1
|
Rocha Venancio Meyer-Sand B, Boeschoten LE, Bouka GUD, Ciliane-Madikou JCU, de Groot GA, de Vries N, Engone Obiang NL, Esselink D, Guieshon-Engongoro M, Hardy OJ, Jansen S, Loumeto JJ, Mbika DMMF, Moundounga CG, Ndiade-Bourobou D, Ndangani RMD, Smulders MJM, Tassiamba SN, Tchamba MT, Toumba-Paka BBL, Zanguim HT, Zemtsa PT, Zuidema PA. Unlocking the geography of Azobé timber (Lophira alata): revealing spatial genetic structure beyond species boundaries. BMC PLANT BIOLOGY 2025; 25:315. [PMID: 40075285 PMCID: PMC11899005 DOI: 10.1186/s12870-025-06287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND The illegal trade of tropical timber constitutes a major and persistent environmental problem. Since the detection of fraud in trade documents remains challenging, forensic tools that can independently trace timber origin are needed. In this study, we evaluated the potential of the chloroplast genome (plastome) as a genetic tool to verify the claimed species and geographic origin of timber from Azobé (Lophira alata), an intensively exploited and threatened tropical tree species. RESULTS We sampled 480 trees from Lophira alata and the congeneric species L. lanceolata across nine countries in Central and West Africa. Sampling included L. alata trees from 15 logging concessions in Cameroon, Gabon and the Republic of the Congo. DNA was isolated from the cambium or leaf tissue, and complete plastid genomes were assembled. A total of 228 SNPs from 436 trees were retained, which formed 35 pDNA haplotypes (with a length of 179 SNPs). The two Lophira species shared one plastid haplotype and contained several closely related plastid haplotypes. For the exploited L. alata, we detected a moderately strong correlation between genetic and spatial distances. Two haplotypes were widely spread across the core of Central Africa, while several others were more spatially constrained or endemic, for example, in West Gabon (potentially a L. alata cryptic species) and Northern Congo. CONCLUSIONS The distribution of haplotypes revealed a clear spatial structure. Some widely spread haplotypes potentially hamper site distinction of Azobé wood samples, but still reveal their wider region of origin. In regions where endemic haplotypes are present, differentiation may be successful at finer scales. Thus, the potential spatial resolution for timber tracing may vary across regions. We assembled the first reference database of plastome-wide SNP datasets for Azobé timber, with a focus on the major logging areas. Our work represents a step towards plastome-based timber tracing for this species, but also reveals limited potential of this method for species differentiation. To validate the potential of the plastid genome for timber tracing, further steps, including assignment and blind sample tests, will be needed.
Collapse
Affiliation(s)
| | - Laura E Boeschoten
- Forest Ecology and Forest Management, Wageningen University and Research, Wageningen, The Netherlands
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, USA
| | - Gaël U D Bouka
- Laboratory of Biodiversity and Ecosystems and Environmental Management, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Congo
| | - Jannici C U Ciliane-Madikou
- Laboratory of Biodiversity and Ecosystems and Environmental Management, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Congo
| | - G Arjen de Groot
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Nathalie de Vries
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Nestor L Engone Obiang
- Institute for Research in Tropical Ecology (IPHAMETRA IRET/ CENAREST), Herbier National du Gabon, Institut de Pharmacopée et de Médecine Traditionelle, Libreville, Gabon
| | - Danny Esselink
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Mesly Guieshon-Engongoro
- Laboratory of Biodiversity and Ecosystems and Environmental Management, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Congo
| | - Olivier J Hardy
- Evolutionary Biology and Ecology Unit, CP 160/12, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Simon Jansen
- Department of Ecosystem Management, Climate and Biodiversity - Institute of Silviculture, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Joël J Loumeto
- Laboratory of Biodiversity and Ecosystems and Environmental Management, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Congo
| | - Dieu-Merci M F Mbika
- Laboratory of Biodiversity and Ecosystems and Environmental Management, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Congo
| | - Cynel G Moundounga
- Institute for Research in Tropical Ecology (IRET/CENAREST), Libreville, Gabon
| | | | - Rita M D Ndangani
- Laboratory of Biodiversity and Ecosystems and Environmental Management, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Congo
| | | | - Steve N Tassiamba
- Laboratory of Environmental Geomatics, Department of Forestry, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| | - Martin T Tchamba
- Laboratory of Environmental Geomatics, Department of Forestry, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| | - Bijoux B L Toumba-Paka
- Laboratory of Biodiversity and Ecosystems and Environmental Management, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Congo
| | - Herman T Zanguim
