1
|
Lin Y, Jones ML. CRISPR/Cas9-Mediated Editing of Autophagy Gene 6 in Petunia Decreases Flower Longevity, Seed Yield, and Phosphorus Remobilization by Accelerating Ethylene Production and Senescence-Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:840218. [PMID: 35557714 PMCID: PMC9088004 DOI: 10.3389/fpls.2022.840218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Developmental petal senescence is a type of programmed cell death (PCD), during which the production of ethylene is induced, the expression of PCD-related genes is upregulated, and nutrients are recycled. Autophagy is an intracellular mechanism involved in PCD modulation and nutrient cycling. As a central component of the autophagy pathway, Autophagy Gene 6 (ATG6) was previously shown as a negative regulator of petal senescence. To better understand the role of autophagy in ethylene biosynthesis and nutrient remobilization during petal senescence, we generated and characterized the knockout (KO) mutants of PhATG6 using CRISPR/Cas9 in Petunia × hybrida 'Mitchell Diploid.' PhATG6-KO lines exhibited decreased flower longevity when compared to the flowers of the wild-type or a non-mutated regenerative line (controls), confirming the negative regulatory role of ATG6 in petal senescence. Smaller capsules and fewer seeds per capsule were produced in the KO plants, indicating the crucial function of autophagy in seed production. Ethylene production and ethylene biosynthesis genes were upregulated earlier in the KO lines than the controls, indicating that autophagy affects flower longevity through ethylene. The transcript levels of petal PCD-related genes, including PhATG6, PhATG8d, PhPI3K (Phosphatidylinositol 3-Kinase), and a metacaspase gene PhMC1, were upregulated earlier in the corollas of PhATG6-KO lines, which supported the accelerated PCD in the KO plants. The remobilization of phosphorus was reduced in the KO lines, showing that nutrient recycling was compromised. Our study demonstrated the important role of autophagy in flower lifespan and seed production and supported the interactions between autophagy and various regulatory factors during developmental petal senescence.
Collapse
|
2
|
Du Y, Luo S, Zhao J, Feng Z, Chen X, Ren W, Liu X, Wang Z, Yu L, Li W, Qu Y, Liu J, Zhou L. Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus. BMC PLANT BIOLOGY 2021; 21:510. [PMID: 34732128 PMCID: PMC8564971 DOI: 10.1186/s12870-021-03283-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Flower longevity is closely related to pollen dispersal and reproductive success in all plants, as well as the commercial value of ornamental plants. Mutants that display variation in flower longevity are useful tools for understanding the mechanisms underlying this trait. Heavy-ion beam irradiation has great potential to improve flower shapes and colors; however, few studies are available on the mutation of flower senescence in leguminous plants. RESULTS A mutant (C416) exhibiting blossom duration eight times longer than that of the wild type (WT) was isolated in Lotus japonicus derived from carbon ion beam irradiation. Genetic assays supported that the delayed flower senescence of C416 was a dominant trait controlled by a single gene, which was located between 4,616,611 Mb and 5,331,876 Mb on chromosome III. By using a sorting strategy of multi-sample parallel genome sequencing, candidate genes were narrowed to the gene CUFF.40834, which exhibited high identity to ethylene receptor 1 in other model plants. A physiological assay demonstrated that C416 was insensitive to ethylene precursor. Furthermore, the dynamic changes of phytohormone regulatory network in petals at different developmental stages was compared by using RNA-seq. In brief, the ethylene, jasmonic acid (JA), and salicylic acid (SA) signaling pathways were negatively regulated in C416, whereas the brassinosteroid (BR) and cytokinin signaling pathways were positively regulated, and auxin exhibited dual effects on flower senescence in Lotus japonicus. The abscisic acid (ABA) signaling pathway is positively regulated in C416. CONCLUSION So far, C416 might be the first reported mutant carrying a mutation in an endogenous ethylene-related gene in Lotus japonicus, rather than through the introduction of exogenous genes by transgenic techniques. A schematic of the flower senescence of Lotus japonicus from the perspective of the phytohormone regulatory network was provided based on transcriptome profiling of petals at different developmental stages. This study is informative for elucidating the molecular mechanism of delayed flower senescence in C416, and lays a foundation for candidate flower senescence gene identification in Lotus japonicus. It also provides another perspective for the improvement of flower longevity in legume plants by heavy-ion beam.
Collapse
Affiliation(s)
- Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Shanwei Luo
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jian Zhao
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730000, People's Republic of China
| | - Zhuo Feng
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xia Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Weibin Ren
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xiao Liu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Zhuanzi Wang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Lixia Yu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Wenjian Li
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Ying Qu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, People's Republic of China
| | - Jie Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China.
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, People's Republic of China.
| |
Collapse
|
3
|
Lu J, Xu Y, Fan Y, Wang Y, Zhang G, Liang Y, Jiang C, Hong B, Gao J, Ma C. Proteome and Ubiquitome Changes during Rose Petal Senescence. Int J Mol Sci 2019; 20:E6108. [PMID: 31817087 PMCID: PMC6940906 DOI: 10.3390/ijms20246108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022] Open
Abstract
Petal senescence involves numerous programmed changes in biological and biochemical processes. Ubiquitination plays a critical role in protein degradation, a hallmark of organ senescence. Therefore, we investigated changes in the proteome and ubiquitome of senescing rose (Rosa hybrida) petals to better understand their involvement in petal senescence. Of 3859 proteins quantified in senescing petals, 1198 were upregulated, and 726 were downregulated during senescence. We identified 2208 ubiquitinated sites, including 384 with increased ubiquitination in 298 proteins and 1035 with decreased ubiquitination in 674 proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that proteins related to peptidases in proteolysis and autophagy pathways were enriched in the proteome, suggesting that protein degradation and autophagy play important roles in petal senescence. In addition, many transporter proteins accumulated in senescing petals, and several transport processes were enriched in the ubiquitome, indicating that transport of substances is associated with petal senescence and regulated by ubiquitination. Moreover, several components of the brassinosteroid (BR) biosynthesis and signaling pathways were significantly altered at the protein and ubiquitination levels, implying that BR plays an important role in petal senescence. Our data provide a comprehensive view of rose petal senescence at the posttranslational level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (Y.X.); (Y.F.); (Y.W.); (G.Z.); (Y.L.); (C.J.); (B.H.); (J.G.)
| |
Collapse
|
4
|
Identification of Wheat Inflorescence Development-Related Genes Using a Comparative Transcriptomics Approach. Int J Genomics 2018; 2018:6897032. [PMID: 29581960 PMCID: PMC5822904 DOI: 10.1155/2018/6897032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/26/2017] [Accepted: 12/03/2017] [Indexed: 12/14/2022] Open
Abstract
Inflorescence represents the highly specialized plant tissue producing the grains. Although key genes regulating flower initiation and development are conserved, the mechanism regulating fertility is still not well explained. To identify genes and gene network underlying inflorescence morphology and fertility of bread wheat, expressed sequence tags (ESTs) from different tissues were analyzed using a comparative transcriptomics approach. Based on statistical comparison of EST frequencies of individual genes in EST pools representing different tissues and verification with RT-PCR and RNA-seq data, 170 genes of 59 gene sets predominantly expressed in the inflorescence were obtained. Nearly one-third of the gene sets displayed differentiated expression profiles in terms of their subgenome orthologs. The identified genes, most of which were predominantly expressed in anthers, encode proteins involved in wheat floral identity determination, anther and pollen development, pollen-pistil interaction, and others. Particularly, 25 annotated gene sets are associated with pollen wall formation, of which 18 encode enzymes or proteins participating in lipid metabolic pathway, including fatty acid ω-hydroxylation, alkane and fatty alcohol biosynthesis, and glycerophospholipid metabolism. We showed that the comparative transcriptomics approach was effective in identifying genes for reproductive development and found that lipid metabolism was particularly active in wheat anthers.
Collapse
|
5
|
Wojciechowska N, Sobieszczuk-Nowicka E, Bagniewska-Zadworna A. Plant organ senescence - regulation by manifold pathways. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:167-181. [PMID: 29178615 DOI: 10.1111/plb.12672] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/21/2017] [Indexed: 05/20/2023]
Abstract
Senescence is the final stage of plant ontogeny before death. Senescence may occur naturally because of age or may be induced by various endogenous and exogenous factors. Despite its destructive character, senescence is a precisely controlled process that follows a well-defined order. It is often inseparable from programmed cell death (PCD), and a correlation between these processes has been confirmed during the senescence of leaves and petals. Despite suggestions that senescence and PCD are two separate processes, with PCD occurring after senescence, cell death responsible for senescence is accompanied by numerous changes at the cytological, physiological and molecular levels, similar to other types of PCD. Independent of the plant organ analysed, these changes are focused on initiating the processes of cellular structural degradation via fluctuations in phytohormone levels and the activation of specific genes. Cellular structural degradation is genetically programmed and dependent on autophagy. Phytohormones/plant regulators are heavily involved in regulating the senescence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins and carbohydrates have been assigned a dual role in the regulation of senescence, and can both inhibit and stimulate the senescence process. In this review, we introduce the basic pathways that regulate senescence in plants and identify mechanisms involved in controlling senescence in ephemeral plant organs. Moreover, we demonstrate a universal nature of this process in different plant organs; despite this process occurring in organs that have completely different functions, it is very similar. Progress in this area is providing opportunities to revisit how, when and which way senescence is coordinated or decoupled by plant regulators in different organs and will provide a powerful tool for plant physiology research.
