1
|
Wang J, Wang M, Yi S, Tang H. Functions of Langerhans cells in diisononyl phthalate-aggravated allergic contact dermatitis. Int Immunopharmacol 2024; 143:113493. [PMID: 39486183 DOI: 10.1016/j.intimp.2024.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Diisononyl phthalate (DINP), a widely-used plasticizer, is associated with the development of allergic diseases including allergic contact dermatitis (ACD). Langerhans cells (LCs) are reported to be involved in the sensitization phase of ACD. However, the effect of skin DINP exposure on ACD in C57BL/6 mice and the functions of LCs remain unclear. Our results showed that DINP aggravated ACD in C57BL/6 mice, which was paralleled by ear thickening, mast cell degranulation, expressions of immunological cytokines, including IL-4, IL-5, IL-13, IL-17, IL-6, IL-1β, transforming growth factor (TGF)-β1 in the ear, serum and submaxillary lymph nodes (SMLN) and thymic stromal lymphopoietin (TSLP) in the ear. DINP activated LCs through enhancing antigen-uptake by LCs in ear epidermis and stimulated the migratory DC via elevating the expression of surface molecules, including CD86, CD80, PD-L1 and PD-L2 in SMLN. Ablation of LCs promoted the enhancement effect of DINP on ACD and Th2/Th17 responses, suggesting that LCs may not be essential for DINP-related ACD and Th2/Th17 responses. In conclusion, DINP aggravates ACD through activating LCs, enhancing mDC function and mast cell degranulation, promoting Th2/Th17 responses, and stimulating the expression of immunological cytokines. DINP is responsible for the prevalence of ACD and inhibiting Th2/Th17 cell response may be a new therapeutic strategy.
Collapse
Affiliation(s)
- Jia Wang
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital & Co-research Group for Institute of Infection and Immunity, Shandong First Medical University and Institute of Orthopedic Biomedical and Device Innovation, University of Shanghai for Science and Technology, Jinan, Shandong 250014, China; Institute of Orthopedic Biomedical and Device Innovation, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Meixiang Wang
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital & Co-research Group for Institute of Infection and Immunity, Shandong First Medical University and Institute of Orthopedic Biomedical and Device Innovation, University of Shanghai for Science and Technology, Jinan, Shandong 250014, China
| | - Shuying Yi
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital & Co-research Group for Institute of Infection and Immunity, Shandong First Medical University and Institute of Orthopedic Biomedical and Device Innovation, University of Shanghai for Science and Technology, Jinan, Shandong 250014, China.
| | - Hua Tang
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital & Co-research Group for Institute of Infection and Immunity, Shandong First Medical University and Institute of Orthopedic Biomedical and Device Innovation, University of Shanghai for Science and Technology, Jinan, Shandong 250014, China; Institute of Infection and Immunity, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000 Shandong, China.
| |
Collapse
|
2
|
Pressley KR, Schwegman L, De Oca Arena MM, Huizar CC, Zamvil SS, Forsthuber TG. HLA-transgenic mouse models to study autoimmune central nervous system diseases. Autoimmunity 2024; 57:2387414. [PMID: 39167553 PMCID: PMC11470778 DOI: 10.1080/08916934.2024.2387414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Lance Schwegman
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Scott S. Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Shen J, Zeng X, Lv H, Jin Y, Liu Y, Lian W, Huang S, Zang Q, Zhang Q, Xu J. Low Immunogenicity of Keratinocytes Derived from Human Embryonic Stem Cells. Cells 2024; 13:1447. [PMID: 39273019 PMCID: PMC11393835 DOI: 10.3390/cells13171447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Epidermal transplantation is a common and widely used surgical technique in clinical medicine. Derivatives of embryonic stem cells have the potential to serve as a source of transplantable cells. However, allograft rejection is one of the main challenges. To investigate the immunogenicity of keratinocytes derived from human embryonic stem cells (ESKCs), we conducted a series of in vivo and in vitro experiments. The results showed that ESKCs have low HLA molecule expression, limited antigen presentation capabilities, and a weak ability to stimulate the proliferation and secretion of inflammatory factors in allogeneic PBMCs in vitro. In humanized immune mouse models, ESKCs elicited weak transplant rejection responses in the host. Overall, we found that ESKCs have low immunogenicity and may have potential applications in the field of regenerative medicine.