- Laboratory of Environmental Geomatics, Department of Forestry, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| | - Pascaline T Zemtsa
- Laboratory of Environmental Geomatics, Department of Forestry, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| | - Pieter A Zuidema
- Forest Ecology and Forest Management, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Żukowska WB, Lewandowski A. Genetic structure and divergence of marginal populations of black poplar (Populus nigra L.) in Poland. Sci Rep 2025; 15:3014. [PMID: 39849012 PMCID: PMC11758005 DOI: 10.1038/s41598-025-86994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
Genetic diversity is crucial to secure the survival and sustainability of ecosystems. Given anthropogenic pressure, as well as the projected alterations connected with the level and circulation of water, riparian forests are of particular concern. In this paper, we assessed the genetic variation of black poplar - one of the keystone tree species of riverine forests. The natural habitats of black poplar have been severely transformed leading to a significant decline of its population size. Using a set of 18 nuclear microsatellites and geographic location data, we studied 26 remnant populations (1,261 trees) located along the biggest river valleys in Poland. Our main goal was to assess the overall genetic variation and to verify if range fragmentation and habitat transformation have disrupted gene exchange among populations. Genotyping revealed that 261 trees were clones. The level of clonality was higher in more transformed river sections. All populations have probably gone through a drastic genetic bottleneck in the distant past, and most of them have low effective population sizes. Still, the overall level of genetic variation remains high, but certain populations require attention due to their lower genetic variation, higher clonality and strong spatial genetic structure. Genetic differentiation was low, yet Bayesian clustering supported the existence of 11 genetic clusters. According to the results, gene exchange is most prevalent between adjacent populations. Relatively free gene flow occurs only along the Vistula, particularly in its middle section which is characterized by the highest genetic variation. Noticeable genetic structuring was observed along the Oder. Populations located at the range margin showed signs of genetic divergence and reduction of variation. We conclude that human activities have impacted the gene pool of black poplar in Poland by disrupting landscape connectivity and preventing the species from generative reproduction. The study provides practical guidelines on how to develop and implement the conservation program for the gene pool of black poplar in Poland. It also presents a strong case favoring river renaturation and genetic monitoring, particularly concerning keystone species.
Collapse
Affiliation(s)
| | - Andrzej Lewandowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland
| |
Collapse
|
3
|
Krutovsky KV, Popova AA, Yakovlev IA, Yanbaev YA, Matveev SM. Response of Pedunculate Oak ( Quercus robur L.) to Adverse Environmental Conditions in Genetic and Dendrochronological Studies. PLANTS (BASEL, SWITZERLAND) 2025; 14:109. [PMID: 39795368 PMCID: PMC11723010 DOI: 10.3390/plants14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Pedunculate oak (Quercus robur L.) is widely distributed across Europe and serves critical ecological, economic, and recreational functions. Investigating its responses to stressors such as drought, extreme temperatures, pests, and pathogens provides valuable insights into its capacity to adapt to climate change. Genetic and dendrochronological studies offer complementary perspectives on this adaptability. Tree-ring analysis (dendrochronology) reveals how Q. robur has historically responded to environmental stressors, linking growth patterns to specific conditions such as drought or temperature extremes. By examining tree-ring width, density, and dynamics, researchers can identify periods of growth suppression or enhancement and predict forest responses to future climatic events. Genetic studies further complement this by uncovering adaptive genetic diversity and inheritance patterns. Identifying genetic markers associated with stress tolerance enables forest managers to prioritize the conservation of populations with higher adaptive potential. These insights can guide reforestation efforts and support the development of climate-resilient oak populations. By integrating genetic and dendrochronological data, researchers gain a holistic understanding of Q. robur's mechanisms of resilience. This knowledge is vital for adaptive forest management and sustainable planning in the face of environmental challenges, ultimately helping to ensure the long-term viability of oak populations and their ecosystems. The topics covered in this review are very broad. We tried to include the most relevant, important, and significant studies, but focused mainly on the relatively recent Eastern European studies because they include the most of the species' area. However, although more than 270 published works have been cited in this review, we have, of course, missed some published studies. We apologize in advance to authors of those relevant works that have not been cited.
