1
|
Wells A, Rigby J, Castel C, Castel D. Pulsed Red and Blue Photobiomodulation for the Treatment of Thigh Contusions and Soft Tissue Injury: A Randomized Controlled Trial. J Sport Rehabil 2024; 33:20-26. [PMID: 37917978 DOI: 10.1123/jsr.2022-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/09/2023] [Accepted: 08/19/2023] [Indexed: 11/04/2023]
Abstract
CONTEXT Contusion and soft tissue injuries are common in sports. Photobiomodultion, light and laser therapy, is an effective aid to increase healing rates and improve function after various injury mechanisms. However, it is unclear how well photobiomodulation improves function after a contusion soft tissue injury. This study aimed to determine the effects of a pulsed red and blue photobiomodulation light patch on muscle function following a human thigh contusion injury. DESIGN Single-blinded randomized control trial design. METHODS We enrolled 46 healthy participants. Participants completed 5 visits on consecutive days. On the first visit, participants completed a baseline isokinetic quadriceps strength testing protocol at 60°/s and 180°/s. On the second visit, participants were struck in the rectus femoris of the anterior thigh with a tennis ball from a serving machine. Immediately following, participants were treated for 30 minutes with an active or placebo photobiomodulation patch (CareWear light patch system, CareWear Corp). Following the treatment, participants completed the same isokinetic quadriceps strength testing protocol. Participants completed the treatment and isokinetic quadriceps strength test during the following daily visits. We normalized the data by calculating the percent change from baseline. We used a mixed model analysis of covariance, with sex as a covariate, to determine the difference between treatment groups throughout the acute recovery process. RESULTS We found the active photobiomodulation treatment significantly increased over the placebo group, quadriceps peak torque during the 180°/s test (P = .030), and average power during both the 60°/s (P = .041) and 180°/s (P ≤ .001) assessments. The mean peak torque and average power of 180°/s, at day 4, exceeded the baseline levels by 8.9% and 16.8%, respectively. CONCLUSIONS The red and blue photobiomodulation light patch improved muscle strength and power during the acute healing phase of a human thigh contusion injury model.
Collapse
Affiliation(s)
- Aaron Wells
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Justin Rigby
- Department of Physical Therapy and Athletic Training, University of Utah Health, Salt Lake City, UT, USA
| | | | | |
Collapse
|
2
|
Sarveazad A, Yari A, Babaei-Ghazani A, Mokhtare M, Bahardoust M, Asar S, Shamseddin J, Yousefifard M, Babahajian A. Combined application of chondroitinase ABC and photobiomodulation with low-intensity laser on the anal sphincter repair in rabbit. BMC Gastroenterol 2021; 21:473. [PMID: 34911454 PMCID: PMC8672605 DOI: 10.1186/s12876-021-02047-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Photobiomodulation with low-intensity laser (LIL) and chondroitinase ABC (ChABC) can repair damaged muscle tissue, so the aim of this study was to investigate the effect of co-administration of these two factors on anal sphincter repair in rabbits. Methods Male rabbits were studied in 5 groups (n = 7): Control (intact), sphincterotomy, laser, ChABC and laser + ChABC. 90 days after intervention were evaluated resting and maximum squeeze pressures, number of motor units, collagen amount, markers of muscle regeneration and angiogenesis. Results Resting pressure in the Laser + ChABC group was higher than the sphincterotomy, laser and ChABC groups (p < 0.0001). Maximum squeeze pressure in the all study groups was higher than sphincterotomy group (p < 0.0001). In the laser + ChABC and ChABC groups, motor unit numbers were more than the sphincterotomy group (p < 0.0001). Collagen content was significantly decreased in the laser (p < 0.0001) and laser + ChABC groups. ACTA1 (p = 0.001) and MHC (p < 0.0001) gene expression in the Laser + ChABC group were more than the laser or ChABC alone. VEGFA (p = 0.009) and Ki67 mRNA expression (p = 0.01) in the Laser + ChABC group were more than the laser group, But vimentin mRNA expression (p < 0.0001) was less than the laser group. Conclusion Co-administration of ChABCs and photobiomodulation with LIL appears to improve the tissue structure and function of the anal sphincter in rabbits more than when used alone. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-02047-2.
Collapse
Affiliation(s)
- Arash Sarveazad
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran.,Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abazar Yari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Dietary Supplements and Probiotics Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Arash Babaei-Ghazani
- Neuromusculoskeletal Research Center, Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran.,Department of Physical Medicine and Rehabilitation, University of Montreal Health Center, Montreal, Canada
| | - Marjan Mokhtare
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Bahardoust
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Asar
- Department of Anesthesiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Jebreil Shamseddin
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Hemmat Highway, P.O Box: 14665-354, Tehran, Iran.
| | - Asrin Babahajian
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, P.O Box: 14665-354, Sanandaj, Iran.
| |
Collapse
|
3
|
Chaudary S, Karner L, Weidinger A, Meixner B, Rieger S, Metzger M, Zipperle J, Dungel P. In vitro effects of 635 nm photobiomodulation under hypoxia/reoxygenation culture conditions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111935. [PMID: 32622295 DOI: 10.1016/j.jphotobiol.2020.111935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/15/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Photobiomodulation (PBM), especially in the red wavelength range, has been demonstrated to be an effective treatment option for superficial and chronic wounds. However, ischemia and subsequent reperfusion can further challenge wound healing. Therefore, we investigated the effect of pulsed red LED light at 635 nm on cellular function in an in-vitro model of hypoxia/reoxygenation (H/R) challenge. Mouse myoblasts and fibroblasts were incubated in oxygen-deprived starvation medium (hypoxia) for 3 h after which the media was changed to oxygenated, fully supplemented media to simulate reperfusion. Cells were then treated with pulsed red LED light at a wavelength of 635 nm at 40 mW/cm2. Mitochondrial respiratory activity, ATP production and ROS levels were analysed immediately post-illumination. The effects on cellular metabolic activity and proliferation were measured at 6 h and 24 h and apoptosis/necrosis was measured at 24 h post-illumination. Our results show that both cell types reacted differently to H/R challenge and PBM. PBM of H/R-challenged cells enhanced mitochondrial activity and rescued decreased ATP levels, with significant effects in fibroblasts. This was associated with increased cell proliferation rates in both cell types. The increase was again more pronounced in fibroblasts. Our study concluded that PBM with red LED light significantly restored ATP levels during H/R and effectively promoted cell growth under both normoxic and H/R conditions. In clinical applications, PBM has been repeatedly reported to resolve difficult clinical situations in which ischemia/reperfusion injuries are a major issue. Our study confirms the beneficial effects of PBM especially in H/R-challenged cells.
Collapse
Affiliation(s)
- Sidrah Chaudary
- Ludwig Boltzmann institute for experimental and clinical traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Lisa Karner
- Ludwig Boltzmann institute for experimental and clinical traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann institute for experimental and clinical traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Barbara Meixner
- Ludwig Boltzmann institute for experimental and clinical traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Stefan Rieger
- Ludwig Boltzmann institute for experimental and clinical traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Magdalena Metzger
- Ludwig Boltzmann institute for experimental and clinical traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Johannes Zipperle
- Ludwig Boltzmann institute for experimental and clinical traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Peter Dungel
- Ludwig Boltzmann institute for experimental and clinical traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria.
| |
Collapse
|
4
|
Sarveazad A, Babahajian A, Yari A, Rayner CK, Mokhtare M, Babaei-Ghazani A, Agah S, Mahjoubi B, Shamseddin J, Yousefifard M. Combination of laser and human adipose-derived stem cells in repair of rabbit anal sphincter injury: a new therapeutic approach. Stem Cell Res Ther 2019; 10:367. [PMID: 31791407 PMCID: PMC6889595 DOI: 10.1186/s13287-019-1477-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Anal sphincter injury leads to fecal incontinence. Based on the regenerative capability of laser and human adipose-derived stem cells (hADSCs), this study was designed to assess the effects of co-application of these therapies on anal sphincter recovery after injury. Design Male rabbits were assigned to equal groups (n = 7) including control, sphincterotomy, sphincterotomy treated with laser (660 nm, 90 s, immediately after sphincterotomy, daily, 14 days), hADSCs (2 × 106 hADSCs injected into injured area of the sphincter immediately after sphincterotomy), and laser + hADSCs. Ninety days after sphincterotomy, manometry and electromyography were performed, sphincter collagen content was evaluated, and Ki67, myosin heavy chain (MHC), skeletal muscle alpha-actin (ACTA1), vascular endothelial growth factor A (VEGFA), and vimentin mRNA gene expression were assessed. Results The laser + hADSCs group had a higher resting pressure compared with the sphincterotomy (p < 0.0001), laser (p < 0.0001), and hADSCs (p = 0.04) groups. Maximum squeeze pressure was improved in all treated animals compared with the sphincterotomized animals (p < 0.0001), without a significant difference between treatments (p > 0.05). In the laser + hADSCs group, motor unit numbers were higher than those in the laser group (p < 0.0001) but did not differ from the hADSCs group (p = 0.075). Sphincterotomy increased collagen content, but the muscle content (p = 0.36) and collagen content (p = 0.37) were not significantly different between the laser + hADSCs and control groups. Laser + hADSCs increased ACTA1 (p = 0.001) and MHC (p < 0.0001) gene expression compared with laser or hADSCs alone and was associated with increased VEGFA (p = 0.009) and Ki67 mRNA expression (p = 0.01) and decreased vimentin mRNA expression (p < 0.0001) compared with laser. Conclusion The combination of laser and hADSCs appears more effective than either treatment alone for promoting myogenesis, angiogenesis, and functional recovery after anal sphincterotomy.