Collapse
Affiliation(s)
- Jiayi Shen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
- The Shanghai Institute of Dermatology, Shanghai 200443, China
| | - Xuanhao Zeng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
- The Shanghai Institute of Dermatology, Shanghai 200443, China
| | - Haozhen Lv
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yiting Jin
- Department of Thyroid and Breast Surgery, General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yating Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
- The Shanghai Institute of Dermatology, Shanghai 200443, China
| | - Weiling Lian
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
- The Shanghai Institute of Dermatology, Shanghai 200443, China
| | - Shiyi Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
- The Shanghai Institute of Dermatology, Shanghai 200443, China
| | - Qing Zang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
- The Shanghai Institute of Dermatology, Shanghai 200443, China
| | - Qi Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
- The Shanghai Institute of Dermatology, Shanghai 200443, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
- The Shanghai Institute of Dermatology, Shanghai 200443, China
| |
Collapse
|
4
|
Li X, Zhu Y, Yi J, Deng Y, Lei B, Ren H. Adoptive cell immunotherapy for breast cancer: harnessing the power of immune cells. J Leukoc Biol 2024; 115:866-881. [PMID: 37949484 DOI: 10.1093/jleuko/qiad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Breast cancer is the most prevalent malignant neoplasm worldwide, necessitating the development of novel therapeutic strategies owing to the limitations posed by conventional treatment modalities. Immunotherapy is an innovative approach that has demonstrated significant efficacy in modulating a patient's innate immune system to combat tumor cells. In the era of precision medicine, adoptive immunotherapy for breast cancer has garnered widespread attention as an emerging treatment strategy, primarily encompassing cellular therapies such as tumor-infiltrating lymphocyte therapy, chimeric antigen receptor T/natural killer/M cell therapy, T cell receptor gene-engineered T cell therapy, lymphokine-activated killer cell therapy, cytokine-induced killer cell therapy, natural killer cell therapy, and γδ T cell therapy, among others. This treatment paradigm is based on the principles of immune memory and antigen specificity, involving the collection, processing, and expansion of the patient's immune cells, followed by their reintroduction into the patient's body to activate the immune system and prevent tumor recurrence and metastasis. Currently, multiple clinical trials are assessing the feasibility, effectiveness, and safety of adoptive immunotherapy in breast cancer. However, this therapeutic approach faces challenges associated with tumor heterogeneity, immune evasion, and treatment safety. This review comprehensively summarizes the latest advancements in adoptive immunotherapy for breast cancer and discusses future research directions and prospects, offering valuable guidance and insights into breast cancer immunotherapy.
Collapse
Affiliation(s)
- Xue Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Yunan Zhu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Jinfeng Yi
- Department of Pathology, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Yuhan Deng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - He Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| |
Collapse
|
5
|
Wu C, Cai X, He C. The Expression and Prognostic Value of Co-stimulatory Molecules in Clear Cell Renal Cell Carcinoma (CcRcc). Comb Chem High Throughput Screen 2024; 27:335-345. [PMID: 37171001 DOI: 10.2174/1386207326666230511153724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC) was one of the most common malignant cancers in the urinary system. Clear cell carcinoma (ccRCC) is the most common pathological type, accounting for approximately 80% of RCC. The lack of accurate and effective prognosis prediction methods has been a weak link in ccRCC treatment. Co-stimulatory molecules played the main role in increasing anti-tumor immune response, which determined the prognosis of patients. Therefore, the main objective of the present study was to explore the prognostic value of co-stimulatory molecules genes in ccRCC patients. METHODS The TCGA database was used to get gene expression and clinical characteristics of patients with ccRCC. A total of 60 co-stimulatory molecule genes were also obtained from TCGAccRCC, including 13 genes of the B7/ CD28 co-stimulatory molecules family and 47 genes of the TNF family. In the TCGA cohort, the least absolute shrinkage and selection operator (LASSO) Cox regression model was used to generate a multigene signature. R and Perl programming languages were used for data processing and drawing. Real-time PCR was used to verify the expression of differentially expressed genes. RESULTS The study's initial dataset included 539 ccRCC samples and 72 normal samples. The 13 samples have been eliminated. According to FDR<0.05, there were differences in the expression of 55 co-stimulatory molecule genes in ccRCC and normal tissues. LASSO Cox regression analysis results indicated that 13 risk genes were optimally used to construct a prognostic model of ccRCC. The patients were divided into a high-risk group and a low-risk group. Those in the high-risk group had significantly lower OS (Overall Survival rate) than patients in the low-risk group. Receiver operating characteristic (ROC) curve analysis confirmed the predictive value of the prognosis model of ccRCC (AUC>0.7). There are substantial differences in immune cell infiltration between high and low-risk groups. Functional analysis revealed that immune-related pathways were enriched, and immune status was different between the two risk groups. Real-time PCR results for genes were consistent with TCGA DEGs. CONCLUSION By stratifying patients with all independent risk factors, the prognostic score model developed in this study may improve the accuracy of prognosis prediction for patients with ccRCC.