Collapse
Affiliation(s)
- Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
| | - Anna A. Popova
- Department of Forest Genetics, Biotechnology and Plant Physiology, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia;
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway;
| | - Yulai A. Yanbaev
- Department of Forestry and Landscape Design, Bashkir State Agrarian University, 450001 Ufa, Russia;
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - Sergey M. Matveev
- Department of Silviculture, Forest Inventory and Forest Management, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia;
| |
Collapse
|
4
|
Peng J, Xie J, Gu Y, Guo H, Zhang S, Huang X, Luo X, Qian J, Liu M, Wan X, Chen L, Huang X, Zhang F, He F, Zhu P, Zhong Y, Yang H. Assessing population genetic structure and diversity and their driving factors in Phoebe zhennan populations. BMC PLANT BIOLOGY 2024; 24:1091. [PMID: 39551749 PMCID: PMC11572363 DOI: 10.1186/s12870-024-05810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Phoebe zhennan, commonly known as "golden-thread nanmu," is one of the most valuable and protected tree species in China. An accurate understanding of the population genetic structure and its environmental factors is of significance for the protection and selection of new P. zhennan varieties. RESULTS Sixteen nSSR and six cpSSR markers were used to determine the genetic diversity and population structure of P. zhennan and the effect of environmental factors on the genetic structure. The nSSR markers identified a total of 451 number of alleles (Na), while cpSSR markers detected 20 Na. A relative high level of genetic diversity was observed in the P. zhennan population evidenced by high Shannon's information index (I) of 0.671 and 2.294 based on cpSSR and nSSR datasets. The low value of fixation index (F) observed from the nSSR dataset indicated low breeding within the population. The genetic differentiation was mainly detected within populations (only 28% and 13% of the variance being between populations according to the nSSR and cpSSR datasets). Among them, the HNSZX (H = 0.469) and SCSZZ (I = 1.943) populations exhibited the highest level of genetic diversity, while the HNXXT (H = 0.041) and SCLJS (I = 0.943) populations exhibited the lowest level of genetic diversity. The average genetic differentiation coefficient (Fst) and gene flow (Nm) were 0.022-0.128 and 1.698-11.373, respectively, which indicated a moderate level of genetic differentiation and a high level of gene flow. STRUCTURE, neighbor-joining clustering, and principal coordinate analysis divided 543 individuals into two or three categories based on the nSSR or cpSSR datasets. Four temperature, three precipitation, five chemical, five physical, and one soil texture variable showed significant effects on the genetic structure and distribution of P. zhennan populations. Compared to nSSR, the genetic differentiation among populations based on cpSSR datasets conformed to the geographic isolation model, suggesting that geographic and genetic distances should be considered for further genetic conservation and breeding utilization. The importance of in situ conservation units, such as populations with a high level of genetic diversity, more private alleles, and haplotypes (e.g., population SCGTS, SCYFS, and YNYJX), should be emphasized. Additionally, breeding, along with artificially assisted population regeneration and restoration, should also be carefully planned, taking into account climate and soil properties at the same time. CONCLUSIONS In conclusion, this study provided genetic background information for the genetic conservation, management, and utilization of P. zhennan.
Collapse
Affiliation(s)
- Jian Peng
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China
| | - Jiaxin Xie
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yunjie Gu
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China.
| | - Hongying Guo
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China
| | - Shuaiying Zhang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xin Huang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiandan Luo
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jianghong Qian
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Minhao Liu
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China
| | - Xueqin Wan
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Lianghua Chen
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiong Huang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Fang He
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Peng Zhu
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhong
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hanbo Yang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
5
|
Li Y, Zheng S, Wang T, Liu M, Kozlowski G, Yi L, Song Y. New insights on the phylogeny, evolutionary history, and ecological adaptation mechanism in cycle-cup oaks based on chloroplast genomes. Ecol Evol 2024; 14:e70318. [PMID: 39290669 PMCID: PMC11407850 DOI: 10.1002/ece3.70318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Cycle-cup oaks (Quercus section Cyclobalanopsis) are one of the principal components of forests in the tropical and subtropical climates of East and Southeast Asia. They have experienced relatively recent increases in the diversification rate, driven by changing climates and the Himalayan orogeny. However, the evolutionary history and adaptive mechanisms at the chloroplast genome level in cycle-cup oaks remain largely unknown. Therefore, we studied this problem by conducting chloroplast genomics on 50 of the ca. 90 species. Comparative genomics and other analyses showed that Quercus section Cyclobalanopsis had a highly conserved chloroplast genome structure. Highly divergent regions, such as the ndhF and ycf1 gene regions and the petN-psbM and rpoB-trnC-GCA intergenic spacer regions, provided potential molecular markers for subsequent analysis. The chloroplast phylogenomic tree indicated that Quercus section Cyclobalanopsis was not monophyletic, which mixed with the other two sections of subgenus Cerris. The reconstruction of ancestral aera inferred that Palaeotropics was the most likely ancestral range of Quercus section Cyclobalanopsis, and then dispersed to Sino-Japan and Sino-Himalaya. Positive selection analysis showed that the photosystem genes had the lowest ω values among the seven functional gene groups. And nine protein-coding genes containing sites for positive selection: ndhA, ndhD, ndhF, ndhH, rbcL, rpl32, accD, ycf1, and ycf2. This series of analyses together revealed the phylogeny, evolutionary history, and ecological adaptation mechanism of the chloroplast genome of Quercus section Cyclobalanopsis in the long river of earth history. These chloroplast genome data provide valuable information for deep insights into phylogenetic relationships and intraspecific diversity in Quercus.