Collapse
Affiliation(s)
- Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asrin Babahajian
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abazar Yari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Chris K Rayner
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Marjan Mokhtare
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Babaei-Ghazani
- Neuromusculoskeletal Research Center, Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Mahjoubi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jebreil Shamseddin
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Abstract
Photobiomodulation (PB) is a utilization of low-level laser therapy (LLLT) in the far red (R) to near infrared (NIR) spectrum (600-1000 nm) to wield its therapeutic effects. To explore the therapeutic potential of biomodulation of different tissues, LLLT has been extensively researched, especially in the light of its very low side effect profile. We believe there is an opportunity to unearth its dynamic effects on the coronaries which can be promising for the patients with chronic stable angina. NIR treatment of the heart may be protective on patients after acute myocardial infarction or on ischemic heart conditions that are not accessible to current revascularization procedures.
Collapse
Affiliation(s)
- Anandbir Singh Bath
- Resident, Department of Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, 49048, USA.
| | - Vishal Gupta
- Associate Clinical Professor, Department of Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, 49048, USA
| |
Collapse
|
6
|
Hochman L. Photobiomodulation Therapy in Veterinary Medicine: A Review. Top Companion Anim Med 2018; 33:83-88. [PMID: 30243364 DOI: 10.1053/j.tcam.2018.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
Laser therapy, or photobiomodulation, has rapidly grown in popularity in human and veterinary medicine. With a number of proposed indications and broad, sometimes anecdotal, use in practice, research interest has expanded aimed at providing scientific support. Recent studies have shown that laser therapy alters the inflammatory and immune response as well as promotes healing for a variety of tissue types. This review will cover the history of the modality, basic principles, proposed mechanisms of action, evidence-based clinical indications, and will guide the practitioner through its application in practice.
Collapse
Affiliation(s)
- Lindsay Hochman
- University of Florida, College of Veterinary Medicine, Integrative Medicine Service, Gainesville, FL, USA.
| |
Collapse
|
7
|
Low-level laser irradiation induces a transcriptional myotube-like profile in C2C12 myoblasts. Lasers Med Sci 2018; 33:1673-1683. [PMID: 29717386 DOI: 10.1007/s10103-018-2513-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Low-level laser irradiation (LLLI) has been used as a non-invasive method to improve muscular regeneration capability. However, the molecular mechanisms by which LLLI exerts these effects remain largely unknown. Here, we described global gene expression profiling analysis in C2C12 myoblasts after LLLI that identified 514 differentially expressed genes (DEG). Gene ontology and pathway analysis of the DEG revealed transcripts among categories related to cell cycle, ribosome biogenesis, response to stress, cell migration, and cell proliferation. We further intersected the DEG in C2C12 myoblasts after LLLI with publicly available transcriptomes data from myogenic differentiation studies (myoblasts vs myotube) to identify transcripts with potential effects on myogenesis. This analysis revealed 42 DEG between myoblasts and myotube that intersect with altered genes in myoblasts after LLLI. Next, we performed a hierarchical cluster analysis with this set of shared transcripts that showed that LLLI myoblasts have a myotube-like profile, clustering away from the myoblast profile. The myotube-like transcriptional profile of LLLI myoblasts was further confirmed globally considering all the transcripts detected in C2C12 myoblasts after LLLI, by bi-dimensional clustering with myotubes transcriptional profiles, and by the comparison with 154 gene sets derived from previous published in vitro omics data. In conclusion, we demonstrate for the first time that LLLI regulates a set of mRNAs that control myoblast proliferation and differentiation into myotubes. Importantly, this set of mRNAs revealed a myotube-like transcriptional profile in LLLI myoblasts and provide new insights to the understanding of the molecular mechanisms underlying the effects of LLLI on skeletal muscle cells.
Collapse
|
8
|
König A, Zöller N, Kippenberger S, Bernd A, Kaufmann R, Layer PG, Heselich A. Non-thermal near-infrared exposure photobiomodulates cellular responses to ionizing radiation in human full thickness skin models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:115-123. [DOI: 10.1016/j.jphotobiol.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
|
9
|
Çakmak AS, Çakmak S, Vatansever HS, Gümüşderelioğlu M. Photostimulation of osteogenic differentiation on silk scaffolds by plasma arc light source. Lasers Med Sci 2017; 33:785-794. [DOI: 10.1007/s10103-017-2414-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/04/2017] [Indexed: 02/01/2023]
|
10
|
Impact of mitochondrial nitrite reductase on hemodynamics and myocardial contractility. Sci Rep 2017; 7:12092. [PMID: 28935964 PMCID: PMC5608763 DOI: 10.1038/s41598-017-11531-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/22/2017] [Indexed: 01/11/2023] Open
Abstract
Inorganic nitrite (NO2−) can be reduced back to nitric oxide (NO) by several heme proteins called nitrite reductases (NR) which affect both the vascular tonus and hemodynamics. The objective of this study was to clarify the impact of several NRs on the regulation of hemodynamics, for which hemodynamic parameters such as heart rate, blood pressure, arterial stiffness, peripheral resistance and myocardial contractility were characterized by pulse wave analysis. We have demonstrated that NO2− reduced to NO in RBCs predominantly influences the heart rate, while myoglobin (Mb) and mitochondria-derived NO regulates arterial stiffness, peripheral resistance and myocardial contractility. Using ex vivo on-line NO-detection, we showed that Mb is the strongest NR occurring in heart, which operates sufficiently only at very low oxygen levels. In contrast, mitochondrial NR operates under both hypoxia and normoxia. Additional experiments with cardiomyocytes suggested that only mitochondria-derived generation of NO regulates cGMP levels mediating the contractility of cardiomyocytes. Our data suggest that a network of NRs is involved in NO2− mediated regulation of hemodynamics. Oxygen tension and hematocrit define the activity of specific NRs.
Collapse
|
11
|
Bartos A, Grondin Y, Bortoni ME, Ghelfi E, Sepulveda R, Carroll J, Rogers RA. Pre-conditioning with near infrared photobiomodulation reduces inflammatory cytokines and markers of oxidative stress in cochlear hair cells. JOURNAL OF BIOPHOTONICS 2016; 9:1125-1135. [PMID: 26790619 DOI: 10.1002/jbio.201500209] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Hearing loss is a serious occupational health problem worldwide. Noise, aminoglycoside antibiotics and chemotherapeutic drugs induce hearing loss through changes in metabolic functions resulting in sensory cell death in the cochlea. Metabolic sequelae from noise exposure increase production of nitric oxide (NO) and Reactive Oxygen Species (ROS) contributing to higher levels of oxidative stress beyond the physiologic threshold levels of intracellular repair. Photobiomodulation (PBM) therapy is a light treatment involving endogenous chromophores commonly used to reduce inflammation and promote tissue repair. Near infrared light (NIR) from Light Emitting Diodes (LED) at 810 nm wavelength were used as a biochemical modulator of cytokine response in cultured HEI-OC1 auditory cells placed under oxidative stress. Results reported here show that NIR PBM at 810 nm, 30 mW/cm2 , 100 seconds, 1.0 J, 3 J/cm2 altered mitochondrial metabolism and oxidative stress response for up to 24 hours post treatment. We report a decrease of inflammatory cytokines and stress levels resulting from NIR applied to HEI-OC1 auditory cells before treatment with gentamicin or lipopolysaccharide. These results show that cells pretreated with NIR exhibit reduction of proinflammatory markers that correlate with inhibition of mitochondrial superoxide, ROS and NO in response to continuous oxidative stress challenges. Non-invasive biomolecular down regulation of proinflammatory intracellular metabolic pathways and suppression of oxidative stress via NIR may have the potential to develop novel therapeutic approaches to address noise exposure and ototoxic compounds associated with hearing loss.