Collapse
Affiliation(s)
- Chengjiang Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojie Cai
- Department of Radiology, Affiliated Changshu Hospital of Soochow University, First People's Hospital of Changshu City, Suzhou, China
| | - Chunyan He
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine Kunshan, Jiangsu, China
| |
Collapse
|
6
|
Qian C, Pan C, Liu J, Wu L, Pan J, Liu C, Zhang H. Differential expression of immune checkpoints (OX40/OX40L and PD-1/PD-L1) in decidua of unexplained recurrent spontaneous abortion women. Hum Immunol 2024; 85:110745. [PMID: 38142184 DOI: 10.1016/j.humimm.2023.110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
In this study, we aimed to investigate the expression of OX40, OX40L, PD-1 and PD-L1 in patients with unexplained recurrent spontaneous abortion (URSA) compared to normal pregnancies (NP). A total of 50 patients who were diagnosed with URSA and 41 NP were recruited to this study. Real-time polymerase chain reaction (RT-PCR) was used to determine the expression of OX40, OX40L, PD-1 and PD-L1 in decidual tissues; Immunohistochemistry (IHC) was conducted to characterize the distribution of the involved genes in decidual tissues; Double immunofluorescence staining was used to prove the localization of the involved genes in decidual tissues. The concentrations of OX40L and PD-L1 in plasma were measured with enzyme-linked immunosorbent assay (ELISA). The expression of OX40L in the decidua of URSA patients was significantly increased compared to that in the NP group, while the expression of PD-L1 in the URSA group was decreased compared to that in the NP group. Both proteins are localized in the decidual stroma as analyzed by double immunofluorescence staining. The staining results were confirmed at the mRNA level of decidual tissues, while the mRNA level of peripheral blood showed no significant difference. In conclusion, the results suggest that decidual stromal cells may promote the interaction with OX40 on T cells by upregulating the expression of OX40L and reduce the interaction with PD-1 on T cells by downregulating the expression of PD-L1 in URSA patients, which may interfere with the immune tolerance of the maternal-fetal interface, leading to poor pregnancy outcomes.
Collapse
Affiliation(s)
- Chenyue Qian
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China; Department of Pharmacy, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, China
| | - Chenhuan Pan
- Department of Obstetrics and Gynecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijuan Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Xu Y, Ahmed I, Zhao Z, Lv L. A comprehensive review on glycation and its potential application to reduce food allergenicity. Crit Rev Food Sci Nutr 2023; 64:12184-12206. [PMID: 37683268 DOI: 10.1080/10408398.2023.2248510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Food allergens are a major concern for individuals who are susceptible to food allergies and may experience various health issues due to allergens in their food. Most allergenic foods are subjected to heat treatment before being consumed. However, thermal processing and prolonged storage can cause glycation reactions to occur in food. The glycation reaction is a common processing method requiring no special chemicals or equipment. It may affect the allergenicity of proteins by altering the structure of the epitope, revealing hidden epitopes, concealing linear epitopes, or creating new ones. Changes in food allergenicity following glycation processing depend on several factors, including the allergen's characteristics, processing parameters, and matrix, and are therefore hard to predict. This review examines how glycation reactions affect the allergenicity of different allergen groups in allergenic foods.