Collapse
Affiliation(s)
- Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Si‐Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Tian‐Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Mei‐Hua Liu
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- Department of Biology and Botanic GardenUniversity of FribourgFribourgSwitzerland
- Natural History Museum FribourgFribourgSwitzerland
| | - Li‐Ta Yi
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Yi‐Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| |
Collapse
|
6
|
Lu ZJ, Wang TR, Zheng SS, Meng HH, Cao JG, Song YG, Kozlowski G. Phylogeography of Pterocarya hupehensis reveals the evolutionary patterns of a Cenozoic relict tree around the Sichuan Basin. FORESTRY RESEARCH 2024; 4:e008. [PMID: 39524416 PMCID: PMC11524273 DOI: 10.48130/forres-0024-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/07/2024] [Accepted: 02/17/2024] [Indexed: 11/16/2024]
Abstract
Environmental factors such as mountain tectonic movements and monsoons can enhance genetic differentiation by hindering inter- and intra-specific gene flow. However, the phylogeographic breaks detected within species may differ depending on the different molecular markers used, and biological traits may be a major confounding factor. Pterocarya hupehensis is a vulnerable relict species distributed throughout the Sichuan Basin. Here, we investigated the phylogeographic patterns and evolutionary history of P. hupehensis using chloroplast DNA and restriction site-associated DNA sequencing data from 18 populations around the Sichuan Basin. The 24 chloroplast haplotypes separated into western and eastern lineages at approximately 16.7 Mya, largely coincident with a strengthening of the East Asian monsoon system during the early to middle Miocene. Both cpDNA and nuclear DNA datasets consistently identified distinct western and eastern lineages whose phylogeographic break conformed to the boundary of the Sino-Himalayan and Sino-Japanese forest sub-kingdoms. However, in contrast to the nuclear gene data, the cpDNA data revealed further divergence of the eastern lineage into northern and southern groups along the Yangtze River, a result that likely reflects differences in the extent of pollen vs seed dispersal. During the temperature decline in the penultimate (Riss) glacial period of the Pleistocene epoch, P. hupehensis experienced a genetic bottleneck event, and ecological niche modeling suggests that a subsequent population expansion occurred during the last interglacial period. Our findings not only establish a basis for conservation of this species, but also serve as a case study for the effects of geography and climate change on the evolutionary history of wind-pollinated relict plants.
Collapse
Affiliation(s)
- Zi-Jia Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Naypyidaw 05282, Myanmar
| | - Jian-Guo Cao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg 1700, Switzerland
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg 1700, Switzerland
- Natural History Museum Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
7
|
Soares LS, Freitas LB. The phylogeographic journey of a plant species from lowland to highlands during the Pleistocene. Sci Rep 2024; 14:3825. [PMID: 38360894 PMCID: PMC10869790 DOI: 10.1038/s41598-024-53414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Phylogeographic history refers to how species evolve and diversify in response to historical, ecological, and demographic factors. The climate fluctuation during the Pleistocene period marked a crucial time in shaping many species' distribution and genetic structure, particularly those from southern South American grasslands. This work investigated the phylogeographic history of a highland grassland, Petunia altiplana T. Ando & Hashim. (Solanaceae), its diversity, and geographic distribution using a population genomic approach based on RAD-seq data. Our results indicated that, during the Pleistocene, when the grasslands expanded to highlands, the lowland populations of P. altiplana reached the higher open fields, enlarging their geographic distribution. We found that the P. altiplana genetic diversity followed the geographic division into eastern (E) and western (WE) population groups, with a subtle division in the E group regarding the Pelotas River headwater. The results also showed that isolation by distance was the main divergence pattern, with elevation playing a pivotal role in shaping WE and E groups. Our findings indicated that lowland-adapted populations quickly colonized highlands during the late Pleistocene.