Collapse
Affiliation(s)
- Adam Bartos
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Yohann Grondin
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Magda E Bortoni
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Elisa Ghelfi
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Rosalinda Sepulveda
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - James Carroll
- THOR Photomedicine Ltd, Chesham, HP5 1LF, United Kingdom
| | - Rick A Rogers
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
12
|
Polychromatic light-induced osteogenic activity in 2D and 3D cultures. Lasers Med Sci 2016; 31:1665-1674. [DOI: 10.1007/s10103-016-2036-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
|
13
|
Wilson K, Terlouw A, Roberts K, Wolchok JC. The characterization of decellularized human skeletal muscle as a blueprint for mimetic scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:125. [PMID: 27324779 PMCID: PMC6260795 DOI: 10.1007/s10856-016-5735-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/28/2016] [Indexed: 05/08/2023]
Abstract
The use of decellularized skeletal muscle (DSM) as a cell substrate and scaffold for the repair of volumetric muscle loss injuries has shown therapeutic promise. The performance of DSM materials motivated our interest in exploring the chemical and physical properties of this promising material. We suggest that these properties could serve as a blueprint for the development of next generation engineered materials with DSM mimetic properties. In this study, whole human lower limb rectus femoris (n = 10) and upper limb supraspinatus muscle samples (n = 10) were collected from both male and female tissue donors. Skeletal muscle samples were decellularized and nine property values, capturing key compositional, architectural, and mechanical properties, were measured and statistically analyzed. Mean values for each property were determined across muscle types and sexes. Additionally, the influence of muscle type (upper vs lower limb) and donor sex (male vs female) on each of the DSM material properties was examined. The data suggests that DSM materials prepared from lower limb rectus femoris samples have an increased modulus and contain a higher collagen content then upper limb supraspinatus muscles. Specifically, lower limb rectus femoris DSM material modulus and collagen content was approximately twice that of lower limb supraspinatus DSM samples. While muscle type did show some influence on material properties, we did not find significant trends related to sex. The material properties reported herein may be used as a blueprint for the data-driven design of next generation engineered scaffolds with muscle mimetic properties, as well as inputs for computational and physical models of skeletal muscle.
Collapse
Affiliation(s)
- Klaire Wilson
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, 125 Engineering Hall, Fayetteville, AR, 72701, USA
| | - Abby Terlouw
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, 125 Engineering Hall, Fayetteville, AR, 72701, USA
| | - Kevin Roberts
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, 125 Engineering Hall, Fayetteville, AR, 72701, USA.
| |
Collapse
|
14
|
Corrêa DG, Okita JT, Martins HRF, Gomes ARS. Effects of GaAs laser and stretching on muscle contusion in rats. FISIOTERAPIA E PESQUISA 2016. [DOI: 10.1590/1809-2950/13903823012016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Laser and stretching are used to treat skeletal muscle injuries. This study aimed to evaluate the effects of GaAs laser and stretching in the morphology of the tibialis anterior (TA) muscle after contusion. Thirty-six male rats (349±23g) were divided into six groups (n=6): control group (CG); lesion group (LG); lesion and laser group (LLG); lesion and stretching group (LSG); lesion, laser and stretching group (LLSG); and stretching group (SG). TA was wounded by a contusion apparatus. We used GaAs laser 4.5 J/cm2 dose for 32 s each, beginning 48 h after lesion, for 7 days, once a day. Manual passive stretching was applied by 10 repetitions for 1 minute, initiating on the 8th day, once a day, 3 times a week, during 3 weeks. After 4 weeks, rats were euthanized and we analyzed: muscle weight and length, cross sectional area of muscle fibers (CSAMF), serial sarcomere number (SSN), sarcomere length, and percentage of connective tissue. Comparisons among groups were made by ANOVA and post hoc Tukey tests, with the significance level set at ≤ 0.05. The serial sarcomere number of LLSG was higher than LSG. The sarcomere length of LSG was superior to LLG, LLSG, and SG. SG increased SSN compared to CG, while the percentage of connective tissue of SG decreased in comparison to LLSG. Thus, the sarcomerogenesis of injured muscles was enhanced by laser therapy, stretching, and association of both. The stretching protocol was enough to increase SSN of intact muscles.
Collapse
|
15
|
Peng F. The Effect of 635 nm Red Laser Irradiation on Proliferation of Bone Marrow Stem Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/opj.2016.68b034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Yu Z, Li Z, Liu N, Jizhang Y, McCarthy TJ, Tedford CE, Lo EH, Wang X. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro. Metab Brain Dis 2015; 30:829-37. [PMID: 25796222 DOI: 10.1007/s11011-015-9663-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 03/04/2015] [Indexed: 01/29/2023]
Abstract
Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.
Collapse
Affiliation(s)
- Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 2401, Charlestown, MA, 02129, USA,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Oron A, Oron U, Sadeh M. Low-Level Laser Therapy During Postnatal Development Modulates Degeneration and Enhances Regeneration Processes in the Hindlimb Muscles of Dystrophic Mice. Photomed Laser Surg 2014; 32:606-11. [DOI: 10.1089/pho.2014.3757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Amir Oron
- Department of Hand Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Uri Oron
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv, University, Tel-Aviv, Israel
| | - Menahem Sadeh
- Department of Neurology, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
18
|
Quirk BJ, Sonowal P, Jazayeri MA, Baker JE, Whelan HT. Cardioprotection from ischemia-reperfusion injury by near-infrared light in rats. Photomed Laser Surg 2014; 32:505-11. [PMID: 25093393 DOI: 10.1089/pho.2014.3743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Abstract Objective: Myocardial reperfusion injury can induce further cardiomyocyte death and contribute to adverse cardiovascular outcomes after myocardial ischemia, cardiac surgery, or circulatory arrest. Exposure to near-infrared (NIR) light at the time of reoxygenation protects neonatal rat cardiomyocytes and HL-1 cells from injury. We hypothesized that application of NIR at 670 nm would protect the heart against ischemia-reperfusion injury. METHODS We assessed the protective role of NIR in in vivo and in vitro rat models of ischemia-reperfusion injury. RESULTS NIR application had no effect on the function of the nonischemic isolated heart, and had no effect on infarct size when applied during global ischemia. In the in vivo model, NIR commencing immediately before reperfusion decreased infarct size by 40%, 33%, 38%, and 77%, respectively, after regional ischemic periods of 30, 20, 15, and 10 min. Serum cardiac troponin I (cTnI) was significantly reduced in the 15 min group, whereas creatine kinase (CK) and lactate dehydrogenase (LDH) levels were not affected. CONCLUSIONS We have demonstrated the safety of NIR application in an in vitro rat isolated model. In addition, we have demonstrated safety and efficacy when using NIR for cardioprotection in an in vivo rat ischemia model, and that this cardioprotection is dependent upon some factor present in blood, but not in perfusion buffer. RESULTS show potential for cTnI, but not CK or LDH, as a biomarker for cardioprotection by NIR. NIR may have therapeutic utility in providing myocardial protection from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Brendan J Quirk
- 1 Department of Neurology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | | | | | | | |
Collapse
|
19
|
Souza NHC, Ferrari RAM, Silva DFT, Nunes FD, Bussadori SK, Fernandes KPS. Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages. Braz J Phys Ther 2014; 18:308-14. [PMID: 25076002 PMCID: PMC4183262 DOI: 10.1590/bjpt-rbf.2014.0046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/17/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND: Macrophages play a major role among the inflammatory cells that invade muscle
tissue following an injury. Low-level laser therapy (LLLT) has long been used in
clinical practice to accelerate the muscle repair process. However, little is
known regarding its effect on macrophages. OBJECTIVE: This study evaluated the effect of LLLT on the mitochondrial activity (MA) of
macrophages. METHOD: J774 macrophages were treated with lipopolysaccharide (LPS) and interferon -
gamma (IFN-γ) (activation) for 24 h to simulate an inflammatory process, then
irradiated with LLLT using two sets of parameters (780 nm; 70 mW; 3
J/cm2 and 660 nm; 15 mW; 7.5 J/cm2).
Non-activated/non-irradiated cells composed the control group. MA was evaluated by
the cell mitochondrial activity (MTT) assay (after 1, 3 and 5 days) in three
independent experiments. The data were analyzed statistically. RESULTS: After 1 day of culture, activated and 780 nm irradiated macrophages showed lower
MA than activated macrophages, but activated and 660 nm irradiated macrophages
showed MA similar to activated cells. After 3 days, activated and irradiated (660
nm and 780 nm) macrophages showed greater MA than activated macrophages, and after
5 days, the activated and irradiated (660 nm and 780 nm) macrophages showed
similar MA to the activated macrophages. CONCLUSIONS: These results show that 660 nm and 780 nm LLLT can modulate the cellular
activation status of macrophages in inflammation, highlighting the importance of
this resource and of the correct determination of its parameters in the repair
process of skeletal muscle.
Collapse
Affiliation(s)
| | | | | | - Fabio D Nunes
- Departamento de Estomatologia, Faculdade de Odontologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | | |
Collapse
|
20
|
Nguyen LMD, Malamo AG, Larkin-Kaiser KA, Borsa PA, Adhihetty PJ. Effect of near-infrared light exposure on mitochondrial signaling in C2C12 muscle cells. Mitochondrion 2013; 14:42-8. [PMID: 24246911 DOI: 10.1016/j.mito.2013.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
Near-infrared (NIR) light is a complementary therapy used to treat musculoskeletal injuries but the underlying mechanisms are unclear. Acute NIR light treatment (~800-950 nm; 22.8 J/cm(2)) induced a dose-dependent increase in mitochondrial signaling (AMPK, p38 MAPK) in differentiated muscle cells. Repeated NIR light exposure (4 days) appeared to elevate oxidative stress and increase the upstream mitochondrial regulatory proteins AMPK (3.1-fold), p38 (2.8-fold), PGC-1α (19.7%), Sirt1 (26.8%), and reduced RIP140 (23.2%), but downstream mitochondrial regulation/content (Tfam, NRF-1, Sirt3, cytochrome c, ETC subunits) was unaltered. Our data indicates that NIR light alters mitochondrial biogenesis signaling and may represent a mechanistic link to the clinical benefits.