Collapse
Affiliation(s)
- N Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - E Sobieszczuk-Nowicka
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - A Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Rao P, Chen Z, Yang X, Gao K, Yang X, Zhao T, Li S, Wu B, An X. Dynamic transcriptomic analysis of the early response of female flowers of Populus alba × P. glandulosa to pollination. Sci Rep 2017; 7:6048. [PMID: 28729698 PMCID: PMC5519698 DOI: 10.1038/s41598-017-06255-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/09/2017] [Indexed: 11/08/2022] Open
Abstract
Pollination is an important event in plant sexual reproduction, and post-pollination response is an essential process for reproduction. Populus alba × P. glandulosa is used widely in scientific research, especially in cross breeding as parents. Adult female P. alba × P. glandulosa flowers are highly compatible with pollen from male P. tomentosa, but the early post-pollination response of flowers at the molecular levels is unclear. In this study, RNA-seq was employed to comprehensively understand the response of female P. alba × P. glandulosa flowers to pollination. Enrichment analysis reveals that the 'plant hormone signal transduction' pathway is enhanced during pollen-pistil interaction. Moreover, genes related to auxin, gibberellin and ethylene biosynthesis were significantly up-regulated. Ca2+ and H+-related genes and cell wall-related genes are interrelated, and all of them are essential for pollen tube elongation in pistil, especially, free Ca2+ providing a concentration gradient for pollen tube guidance and involved in signal transduction. Furthermore, RNA-seq results indicate that genes involved in the adhesion and guidance for pollen germination and pollen tube growth are abundantly present in the extracellular matrix. Our study provides an overview and detailed information for understanding the molecular mechanism of early post-pollination response in this hybrid poplar reproduction.
Collapse
Affiliation(s)
- Pian Rao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zhong Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyu Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Kai Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiong Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tianyun Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Siyan Li
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Bo Wu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinmin An
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
7
|
Alagna F, Kallenbach M, Pompa A, De Marchis F, Rao R, Baldwin IT, Bonaventure G, Baldoni L. Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:413-25. [PMID: 25727685 DOI: 10.1111/jipb.12343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/25/2015] [Indexed: 05/20/2023]
Abstract
Olive fly (Bactrocera oleae R.) is the most harmful insect pest of olive (Olea europaea L.) which strongly affects fruits and oil production. Despite the expanding economic importance of olive cultivation, up to now, only limited information on plant responses to B. oleae is available. Here, we demonstrate that olive fruits respond to B. oleae attack by producing changes in an array of different defensive compounds including phytohormones, volatile organic compounds (VOCs), and defense proteins. Bactrocera oleae-infested fruits induced a strong ethylene burst and transcript levels of several putative ethylene-responsive transcription factors became significantly upregulated. Moreover, infested fruits induced significant changes in the levels of 12-oxo-phytodienoic acid and C12 derivatives of the hydroperoxide lyase. The emission of VOCs was also changed quantitatively and qualitatively in insect-damaged fruits, indicating that B. oleae larval feeding can specifically affect the volatile blend of fruits. Finally, we show that larval infestation maintained high levels of trypsin protease inhibitors in ripe fruits, probably by affecting post-transcriptional mechanisms. Our results provide novel and important information to understand the response of the olive fruit to B. oleae attack; information that can shed light onto potential new strategies to combat this pest.
Collapse
Affiliation(s)
- Fiammetta Alagna
- CNR-Institute of Biosciences and Bioresources (IBBR), Perugia, 06128, Italy
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Jena, 07745, Germany
| | - Andrea Pompa
- CNR-Institute of Biosciences and Bioresources (IBBR), Perugia, 06128, Italy
| | | | - Rosa Rao
- Department of Agronomy, University of Naples "Federico II", 80055, Portici, Italy
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Jena, 07745, Germany
| | - Gustavo Bonaventure
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Jena, 07745, Germany
| | - Luciana Baldoni
- CNR-Institute of Biosciences and Bioresources (IBBR), Perugia, 06128, Italy
| |
Collapse
|
8
|
Boex-Fontvieille E, Rustgi S, von Wettstein D, Pollmann S, Reinbothe S, Reinbothe C. An Ethylene-Protected Achilles' Heel of Etiolated Seedlings for Arthropod Deterrence. FRONTIERS IN PLANT SCIENCE 2016; 7:1246. [PMID: 27625656 PMCID: PMC5003848 DOI: 10.3389/fpls.2016.01246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/05/2016] [Indexed: 05/22/2023]
Abstract
A small family of Kunitz protease inhibitors exists in Arabidopsis thaliana, a member of which (encoded by At1g72290) accomplishes highly specific roles during plant development. Arabidopsis Kunitz-protease inhibitor 1 (Kunitz-PI;1), as we dubbed this protein here, is operative as cysteine PI. Activity measurements revealed that despite the presence of the conserved Kunitz-motif the bacterially expressed Kunitz-PI;1 was unable to inhibit serine proteases such as trypsin and chymotrypsin, but very efficiently inhibited the cysteine protease RESPONSIVE TO DESICCATION 21. Western blotting and cytolocalization studies using mono-specific antibodies recalled Kunitz-PI;1 protein expression in flowers, young siliques and etiolated seedlings. In dark-grown seedlings, maximum Kunitz-PI;1 promoter activity was detected in the apical hook region and apical parts of the hypocotyls. Immunolocalization confirmed Kunitz-PI;1 expression in these organs and tissues. No transmitting tract (NTT) and HECATE 1 (HEC1), two transcription factors previously implicated in the formation of the female reproductive tract in flowers of Arabidopsis, were identified to regulate Kunitz-PI;1 expression in the dark and during greening, with NTT acting negatively and HEC1 acting positively. Laboratory feeding experiments with isopod crustaceans such as Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug) pinpointed the apical hook as ethylene-protected Achilles' heel of etiolated seedlings. Because exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and mechanical stress (wounding) strongly up-regulated HEC1-dependent Kunitz-PI;1 gene expression, our results identify a new circuit controlling herbivore deterrence of etiolated plants in which Kunitz-PI;1 is involved.
Collapse
Affiliation(s)
- Edouard Boex-Fontvieille
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique, Université Grenoble-Alpes – Laboratoire de Bioénergétique Fondamentale et AppliquéeGrenoble, France
| | - Sachin Rustgi
- Department of Agricultural and Environmental Sciences–Pee Dee Research and Education Center, Clemson University, FlorenceSC, USA
- Department of Crop and Soil Sciences – Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, PullmanWA, USA
- *Correspondence: Steffen Reinbothe Sachin Rustgi
| | - Diter von Wettstein
- Department of Crop and Soil Sciences – Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, PullmanWA, USA
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Univerdidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentaciónMadrid, Spain
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique, Université Grenoble-Alpes – Laboratoire de Bioénergétique Fondamentale et AppliquéeGrenoble, France
- *Correspondence: Steffen Reinbothe Sachin Rustgi
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique, Université Grenoble-Alpes – Laboratoire de Bioénergétique Fondamentale et AppliquéeGrenoble, France
| |
Collapse
|
9
|
Shahri W, Tahir I. Flower senescence: some molecular aspects. PLANTA 2014; 239:277-97. [PMID: 24178586 DOI: 10.1007/s00425-013-1984-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 10/14/2013] [Indexed: 05/08/2023]
|
10
|
Liu D, Sui S, Ma J, Li Z, Guo Y, Luo D, Yang J, Li M. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox). PLoS One 2014; 9:e86976. [PMID: 24489818 PMCID: PMC3906103 DOI: 10.1371/journal.pone.0086976] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data provided a useful database for further research of wintersweet and other Calycanthaceae family plants.
Collapse
Affiliation(s)
- Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jing Ma
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhineng Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Dengpan Luo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jianfeng Yang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Cavaiuolo M, Cocetta G, Ferrante A. The Antioxidants Changes in Ornamental Flowers during Development and Senescence. Antioxidants (Basel) 2013; 2:132-55. [PMID: 26784342 PMCID: PMC4665434 DOI: 10.3390/antiox2030132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/16/2022] Open
Abstract
The concentration of antioxidant compounds is constitutive and variable from species to species and is also variable considering the development of the plant tissue. In this review, we take into consideration the antioxidant changes and the physiological, biochemical and molecular factors that are able to modulate the accumulation of antioxidant compounds in ornamental flowers during the whole development process until the senescence. Many ornamental flowers are natural sources of very important bioactive compounds with benefit to the human health and their possible role as dietary components has been reported. The most part of antioxidants are flower pigments such as carotenoids and polyphenols, often present in higher concentration compared with the most common fruits and vegetables. The antioxidants content changes during development and during senescence many biochemical systems and molecular mechanisms are activated to counteract the increase of reactive oxygen species and free radicals. There is a tight correlation between antioxidants and senescence processes and this aspect is detailed and appropriately discussed.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| |
Collapse
|
12
|
Nomura Y, Morita S, Harada T, Satoh S. Cloning, Characterization and Expression of Carnation (Dianthus caryophyllus L.) Ubiquitin Genes and Their Use as a Normalization Standard for Gene Expression Analysis in Senescing Petals. ACTA ACUST UNITED AC 2012. [DOI: 10.2503/jjshs1.81.357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Mosolov VV, Valueva TA. Inhibitors of proteolytic enzymes under abiotic stresses in plants (review). APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811050097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Tajima T, Yamaguchi A, Matsushima S, Satoh M, Hayasaka S, Yoshimatsu K, Shioi Y. Biochemical and molecular characterization of senescence-related cysteine protease-cystatin complex from spinach leaf. PHYSIOLOGIA PLANTARUM 2011; 141:97-116. [PMID: 21044083 DOI: 10.1111/j.1399-3054.2010.01425.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cysteine proteases (CPs) with N-succinyl-Leu-Tyr-4-methylcoumaryl-7-amide (Suc-LY-MCA) cleavage activity were investigated in green and senescent leaves of spinach. The enzyme activity was separated into two major and several faint minor peaks by hydrophobic chromatography. These peaks were conventionally designated as CP1, CP2 and CP3, according to their order of elution. From the analyses of molecular mass, subunit structure, amino acid sequences and cDNA cloning, CP2 was a monomer complex (SoCP-CPI) (51 kDa) composed of a 41-kDa core protein, SoCP (Spinacia oleracea cysteine protease), and 14-kDa cystatin, a cysteine protease inhibitor (CPI), while CP3 was a trimer complex (SoCP-CPI)(3) (151 kDa) of the same subunits as SoCP-CPI and showed a wider range of specificity toward natural substrates than SoCP-CPI. Trimer (SoCP-CPI)(3) was irreversibly formed from monomers through association. The results of reverse transcription-polymerase chain reaction (RT-PCR) revealed that mRNAs of CPI and SoCP are hardly expressed in green leaves, but they are coordinately expressed in senescent leaves, suggesting that these proteases involve in senescence. Purified recombinant CPI had strong inhibitory activity against trimer SoCP, (SoCP)(3) , which had a cystatin deleted with K(i) value of 1.33 × 10(-9) M. After treatment of the enzyme with a succinate buffer (pH 5) at the most active pH of the enzyme, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and activity analyses showed that cystatin was released from both monomer SoCP-CPI and trimer (SoCP-CPI)(3) complexes with a concomitant activation. Thus, the removal of a cystatin is necessary to activate the enzyme activity.