Collapse
Affiliation(s)
- Luana Sousa Soares
- Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, Porto Alegre, 91501-970, Brazil
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
8
|
Molina L, Rajchenberg M, de Errasti A, Vogel B, Coetzee MPA, Aime MC, Pildain MB. Sapwood mycobiome varies across host, plant compartment and environments in Nothofagus forests from Northern Patagonia. Mol Ecol 2023; 32:6599-6618. [PMID: 36345145 DOI: 10.1111/mec.16771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022]
Abstract
Global forests are increasingly being threatened by altered climatic conditions and increased attacks by pests and pathogens. The complex ecological interactions among pathogens, microbial communities, tree hosts and the environment are important drivers of forest dynamics. Little is known about the ecology of forest pathology and related microbial communities in temperate forests of the southern hemisphere. In this study, we used next-generation sequencing to characterize sapwood-inhabiting fungal communities in North Patagonian Nothofagus forests and assessed patterns of diversity of taxa and ecological guilds across climatic, site and host variables (health condition and compartment) as a contribution to Nothofagus autecology. The diversity patterns inferred through the metabarcoding analysis were similar to those obtained through culture-dependent approaches. However, we detected additional heterogeneity and greater richness with culture-free methods. Host species was the strongest driver of fungal community structure and composition, while host health status was the weakest. The relative impacts of site, season, plant compartment and health status were different for each tree species; these differences can be interpreted as a matter of water availability. For Nothofagus dombeyi, which is distributed across a wide range of climatic conditions, site was the strongest driver of community composition. The microbiome of N. pumilio varied more with season and temperature, a relevant factor for forest conservation in the present climate change scenario. Both species carry a number of potential fungal pathogens in their sapwood, whether they exhibit symptoms or not. Our results provide insight into the diversity of fungi associated with the complex pathobiome of the dominant Nothofagus species in southern South America.
Collapse
Affiliation(s)
- Lucía Molina
- Fitopatología y Microbiología Aplicada, Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esquel, Argentina
| | - Mario Rajchenberg
- Fitopatología y Microbiología Aplicada, Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esquel, Argentina
| | - Andrés de Errasti
- Fitopatología y Microbiología Aplicada, Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esquel, Argentina
| | - Braian Vogel
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esquel, Argentina
- Centro de Estudios Ambientales Integrados (CEAI) Facultad de Ingeniería, Universidad Nacional de la Patagonia San Juan Bosco Sede Esquel, Pretoria, Argentina
| | - Martin P A Coetzee
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Mary Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - María Belén Pildain
- Fitopatología y Microbiología Aplicada, Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esquel, Argentina
| |
Collapse
|
9
|
Verbylaitė R, Aravanopoulos FA, Baliuckas V, Juškauskaitė A, Ballian D. Can a Forest Tree Species Progeny Trial Serve as an Ex Situ Collection? A Case Study on Alnus glutinosa. PLANTS (BASEL, SWITZERLAND) 2023; 12:3986. [PMID: 38068622 PMCID: PMC10708541 DOI: 10.3390/plants12233986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/12/2024]
Abstract
Scientifically informed decisions for the long-term conservation of extant genetic diversity should combine in situ and ex situ conservation methods. The aim of the present study was to assess if a progeny plantation consisting of several open pollinated (OP) families and established for breeding purposes can also serve as an ex situ conservation plantation, using the case study of a Lithuanian progeny trial of Alnus glutinosa, a keystone species of riparian ecosystems that warrants priority conservation actions. We employed 17 nuclear microsatellite (Simple Sequence Repeat) markers and compared the genetic diversity and copy number of the captured alleles of 22 OP progeny families from this plantation, with 10 wild A. glutinosa populations, originating from the two provenance regions of the species in Lithuania. We conclude that the progeny plantation could be used as an ex situ plantation for the A. glutinosa populations from the first provenance region (represented by eight genetic conservation units (GCU)). Based on the present study's results, we can expect that the A. glutinosa progeny plantation harbors enough genetic diversity of wild A. glutinosa populations from the first provenance region. This progeny plantation can serve as a robust ex situ collection containing local alleles present in at least one wild population with at least 0.05 frequency with 25 replications.