Collapse
Affiliation(s)
- Linda M-D Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Angelina G Malamo
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Kelly A Larkin-Kaiser
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Paul A Borsa
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Peter J Adhihetty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
21
|
Low-level laser therapy (LLLT) (660nm) alters gene expression during muscle healing in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 120:29-35. [DOI: 10.1016/j.jphotobiol.2013.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 01/01/2023]
|
22
|
The effects of 780-nm low-level laser therapy on muscle healing process after cryolesion. Lasers Med Sci 2013; 29:91-6. [DOI: 10.1007/s10103-013-1277-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
|
23
|
Ferraresi C, Hamblin MR, Parizotto NA. Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. ACTA ACUST UNITED AC 2012; 1:267-286. [PMID: 23626925 DOI: 10.1515/plm-2012-0032] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of low level laser (light) therapy (LLLT) has recently expanded to cover areas of medicine that were not previously thought of as the usual applications such as wound healing and inflammatory orthopedic conditions. One of these novel application areas is LLLT for muscle fatigue and muscle injury. Since it is becoming agreed that mitochondria are the principal photoacceptors present inside cells, and it is known that muscle cells are exceptionally rich in mitochondria, this suggests that LLLT should be highly beneficial in muscle injuries. The ability of LLLT to stimulate stem cells and progenitor cells means that muscle satellite cells may respond well to LLLT and help muscle repair. Furthermore the ability of LLLT to reduce inflammation and lessen oxidative stress is also beneficial in cases of muscle fatigue and injury. This review covers the literature relating to LLLT and muscles in both preclinical animal experiments and human clinical studies. Athletes, people with injured muscles, and patients with Duchenne muscular dystrophy may all benefit.
Collapse
Affiliation(s)
- Cleber Ferraresi
- Laboratory of Electro-thermo-phototherapy, Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil; and Department of Biotechnology, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | | | | |
Collapse
|
24
|
Vatansever F, Rodrigues NC, Assis LL, Peviani SS, Durigan JL, Moreira FMA, Hamblin MR, Parizotto NA. Low intensity laser therapy accelerates muscle regeneration in aged rats. ACTA ACUST UNITED AC 2012; 1:287-297. [PMID: 23750328 DOI: 10.1515/plm-2012-0035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Elderly people suffer from skeletal muscle disorders that undermine their daily activity and quality of life; some of these problems can be listed as but not limited to: sarcopenia, changes in central and peripheral nervous system, blood hypoperfusion, regenerative changes contributing to atrophy, and muscle weakness. Determination, proliferation and differentiation of satellite cells in the regenerative process are regulated by specific transcription factors, known as myogenic regulatory factors (MRFs). In the elderly, the activation of MRFs is inefficient which hampers the regenerative process. Recent studies found that low intensity laser therapy (LILT) has a stimulatory effect in the muscle regeneration process. However, the effects of this therapy when associated with aging are still unknown. OBJECTIVE This study aimed to evaluate the effects of LILT (λ=830 nm) on the tibialis anterior (TA) muscle of aged rats. SUBJECTS AND METHODS The total of 56 male Wistar rats formed two population sets: old and young, with 28 animals in each set. Each of these sets were randomly divided into four groups of young rats (3 months of age) with n=7 per group and four groups of aged rats (10 months of age) with n=7 per group. These groups were submitted to cryoinjury + laser irradiation, cryoinjury only, laser irradiation only and the control group (no cryoinjury/no laser irradiation). The laser treatment was performed for 5 consecutive days. The first laser application was done 24 h after the injury (on day 2) and on the seventh day, the TA muscle was dissected and removed under anesthesia. After this the animals were euthanized. Histological analyses with toluidine blue as well as hematoxylin-eosin staining (for counting the blood capillaries) were performed for the lesion areas. In addition, MyoD and VEGF mRNA was assessed by quantitative polymerase chain reaction. RESULTS The results showed significant elevation (p<0.05) in MyoD and VEGF genes expression levels. Moreover, capillary blood count was more prominent in elderly rats in laser irradiated groups when compared to young animals. CONCLUSION In conclusion, LILT increased the maturation of satellite cells into myoblasts and myotubes, enhancing the regenerative process of aged rats irradiated with laser.
Collapse
Affiliation(s)
- Fatma Vatansever
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; and Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Silva LH, Silva MT, Gutierrez RM, Conte TC, Toledo CA, Aoki MS, Liebano RE, Miyabara EH. GaAs 904-nm laser irradiation improves myofiber mass recovery during regeneration of skeletal muscle previously damaged by crotoxin. Lasers Med Sci 2011; 27:993-1000. [DOI: 10.1007/s10103-011-1031-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022]
|
26
|
Heselich A, Frohns F, Frohns A, Naumann SC, Layer PG. Near-infrared exposure changes cellular responses to ionizing radiation. Photochem Photobiol 2011; 88:135-46. [PMID: 22053955 DOI: 10.1111/j.1751-1097.2011.01031.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Near infrared (NIR) and X-rays are radiations from different sides of the wavelength spectrum but both are used during medical treatments, as they have severe impacts on cellular processes, including metabolism, gene expression, proliferation and survival. However, both radiations differ strictly in their consequences for exposed patients: NIR effects are generally supposed to be positive, mostly ascribed to a stimulation of metabolism, whereas X-ray leads to genetic instability, an increase of reactive oxygen species (ROS) and DNA damages and finally to cellular death by apoptosis in tumor cells. Since genomic stability after X-irradiation depends on the mitochondrial metabolism, which is well known to be regulated by NIR, we analyzed the impact of NIR on cellular responses of fibroblasts, retinal progenitor cells and keratinocytes to X-radiation. Our data show that previous exposure to naturally occurring doses of nonthermal NIR combined with clinically relevant X-ray doses leads to (1) increased genomic instability, indicated by elevated ratios of mitotic catastrophes, (2) increased ROS, (3) higher amounts of X-irradiated cells entering S-phase and (4) impaired DNA double-strand break repair. Taken together, our data show tremendous effects of NIR on cellular responses to X-rays, probably affecting the results of radiotherapy after NIR exposure during cancer treatment.
Collapse
Affiliation(s)
- Anja Heselich
- Developmental Biology and Neurogenetics, TU Darmstadt, Darmstadt, Germany.
| | | | | | | | | |
Collapse
|
27
|
de Souza TOF, Mesquita DA, Ferrari RAM, Dos Santos Pinto D, Correa L, Bussadori SK, Fernandes KPS, Martins MD. Phototherapy with low-level laser affects the remodeling of types I and III collagen in skeletal muscle repair. Lasers Med Sci 2011; 26:803-14. [PMID: 21761120 DOI: 10.1007/s10103-011-0951-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
The purpose of this article was to analyze the photobiomodulator role of low-level laser therapy (LLLT) on the skeletal muscle remodeling following cryoinjury in rats, focusing the types I and III collagen proteins. Laser phototherapy has been employed to stimulate repair in different tissues. However, its role in skeletal muscle remodeling is not yet well clarified, especially its effect on the collagen component of the extracellular matrix. Fifty adult Wistar rats were divided into four groups: control, sham, cryoinjury, and laser-treated cryoinjury. Laser irradiation was performed three times a week on the injured region using the InGaAlP (indium-gallium-aluminum-phosphorous) laser (660 nm; beam spot of 0.04 cm(2), output power of 20 mW, power density of 0.5 mW/cm(2), energy density of 5 J/cm(2), 10-s exposure time, with a total energy dose of 0.2 J). Five animals were killed after short-term (days 1 and 7) and long-term (14 and 21) durations following injury. The muscles were processed and submitted to hematoxylin and eosin (H&E) and immunohistochemical staining. The histological slices were analyzed qualitatively, semi-quantitatively, and quantitatively. The data were submitted to statistical analysis using the Kruskal-Wallis test. The qualitative analysis of morphological aspects revealed that the muscle repair were very similar in cryoinjury and laser groups on days 1, 14 and 21. However, at 7 days, differences could be observed because there was a reduction in myonecrosis associated to formation of new vessels (angiogenesis) in the laser-treated group. The analysis of the distribution of types I and III collagen, on day 7, revealed a significant increase in the depositing of these proteins in the laser-treated group when compared to the cryoinjury group. InGaAlP diode laser within the power parameters and conditions tested had a biostimulatory effect at the regenerative and fibrotic phases of the skeletal muscle repairs, by promoting angiogenesis, reducing myonecrosis, and inducing types I and III collagen synthesis, following cryoinjury in rat.