Collapse
Affiliation(s)
- Takayuki Tajima
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Liu J, Li J, Wang H, Fu Z, Liu J, Yu Y. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:825-40. [PMID: 20974735 PMCID: PMC3003824 DOI: 10.1093/jxb/erq324] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 05/19/2023]
Abstract
Ethylene-responsive element-binding factor (ERF) genes constitute one of the largest transcription factor gene families in plants. In Arabidopsis and rice, only a few ERF genes have been characterized so far. Flower senescence is associated with increased ethylene production in many flowers. However, the characterization of ERF genes in flower senescence has not been reported. In this study, 13 ERF cDNAs were cloned from petunia. Based on the sequence characterization, these PhERFs could be classified into four of the 12 known ERF families. Their predicted amino acid sequences exhibited similarities to ERFs from other plant species. Expression analyses of PhERF mRNAs were performed in corollas and gynoecia of petunia flower. The 13 PhERF genes displayed differential expression patterns and levels during natural flower senescence. Exogenous ethylene accelerates the transcription of the various PhERF genes, and silver thiosulphate (STS) decreased the transcription of several PhERF genes in corollas and gynoecia. PhERF genes of group VII showed a strong association with the rise in ethylene production in both petals and gynoecia, and might be associated particularly with flower senescence in petunia. The effect of sugar, methyl jasmonate, and the plant hormones abscisic acid, salicylic acid, and 6-benzyladenine in regulating the different PhERF transcripts was investigated. Functional nuclear localization signal analyses of two PhERF proteins (PhERF2 and PhERF3) were carried out using fluorescence microscopy. These results supported a role for petunia PhERF genes in transcriptional regulation of petunia flower senescence processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Yixun Yu
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Harada T, Torii Y, Morita S, Masumura T, Satoh S. Differential expression of genes identified by suppression subtractive hybridization in petals of opening carnation flowers. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2345-54. [PMID: 20308205 PMCID: PMC2877890 DOI: 10.1093/jxb/erq064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 05/18/2023]
Abstract
Flower opening is an event accompanied by morphological changes in petals which include elongation, expansion, and outward-curving. Petal cell growth is a fundamental process that underlies such phenomena, but its molecular mechanism remains largely unknown. Suppression subtractive hybridization was performed between petals during the early elongation period (stage 1) and during the opening period (stage 5) in carnation flowers and a pair of subtraction libraries abundant in differentially expressed genes was constructed at each stage. 393 cDNA clones picked up by differential screening out of 1728 clones were sequenced and 235 different cDNA fragments were identified, among which 211 did not match any known nucleotide sequence of carnation genes in the databases. BLASTX search of nucleotide sequences revealed that putative functions of the translational products can be classified into several categories including transcription, signalling, cell wall modification, lipid metabolism, and transport. Open reading frames of 15 selected genes were successfully determined by rapid amplification of cDNA ends (RACE). Time-course analysis of these genes by real-time RT-PCR showed that transcript levels of several genes correlatively fluctuate in petals of opening carnation flowers, suggesting an association with the morphological changes by elongation or curving. Based on the results, it is suggested that the growth of carnation petals is controlled by co-ordinated gene expression during the progress of flower opening. In addition, the possible roles of some key genes in the initiation of cell growth, the construction of the cell wall and cuticle, and transport across membranes were discussed.
Collapse
Affiliation(s)
- Taro Harada
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yuka Torii
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Shigeto Morita
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho 619-0224, Kyoto Prefecture, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho 619-0224, Kyoto Prefecture, Japan
| | - Shigeru Satoh
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho 619-0224, Kyoto Prefecture, Japan
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
17
|
Tripathi SK, Singh AP, Sane AP, Nath P. Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2035-44. [PMID: 19346241 PMCID: PMC2682498 DOI: 10.1093/jxb/erp076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/15/2009] [Accepted: 02/23/2009] [Indexed: 05/03/2023]
Abstract
Cysteine proteases play an important role in several developmental processes in plants, particularly those related to senescence and cell death. A cysteine protease gene, RbCP1, has been identified that encodes a putative protein of 357 amino acids and is expressed in the abscission zone (AZ) of petals in rose. The gene was responsive to ethylene in petals, petal abscission zones, leaves, and thalamus. The expression of RbCP1 increased during both ethylene-induced as well as natural abscission and was inhibited by 1-MCP. Transcript accumulation of RbCP1 was accompanied by the appearance of a 37 kDa cysteine protease, a concomitant increase in protease activity and a substantial decrease in total protein content in the AZ of petals. Agro-injection of rose petals with a 2.0 kb region upstream of the RbCP1 gene could drive GUS expression in an abscission zone-specific manner and was blocked by 1-MCP. It is concluded that petal abscission is associated with a decrease in total protein content resulting from rapid transcription of RbCP1 and the expression of a 37 kDa protease.
Collapse
Affiliation(s)
| | | | - Aniruddha P. Sane
- Plant Gene Expression Laboratory, National Botanical Research Institute, Lucknow-226001, India
| | | |
Collapse
|
18
|
Peng SQ, Zhu JH, Li HL, Tian WM. Cloning and characterization of a novel cysteine protease gene (HbCP1) from Hevea brasiliensis. J Biosci 2009; 33:681-90. [PMID: 19179756 DOI: 10.1007/s12038-008-0088-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The full-length cDNA encoding a cysteine protease,designated HbCP1, was isolated for the first time from Hevea brasiliensis by the rapid amplification of cDNA ends (RACE) method. HbCP1 contained a 1371 bp open reading frame encoding 457 amino acids.The deduced HbCP1 protein,which showed high identity to cysteine proteases of other plant species,was predicted to possess a putative repeat in toxin (RTX) domain at the N-terminal and a granulin (GRAN) domain at the C-terminal.Southern blot analysis indicated that the HbCP1 gene is present as a single copy in the rubber tree.Transcription pattern analysis revealed that HbCP1 had high transcription in laticifer,and low transcription in bark and leaf.The transcription of HbCP1 in latex was induced by ethylene and tapping.Cloning of the HbCP1 gene will enable us to further understand the molecular characterization of cysteine protease and its possible function in the rubber tree.
Collapse
Affiliation(s)
- Shi-Qing Peng
- State Key Laboratory of Tropical Crop Biotechnology,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | | | | | | |
Collapse
|
19
|
van Doorn WG, Woltering EJ. Physiology and molecular biology of petal senescence. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:453-80. [PMID: 18310084 DOI: 10.1093/jxb/erm356] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Petal senescence is reviewed, with the main emphasis on gene expression in relation to physiological functions. Autophagy seems to be the major mechanism for large-scale degradation of macromolecules, but it is still unclear if it contributes to cell death. Depending on the species, petal senescence is controlled by ethylene or is independent of this hormone. EIN3-like (EIL) transcription factors are crucial in ethylene-regulated senescence. The presence of adequate sugar levels in the cell delays senescence and prevents an increase in the levels of EIL mRNA and the subsequent up-regulation of numerous senescence-associated genes. A range of other transcription factors and regulators are differentially expressed in ethylene-sensitive and ethylene-insensitive petal senescence. Ethylene-independent senescence is often delayed by cytokinins, but it is still unknown whether these are natural regulators. A role for caspase-like enzymes or metacaspases has as yet not been established in petal senescence, and a role for proteins released by organelles such as the mitochondrion has not been shown. The synthesis of sugars, amino acids, and fatty acids, and the degradation of nucleic acids, proteins, lipids, fatty acids, and cell wall components are discussed. It is claimed that there is not enough experimental support for the widely held view that a gradual increase in cell leakiness, resulting from gradual plasma membrane degradation, is an important event in petal senescence. Rather, rupture of the vacuolar membrane and subsequent rapid, complete degradation of the plasma membrane seems to occur. This review recommends that more detailed analysis be carried out at the level of cells and organelles rather than at that of whole petals.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands.
| | | |
Collapse
|
20
|
Tripathi SK, Tuteja N. Integrated signaling in flower senescence: an overview. PLANT SIGNALING & BEHAVIOR 2007; 2:437-45. [PMID: 19517004 PMCID: PMC2634333 DOI: 10.4161/psb.2.6.4991] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Accepted: 09/07/2007] [Indexed: 05/19/2023]
Abstract
Flower senescence is the terminal phase of developmental processes that lead to the death of flower, which include, flower wilting, shedding of flower parts and fading of blossoms. Since it is a rapid process as compared to the senescence of other parts of the plant it therefore provides excellent model system for the study of senescence. During flower senescence, developmental and environmental stimuli enhance the upregulation of catabolic processes causing breakdown and remobilization of cellular constituents. Ethylene is well known to play regulatory role in ethylene-sensitive flowers while in ethylene-insensitive flowers abscisic acid (ABA) is thought to be primary regulator. Subsequent to perception of flower senescence signal, death of petals is accompanied by the loss of membrane permeability, increase in oxidative and decreased level of protective enzymes. The last stages of senescence involve the loss of of nucleic acids (DNA and RNA), proteins and organelles, which is achieved by activation of several nucleases, proteases and wall modifiers. Environmental stimuli such as pollination, drought and other stresses also affect senescence by hormonal imbalance. In this article we have covered the following: perception mechanism and specificity of flower senescence, flower senescence-associated events, like degradation of cell membranes, proteins and nucleic acids, environmental/external factors affecting senescence, like pollination and abiotic stress, hormonal and non-hormonal regulation of flower/petal senescence and finally the senescence associated genes (SAGs) have also been described.