Collapse
Affiliation(s)
- Rita Verbylaitė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, LT-58344 Kėdainiai District, Lithuania; (F.A.A.); (V.B.); (A.J.)
| | - Filippos A. Aravanopoulos
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, LT-58344 Kėdainiai District, Lithuania; (F.A.A.); (V.B.); (A.J.)
- Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 238, GR 541 24 Thessaloniki, Greece
| | - Virgilijus Baliuckas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, LT-58344 Kėdainiai District, Lithuania; (F.A.A.); (V.B.); (A.J.)
| | - Aušra Juškauskaitė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, LT-58344 Kėdainiai District, Lithuania; (F.A.A.); (V.B.); (A.J.)
| | - Dalibor Ballian
- Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina;
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
- Academy of Sciences and Arts of Bosnia and Hercegovina, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
10
|
Ramírez-Valiente JA, Solé-Medina A, Robledo-Arnuncio JJ, Ortego J. Genomic data and common garden experiments reveal climate-driven selection on ecophysiological traits in two Mediterranean oaks. Mol Ecol 2023; 32:983-999. [PMID: 36479963 DOI: 10.1111/mec.16816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Improving our knowledge of how past climate-driven selection has acted on present-day trait population divergence is essential to understand local adaptation processes and improve our predictions of evolutionary trajectories in the face of altered selection pressures resulting from climate change. In this study, we investigated signals of selection on traits related to drought tolerance and growth rates in two Mediterranean oak species (Quercus faginea and Q. lusitanica) with contrasting distribution ranges and climatic niches. We genotyped 182 individuals from 24 natural populations of the two species using restriction-site-associated DNA sequencing and conducted a thorough functional characterization in 1602 seedlings from 21 populations cultivated in common garden experiments under contrasting watering treatments. Our genomic data revealed that both Q. faginea and Q. lusitanica have very weak population genetic structure, probably as a result of high rates of pollen-mediated gene flow among populations and large effective population sizes. In contrast, common garden experiments showed evidence of climate-driven divergent selection among populations on traits related to leaf morphology, physiology and growth in both species. Overall, our study suggests that climate is an important selective factor for Mediterranean oaks and that ecophysiological traits have evolved in drought-prone environments even in a context of very high rates of gene flow among populations.
Collapse
Affiliation(s)
- José Alberto Ramírez-Valiente
- Ecological and Forestry Applications Research Centre, CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
| | - Aida Solé-Medina
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | | | - Joaquín Ortego
- Department of Ecology and Evolution, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain
| |
Collapse
|
11
|
Kersten B, Rellstab C, Schroeder H, Brodbeck S, Fladung M, Krutovsky KV, Gugerli F. The mitochondrial genome sequence of Abies alba Mill. reveals a high structural and combinatorial variation. BMC Genomics 2022; 23:776. [PMID: 36443651 PMCID: PMC9703787 DOI: 10.1186/s12864-022-08993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/05/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Plant mitogenomes vary widely in size and genomic architecture. Although hundreds of plant mitogenomes of angiosperm species have already been sequence-characterized, only a few mitogenomes are available from gymnosperms. Silver fir (Abies alba) is an economically important gymnosperm species that is widely distributed in Europe and occupies a large range of environmental conditions. Reference sequences of the nuclear and chloroplast genome of A. alba are available, however, the mitogenome has not yet been assembled and studied. RESULTS Here, we used paired-end Illumina short reads generated from a single haploid megagametophyte in combination with PacBio long reads from high molecular weight DNA of needles to assemble the first mitogenome sequence of A. alba. Assembly and scaffolding resulted in 11 mitogenome scaffolds, with the largest scaffold being 0.25 Mbp long. Two of the scaffolds displayed a potential circular structure supported by PCR. The total size of the A. alba mitogenome was estimated at 1.43 Mbp, similar to the size (1.33 Mbp) of a draft assembly of the Abies firma mitogenome. In total, 53 distinct genes of known function were annotated in the A. alba mitogenome, comprising 41 protein-coding genes, nine tRNA, and three rRNA genes. The proportion of highly repetitive elements (REs) was 0.168. The mitogenome seems to have a complex and dynamic structure featured by high combinatorial variation, which was specifically confirmed by PCR for the contig with the highest mapping coverage. Comparative analysis of all sequenced mitogenomes of gymnosperms revealed a moderate, but significant positive correlation between mitogenome size and proportion of REs. CONCLUSIONS The A. alba mitogenome provides a basis for new comparative studies and will allow to answer important structural, phylogenetic and other evolutionary questions. Future long-read sequencing with higher coverage of the A. alba mitogenome will be the key to further resolve its physical structure. The observed positive correlation between mitogenome size and proportion of REs will be further validated once available mitogenomes of gymnosperms would become more numerous. To test whether a higher proportion of REs in a mitogenome leads to an increased recombination and higher structural complexity and variability is a prospective avenue for future research.