Collapse
Affiliation(s)
- Yue Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Qingdao, China
| | - Zhengxi Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
8
|
Wu C, Yu Q, Shou W, Zhang K, Li Y, Guo W, Bao Q. Co-stimulatory molecule clusters correlate with survival, immune infiltration, and tumor mutation burden in non-small cell lung cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2085814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chunxiao Wu
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Qiquan Yu
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Weizhen Shou
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Kun Zhang
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Yang Li
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Wentao Guo
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Qi Bao
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
Huang Y, Wang T, Yang J, Wu X, Fan W, Chen J. Current Strategies for the Treatment of Hepatocellular Carcinoma by Modulating the Tumor Microenvironment via Nano-Delivery Systems: A Review. Int J Nanomedicine 2022; 17:2335-2352. [PMID: 35619893 PMCID: PMC9128750 DOI: 10.2147/ijn.s363456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer remains a global health challenge with a projected incidence of over one million cases by 2025. Hepatocellular carcinoma (HCC) is a common primary liver cancer, accounting for about 90% of all liver cancer cases. The tumor microenvironment (TME) is the internal and external environment for tumor development, which plays an important role in tumorigenesis, immune escape and treatment resistance. Knowing that TME is a unique setting for HCC tumorigenesis, exploration of strategies to modulate TME has attracted increasing attention. Among them, the use of nano-delivery systems to deliver therapeutic agents to regulate TME components has shown great potential. TME-modulating nanoparticles have the advantages of protecting therapeutic agents from degradation, enhancing the ability of targeting HCC and reducing systemic toxicity. In this article, we summarize the TME components associated with HCC, including cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), endothelial cells and immune cells, discuss their impact on the HCC progression, and highlight recent studies on nano-delivery systems that modulate these components. Finally, we also discuss opportunities and challenges in this field.
Collapse
Affiliation(s)
- Yongjie Huang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Tiansi Wang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Jiefen Yang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China.,Shanghai Wei Er Lab, Shanghai, People's Republic of China
| | - Wei Fan
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| |
Collapse
|
10
|
Wang L, Liang Y. MicroRNAs as T Lymphocyte Regulators in Multiple Sclerosis. Front Mol Neurosci 2022; 15:865529. [PMID: 35548667 PMCID: PMC9082748 DOI: 10.3389/fnmol.2022.865529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/30/2022] [Indexed: 01/22/2023] Open
Abstract
MicroRNA (miRNA) is a class of endogenous non-coding small RNA with regulatory activities, which generally regulates the expression of target genes at the post-transcriptional level. Multiple Sclerosis (MS) is thought to be an autoimmune-mediated chronic inflammatory demyelinating disease of the central nervous system (CNS) that typically affect young adults. T lymphocytes play an important role in the pathogenesis of MS, and studies have suggested that miRNAs are involved in regulating the proliferation, differentiation, and functional maintenance of T lymphocytes in MS. Dysregulated expression of miRNAs may lead to the differentiation balance and dysfunction of T lymphocytes, and they are thus involved in the occurrence and development of MS. In addition, some specific miRNAs, such as miR-155 and miR-326, may have potential diagnostic values for MS or be useful for discriminating subtypes of MS. Moreover, miRNAs may be a promising therapeutic strategy for MS by regulating T lymphocyte function. By summarizing the recent literature, we reviewed the involvement of T lymphocytes in the pathogenesis of MS, the role of miRNAs in the pathogenesis and disease progression of MS by regulating T lymphocytes, the possibility of differentially expressed miRNAs to function as biomarkers for MS diagnosis, and the therapeutic potential of miRNAs in MS by regulating T lymphocytes.
Collapse
|
11
|
miR-155: An Important Role in Inflammation Response. J Immunol Res 2022; 2022:7437281. [PMID: 35434143 PMCID: PMC9007653 DOI: 10.1155/2022/7437281] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, mature, noncoding RNA that lead to posttranscriptional gene silencing to regulate gene expression. miRNAs are instrumental in biological processes such as cell development, cell differentiation, cell proliferation, and cell apoptosis. The miRNA-mediated gene silencing is an important part of the regulation of gene expression in many kinds of diseases. miR-155, one of the best-characterized miRNAs, has been found to be closely related to physiological and pathological processes. What is more, miR-155 can be used as a potential therapeutic target for inflammatory diseases. We analyze the articles about miR-155 for nearly five years, review the advanced study on the function of miR-155 in different inflammatory cells like T cells, B cells, DCs, and macrophages, and then summarize the biological functions of miR-155 in different inflammatory cells. The widespread involvement of miR-155 in human diseases has led to a novel therapeutic approach between Chinese and Western medicine.