Collapse
Affiliation(s)
- Thais Oricchio Fedri de Souza
- Rehabilitation Sciences, Universidade Nove de Julho - UNINOVE, 612, Avenida Francisco Matarazzo, São Paulo, SP, CEP: 05001-100, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Moreira FF, Oliveira ELPD, Barbosa FS, Silva JG. Laserterapia de baixa intensidade na expressão de colágeno após lesão muscular cirúrgica. FISIOTERAPIA E PESQUISA 2011. [DOI: 10.1590/s1809-29502011000100007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A laserterapia é um procedimento utilizado em larga escala nas lesões musculoesqueléticas, devido as suas diversas propriedades, antiinflamatórias, cicatrizantes entre outras. Além disso, há tipos distintos de aparelhos de laser. Mesmo com os diversos modelos experimentais existentes na literatura, não há um consenso sobre a faixa de utilização, bem como o tipo de laser que promove melhor reparo no tecido muscular. Este estudo visa analisar os efeitos da laserterapia de baixa intensidade na expressão de colágeno após lesão muscular. Camundongos Swiss albinos (n=18) foram submetidos à lesão muscular cirúrgica e divididos em dois grupos, controle (C) e teste (T). Os animais foram submetidos a uma irradiação diária de 5 J/cm² pelos lasers AsGaAl 830 nm e AsGa 904 nm e, em diferentes tempos de sacrifício (7 e 14 dias). Os resultados não demonstraram diferença estatística significativa na expressão de colágeno em ambos os grupos analisados. Contudo, os dados apontam que a dose de 5 J/cm² do laser AsGa 904 nm promoveu maior deposição de fibras colágenas após 14 dias de tratamento, sugerindo que a terapia seja efetiva na síntese de colágeno. Outros estudos experimentais, em humanos, devem ser propostos para maiores inferências sobre os resultados do laser no tratamento da lesão muscular.
Collapse
|
29
|
Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 102:182-91. [DOI: 10.1016/j.jphotobiol.2010.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/03/2010] [Accepted: 12/01/2010] [Indexed: 12/14/2022]
|
30
|
Dourado DM, Fávero S, Matias R, Carvalho PDTC, da Cruz-Höfling MA. Low-level laser therapy promotes vascular endothelial growth factor receptor-1 expression in endothelial and nonendothelial cells of mice gastrocnemius exposed to snake venom. Photochem Photobiol 2011; 87:418-26. [PMID: 21166811 DOI: 10.1111/j.1751-1097.2010.00878.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Crotalinae snake venoms cause severe local myonecrosis and microvasculature failure at the bite site. We evaluated whether low-level laser therapy (LLLT) could accelerate angiogenesis and myoregeneration in male Swiss mice injected with Bothrops moojeni venom through immunohistochemistry of the vascular endothelial growth factor receptor-1 (VEGFR-1). Envenomed gastrocnemius was either unirradiated (V) or irradiated with HeNe (VHN, 632.8 nm) or GaAs (VGA, 904 nm, 10000 Hz). Animals sacrificed at 3 and 12 h were irradiated once (4 J cm(-2)), at 24 h (twice) and at 3, 7, 21 days (4, 8, 22 times, respectively). At 3 days, LLLT increased angiogenesis (80%:HeNe vs 40%:GaAs), decreased neutrophils and increased proliferation of regenerating cells. However, after 21 days, myoregeneration observed in the VHN group appeared delayed compared with the V group. As LLLT improved revascularization, the suggestive delay in myoregeneration could be a dose-response inhibitory effect caused by multiple irradiations in myogenesis. The immunodetection of VEGFR-1 in neutrophils, macrophages, satellite cells, fibroblasts, Schwann cells and skeletal and smooth muscle fibers (not seen in saline-controls) at only the acute stages of envenoming suggests a mediator role for VEGFR-1 in local alterations. This is the first time that VEGFR-1 expression, and its modulation by photostimulation, has been demonstrated in endothelial and nonendothelial cells of snake envenomed skeletal muscle.
Collapse
Affiliation(s)
- Doroty M Dourado
- Departmento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
31
|
Rennó ACM, Toma RL, Feitosa SM, Fernandes K, Bossini PS, de Oliveira P, Parizotto N, Ribeiro DA. Comparative effects of low-intensity pulsed ultrasound and low-level laser therapy on injured skeletal muscle. Photomed Laser Surg 2010; 29:5-10. [PMID: 21166589 DOI: 10.1089/pho.2009.2715] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The main purpose of this study was to compare the effects of low-intensity pulsed ultrasound (US) and low-level laser therapy (LLLT) on injured skeletal muscle after cryolesion by means of histopathological analysis and immunohistochemistry for cyclo-oxygenase-2 (COX-2). BACKGROUND AND METHODS Thirty-five male Wistar rats were randomly distributed into four groups: intact control group with uninjured and untreated animals; injured control group with muscle injury and no treatment; LLLT-treated group with muscle injury treated with 830-nm laser; and US-treated group with muscle injury treated with US. Treatments started 24 h postsurgery and were performed during six sessions. RESULTS LLLT-treated animals presented minor degenerative changes of muscle tissue. Exposure to US reduced tissue injuries induced by cryolesion, but less effectively than LLLT. A large number of COX-2 positive cells were found in untreated injured rats, whereas COX-2 immunoexpression was lower in both LLLT- and US-treated groups. CONCLUSION This study revealed that both LLLT and US therapies have positive effects on muscle metabolism after an injury in rats, but LLLT seems to produce a better response.
Collapse
|
32
|
Kim IS, Cho TH, Kim K, Weber FE, Hwang SJ. High power-pulsed Nd:YAG laser as a new stimulus to induce BMP-2 expression in MC3T3-E1 osteoblasts. Lasers Surg Med 2010; 42:510-8. [PMID: 20127830 DOI: 10.1002/lsm.20870] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE High-power laser has recently become a physical stimulus for bone regeneration. Little is known about how high-power laser irradiation affects osteoblast differentiation. This study investigated osteoblast responses to high-power laser and combined irradiation with BMP-2 treatment. STUDY DESIGN/MATERIALS AND METHODS MC3T3-E1 pre-osteoblasts were exposed to laser irradiation, 100 ng/ml BMP-2 or both. Cells were irradiated with a Q-switched, pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser, with a 1,064 nm wavelength and 0.75 W output power under 1.5, 3, or 5 J/cm(2) energy densities. Cell proliferation was evaluated using tetrazolium salt, WST-8. To determine the effect of these treatments on in vitro osteogenesis, we examined alkaline phosphatase (ALP) activity, mineral deposition, and expression of genes associated with osteogenesis. Quantitative real time PCR or ELISA was used to examine cytokine expression. In each experiment, either non-irradiated or BMP-2 (100 ng/ml)-treated cells were used as controls. RESULTS High-power, low-level, Nd:YAG laser irradiation significantly increased ALP activity, when combined with BMP-2 or not. Cell proliferation declined in the irradiation and combined irradiation/BMP-2 groups. Interestingly, Nd:YAG laser stimulation resulted in significant induction of endogenous BMP-2 protein and gene expression. The increased expression of upstream regulators cbfa1 by Nd:YAG laser alone was comparable to exogenous BMP-2 treatment (100 ng/ml). Combined laser/BMP-2 treatment was synergistic in the expression of some genes (IGF-1, cbfa1) and ALP activity, compared to both BMP-2 treatment and laser irradiation alone. In vitro matrix mineralization was significantly accelerated by laser stimulation compared to that of the control, more so than with the combined laser/BMP-2 treatment. CONCLUSIONS The present in vitro findings demonstrate that high-power, low-level Nd:YAG laser increased osteoblast activity, very efficiently accelerating mineral deposition. Osteoinductive effect of laser is likely mediated by activation of BMP-2-related signaling pathway.
Collapse
Affiliation(s)
- In Sook Kim
- Dental Research Institute, Seoul National University, 28 Yeongun-Dong, Chongro-Gu, Seoul, 110-749, Republic of Korea
| | | | | | | | | |
Collapse
|
33
|
Ferraresi C, de Brito Oliveira T, de Oliveira Zafalon L, de Menezes Reiff RB, Baldissera V, de Andrade Perez SE, Matheucci Júnior E, Parizotto NA. Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 2010; 26:349-58. [PMID: 21086010 DOI: 10.1007/s10103-010-0855-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
Recent studies have investigated whether low level laser therapy (LLLT) can optimize human muscle performance in physical exercise. This study tested the effect of LLLT on muscle performance in physical strength training in humans compared with strength training only. The study involved 36 men (20.8±2.2 years old), clinically healthy, with a beginner and/or moderate physical activity training pattern. The subjects were randomly distributed into three groups: TLG (training with LLLT), TG (training only) and CG (control). The training for TG and TLG subjects involved the leg-press exercise with a load equal to 80% of one repetition maximum (1RM) in the leg-press test over 12 consecutive weeks. The LLLT was applied to the quadriceps muscle of both lower limbs of the TLG subjects immediately after the end of each training session. Using an infrared laser device (808 nm) with six diodes of 60 mW each a total energy of 50.4 J of LLLT was administered over 140 s. Muscle strength was assessed using the 1RM leg-press test and the isokinetic dynamometer test. The muscle volume of the thigh of the dominant limb was assessed by thigh perimetry. The TLG subjects showed an increase of 55% in the 1RM leg-press test, which was significantly higher than the increases in the TG subjects (26%, P = 0.033) and in the CG subjects (0.27%, P < 0.001). The TLG was the only group to show an increase in muscle performance in the isokinetic dynamometry test compared with baseline. The increases in thigh perimeter in the TLG subjects and TG subjects were not significantly different (4.52% and 2.75%, respectively; P = 0.775). Strength training associated with LLLT can increase muscle performance compared with strength training only.