Collapse
Affiliation(s)
- Siddharth Kaushal Tripathi
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | | |
Collapse
|
21
|
Yamada T, Ichimura K, Kanekatsu M, van Doorn WG. Gene expression in opening and senescing petals of morning glory (Ipomoea nil) flowers. PLANT CELL REPORTS 2007; 26:823-35. [PMID: 17221229 DOI: 10.1007/s00299-006-0285-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 12/10/2006] [Accepted: 12/14/2006] [Indexed: 05/13/2023]
Abstract
We isolated several senescence-associated genes (SAGs) from the petals of morning glory (Ipomoea nil) flowers, with the aim of furthering our understanding of programmed cell death. Samples were taken from the closed bud stage to advanced visible senescence. Actinomycin D, an inhibitor of transcription, if given prior to 4 h after opening, suppressed the onset of visible senescence, which occurred at about 9 h after flower opening. The isolated genes all showed upregulation. Two cell-wall related genes were upregulated early, one encoding an extensin and one a caffeoyl-CoA-3-O-methyltransferase, involved in lignin production. A pectinacetylesterase was upregulated after flower opening and might be involved in cell-wall degradation. Some identified genes showed high homology with published SAGs possibly involved in remobilisation processes: an alcohol dehydrogenase and three cysteine proteases. One transcript encoded a leucine-rich repeat receptor protein kinase, putatively involved in signal transduction. Another transcript encoded a 14-3-3 protein, also a protein kinase. Two genes have apparently not been associated previously with senescence: the first encoded a putative SEC14, which is required for Golgi vesicle transport, the second was a putative ataxin-2, which has been related to RNA metabolism. Induction of the latter has been shown to result in cell death in yeast, due to defects in actin filament formation. The possible roles of these genes in programmed cell death are discussed.
Collapse
Affiliation(s)
- Tetsuya Yamada
- National Institute of Floricultural Science, Ibaraki, Japan.
| | | | | | | |
Collapse
|
22
|
Huang Y, Xiao B, Xiong L. Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. PLANTA 2007; 226:73-85. [PMID: 17221232 DOI: 10.1007/s00425-006-0469-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 12/15/2006] [Indexed: 05/13/2023]
Abstract
A full-length cDNA gene, designated Oryza sativa chymotrypsin inhibitor-like 1 (OCPI1), was characterized in rice. The predicted protein of OCPI1 shows very high sequence identity to reported chymotrypsin inhibitors from various plant species. Northern-blot analysis showed that the expression of OCPI1 was strongly induced by dehydration stresses and abscisic acid (ABA). The expression of beta-glucuronidase (GUS) reporter gene under the control of OCPI1 promoter transformed into rice was strongly induced by drought and salt stresses. Interestingly, strong dehydration stress-induced GUS activity was also detected in the transgenic rice containing the reverse sequence of OCPI1 promoter fused to GUS gene, suggesting of a bidirectional transcriptional activity in the OCPI1 promoter. OCPI1 gene was over-expressed in japonica cv. Zhonghua 11 and transgenic plants containing single copy of transgene were tested for drought resistance at reproductive stage. The positive transgenic plants (OCPI1 was over-expressed) had significantly higher grain yield and seed setting rate than the wild type and the negative transgenic control (no over-expression of the transgene) under the severe drought stress conditions, whereas the potential yield of transgenic plants under normal growth conditions was not affected. Chymotrypsin-inhibitor activity assay showed that the crude protein of the positive transgenic plants had stronger inhibitory activity than the negative control. Transgenic plants had less decrease of total proteins than the wild type under drought stress. Taken together, these data indicate that OCPI1 might potentially be useful in the genetic improvement of drought resistance in rice.
Collapse
Affiliation(s)
- Yuemin Huang
- National Center of Plant Gene Research (Wuhan), National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | |
Collapse
|
23
|
Azeez A, Sane AP, Bhatnagar D, Nath P. Enhanced expression of serine proteases during floral senescence in Gladiolus. PHYTOCHEMISTRY 2007; 68:1352-7. [PMID: 17412375 DOI: 10.1016/j.phytochem.2007.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/07/2007] [Accepted: 02/12/2007] [Indexed: 05/14/2023]
Abstract
Programmed cell death during senescence in plants is associated with proteolysis that helps in remobilization of nitrogen to other growing tissues. In this paper, we provide one of the few reports for the expression of specific serine proteases during senescence associated proteolysis in Gladiolus grandiflorus flowers. Senescence in tepals, stamens and carpels results in an increase in total protease activity and a decrease in total protein content. Of the total protease activity, serine proteases account for about 67-70% while cysteine proteases account for only 23-25%. In-gel assays using gelatin as a substrate and specific protease inhibitors reveal the enhanced activity of two trypsin-type serine proteases of sizes 75 kDa and 125 kDa during the course of senescence. The activity of the 125 kDa protease increases not only during tepal senescence but also during stamen and carpel senescence indicating that it is responsive to general senescence signals.
Collapse
Affiliation(s)
- Abdul Azeez
- Plant Gene Expression Lab, National Botanical Research Institute, Lucknow 226 001, India
| | | | | | | |
Collapse
|
24
|
Fu Y, Zhao W, Peng Y. Induced expression of oryzain alpha gene encoding a cysteine proteinase under stress conditions. JOURNAL OF PLANT RESEARCH 2007; 120:465-9. [PMID: 17404686 DOI: 10.1007/s10265-007-0080-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 02/05/2007] [Indexed: 05/14/2023]
Abstract
Oryzain alpha-A, a cysteine proteinase gene was cloned from rice (Oryza sativa L. cv. Aichi-asahi) leaves infected with Magnaporthe grisea. The protein sequence deduced for oryzain alpha-A shares high identity with that of oryzain alpha, a gene expressed in germinating rice seed. Oryzain alpha-A gene expression was induced by the blast fungus, Magnaporthe grisea, and the transcript level was even higher in the compatible interaction with rice than in the incompatible interaction. Expression of oryzain alpha-A was also inducible by wounding, ultraviolet radiation, and treatment with salicylic acid and abscisic acid, with no expression induced by methyl jasmonate. The function of oryzain alpha-A in cell death in rice is discussed.
Collapse
Affiliation(s)
- Yanping Fu
- Department of Plant Pathology and the MOA Key Laboratory for Molecular Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, People's Republic of China
| | | | | |
Collapse
|
25
|
Hoeberichts FA, van Doorn WG, Vorst O, Hall RD, van Wordragen MF. Sucrose prevents up-regulation of senescence-associated genes in carnation petals. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:2873-85. [PMID: 17630294 DOI: 10.1093/jxb/erm076] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
cDNA microarrays were used to characterize senescence-associated gene expression in petals of cut carnation (Dianthus caryophyllus) flowers, sampled from anthesis to the first senescence symptoms. The population of PCR fragments spotted on these microarrays was enriched for flower-specific and senescence-specific genes, using subtractive hybridization. About 90% of the transcripts showed a large increase in quantity, approximately 25% transiently, and about 65% throughout the 7 d experiment. Treatment with silver thiosulphate (STS), which blocks the ethylene receptor and prevented the normal senescence symptoms, prevented the up-regulation of almost all of these genes. Sucrose treatment also considerably delayed visible senescence. Its effect on gene expression was very similar to that of STS, suggesting that soluble sugars act as a repressor of ethylene signal transduction. Two fragments that encoded a carnation EIN3-like (EIL) protein were isolated, some of which are key transcription factors that control ethylene response genes. One of these (Dc-EIL3) was up-regulated during senescence. Its up-regulation was delayed by STS and prevented by sucrose. Sucrose, therefore, seems to repress ethylene signalling, in part, by preventing up-regulation of Dc-EIL3. Some other transcription factors displayed an early increase in transcript abundance: a MYB-like DNA binding protein, a MYC protein, a MADS-box factor, and a zinc finger protein. Genes suggesting a role in senescence of hormones other than ethylene encoded an Aux/IAA protein, which regulate transcription of auxin-induced genes, and a cytokinin oxidase/dehydrogenase, which degrades cytokinin. Taken together, the results suggest a master switch during senescence, controlling the co-ordinated up-regulation of numerous ethylene response genes. Dc-EIL3 might be (part of) this master switch.