Collapse
|
12
|
Jia H, Guo J, Liu Z, Chen P, Li Y, Li R, Yang Y, Li X, Wei P, Zhong J, Ren F, Wang M, Ren J, Feng Z, Zhao T. High expression of CD28 enhanced the anti-cancer effect of siRNA-PD-1 through prompting the immune response of melanoma-bearing mice. Int Immunopharmacol 2022; 105:108572. [DOI: 10.1016/j.intimp.2022.108572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/28/2022]
|
13
|
Junjun S, Yangyanqiu W, Jing Z, Jie P, Jian C, Yuefen P, Shuwen H. Prognostic model based on six PD-1 expression and immune infiltration-associated genes predicts survival in breast cancer. Breast Cancer 2022; 29:666-676. [PMID: 35233733 PMCID: PMC9226094 DOI: 10.1007/s12282-022-01344-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/13/2022] [Indexed: 11/23/2022]
Abstract
Background The prognosis of breast cancer (BC) was associated with the expression of programmed cell death-1 (PD-1). Methods BC-related expression and clinical data were downloaded from TCGA database. PD-1 expression with overall survival and clinical factors were investigated. Gene set variation analysis (GSVA) and weighted gene correlation network analysis were performed to investigate the PD-1 expression-associated KEGG pathways and genes, respectively. Immune infiltration was analyzed using the ssGSEA algorithm and DAVID, respectively. Univariate and multivariable Cox and LASSO regression analyses were performed to select prognostic genes for modeling. Results High PD-1 expression was related to prolonged survival time (P = 0.014). PD-1 expression status showed correlations with age, race, and pathological subtype. ER- and PR-negative patients exhibited high PD-1 expression. The GSVA revealed that high PD-1 expression was associated with various immune-associated pathways, such as T cell/B cell receptor signaling pathway or natural killer cell-mediated cytotoxicity. The patients in the high-immune infiltration group exhibited significantly higher PD-1 expression levels. In summary, 397 genes associated with both immune infiltration and PD-1 expression were screened. Univariate analysis and LASSO regression model identified the six most valuable prognostic genes, namely IRC3, GBP2, IGJ, KLHDC7B, KLRB1, and RAC2. The prognostic model could predict survival for BC patients. Conclusion High PD-1 expression was associated with high-immune infiltration in BC patients. Genes closely associated with PD-1, immune infiltration and survival prognosis were screened to predict prognosis. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-022-01344-2.
Collapse
Affiliation(s)
- Shen Junjun
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China
| | - Wang Yangyanqiu
- Graduate School of Medical College of Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, Zhejiang, China
| | - Zhuang Jing
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China
| | - Pu Jie
- Graduate School of Nursing, Huzhou University, No. 1 Bachelor Road, Huzhou, 313000, Zhejiang, China
| | - Chu Jian
- Graduate School of Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Pan Yuefen
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China.
| | - Han Shuwen
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, China.
| |
Collapse
|
14
|
Ahmed I, Chen H, Li J, Wang B, Li Z, Huang G. Enzymatic crosslinking and food allergenicity: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:5856-5879. [PMID: 34653307 DOI: 10.1111/1541-4337.12855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Food allergy has become a major global public health concern. In the past decades, enzymatic crosslinking technique has been employed to mitigate the immunoreactivity of food allergens. It is an emerging non-thermal technique that can serve as a great alternative to conventional food processing approaches in developing hypoallergenic food products, owing to their benefits of high specificity and selectivity. Enzymatic crosslinking via tyrosinase (TYR), laccase (LAC), peroxidase (PO), and transglutaminase (TG) modifies the structural and biochemical properties of food allergens that subsequently cause denaturation and masking of the antigenic epitopes. LAC, TYR, and PO catalyze the oxidation of tyrosine side chains to initiate protein crosslinking, while TG initiates isopeptide bonding between lysine and glutamine residues. Enzymatic treatment produces a high molecular weight crosslinked polymer with reduced immunoreactivity and IgE-binding potential. Crosslinked allergens further inhibit mast cell degranulation due to the lower immunostimulatory potential that assists in the equilibration of T-helper (Th)1/Th2 immunobalance. This review provides an updated overview of the studies carried out in the last decade on the potential application of enzymatic crosslinking for mitigating food allergenicity that can be of importance in the context of developing hypoallergenic/non-allergenic food products.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Huan Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Jiale Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| |