Collapse
Affiliation(s)
- Cleber Ferraresi
- Laboratory of Electrothermophototherapy, Department of Physical Therapy, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ferreira MPP, Ferrari RAM, Gravalos ED, Martins MD, Bussadori SK, Gonzalez DAB, Fernandes KPS. Effect of low-energy gallium-aluminum-arsenide and aluminium gallium indium phosphide laser irradiation on the viability of C2C12 myoblasts in a muscle injury model. Photomed Laser Surg 2010; 27:901-6. [PMID: 19698002 DOI: 10.1089/pho.2008.2427] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To evaluate the effect of phototherapy on the viability of cultured C2C12 myoblasts under different nutritional conditions (muscle injury model) using low-energy gallium-aluminum-arsenide (GaAlAs) and aluminium-gallium-indium-phosphide (InGaAlP) lasers with different wavelengths and powers. BACKGROUND DATA The beneficial effects of phototherapy using low-energy lasers depend on irradiation parameters and type of laser used, but there are no data in the literature on C2C12 myoblasts proliferation after phototherapy with GaAlAs and InGaAlP lasers. METHODS A C2C12 cell line cultured in regular (10% fetal bovine serum, FBS) and nutrient-deficient (5% FBS) media were irradiated with low-energy GaAlAs (660 nm) and InGaAlP (780 nm) lasers with energy densities of 3.8, 6.3, and 10 J/cm2, and 3.8, 10, and 17.5 J/cm2, respectively. Cell proliferation was assessed indirectly 24 h after irradiation by measuring the mitochondrial activity and using the crystal violet assay. RESULTS There were no significant differences in cell viability between laser-treated myoblasts and control cultures for all tested parameters after 24 h of cell culture, although cell cultures grown in regular nutrient medium supplemented with 10% FBS exhibited higher growth rates than cultures, irradiated or not, grown in nutrient-deficient medium. CONCLUSION Laser phototherapy did not improve C2C12 viability under regular or nutrient-deficient (muscle injury model) conditions using the above parameters.
Collapse
|
35
|
Nakano J, Kataoka H, Sakamoto J, Origuchi T, Okita M, Yoshimura T. Low-level laser irradiation promotes the recovery of atrophied gastrocnemius skeletal muscle in rats. Exp Physiol 2009; 94:1005-15. [PMID: 19525315 DOI: 10.1113/expphysiol.2009.047738] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Low-level laser (LLL) irradiation promotes proliferation of muscle satellite cells, angiogenesis and expression of growth factors. Satellite cells, angiogenesis and growth factors play important roles in the regeneration of muscle. The objective of this study was to examine the effect of LLL irradiation on rat gastrocnemius muscle recovering from disuse muscle atrophy. Eight-week-old rats were subjected to hindlimb suspension for 2 weeks, after which they were released and recovered. During the recovery period, rats underwent daily LLL irradiation (Ga-Al-As laser; 830 nm; 60 mW; total, 180 s) to the right gastrocnemius muscle through the skin. The untreated left gastrocnemius muscle served as the control. In conjunction with LLL irradiation, 5-bromo-2-deoxyuridine (BrdU) was injected subcutaneously to label the nuclei of proliferating cells. After 2 weeks, myofibre diameters of irradiated muscle increased in comparison with those of untreated muscle, but did not recover back to normal levels. Additionally, in the superficial region of the irradiated muscle, the number of capillaries and fibroblast growth factor levels exhibited significant elevation relative to those of untreated muscle. In the deep region of irradiated muscle, BrdU-positive nuclei of satellite cells and/or myofibres increased significantly relative to those of the untreated muscle. The results of this study suggest that LLL irradiation can promote recovery from disuse muscle atrophy in association with proliferation of satellite cells and angiogenesis.
Collapse
Affiliation(s)
- Jiro Nakano
- Unit of Physical Therapy and Occupational Therapy Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8052, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Doin-Silva R, Baranauskas V, Rodrigues-Simioni L, da Cruz-Höfling MA. The Ability of Low Level Laser Therapy to Prevent Muscle Tissue Damage Induced by Snake Venom. Photochem Photobiol 2009; 85:63-9. [DOI: 10.1111/j.1751-1097.2008.00397.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Cressoni MDC, Giusti HHKD, Casarotto RA, Anaruma CA. The Effects of a 785-nm AlGaInP Laser on the Regeneration of Rat Anterior Tibialis Muscle After Surgically-Induced Injury. Photomed Laser Surg 2008; 26:461-6. [DOI: 10.1089/pho.2007.2150] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | - Carlos Alberto Anaruma
- Department of Physical Education, Júlio de Mesquita Filho, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
38
|
Zhang R, Mio Y, Pratt PF, Lohr N, Warltier DC, Whelan HT, Zhu D, Jacobs ER, Medhora M, Bienengraeber M. Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol 2008; 46:4-14. [PMID: 18930064 DOI: 10.1016/j.yjmcc.2008.09.707] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 08/30/2008] [Accepted: 09/10/2008] [Indexed: 12/16/2022]
Abstract
Photobiomodulation with near infrared light (NIR) provides cellular protection in various disease models. Previously, infrared light emitted by a low-energy laser has been shown to significantly improve recovery from ischemic injury of the canine heart. The goal of this investigation was to test the hypothesis that NIR (670 nm) from light emitting diodes produces cellular protection against hypoxia and reoxygenation-induced cardiomyocyte injury. Additionally, nitric oxide (NO) was investigated as a potential cellular mediator of NIR. Our results demonstrate that exposure to NIR at the time of reoxygenation protects neonatal rat cardiomyocytes and HL-1 cells from injury, as assessed by lactate dehydrogenase release and MTT assay. Similarly, indices of apoptosis, including caspase 3 activity, annexin binding and the release of cytochrome c from mitochondria into the cytosol, were decreased after NIR treatment. NIR increased NO in cardiomyocytes, and the protective effect of NIR was completely reversed by the NO scavengers carboxy-PTIO and oxyhemoglobin, but only partially blocked by the NO synthase (NOS) inhibitor L-NMMA. Mitochondrial metabolism, measured by ATP synthase activity, was increased by NIR, and NO-induced inhibition of oxygen consumption with substrates for complex I or complex IV was reversed by exposure to NIR. Taken together these data provide evidence for protection against hypoxia and reoxygenation injury in cardiomyocytes by NIR in a manner that is dependent upon NO derived from NOS and non-NOS sources.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53326, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Low-level laser therapy is an irradiation technique that has the ability to induce biological processes using photon energy. There are studies showing proliferation and angiogenesis after irradiation in skeletal muscle post-myocardial infarction tissue cells. Most evidence of efficacy is based on the increase in energy state and the activation of mitochondrial pathways. In the brain, there is similar evidence of cellular activity with laser irradiation. In vivo studies reinforced the efficacy of this technique for a better neurological and functional outcome post-stroke. The evidence is based on in vivo animal studies of various models and one human clinical study. Although the data is very promising, some fundamental questions remain to be answered, such as the exact mechanism along the cascade of post-stroke interconnective molecular disturbance, the optimal technique and time of treatment, and the long-term safety aspects. The answers to these questions are expected to evolve within the next few years.
Collapse
Affiliation(s)
- Yair Lampl
- Edith Wolfson Medical Center, Department of Neurology, Holon, Israel.
| |
Collapse
|
40
|
Santos HDL, Rigos CF, Tedesco AC, Ciancaglini P. Biostimulation of Na,K-ATPase by low-energy laser irradiation (685 nm, 35 mW): comparative effects in membrane, solubilized and DPPC:DPPE-liposome reconstituted enzyme. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 89:22-8. [PMID: 17804250 DOI: 10.1016/j.jphotobiol.2007.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/25/2007] [Accepted: 07/30/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of the present work was to investigate the effect of low-energy laser irradiation (685 nm, 35 mW) on the ATPase activity of the different forms of the Na,K-ATPase. METHODS Membrane-bound and solubilized (alphabeta)(2) form of Na,K-ATPase was obtained from the dark red outer medulla of the kidney and proteoliposomes of DPPC:DPPE and Na,K-ATPase was prepared by the co-solubilization method. Irradiations were carried out at 685 nm using an InGaAIP diode laser. RESULTS The ATPase activity of the membrane fraction was not altered with exposition to irradiation doses between 4 and 24 J/cm(2). However, with irradiation doses ranging from 32 to 40 J/cm(2), a 28% increase on the ATPase activity was observed while when using up to 50 J/cm(2) no additional enhancement was observed. When biostimulation was done using the solubilized and purified enzyme or the DPPC:DPPE-liposome reconstituted enzyme, an increase of about 36-40% on the ATPase activity was observed using only 4-8 J/cm(2). With irradiation above these values (24 J/cm(2)) no additional increase in the activity was observed. These studies revealed that the biostimulation of ATPase activity from different forms of the Na,K-ATPase is dose dependent in different ranges of irradiation exposure. The stimulation promoted by visible laser doses was modulated and the process was reverted after 2 h for the enzyme present in the membrane and after about 5 h for the solubilized or the reconstituted in DPPC:DPPE-liposomes.