Collapse
Affiliation(s)
- Frank A Hoeberichts
- Agrotechnology and Food Science, Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Xu Y, Ishida H, Reisen D, Hanson MR. Upregulation of a tonoplast-localized cytochrome P450 during petal senescence in Petunia inflata. BMC PLANT BIOLOGY 2006; 6:8. [PMID: 16613603 PMCID: PMC1540422 DOI: 10.1186/1471-2229-6-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 04/13/2006] [Indexed: 05/08/2023]
Abstract
BACKGROUND Gene expression in Petunia inflata petals undergoes major changes following compatible pollination. Severe flower wilting occurs reproducibly within 36 hours, providing an excellent model for investigation of petal senescence and programmed cell death. Expression of a number of genes and various enzyme activities involved in the degradation and remobilization of macromolecules have been found to be upregulated during the early stages of petal senescence. RESULTS By performing differential display of cDNAs during Petunia inflata petal senescence, a highly upregulated gene encoding a cytochrome P450 was identified. Analysis of the complete cDNA sequence revealed that the predicted protein is a member of the CYP74C family (CYP74C9) and is highly similar to a tomato CYP74C allene oxide synthase (AOS) that is known to be active on 9-hydroperoxides. Cloning of the petunia genomic DNA revealed an intronless gene with a promoter region that carries signals found in stress-responsive genes and potential binding sites for Myb transcription factors. Transcripts were present at detectable levels in root and stem, but were 40 times more abundant in flowers 36 hours after pollination. Ethylene and jasmonate treatment resulted in transitory increases in expression in detached flowers. A protein fusion of the CYP74C coding region to a C-terminal GFP was found to be located in the tonoplast. CONCLUSION Though oxylipins, particularly jasmonates, are known to be involved in stress responses, the role of other products of CYP74 enzymes is less well understood. The identification of a CYP74C family member as a highly upregulated gene during petal senescence suggests that additional products of fatty acid metabolism may play important roles during programmed cell death. In contrast to the chloroplast localization of AOS proteins in the CYP74A subfamily, GFP fusion data indicates that the petunia CYP74C9 enzyme is in the tonoplast. This result suggests that the highly similar CYP74C enzymes that have been identified in two other Solanaceous plants may also be associated with the vacuole, an organelle known to have a prominent role in programmed cell death.
Collapse
Affiliation(s)
- Yan Xu
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
- Current address: New England BioLabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Hiroyuki Ishida
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
- Laboratory of Plant Nutrition and Function, Department of Applied Plant Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Sendai 981–8555, Japan
| | - Daniel Reisen
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Trobacher CP, Senatore A, Greenwood JS. Masterminds or minions? Cysteine proteinases in plant programmed cell deathThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cysteine proteinases are ubiquitously involved in programmed cell death (PCD) in multicellular organisms. In animals, one group of cysteine proteinases, the cysteine-dependent aspartate-specific proteinases (caspases), are involved in a proteolytic signalling cascade that controls apoptosis, the most studied form of PCD. The enzymes act as both masterminds and executioners in apoptotic cell death. In plants, members of the metacaspase family, as well as those of the papain-like and legumain families, of cysteine proteinases have all been implicated in PCD. These enzymes often belong to sizeable gene families, with Arabidopsis having 9 metacaspase, 32 papain-like, and 4 legumain genes. This redundancy has made it difficult to ascertain the functional importance of any particular enzyme in plant PCD, as many are often expressed in a given tissue undergoing PCD. As yet, mechanisms similar to the apoptotic caspase cascade in animals have not been uncovered in plants and, indeed, may not exist. Are the various cysteine proteinases, so often implicated in plant PCD, merely acting as minions in the process? This review will outline reports of cysteine proteinases associated with plant PCD, discuss problems in determining the function of specific proteases, and suggest avenues for determining how these enzymes might be regulated and how PCD pathways upstream of protease expression and activation might operate.
Collapse
Affiliation(s)
| | - Adriano Senatore
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John S. Greenwood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
28
|
Harfouche AL, Shivaji R, Stocker R, Williams PW, Luthe DS. Ethylene signaling mediates a maize defense response to insect herbivory. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:189-99. [PMID: 16529381 DOI: 10.1094/mpmi-19-0189] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The signaling pathways that enable plants to mount defenses against insect herbivores are known to be complex. It was previously demonstrated that the insect-resistant maize (Zea mays L.) genotype Mp708 accumulates a unique defense cysteine proteinase, Mirl-CP, in response to caterpillar feeding. In this study, the role of ethylene in insect defense in Mp708 and an insect-susceptible line Tx601 was explored. Ethylene synthesis was blocked with either cobalt chloride or aminoethoxyvinylglycine. Alternatively, ethylene perception was inhibited with 1-methylcyclopropene. Blocking ethylene synthesis and perception resulted in Mp708 plants that were more susceptible to caterpillar feeding. In addition, fall armyworm (Spodoptera frugiperda) larvae that fed on inhibitor-treated Mp708 plants had signifycantly higher growth rates than those reared on untreated plants. In contrast, these responses were not significantly altered in Tx601. The ethylene synthesis and perception inhibitors also reduced the accumulation of Mirl-CP and its transcript mir1 in response to herbivory. These results indicate that ethylene is a component of the signal transduction pathway leading to defense against insect herbivory in the resistant genotype Mp708.
Collapse
Affiliation(s)
- Antoine L Harfouche
- Department of Biochemistry and Molecular Biology, Box 9650, Mississippi State University, MS 39762, USA
| | | | | | | | | |
Collapse
|
29
|
Jones ML, Chaffin GS, Eason JR, Clark DG. Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in petunia corollas. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2733-44. [PMID: 16131506 DOI: 10.1093/jxb/eri266] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To investigate ethylene's role in petal senescence, a comparative analysis of age-related changes in total protein, protease activity, and the expression of nine cysteine protease genes in the corollas of ethylene-sensitive Petuniaxhybrida cv. Mitchell Diploid (MD) and ethylene-insensitive (35S:etr1-1; line 44568) transgenic petunias was conducted. The later stages of corolla senescence in MD flowers were associated with decreased fresh weight, decreased total protein, and increased proteolytic activity. Corolla senescence was delayed by approximately 8 d in etr-44568 transgenic petunias, and decreases in corolla fresh weight, protein content, and maximum proteolytic activity were similarly delayed. Protease inhibitor studies indicated that the majority of the protease activity in senescing petals was due to cysteine proteases. Nine cysteine proteases expressed in petals were subsequently identified. Northern blot analysis indicated that six of the nine cysteine proteases showed increased transcript abundance during petal senescence. One of these cysteine proteases, PhCP10, was detected only in senescing tissues. Expression of four of the senescence-associated cysteine proteases was delayed, but not prevented in etr-44568 flowers. The other two senescence associated cysteine proteases had high levels of transcript accumulation in etr-44568 corollas at 8 d after flower opening, when MD flowers were senescing. These patterns suggest that age-related factors, other than ethylene, were regulating the up-regulation of these genes during flower ageing. The delay in visible symptoms and biochemical and molecular indicators of senescence in ethylene-insensitive flowers is consistent with the concept that ethylene modulates the timing of senescence pathways in petals.
Collapse
Affiliation(s)
- Michelle L Jones
- Department of Horticulture and Crop Science, 1680 Madison Avenue, The Ohio State University OARDC, Wooster, OH 44691, USA.
| | | | | | | |
Collapse
|
30
|
Iordachescu M, Verlinden S. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2011-8. [PMID: 15983019 DOI: 10.1093/jxb/eri199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Using a combination of approaches, three EIN3-like (EIL) genes DC-EIL1/2 (AY728191), DC-EIL3 (AY728192), and DC-EIL4 (AY728193) were isolated from carnation (Dianthus caryophyllus) petals. DC-EIL1/2 deduced amino acid sequence shares 98% identity with the previously cloned and characterized carnation DC-EIL1 (AF261654), 62% identity with DC-EIL3, and 60% identity with DC-EIL4. DC-EIL3 deduced amino acid sequence shares 100% identity with a previously cloned carnation gene fragment, Dc106 (CF259543), 61% identity with Dianthus caryophyllus DC-EIL1 (AF261654), and 59% identity with DC-EIL4. DC-EIL4 shared 60% identity with DC-EIL1 (AF261654). Expression analyses performed on vegetative and flower tissues (petals, ovaries, and styles) during growth and development and senescence (natural and ethylene-induced) indicated that the mRNA accumulation of the DC-EIL family of genes in carnation is regulated developmentally and by ethylene. DC-EIL3 mRNA showed significant accumulation upon ethylene exposure, during flower development, and upon pollination in petals and styles. Interestingly, decreasing levels of DC-EIL3 mRNA were found in wounded leaves and ovaries of senescing flowers whenever ethylene levels increased. Flowers treated with sucrose showed a 2 d delay in the accumulation of DC-EIL3 transcripts when compared with control flowers. These observations suggest an important role for DC-EIL3 during growth and development. Changes in DC-EIL1/2 and DC-EIL4 mRNA levels during flower development, and upon ethylene exposure and pollination were very similar. mRNA levels of the DC-EILs in styles of pollinated flowers showed a positive correlation with ethylene production after pollination. The cloning and characterization of the EIN3-like genes in the present study showed their transcriptional regulation not previously observed for EILs.