Collapse
|
15
|
Lei D, Liu L, Xie S, Ji H, Guo Y, Ma T, Han C. Dexmedetomidine Directs T Helper Cells toward Th1 Cell Differentiation via the STAT1-T-Bet Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3725316. [PMID: 34414234 PMCID: PMC8370820 DOI: 10.1155/2021/3725316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Dexmedetomidine is an α2 adrenergic receptor agonist that has been reported to modulate the polarization of CD4+ T cells. However, the underlying mechanisms by which dexmedetomidine induces T-helper 1 (Th1) cell differentiation remain poorly understood. The aim of this study was to explore the potential mechanisms through which dexmedetomidine can induce Th1 cell differentiation. Purified CD4+ T cells were stimulated with anti-CD3/anti-CD28 and then treated with dexmedetomidine. Flow cytometry analysis was adopted to measure the concentration of Th1 cells. Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (qPCR) were performed to detect protein levels and mRNA expression, respectively, of IFN-γ and IL-4. Western blotting was used to determine the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and T-bet expression. The Th1 cell subset and IFN-γ levels were elevated in the dexmedetomidine-induced CD4+ T cells. Dexmedetomidine enhanced the phosphorylation of STAT1 and the expression of T-bet in the CD4+ T cells. Atipamezole (an α2 adrenergic antagonist) and fludarabine (a STAT1 inhibitor) reversed the dexmedetomidine-induced Th1 cell differentiation. These results suggested that dexmedetomidine induced Th1 cell differentiation via the STAT1-T-bet signaling pathway.
Collapse
Affiliation(s)
- Daoyun Lei
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Songhui Xie
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Haiyan Ji
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Yanxing Guo
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Tieliang Ma
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
- Yixing Clinical College, Medical College of Yangzhou University, Yixing, Jiangsu, China
| | - Chao Han
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
- Yixing Clinical College, Medical College of Yangzhou University, Yixing, Jiangsu, China
| |
Collapse
|
16
|
Matsumoto H, Fujita Y, Matsuoka N, Temmoku J, Yashiro-Furuya M, Asano T, Sato S, Watanabe H, Suzuki E, Tsuji S, Fukui S, Umeda M, Iwamoto N, Kawakami A, Migita K. Serum checkpoint molecules in patients with IgG4-related disease (IgG4-RD). Arthritis Res Ther 2021; 23:148. [PMID: 34030721 PMCID: PMC8142499 DOI: 10.1186/s13075-021-02527-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Background Immunoglobulin G4-related disease (IgG4-RD) is characterized by increased serum IgG4 concentration and infiltration of IgG4+ plasma cells in the affected organs. The present study aimed to characterize the serum levels of coinhibitory checkpoint molecule, T cell immunoglobulin and mucin-containing-molecule-3 (TIM-3), and its ligand, galectin-9 (Gal-9), among IgG4-related disease in patients with IgG4-RD patients with various organ involvements. Methods Serum samples were collected from untreated 59 patients with IgG4-RD, 13 patients with rheumatoid arthritis, and 37 healthy controls (HCs). HCs lacked chronic medical diseases or conditions and did not take prescription medications or over-the-counter medications within 7 days. Patients with IgG4-RD (n = 57) were subdivided into those with visceral involvement (n = 38) and those without visceral involvement (n = 21). Serum levels of Gal-9 and soluble TIM-3 (sTIM-3) were determined using enzyme-linked immunosorbent assay (ELISA). The results were compared with the clinical phenotypes of IgG4-RD. Results In untreated patients with IgG4-RD, serum levels of Gal-9 and sTIM-3 were significantly higher than in RA patients as well as in healthy controls. There were significant correlations between the serum levels of Gal-9 or sTIM-3 and serum levels of IgG, BAFF, or sIL-2R. However, there was no significant correlation between the serum levels of Gal-9 or sTIM-3 and serum IgG4 concentrations. Serum levels of sTIM-3 were significantly higher in a subset of patients with visceral involvements than in those without visceral involvements. However, there was no significant difference in the serum levels of Gal-9 between IgG4-RD patients with and without visceral involvements, although both Gal-9 and sTIM-3 were elevated in untreated IgG4-RD patients, and the levels of these checkpoint molecules remained unchanged after steroid therapy. Conclusion Serum levels of Gal-9 and sTIM-3 were significantly elevated in untreated patients with IgG4-RD. Furthermore, serum levels of sTIM-3 were significantly higher in IgG4-RD patients with visceral involvements. These checkpoint molecules could be a potentially useful biomarker for IgG4-RD and for assessing the clinical phenotypes of IgG4-RD.