Collapse
Affiliation(s)
- Birgit Kersten
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Christian Rellstab
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Sabine Brodbeck
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Konstantin V. Krutovsky
- grid.7450.60000 0001 2364 4210Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Felix Gugerli
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
12
|
Sękiewicz K, Danelia I, Farzaliyev V, Gholizadeh H, Iszkuło G, Naqinezhad A, Ramezani E, Thomas PA, Tomaszewski D, Walas Ł, Dering M. Past climatic refugia and landscape resistance explain spatial genetic structure in Oriental beech in the South Caucasus. Ecol Evol 2022; 12:e9320. [PMID: 36188519 PMCID: PMC9490144 DOI: 10.1002/ece3.9320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Predicting species-level effects of climatic changes requires unraveling the factors affecting the spatial genetic composition. However, disentangling the relative contribution of historical and contemporary drivers is challenging. By applying landscape genetics and species distribution modeling, we investigated processes that shaped the neutral genetic structure of Oriental beech (Fagus orientalis), aiming to assess the potential risks involved due to possible future distribution changes in the species. Using nuclear microsatellites, we analyze 32 natural populations from the Georgia and Azerbaijan (South Caucasus). We found that the species colonization history is the most important driver of the genetic pattern. The detected west-east gradient of genetic differentiation corresponds strictly to the Colchis and Hyrcanian glacial refugia. A significant signal of associations to environmental variables suggests that the distinct genetic composition of the Azerbaijan and Hyrcanian stands might also be structured by the local climate. Oriental beech retains an overall high diversity; however, in the context of projected habitat loss, its genetic resources might be greatly impoverished. The most affected are the Azerbaijan and Hyrcanian populations, for which the detected genetic impoverishment may enhance their vulnerability to environmental change. Given the adaptive potential of range-edge populations, the loss of these populations may ultimately affect the specie's adaptation, and thus the stability and resilience of forest ecosystems in the Caucasus ecoregion. Our study is the first approximation of the potential risks involved, inducing far-reaching conclusions about the need of maintaining the genetic resources of Oriental beech for a species' capacity to cope with environmental change.
Collapse
Affiliation(s)
| | - Irina Danelia
- Faculty of Agricultural Science and Biosystems EngineeringGeorgian Technical UniversityTbilisiGeorgia
- National Botanical Garden of GeorgiaTbilisiGeorgia
| | - Vahid Farzaliyev
- Forest Development ServiceMinistry of Ecology and Natural Resources of AzerbaijanBakuAzerbaijan
| | - Hamid Gholizadeh
- Department of Plant Biology, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran
| | - Grzegorz Iszkuło
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
- Faculty of Biological SciencesUniversity of Zielona GóraZielona GóraPoland
| | - Alireza Naqinezhad
- Department of Plant Biology, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran
| | - Elias Ramezani
- Department of Forestry, Faculty of Natural ResourcesUrmia UniversityUrmiaIran
| | | | | | - Łukasz Walas
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
| | - Monika Dering
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
- Faculty of Forestry and Wood TechnologyPoznań University of Life SciencesPoznańPoland
| |
Collapse
|
13
|
New Insight into Genetic Structure and Diversity of Scots Pine (Pinus sylvestris L.) Populations in Lithuania Based on Nuclear, Chloroplast and Mitochondrial DNA Markers. FORESTS 2022. [DOI: 10.3390/f13081179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We studied the genetic differentiation, structure, and diversity of Scots pine populations in Lithuania based on nuclear, chloroplast microsatellite, and mitochondrial DNA markers. We focused on revealing evolutionary history, country-wide geneflow patterns, and structuring among the Scots pine populations. We genotyped 439 Scots pine individuals of mature age from 23 natural Scots pine stands in Lithuania and used the AMOVA and a set of genetic-clustering methods. The among-population differentiation was weak for nuclear microsatellite loci (nSSRs) (FST = 0.005) but much stronger for cpSSRs (PhiST = 0.240). The populations were structured into highland and lowland populations based on cpSSRs and eastern highland versus the rest for nSSRs. We detected two mtDNA mitotypes—the universal type A and northeastern type B, and the latter occurred at a markedly higher frequency in eastern Lithuania. Within-population genetic diversity was higher in large pine-dominated forest tracts in the eastern highlands than in fragmented forests in the western highlands. We concluded that phenology-based genetic networks following the temperature climate gradients have a strong effect on shaping the genetic structure of otherwise rather homogeneous gene pools of Scots pine populations in Lithuania. The possible effects of human interference with forests on genetic diversity of Scots pine populations in Lithuania are discussed.