Collapse
Affiliation(s)
- Mihaela Iordachescu
- Genetics and Developmental Biology Program, Division of Plant and Soil Sciences, West Virginia University, 1090 Agricultural Science Building, PO Box 6108, Morgantown, WV 26506, USA
| | | |
Collapse
|
31
|
|
32
|
Mills ENC, Jenkins JA, Alcocer MJC, Shewry PR. Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Crit Rev Food Sci Nutr 2005; 44:379-407. [PMID: 15540651 DOI: 10.1080/10408690490489224] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The recently completed genome sequence of the model plant species Arabidopsis has been estimated to encode over 25,000 proteins, which, on the basis of their function, can be classified into structural and metabolic (the vast majority of plant proteins), protective proteins, which defend a plant against invasion by pathogens or feeding by pests, and storage proteins, which proved a nutrient store to support germination in seeds. It is now clear that almost all plant food allergens are either protective or storage proteins. It is also becoming evident that those proteins that trigger the development of an allergic response through the gastrointestinal tract belong primarily to two large protein superfamilies: (1) The cereal prolamin superfamily, comprising three major groups of plant food allergens, the 2S albumins, lipid transfer proteins, and cereal alpha-amylase/trypsin inhibitors, which have related structures, and are stable to thermal processing and proteolysis. They include major allergens from Brazil nut, peanuts, fruits, such as peaches, and cereals, such as rice and wheat; (2) The cupin superfamily, comprising the major globulin storage proteins from a number of plant species. The globulins have been found to be allergens in plant foods, such as peanuts, soya bean, and walnut; (3) The cyteine protease C1 family, comprising the papain-like proteases from microbes, plants, and animals. This family contains two notable allergens that sensitize via the GI tract, namely actinidin from kiwi fruit and the soybean allergen, Gly m Bd 30k/P34. This study describes the properties, structures, and evolutionary relationships of these protein families, the allergens that belong to them, and discusses them in relation to the role protein structure may play in determining protein allergenicity.
Collapse
Affiliation(s)
- E N Clare Mills
- Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom.
| | | | | | | |
Collapse
|
33
|
Abstract
Visible senescence of the flag tepals in Iris x hollandica (cv. Blue Magic) was preceded by a large increase in endoprotease activity. Just before visible senescence about half of total endoprotease activity was apparently due to cysteine proteases, somewhat less than half to serine proteases, with a minor role of metalloproteases. Treatment of isolated tepals with the purported serine protease inhibitors AEBSF [4-(2-aminoethyl)-benzenesulfonyl fluoride] or DFP (diisopropyl-fluorophosphate) prevented the increase in endoprotease activity and considerably delayed or prevented the normal senescence symptoms. The specific cysteine protease-specific E-64d reduced maximum endoprotease activity by 30%, but had no effect on the time to visible senescence. Zinc chloride and aprotinin reduced maximum endoprotease activity by c. 50 and 40%, respectively, and slightly delayed visible senescence. A proteasome inhibitor (Z-leu-leu-Nva-H) slightly delayed tepal senescence, which indicates that protein degradation in the proteasome may play a role in induction of the visible senescence symptoms. It is concluded that visible senescence is preceded by large-scale protein degradation, which is apparently mainly due to cysteine- and serine protease activity, and that two (unspecific) inhibitors of serine proteases considerably delay the senescence symptoms.
Collapse
Affiliation(s)
- Caroline Pak
- Agrotechnology and Food Innovations (A & F), Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, the Netherlands
| | | |
Collapse
|
34
|
Sin SF, Chye ML. Expression of proteinase inhibitor II proteins during floral development in Solanum americanum. PLANTA 2004; 219:1010-22. [PMID: 15197596 DOI: 10.1007/s00425-004-1306-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 05/03/2004] [Indexed: 05/18/2023]
Abstract
The heterologous expression of serine proteinase inhibitor II (PIN2) proteins confers insect resistance in transgenic plants, but little is known of their endogenous roles. We have cloned two cDNAs encoding Solanum americanum PIN2 proteins, SaPIN2a and SaPIN2b. SaPIN2a is highly expressed in stem, particularly in the phloem, suggesting it could possibly regulate proteolysis in the sieve elements. When SaPIN2a was expressed in transgenic lettuce, we observed an inhibition of endogenous trypsin- and chymotrypsin-like activities. Here, we demonstrate that both SaPIN2a and SaPIN2b are expressed in floral tissues that are destined to undergo developmental programmed cell death (PCD), suggesting possible endogenous roles in inhibiting trypsin- and chymotrypsin-like activities during flower development. Northern and western blot analyses revealed that SaPIN2a and SaPIN2b mRNAs and proteins show highest expression early in floral development. In situ hybridization analysis and immunolocalization on floral sections, localized SaPIN2a and SaPIN2b mRNAs and their proteins to tissues that would apparently undergo PCD: the ovules, the stylar transmitting tissue, the stigma and the vascular bundles. Detection of PCD in floral sections was achieved using terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) analysis. Examination of the mid-style before, and 1 day after, pollination revealed that high expression of SaPIN2a and SaPIN2b in the style was inversely correlated with PCD.
Collapse
Affiliation(s)
- Suk-Fong Sin
- Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | |
Collapse
|
35
|
Pennycooke JC, Jones ML, Stushnoff C. Down-regulating alpha-galactosidase enhances freezing tolerance in transgenic petunia. PLANT PHYSIOLOGY 2003; 133:901-9. [PMID: 14500789 PMCID: PMC219063 DOI: 10.1104/pp.103.024554] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 05/08/2003] [Accepted: 07/01/2003] [Indexed: 05/17/2023]
Abstract
Alpha-galactosidase (alpha-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the alpha-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of alpha-Gal was modified in transgenic petunia (Petunia x hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that alpha-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of alpha-Gal mRNAs. alpha-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from -4 degrees C for cold-acclimated wild-type plants to -8 degrees C for the most tolerant antisense line. Down-regulating alpha-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the alpha-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with alpha-Gal provides an additional method for improving the freezing tolerance of plants.
Collapse
Affiliation(s)
- Joyce C Pennycooke
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
36
|
Chang H, Jones ML, Banowetz GM, Clark DG. Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene. PLANT PHYSIOLOGY 2003; 132:2174-83. [PMID: 12913172 PMCID: PMC181301 DOI: 10.1104/pp.103.023945] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 04/11/2003] [Accepted: 05/13/2003] [Indexed: 05/18/2023]
Abstract
Plant senescence is regulated by a coordinated genetic program mediated in part by changes in ethylene, abscisic acid (ABA), and cytokinin content. Transgenic plants with delayed senescence are useful for studying interactions between these signaling mechanisms. Expression of ipt, a cytokinin biosynthetic gene from Agrobacterium tumefaciens, under the control of the promoter from a senescence-associated gene (SAG12) has been one approach used to delay senescence. We transformed petunia (Petunia x hybrida cv V26) with P(SAG12)-IPT. Two independently transformed lines with extended flower longevity (I-1-7-22 and I-3-18-34) were used to study the effects of elevated cytokinin content on ethylene synthesis and sensitivity and ABA accumulation in petunia corollas. Floral senescence in these lines was delayed 6 to 10 d relative to wild-type (WT) flowers. Ipt transcripts increased in abundance after pollination and were accompanied by increased cytokinin accumulation. Endogenous ethylene production was induced by pollination in both WT and IPT corollas, but this increase was delayed in IPT flowers. Flowers from IPT plants were less sensitive to exogenous ethylene and required longer treatment times to induce endogenous ethylene production, corolla senescence, and up-regulation of the senescence-related Cys protease phcp1. Accumulation of ABA, another hormone regulating flower senescence, was significantly greater in WT corollas, confirming that floral senescence was delayed in IPT plants. These results extend our understanding of the hormone interactions that regulate flower senescence and provide a means of increasing flower longevity.
Collapse
Affiliation(s)
- Hsiang Chang
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
37
|
Coupe SA, Sinclair BK, Watson LM, Heyes JA, Eason JR. Identification of dehydration-responsive cysteine proteases during post-harvest senescence of broccoli florets. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:1045-1056. [PMID: 12598574 DOI: 10.1093/jxb/erg105] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Harvest-induced senescence of broccoli results in tissue wilting and sepal chlorosis. As senescence progresses, chlorophyll and protein levels in floret tissues decline and endo-protease activity (measured with azo-casein) increases. Protease activity increased from 24 h after harvest for tissues held in air at 20 degrees C. Activity was lower in floret tissues from branchlets that had been held in solutions of sucrose (2% w/v) or under high carbon dioxide, low oxygen (10% CO(2), 5% O(2)) conditions. Four protease-active protein bands were identified in senescing floret tissue by zymography, and the use of chemical inhibitors of protease action suggests that some 44% of protease activity in senescing floret tissue 72 h after harvest is due to the action of cysteine and serine proteases. Four putative cysteine protease cDNAs have been isolated from broccoli floret tissue (BoCP1, BoCP2, BoCP3, BoCP4). The cDNAs are most similar (73-89% at the amino acid level) to dehydration-responsive cysteine proteases previously isolated from Arabidopsis thaliana (RD19, RD21). The mRNAs encoded by the broccoli cDNAs are expressed in floret tissue during harvest-induced senescence with mRNA accumulating within 6 h of harvest for BoCP1, 12 h of harvest for BoCP4 and within 24 h of harvest for BoCP2 and BoCP3. Induction of the cDNAs is differentially delayed when broccoli branchlets are held in solutions of water or sucrose. In addition, the expression of BoCP1 and BoCP3 is inhibited in tissue held in atmospheres of high carbon dioxide/low oxygen (10% CO(2), 5% O(2)). The putative cysteine protease mRNAs are expressed before measurable increases in endo-protease activity, loss of protein, chlorophyll or tissue chlorosis.