Collapse
Affiliation(s)
- Haruki Matsumoto
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.
| | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Makiko Yashiro-Furuya
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Eiji Suzuki
- Department of Rheumatology, Ohta Nishinouchi General Hospital Foundation, 2-5-20 Nishinouchi, Koriyama, Fukushima, 963-8558, Japan
| | - Sosuke Tsuji
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto1-7-1, Nagasaki, 852-8501, Japan
| | - Shoichi Fukui
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto1-7-1, Nagasaki, 852-8501, Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto1-7-1, Nagasaki, 852-8501, Japan
| | - Naoki Iwamoto
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto1-7-1, Nagasaki, 852-8501, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto1-7-1, Nagasaki, 852-8501, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| |
Collapse
|
17
|
Oner F, Alvarez C, Yaghmoor W, Stephens D, Hasturk H, Firatli E, Kantarci A. Resolvin E1 Regulates Th17 Function and T Cell Activation. Front Immunol 2021; 12:637983. [PMID: 33815391 PMCID: PMC8009993 DOI: 10.3389/fimmu.2021.637983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Resolvin E1 (RvE1) is a specialized pro-resolving lipid mediator derived from eicosapentaenoic acid and plays a critical role in resolving inflammation and tissue homeostasis. Th17 cells are a distinct group of T helper (Th) cells with tissue-destructive functions in autoimmune and chronic inflammatory diseases via the secretion of IL-17. Dendritic cell (DC)-mediated antigen presentation regulates the Th17-induced progression of inflammation and tissue destruction. In this study, we hypothesized that the RvE1 would restore homeostatic balance and inflammation by targeting the Th17 function. We designed three experiments to investigate the impact of RvE1 on different phases of Th17 response and the potential role of DCs: First CD4+ T cells were induced by IL-6/TGFβ to measure the effect of RvE1 on Th17 differentiation in an inflammatory milieu. Second, we measured the impact of RvE1 on DC-stimulated Th17 differentiation in a co-culture model. Third, we measured the effect of RvE1 on DC maturation. RvE1 blocked the CD25, CCR6 and IL-17 expression; IL-17, IL-21, IL-10, and IL-2 production, suggesting inhibition of T cell activation, Th17 stimulation and chemoattraction. RvE1 also suppressed the activation of DCs by limiting their pro-inflammatory cytokine production. Our findings collectively demonstrated that the RvE1 targeted the Th17 activation and the DC function as a potential mechanism for inflammatory resolution and acquired immune response.
Collapse
Affiliation(s)
- Fatma Oner
- The Forsyth Institute, Cambridge, MA, United States.,Department of Periodontology, School of Dentistry, Istanbul University, Istanbul, Turkey
| | - Carla Alvarez
- The Forsyth Institute, Cambridge, MA, United States.,Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Wael Yaghmoor
- The Forsyth Institute, Cambridge, MA, United States.,Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | | | - Erhan Firatli
- Department of Periodontology, School of Dentistry, Istanbul University, Istanbul, Turkey
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, MA, United States.,School of Dental Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
18
|
Panetti C, Kao KC, Joller N. Dampening antiviral immunity can protect the host. FEBS J 2021; 289:634-646. [PMID: 33570771 PMCID: PMC9292735 DOI: 10.1111/febs.15756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Viral infections are very common, and in most cases, the virus is well controlled and eliminated by the immune system. Nevertheless, in some cases, damage of the host tissue inflicted by the virus itself or by the elicited immune response may result in severe disease courses. Thus, regulatory mechanisms are necessary to control virus‐induced and immune pathology. This ensures immune responses are elicited in a potent but controlled manner. In this review, we will outline how immune regulation may contribute to this process. We focus on regulatory T cells and co‐inhibitory receptors and outline how these two regulatory immune components allow for and may even promote potent but not pathologic immune responses. By enabling a balanced immune response, regulatory mechanisms can thus contribute to pathogen control as well as tissue and host protection.
Collapse
Affiliation(s)
- Camilla Panetti
- Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Kung-Chi Kao
- Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, Switzerland
| |
Collapse
|
19
|
Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4 + T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020; 22:E73. [PMID: 33374787 PMCID: PMC7796221 DOI: 10.3390/ijms22010073] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.
Collapse
Affiliation(s)
- Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| |
Collapse
|