Oltipraz Prevents High Glucose-Induced Oxidative Stress and Apoptosis in RSC96 Cells through the Nrf2/NQO1 Signalling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5939815. [PMID: 32685505 PMCID: PMC7333049 DOI: 10.1155/2020/5939815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/06/2020] [Indexed: 12/17/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). Schwann cell (SC) apoptosis contributes to the occurrence and development of DPN. Effective drugs to prevent SC apoptosis are required to relieve and reverse peripheral nerve injury caused by DM. Oltipraz [4-methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione], an agonist of nuclear factor erythroid derived-2-related factor 2 (Nrf2), exerts strong effect against oxidative stress in animal models or clinical patients in certain diseases, including heart failure, acute kidney injury, and liver injury. The aim of the present study was to determine the effectiveness of oltipraz in preventing SC apoptosis induced by high glucose levels. RSC96 cells pretreated with oltipraz were cultured in high-glucose medium (50 mM glucose) for 24 h, and cells cultured in medium containing 5 mM glucose were used as the control. Flow cytometry was used to evaluate the degree of apoptosis. A Cell Counting Kit-8 assay was used to assess cell viability. The mitochondrial membrane potential was assessed using JC-1 staining, and reactive oxygen species (ROS) generation was measured using 20,70-dichlorodihydrofluorescein diacetate staining. In addition, the levels of malondialdehyde (MDA) and superoxide dismutase (SOD) levels were also evaluated using the corresponding kits. Flow cytometry was subsequently used to detect apoptosis, and western blotting was used to measure the expression levels of nuclear factor erythroid derived-2-related factor 2 and NADPH quinone oxidoreductase 1. The results showed that high glucose concentration increased oxidative stress and apoptosis in RSC96 cells. Oltipraz improved cell viability and reduced apoptosis of RSC96 cells in the high glucose environment. Additionally, oltipraz exhibited a significant antioxidative effect, as shown by the decrease in MDA levels, increased SOD levels, and reduced ROS generation in RSC96 cells. The results of the present study suggest that oltipraz exhibits potential as an effective drug for treatment with DPN.
Collapse
|
44
|
Farschtschi SC, Mainka T, Glatzel M, Hannekum AL, Hauck M, Gelderblom M, Hagel C, Friedrich RE, Schuhmann MU, Schulz A, Morrison H, Kehrer-Sawatzki H, Luhmann J, Gerloff C, Bendszus M, Bäumer P, Mautner VF. C-Fiber Loss as a Possible Cause of Neuropathic Pain in Schwannomatosis. Int J Mol Sci 2020; 21:ijms21103569. [PMID: 32443592 PMCID: PMC7278954 DOI: 10.3390/ijms21103569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 01/22/2023] Open
Abstract
Schwannomatosis is the third form of neurofibromatosis and characterized by the occurrence of multiple schwannomas. The most prominent symptom is chronic pain. We aimed to test whether pain in schwannomatosis might be caused by small-fiber neuropathy. Twenty patients with schwannomatosis underwent neurological examination and nerve conduction studies. Levels of pain perception as well as anxiety and depression were assessed by established questionnaires. Quantitative sensory testing (QST) and laser-evoked potentials (LEP) were performed on patients and controls. Whole-body magnetic resonance imaging (wbMRI) and magnetic resonance neurography (MRN) were performed to quantify tumors and fascicular nerve lesions; skin biopsies were performed to determine intra-epidermal nerve fiber density (IENFD). All patients suffered from chronic pain without further neurological deficits. The questionnaires indicated neuropathic symptoms with significant impact on quality of life. Peripheral nerve tumors were detected in all patients by wbMRI. MRN showed additional multiple fascicular nerve lesions in 16/18 patients. LEP showed significant faster latencies compared to normal controls. Finally, IENFD was significantly reduced in 13/14 patients. Our study therefore indicates the presence of small-fiber neuropathy, predominantly of unmyelinated C-fibers. Fascicular nerve lesions are characteristic disease features that are associated with faster LEP latencies and decreased IENFD. Together these methods may facilitate differential diagnosis of schwannomatosis.
Collapse
Affiliation(s)
- Said C. Farschtschi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
- Correspondence: ; Tel.: +49(0)407410-53869
| | - Tina Mainka
- Department of Neurology, Charité University Medicine, 10117 Berlin, Germany;
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Markus Glatzel
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.G.); (C.H.)
| | - Anna-Lena Hannekum
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
| | - Michael Hauck
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
- Department of Neurophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
| | - Christian Hagel
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.G.); (C.H.)
| | - Reinhard E. Friedrich
- Department of Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Martin U. Schuhmann
- Department of Neurosurgery, University Medical Center Tübingen, 72076 Tübingen, Germany;
| | - Alexander Schulz
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany; (A.S.); (H.M.)
- MVZ Human Genetics, 99084 Erfurt, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany; (A.S.); (H.M.)
| | | | - Jan Luhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
| | - Martin Bendszus
- Department of Neuroradiology, University Medical Center Heidelberg, 69120 Heidelberg, Germany; (M.B.); (P.B.)
| | - Philipp Bäumer
- Department of Neuroradiology, University Medical Center Heidelberg, 69120 Heidelberg, Germany; (M.B.); (P.B.)
- Department of Radiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
| |
Collapse
|