Collapse
Affiliation(s)
- Simon A Coupe
- New Zealand Institute for Crop and Food Research Limited, Food Industry Science Centre, Private Bag 11 600, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
38
|
Bruno MA, Pardo MF, Caffini NO, López LMI. Hieronymain I, a new cysteine peptidase isolated from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae). JOURNAL OF PROTEIN CHEMISTRY 2003; 22:127-34. [PMID: 12760417 DOI: 10.1023/a:1023418812832] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new peptidase, named hieronymain I, was purified to homogeneity from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae) by acetone fractionation followed by cation exchange chromatography (FPLC) on CM-Sepharose FF. Homogeneity of the enzyme was confirmed by mass spectroscopy (MALDI-TOF), isoelectric focusing, and SDS-PAGE. Hieronymain is a basic peptidase (pI > 9.3) and its molecular mass was 24,066 Da. Maximum proteolytic activity on casein (>90% of maximum activity) was achieved at pH 8.5-9.5. The enzyme was completely inhibited by E-64 and iodoacetic acid and activated by the addition of cysteine; these results strongly suggest that the isolated protease should be included within the cysteine group. The N-terminal sequence of hieronymain (ALPESIDWRAKGAVTEVKRQDG) was compared with 25 plant cysteine proteases that showed more than 50% of identity.
Collapse
Affiliation(s)
- Mariela A Bruno
- Laboratorio de Investigación de Proteínas Vegetales, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 711, B1900AVW, La Plata, Argentina
| | | | | | | |
Collapse
|
39
|
Chen GH, Huang LT, Yap MN, Lee RH, Huang YJ, Cheng MC, Chen SCG. Molecular characterization of a senescence-associated gene encoding cysteine proteinase and its gene expression during leaf senescence in sweet potato. PLANT & CELL PHYSIOLOGY 2002; 43:984-991. [PMID: 12354916 DOI: 10.1093/pcp/pcf125] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The structure and expression of a senescence-associated gene (SPG31) encoding a cysteine proteinase precursor of sweet potato have been characterized. The coding region of the gene consists of two exons encoding an enzyme precursor of 341 amino acids with conserved catalytic amino acids of papain. Examination of the expression patterns of the SPG31 gene in sweet potato by Northern blot analyses reveals that the transcripts of SPG31 are specifically induced in the senescing leaves but not in other organs. The differential accumulation of the mature SPG31 protein in the senescing leaves was further identified by two-dimensional electrophoresis of leaf proteins and N-terminal sequencing. This result suggests the important role played by SPG31 in proteolysis and nitrogen remobilization during the leaf senescence process. Furthermore, treatment of mature green leaves with ethylene for 3 d resulted in a high-level induction of SPG31 transcripts. Ethylene-regulated expression of SPG31 is consistent with the presence of a number of putative ethylene-responsive elements in the 899-bp SPG31 promoter region.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Cysteine Endopeptidases/drug effects
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Electrophoresis, Gel, Two-Dimensional
- Enzyme Precursors/drug effects
- Enzyme Precursors/genetics
- Enzyme Precursors/metabolism
- Ethylenes/pharmacology
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Ipomoea batatas/drug effects
- Ipomoea batatas/genetics
- Ipomoea batatas/physiology
- Molecular Sequence Data
- Plant Growth Regulators/pharmacology
- Plant Leaves/drug effects
- Plant Leaves/genetics
- Plant Leaves/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Guan-Hong Chen
- Institute of Biochemistry, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Sugawara H, Shibuya K, Yoshioka T, Hashiba T, Satoh S. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:407-413. [PMID: 11847238 DOI: 10.1093/jexbot/53.368.407] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Senescence of carnation petals is accompanied by autocatalytic ethylene production and wilting of the petals; the former is caused by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes and the latter is related to the expression of a cysteine proteinase (CPase) gene. CPase is probably responsible for the degradation of proteins, leading to the decomposition of cell components and resultant cell death during the senescence of petals. The carnation plant also has a gene for the CPase inhibitor (DC-CPIn) that is expressed abundantly in petals at the full opening stage of flowers. In the present study, DC-CPIn cDNA was cloned and expressed in E. coli. The recombinant DC-CPIn protein completely inhibited the activities of a proteinase (CPase) extracted from carnation petals and papain. Northern blot analysis showed that the mRNA for CPase (DC-CP1) accumulated in large amounts, whereas that for DC-CPIn disappeared, corresponding to the onset of petal wilting in flowers undergoing natural senescence and exogenous ethylene-induced senescence. Based on these findings, a role of DC-CPIn in the regulation of petal wilting is suggested; DC-CPIn acts as a suppressor of petal wilting, which probably functions to fine-tune petal wilting in contrast to coarse tuning, the up-regulation of CPase activity by gene expression.
Collapse
Affiliation(s)
- Hiroaki Sugawara
- Laboratory of Bio-adaptation, Graduate School of Agricultural Sciences, Tohoku University, Tsutsumidori-amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
41
|
Wagstaff C, Leverentz MK, Griffiths G, Thomas B, Chanasut U, Stead AD, Rogers HJ. Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:233-240. [PMID: 11807127 DOI: 10.1093/jexbot/53.367.233] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The functional life of the flower is terminated by senescence and/or abscission. Multiple processes contribute to produce the visible signs of petal wilting and inrolling that typify senescence, but one of the most important is that of protein degradation and remobilization. This is mediated in many species through protein ubiquitination and the action of specific protease enzymes. This paper reports the changes in protein and protease activity during development and senescence of Alstroemeria flowers, a Liliaceous species that shows very little sensitivity to ethylene during senescence and which shows perianth abscission 8-10 d after flower opening. Partial cDNAs of ubiquitin (ALSUQ1) and a putative cysteine protease (ALSCYP1) were cloned from Alstroemeria using degenerate PCR primers and the expression pattern of these genes was determined semi-quantitatively by RT-PCR. While the levels of ALSUQ1 only fluctuated slightly during floral development and senescence, there was a dramatic increase in the expression of ALSCYP1 indicating that this gene may encode an important enzyme for the proteolytic process in this species. Three papain class cysteine protease enzymes showing different patterns of activity during flower development were identified on zymograms, one of which showed a similar expression pattern to the cysteine protease cDNA.
Collapse
Affiliation(s)
- Carol Wagstaff
- Cardiff School of Biosciences, Main Building, Cardiff University, PO Box 915, Cardiff CF10 3TL, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Trejo SA, López LM, Cimino CV, Caffini NO, Natalucci CL. Purification and characterization of a new plant endopeptidase isolated from latex of Asclepias fruticosa L. (Asclepiadaceae). JOURNAL OF PROTEIN CHEMISTRY 2001; 20:469-77. [PMID: 11760121 DOI: 10.1023/a:1012502412612] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Asclepias fruticosa L. is a small shrub containing latex with proteolytic activity. The crude extract (latex diluted 1:250 and ultracentrifuged) contained 276 microg of protein/mL and the proteolytic activity reached 1.2 caseinolytic U/mL. This enzyme preparation was very stable even after 2 hours at 45 degrees C, but was quickly inactivated after 5 minutes at 80 degrees C. Chromatographic purification was achieved by FPLC using a cation exchanger (SP-Sepharose FF). Thus, a unique proteolitically active fraction could be isolated, being homogeneous by bidimensional electrophoresis and mass spectrometry (Mr = 23,652). The optimum pH range was achieved at 8.5-10.5. The enzyme activity was completely inhibited by specific cysteine peptidases inhibitors. Isoelectric focusing followed by zymogram showed the enzyme had a pI greater than 9.3. The N-terminus sequence (LPDSVDWREKGVVFPIRNQGK) shows a great deal of similarity to those of the other cysteine endopeptidases isolated from latices of Asclepiadaceae even when a high degree of homology could be observed with other plant cysteine endopeptidases.
Collapse
Affiliation(s)
- S A Trejo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | | | | | | | | |
Collapse
|
43
|
Obregón WD, Arribére MC, del Valle SM, Liggieri C, Caffini N, Priolo N. Two new cysteine endopeptidases obtained from the latex of Araujia hortorum fruits. JOURNAL OF PROTEIN CHEMISTRY 2001; 20:317-25. [PMID: 11594466 DOI: 10.1023/a:1010953718679] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two new endopeptidases were purified to homogeneity from the latex of Araujia hortorum fruits by a simple purification procedure involving ultracentrifugation and ion exchange chromatography. Molecular weights of araujiain h II and araujiain h III were 23,718 and 23546 (mass spectrometry), respectively. The isoelectric point of araujiain h II was 8.9, whereas araujiain h III had a pI higher than 9.3. Maximum proteolytic activity on caseine was reached at pH 8.0-9.0 for both endopeptidases, which were irreversibly inhibited by iodoacetate and E-64, suggesting they belong to the cysteine protease family. Esterolytic activity was determined on N-alpha-CBZ-amino acid-p-nitrophenyl esters, and the highest kcat/Km values for the both enzymes were obtained with the glutamine derivative. The N-terminal sequences of araujiain h II and araujiain h III showed a high degree of homology with other plant cysteine endopeptidases.
Collapse
Affiliation(s)
- W D Obregón
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
44
|
Kosugi Y, Shibuya K, Tsuruno N, Iwazaki Y, Mochizuki A, Yoshioka T, Hashiba T, Satoh S. Expression of genes responsible for ethylene production and wilting are differently regulated in carnation (Dianthus caryophyllus L.) petals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 158:139-145. [PMID: 10996253 DOI: 10.1016/s0168-9452(00)00314-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Carnation petals exhibit autocatalytic ethylene production and wilting during senescence. The autocatalytic ethylene production is caused by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes, whereas the wilting of petals is related to the expression of the cysteine proteinase (CPase) gene. So far, it has been believed that the ethylene production and wilting are regulated in concert in senescing carnation petals, since the two events occurred closely in parallel with time. In the present study, we investigated the expression of these genes in petals of a transgenic carnation harboring a sense ACC oxidase transgene and in petals of carnation flowers treated with 1,1-dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS). In petals of the transgenic carnation flowers, treatment with exogenous ethylene caused accumulation of the transcript for CPase and in-rolling (wilting), whereas it caused no or little accumulation of the transcripts for ACC oxidase and ACC synthase and negligible ethylene production. In petals of the flowers treated with DPSS, the transcripts for ACC synthase and ACC oxidase were accumulated, but no significant change in the level of the transcript for CPase was observed. These results suggest that the expression of ACC synthase and ACC oxidase genes, which leads to ethylene production, is differentially regulated from the expression of CPase, which leads to wilting, in carnation petals.