Collapse
Affiliation(s)
- Hérica de Lima Santos
- Universidade Federal de São João Del Rei, Departamento de Ciências Naturais, DCNAT/UFSJ, Brazil
| | | | | | | |
Collapse
|
41
|
Abstract
This review discusses the application of He-Ne laser irradiation to injured muscles at optimal power densities and optimal timing, which was found to significantly enhance (twofold) muscle regeneration in rats and, even more, in the cold-blooded toads. Multiple and frequent (daily) application of the laser in the toad model was found to be less effective than irradiation on alternate days. It was found that in the ischemia/reperfusion type of injury in the skeletal leg muscles (3 h of ischemia), infrared Ga-Al-As laser irradiation reduced muscle degeneration, increased the cytoprotective heat shock proteins (HSP-70i) content, and produced a twofold increase in total antioxidants. In vitro studies on myogenic satellite cells (SC) revealed that phototherapy restored their proliferation. Phototherapy induced mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) phosphorylation in these cells, probably by specific receptor phosphorylation. Cell cycle entry and the accumulation of satellite cells around isolated single myofibers cultured in vitro was also stimulated by phototherapy. Phototherapy also had beneficial effects on mouse, rat, dog and pig ischemic heart models. In these models, it was found that phototherapy markedly and significantly reduced (50-70%) the scar tissue formed after induction of myocardial infarction (MI). The phototherapeutic effect was associated with reduction of ventricular dilatation, preservation of mitochondria and elevation of HSP- 70i and ATP in the infarcted zone. It is concluded that phototherapy using the correct parameters and timing has a markedly beneficial effect on repair processes after injury or ischemia in skeletal and heart muscles. This phenomenon may have clinical applications.
Collapse
Affiliation(s)
- Uri Oron
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel.
| |
Collapse
|
42
|
Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RAB. Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 2006; 24:158-68. [PMID: 16706694 DOI: 10.1089/pho.2006.24.158] [Citation(s) in RCA: 354] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of this study was to review the biological and clinical short-term effects of photoradiation in acute pain from soft-tissue injury. BACKGROUND DATA It is unclear if and how photoradiation can reduce acute pain. METHODS Literature search of (i) controlled laboratory trials investigating potential biological mechanisms for pain relief and (ii) randomized placebo-controlled clinical trials which measure outcomes within the first 7 days after acute soft-tissue injury. RESULTS There is strong evidence from 19 out of 22 controlled laboratory studies that photoradiation can modulate inflammatory pain by reducing levels of biochemical markers (PGE(2), mRNA Cox 2, IL-1beta, TNFalpha), neutrophil cell influx, oxidative stress, and formation of edema and hemorrhage in a dose-dependent manner (median dose 7.5 J/cm(2), range 0.3-19 J/cm(2)). Four comparisons with non-steroidal anti-inflammatory drugs (NSAIDs) in animal studies found optimal doses of photoradiation and NSAIDs to be equally effective. Seven randomized placebo-controlled trials found no significant results after irradiating only a single point on the skin overlying the site of injury, or after using a total energy dose below 5 Joules. Nine randomized placebo-controlled trials (n = 609) were of acceptable methodological quality, and irradiated three or more points and/or more than 2.5 cm(2) at site of injury or surgical incision, with a total energy of 5.0-19.5 Joules. Results in these nine trials were significantly in favor of photoradiation groups over placebo groups in 15 out of 18 outcome comparisons. Poor and heterogeneous data presentation hampered statistical pooling of continuous data. Categorical data of subjective improvement were homogeneous (Q-value = 7.1) and could be calculated from four trials (n = 379) giving a significant relative risk for improvement of 2.7 (95% confidence interval [CI], 1.8-3.9) in a fixed effects model. CONCLUSION photoradiation can modulate inflammatory processes in a dose-dependent manner and can be titrated to significantly reduce acute inflammatory pain in clinical settings. Further clinical trials with adequate photoradiation doses are needed to precisely estimate the effect size for photoradiation in acute pain.
Collapse
Affiliation(s)
- Jan Magnus Bjordal
- Section of Physiotherapy Science, University of Bergen, Bergen University College, Norway.
| | | | | | | | | |
Collapse
|
43
|
Barzelai S, Sharabani-Yosef O, Holbova R, Castel D, Walden R, Engelberg S, Scheinowitz M. Low-intensity ultrasound induces angiogenesis in rat hind-limb ischemia. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:139-45. [PMID: 16364805 DOI: 10.1016/j.ultrasmedbio.2005.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 08/11/2005] [Accepted: 08/23/2005] [Indexed: 05/05/2023]
Abstract
We investigated the effect of low-intensity ultrasound (US) on tissue blood flow and angiogenesis after limb ischemia in vivo. Rats underwent surgical ligation of the femoral or the iliac arteries. Half the animals were exposed to low-intensity US (0.05 W/cm2) during three consecutive sessions. At 3 weeks postsurgery, limb perfusion was assessed using laser Doppler and angiography. Immunostaining and vascular endothelial growth factor (VEGF) messenger ribonucleic acid (mRNA) expression were performed 7 d postsurgery. US irradiation significantly improved limb perfusion in both ischemic models (p = 0.04). Angiography showed increased blood vessels in the moderate ischemia (p = 0.01), but not in the severe ischemia (p = 0.19). Histology demonstrated a significantly higher number of blood vessels and proliferating cells in US-irradiated moderate and severe ischemia (p = 0.002 and p = 0.03, respectively). VEGF mRNA was significantly higher in moderate ischemia (p = 0.02). No differences in apoptotic cell death were evident in the models. Low-intensity US significantly improved tissue blood flow and angiogenesis, irrespective of the extent of the ischemia. (E-mail: ).
Collapse
Affiliation(s)
- Sharon Barzelai
- Department of Biomedical Engineering, Sheba Medical Center, Tel-Aviv University, Ramat-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
44
|
Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 2005; 23:161-6. [PMID: 15910179 DOI: 10.1089/pho.2005.23.161] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The aim of the present study was to investigate the effect of low-level laser irradiation on proliferation and differentiation of a human osteoblast cell line. BACKGROUND DATA It was previously found that low-level laser therapy (LLLT) enhances bone repair in experimental models. MATERIALS AND METHODS Cultured osteoblast cells were irradiated using He-Ne laser irradiation (632 nm; 10 mW power output). On the second and third day after seeding the osteoblasts were exposed to laser irradiation. The effect of irradiation on osteoblast proliferation was quantified by cell count and colorimetric MTT (dimethylthiazol tetrazolium bromide) assay 24 and 48 h after second irradiation. RESULTS A significant 31-58% increase in cell survival (MTT assay) and higher cell count in the once-irradiated as compared to nonirradiated cells was monitored. Differentiation and maturation of the cells was followed by osteogenic markers: alkaline phosphatase (ALP), osteopontin (OP), and bone sialoprotein (BSP). A two-fold enhancement of ALP activity and expression of OP and BSP was much higher in the irradiated cells as compared to non-irradiated osteoblasts. CONCLUSION We conclude that LLLT promotes proliferation and maturation of human osteoblasts in vitro. These results may have clinical implications.
Collapse
Affiliation(s)
- A Stein
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
45
|
Avni D, Levkovitz S, Maltz L, Oron U. Protection of Skeletal Muscles from Ischemic Injury: Low-Level Laser Therapy Increases Antioxidant Activity. Photomed Laser Surg 2005; 23:273-7. [PMID: 15954814 DOI: 10.1089/pho.2005.23.273] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effect of low-level laser therapy (LLLT) on ischemic-reperfusion (I-R) injury in the gastrocnemius muscle of the rat. BACKGROUND DATA Ischemic injury in skeletal muscle is initiated during hypoxia and is aggravated by reoxygenation during blood reperfusion and accumulation of cytotoxic reactive oxygen superoxides. LLLT has been found to biostimulate various biological processes, such as attenuation of ischemic injury in the heart. MATERIALS AND METHODS The injury was induced in the gastrocnemius muscles of 106 rats by complete occlusion of the blood supply for 3 h, followed by reperfusion. Another group of intact rats served to investigate the effect of LLLT on intact nonischemic muscles. Creatine phosphokinase, acid phosphatase, and heat shock protein were determined 7 days after I-R injury and antioxidant levels 2 h after reperfusion. RESULTS Laser irradiation (Ga-As, 810 nm) was applied to the muscles immediately and 1 h following blood supply occlusion. It was found that laser irradiation markedly protects skeletal muscles from degeneration following acute I-R injury. This was evident by significantly (p < 0.05) higher content of creatine phosphokinase activity and lower (p < 0.05) activity of acid phosphatase in the LLLT-treated muscles relative to the injured non-irradiated ones. The content of antioxidants and heat shock proteins was also higher (p < 0.05) in the LLLT-treated muscles relative to that of injured non-irradiated muscles. CONCLUSION The present study describes for the first time the ability of LLLT to significantly prevent degeneration following ischemia/reperfusion injury in skeletal muscles, probably by induction of synthesis of antioxidants and other cytoprotective proteins, such as hsp-70i. The elevation of antioxidants was also evident in intact muscle following LLLT. The above phenomenon may also be of clinical relevance in scheduled surgery or microsurgery requiring extended tourniquet applications to skeletal muscle followed by reperfusion.
Collapse
Affiliation(s)
- Dorit Avni
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
46
|
Reddy GK. Photobiological Basis and Clinical Role of Low-Intensity Lasers in Biology and Medicine. ACTA ACUST UNITED AC 2004; 22:141-50. [PMID: 15165389 DOI: 10.1089/104454704774076208] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this article is to provide a comprehensive review on the clinical role of low intensity laser therapy (laser photostimulation) in biology and medicine. Studies on wound healing and pain relief are highlighted to show the clinical efficacy of laser therapy. Controversies about the use of low intensity laser as a therapeutic modality for wound healing and pain relief are presented and a brief explanation is provided to overcome these controversies. The importance of standard parameters is emphasized for the applications of low intensity lasers in biology and medicine. A justification has been made to warrant further research on the use of low intensity laser as a therapeutic modality. Although the therapeutic applications of low intensity laser are imminent, the heterogeneity in treatment protocols and study design calls for a vigilant interpretation of the findings.
Collapse
Affiliation(s)
- G Kesava Reddy
- Department of Physical Therapy and Rehabilitation Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
47
|
Nicolau RA, Martinez MS, Rigau J, Tomàs J. Effect of low power 655 nm diode laser irradiation on the neuromuscular junctions of the mouse diaphragm. Lasers Surg Med 2004; 34:277-84. [PMID: 15022258 DOI: 10.1002/lsm.20006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES Low level laser therapy (LLLT) in specific wavelengths and fluence maintains the electrophysiological activity of injured peripheral nerve in rats, preventing scar formation (at injury site) as well as degenerative changes in the corresponding motor neurons of the spinal cord, thus accelerating regeneration of the injured nerve. We studied the effect of LLLT on the neurotransmitter release in neuromuscular junctions of the mouse diaphragm. STUDY DESIGN/MATERIALS AND METHODS Thirty-nine diaphragm muscles were studied. LLLT with GaAlAs 655 nm (1-12 J/cm(2)) was used. Neurotransmitter release was studied by conventional intracellular recording techniques on curarised or high magnesium media. Quantal content, amplitude, latency and rise time were analysed for end-plate potentials (EPPs). Frequency and amplitude were evaluated for the miniature end-plate potentials (MEPPs). Short-term plasticity of the neurotransmitter release (fast facilitation) was also evaluated by paired pulse stimulation. RESULTS AND CONCLUSIONS This study showed that LLLT (655 nm) in these doses has no detectable physiological effect on the motor end-plate neurotransmitter release in mice.
Collapse
Affiliation(s)
- Renata Amadei Nicolau
- Institute for Research and Development, Universidade do Vale do Paralba (Univap)-SJC, Brazil.
| | | | | | | |
Collapse
|
48
|
Ueda Y, Shimizu N. Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. ACTA ACUST UNITED AC 2004; 21:271-7. [PMID: 14651794 DOI: 10.1089/104454703322564479] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the effect of pulse frequencies of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells in vitro. BACKGROUND DATA Various photo-biostimulatory effects of LLLT, including bone formation, were affected by some irradiation factors such as total energy dose, irradiation phase, laser spectrum, and power density. However, the effects of pulse frequencies used during laser irradiation on bone formation have not been elucidated. MATERIALS AND METHODS Osteoblast-like cells isolated from fetal rat calvariae were irradiated once with a low-energy Ga-Al-As laser (830 nm, 500 mW, 0.48-3.84 J/cm2) in four different irradiation modes: continuous irradiation (CI), and 1-, 2-, and 8-Hz pulsed irradiation (PI-1, PI-2, PI-8). We then investigated the effects on cellular proliferation, bone nodule formation, alkaline phosphatase (ALP) activity, and ALP gene expression. RESULTS Laser irradiation in all four groups significantly stimulated cellular proliferation, bone nodule formation, ALP activity, and ALP gene expression, as compared with the non-irradiation group. Notably, PI-1 and -2 irradiation markedly stimulated these factors, when compared with the CI and PI-8 groups, and PI-2 irradiation was the best approach for bone nodule formation in the present experimental conditions. CONCLUSION Since low-frequency pulsed laser irradiation significantly stimulates bone formation in vitro, it is most likely that the pulse frequency of LLLT an important factor affecting biological responses in bone formation.
Collapse
Affiliation(s)
- Yuji Ueda
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo Chiba, Japan
| | | |
Collapse
|
49
|
Reddy GK. Comparison of the photostimulatory effects of visible He-Ne and infrared Ga-As lasers on healing impaired diabetic rat wounds. Lasers Surg Med 2003; 33:344-51. [PMID: 14677162 DOI: 10.1002/lsm.10227] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES In this study, the ability of photostimulation to promote healing of impaired wounds was investigated using a Ga-As laser in rats with experimental diabetes and the results were compared with previously reported findings of the effects of a He-Ne laser on the repair of healing-impaired diabetic rat wounds 1. STUDY DESIGN/MATERIALS AND METHODS Diabetes was induced in male rats by streptozotocin injection following which two full thickness punch wounds of 6-mm diameter were created in the skin, one on either side of the spine of each animal. The left wound of each animal was treated with infrared radiation at 904 nm produced by a Ga-As laser at an energy density of 1.0 J/cm(2). The right wound of each animal served as the control. The wounds were treated with a laser 5 days a week for 3 weeks. Following animal sacrifice, the strips of skin containing the wound sites were collected and analyzed. RESULTS The results from the biomechanical analysis indicated that the Ga-As laser used in this study significantly increased wound tensile strain and toughness compared to the control wounds. Marginal increases in wound tensile strength (9%) and stress (7%) were observed in the Ga-As laser-treated wounds compared to the controls. No significant changes were found in Young's modulus and energy absorption capacity between the control and laser-treated wounds. Analysis of wound collagen revealed a significant increases in total collagen (14%), salt soluble collagen (31%), acid soluble (14%), and insoluble collagen (50%) with simultaneous decrease in pepsin soluble collagen (19%) in the Ga-As laser-treated wounds compared to controls. Comparisons of these results with the earlier findings revealed that the He-Ne laser appears to be superior to the Ga-As laser, at the parameters of treatment tested, in promoting the wound healing in diabetic rats. CONCLUSIONS The differences in stimulatory effects noted between the He-Ne and Ga-As lasers suggest that the photochemical response the cells for each laser may depend on the wavelength and coherent properties of the electromagnetic radiation.
Collapse
Affiliation(s)
- G Kesava Reddy
- Department of Physical Therapy and Rehabilitation Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160-7601, USA.
| |
Collapse
|
50
|
Shefer G, Barash I, Oron U, Halevy O. Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1593:131-9. [PMID: 12581857 DOI: 10.1016/s0167-4889(02)00350-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Low-energy laser irradiation (LELI) drives quiescent skeletal muscle satellite cells into the cell cycle and enhances their proliferation, thereby promoting skeletal muscle regeneration. Ongoing protein synthesis is a prerequisite for these processes. Here, we studied the signaling pathways involved in the LELI regulation of protein synthesis. High levels of labeled [35S]methionine incorporation were detected in LELI cells as early as 20 min after irradiation, suggesting translation of pre-existing mRNAs. Induced levels of protein synthesis were detected up until 8 h after LELI implying a role for LELI in de novo protein synthesis. Elevated levels of cyclin D1, associated with augmented phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and its inhibitory binding protein PHAS-I, suggested the involvement of LELI in the initiation steps of protein translation. In the presence of the MEK inhibitor, PD98059, eIF4E phosphorylation was abolished and levels of cyclin D1 were dramatically reduced. The LELI-induced PHAS-I phosphorylation was abolished after preincubation with the PI3K inhibitor, Wortmannin. Concomitantly, LELI enhanced Akt phosphorylation, which was attenuated in the presence of Wortmannin. Taken together, these results suggest that LELI induces protein translation via the PI3K/Akt and Ras/Raf/ERK pathways.
Collapse
Affiliation(s)
- Gavriela Shefer
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | | | | | | |
Collapse
|