Collapse
Affiliation(s)
- Y Kosugi
- Laboratory of Bio-adaptation, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-amamiyamachi 1-1, Aoba-ku, 981-8555, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhao C, Johnson BJ, Kositsup B, Beers EP. Exploiting secondary growth in Arabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases. PLANT PHYSIOLOGY 2000; 123:1185-96. [PMID: 10889267 PMCID: PMC59081 DOI: 10.1104/pp.123.3.1185] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/1999] [Accepted: 03/27/2000] [Indexed: 05/18/2023]
Abstract
The root-hypocotyl of Arabidopsis produces a relatively large amount of secondary vascular tissue when senescence is delayed by the removal of inflorescences, and plants are grown at low population density. Peptidase zymograms prepared from isolated xylem and phloem revealed the existence of distinct proteolytic enzyme profiles within these tissues. cDNA libraries were constructed from isolated xylem and bark of the root-hypocotyl and screened for cDNAs coding for cysteine, serine, and aspartic peptidases. Three cDNAs, two putative papain-type cysteine peptidases (XCP1 and XCP2) and one putative subtilisin-type serine peptidase (XSP1), were identified from the xylem library for further analysis. Using RNA gel blots it was determined that these peptidases were expressed in the xylem and not in the bark. Quantitative reverse transcriptase-polymerase chain reaction confirmed the RNA gel-blot results and revealed high levels of XCP1 and XCP2 mRNA in stems and flowers of the infloresence. A poly-histidine-tagged version of XCP1 was purified from Escherichia coli by denaturing metal-chelate chromatography. Following renaturation, the 40-kD recombinant XCP1 was not proteolytically active. Activation was achieved by incubation of recombinant XCP1 at pH 5.5 and was dependent on proteolytic processing of the 40-kD inactive polypeptide to a 26-kD active peptidase.
Collapse
Affiliation(s)
- C Zhao
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
46
|
Xu Y, Hanson MR. Programmed cell death during pollination-induced petal senescence in petunia. PLANT PHYSIOLOGY 2000; 122:1323-33. [PMID: 10759529 PMCID: PMC58968 DOI: 10.1104/pp.122.4.1323] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/1999] [Accepted: 12/21/1999] [Indexed: 05/20/2023]
Abstract
Petal senescence, one type of programmed cell death (PCD) in plants, is a genetically controlled sequence of events comprising its final developmental stage. We characterized the pollination-induced petal senescence process in Petunia inflata using a number of cell performance markers, including fresh/dry weight, protein amount, RNA amount, RNase activity, and cellular membrane leakage. Membrane disruption and DNA fragmentation with preferential oligonucleosomal cleavage, events characteristic of PCD, were found to be present in the advanced stage of petal senescence, indicating that plant and animal cell death phenomena share one of the molecular events in the execution phase. As in apoptosis in animals, both single-stranded DNase and double-stranded DNase activities are induced during petal cell death and are enhanced by Ca(2+). In contrast, the release of cytochrome c from mitochondria, one commitment step in signaling of apoptosis in animal cells, was found to be dispensable in petal cell death. Some components of the signal transduction pathway for PCD in plants are likely to differ from those in animal cells.
Collapse
Affiliation(s)
- Y Xu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
47
|
López LM, Sequeiros C, Natalucci CL, Brullo A, Maras B, Barra D, Caffini NO. Purification and characterization of macrodontain I, a cysteine peptidase from unripe fruits of Pseudananas macrodontes (Morr.) harms (Bromeliaceae). Protein Expr Purif 2000; 18:133-40. [PMID: 10686143 DOI: 10.1006/prep.1999.1165] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new papain-like cysteine peptidase isolated from fruits of Pseudananas macrodontes (Morr.) Harms, a species closely related to pineapple (Ananas comosus L.), has been purified and characterized. The enzyme, named macrodontain I, is the main proteolytic component present in fruit extracts and was purified by acetone fractionation followed by anion-exchange chromatography. Separation was improved by selecting both an adequate pH value and a narrow saline gradient. Optimum pH range (more than 90% of maximum activity with casein) was achieved at pH 6.1-8.5. Homogeneity of the enzyme was confirmed by bidimensional electrophoresis and mass spectroscopy (MS). Molecular mass of the enzyme was 23,459 (MS) and its isoelectric point was 6.1. The alanine, glutamine, and tyrosine derivatives were strongly preferred when the enzyme was assayed on N-alpha-CBZ-l-amino acid p-nitrophenyl esters. The N-terminal sequence of macrodontain (by comparison with the N-terminus of 30 plant proteases with more than 50% homology) showed a great deal of sequence similarity to the other pineapple-stem-derived cysteine endopeptidases, being 85.7, 85. 2, and 77.8% identical to comosain, stem bromelain, and ananain, respectively. It seems clear that the Bromeliaceae endopeptidases are more closely related to each other than to other members of the papain family, suggesting relatively recent divergence.
Collapse
Affiliation(s)
- L M López
- LIPROVE, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | | | | | | | | | | | | |
Collapse
|
48
|
Kinoshita T, Yamada K, Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I. Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:43-53. [PMID: 10417725 DOI: 10.1046/j.1365-313x.1999.00497.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Vacuolar processing enzyme (VPE) has been shown to be responsible for maturation of various seed proteins in protein-storage vacuoles. Arabidopsis has three VPE homologues; betaVPE is specific to seeds and alphaVPE and gammaVPE are specific to vegetative organs. To investigate the activity of the vegetative VPE, we expressed the gammaVPE in a pep4 strain of the yeast Saccharomyces cerevisiae and found that gammaVPE has the ability to cleave the peptide bond at the carbonyl side of asparagine residues. An immunocytochemical analysis revealed the specific localization of the gammaVPE in the lytic vacuoles of Arabidopsis leaves that had been treated with wounding. These findings indicate that gammaVPE functions in the lytic vacuoles as the betaVPE does in the protein-storage vacuoles. The betaVPE promoter was found to direct the expression of the beta-glucuronidase reporter gene in seeds and the root tip of transgenic Arabidopsis plants. On the other hand, both the alphaVPE and gammaVPE promoters directed the expression in senescent tissues, but not in young intact tissues. The mRNA levels of both alphaVPE and gammaVPE were increased in the primary leaves during senescence in parallel with the increase of the mRNA level of a senescence-associated gene (SAG2). Treatment with wounding, ethylene and salicylic acid up-regulated the expression of alphaVPE and gammaVPE, while jasmonate slightly up-regulated the expression of gammaVPE. These gene expression patterns of the VPEs were associated with the accumulation of vacuolar proteins that are known to respond to these treatments. Taken together, the results suggest that vegetative VPE might regulate the activation of some functional proteins in the lytic vacuoles.
Collapse
Affiliation(s)
- T Kinoshita
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Cercós M, Santamaría S, Carbonell J. Cloning and characterization of TPE4A, a thiol-protease gene induced during ovary senescence and seed germination in pea. PLANT PHYSIOLOGY 1999; 119:1341-8. [PMID: 10198093 PMCID: PMC32019 DOI: 10.1104/pp.119.4.1341] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/1998] [Accepted: 01/11/1999] [Indexed: 05/18/2023]
Abstract
A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization.
Collapse
Affiliation(s)
- M Cercós
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera 14, 46022 Valencia, Spain
| | | | | |
Collapse
|
50
|
Xu FX, Chye ML. Expression of cysteine proteinase during developmental events associated with programmed cell death in brinjal. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:321-327. [PMID: 10097390 DOI: 10.1046/j.1365-313x.1999.00370.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Here we show that the expression of a cysteine proteinase coincides with several developmental events associated with programmed cell death (PCD) in Solanum melongena (brinjal), i.e. during leaf senescence, fruit senescence, xylogenesis, nucellar cell degeneration and anther senescence. We have isolated a cDNA encoding brinjal cysteine proteinase (SmCP) that shares high (90-92%) amino acid identity to cysteine proteinases of tobacco (CYP-8) and tomato (LCYP-2) that have not been previously reported to be senescence-associated. In contrast, SmCP shows lower (39-41%) amino acid identity to other senescence-related cysteine proteinases and, unlike most of them, it is not preferentially expressed in certain organs or cell types. Northern analysis of leaves, fruits and flowers at different stages of development showed that SmCP expression increased significantly at senescence in leaf and fruit, but was highly expressed throughout flower development. In situ hybridization studies on flower sections using an antisense RNA probe localized the SmCP mRNA to the xylem, the epidermis and the endothecium of the anther and the nucellar cells, suggesting its involvement in PCD during xylogenesis, anther senescence and ovule development, respectively. Its expression during nucellar cell degeneration suggests that protein reserves of the nucellus are released to the developing embryo. Polarity in its pattern of expression in the nucellus of the developing seed (40DAP) further implies a directional flow of these nutrients.
Collapse
MESH Headings
- Amino Acid Sequence
- Apoptosis
- Cysteine Endopeptidases/genetics
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- In Situ Hybridization
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Homology, Amino Acid
- Solanaceae/enzymology
- Solanaceae/genetics
- Solanaceae/growth & development
Collapse
Affiliation(s)
- F X Xu
- Department of Botany, University of Hong Kong, China
| | | |
Collapse
|