Collapse
|
14
|
Mader M, Blanc-Jolivet C, Kersten B, Liesebach H, Degen B. A novel and diverse set of SNP markers for rangewide genetic studies in Picea abies. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWe used Double Digest Restriction site associated DNA sequencing (ddRADseq), exome sequencing (exome-seq) and targeted genotyping by sequencing (GBS) to develop new geographically informative nuclear SNP markers in Picea abies. This set of 518 loci consists of 397 loci specifically designed for the geographic differentiation of populations and 121 loci of adaptive markers for drought stress which all were identified from 26 samples in 23 populations distributed over Central Europe. This set of novel markers represents a valuable basis to study the geographic population structure and genetic differentiation of Picea abies in its natural distribution range as well as outside of its native range with a focus on Central Europe.
Collapse
|
15
|
Phenology Is Associated with Genetic and Stem Morphotype Variation in European Beech (Fagus sylvatica L.) Stands. FORESTS 2022. [DOI: 10.3390/f13050664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We studied the associations between the stem quality, phenology, and genetic structure by genotyping the phenotypic variation at 15 genomic SSR makers of 208 mature European beech trees in four artificially established stands in Lithuania. The genetic differentiation among the stands was significant (DEST = 0.029**). The stand NOR1 of Carpathian origin significantly differed from the remaining three stands of Bavarian origin at the highest 0.001 significance level. In most of the stands, the early flushing trees were of significantly worse stem quality. Within each of the stands, the Bayesian clustering identified 2 to 3 genetic groups, among which the differentiation was markedly stronger than between the stands (DEST 0.095*** to 0.142***). The genetic groups differed markedly in stem quality and phenology as well as inbreeding levels. We conclude that (a) the genetic structuring in European beech stands strongly depends on non-random mating owing to phenology variation among the relative groups, (b) due to strong relationship among phenology, adaptedness and stem morphotype, this genetic variation is reflected by the stem morphotype.
Collapse
|
16
|
Hassani SB, Trontin JF, Raschke J, Zoglauer K, Rupps A. Constitutive Overexpression of a Conifer WOX2 Homolog Affects Somatic Embryo Development in Pinus pinaster and Promotes Somatic Embryogenesis and Organogenesis in Arabidopsis Seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:838421. [PMID: 35360299 PMCID: PMC8960953 DOI: 10.3389/fpls.2022.838421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Although full sequence data of several embryogenesis-related genes are available in conifers, their functions are still poorly understood. In this study, we focused on the transcription factor WUSCHEL-related HOMEOBOX 2 (WOX2), which is involved in determination of the apical domain during early embryogenesis, and is required for initiation of the stem cell program in the embryogenic shoot meristem of Arabidopsis. We studied the effects of constitutive overexpression of Pinus pinaster WOX2 (PpWOX2) by Agrobacterium-mediated transformation of P. pinaster somatic embryos and Arabidopsis seedlings. Overexpression of PpWOX2 during proliferation and maturation of somatic embryos of P. pinaster led to alterations in the quantity and quality of cotyledonary embryos. In addition, transgenic somatic seedlings of P. pinaster showed non-embryogenic callus formation in the region of roots and subsequently inhibited root growth. Overexpression of PpWOX2 in Arabidopsis promoted somatic embryogenesis and organogenesis in a part of the transgenic seedlings of the first and second generations. A concomitant increased expression of endogenous embryogenesis-related genes such as AtLEC1 was detected in transgenic plants of the first generation. Various plant phenotypes observed from single overexpressing transgenic lines of the second generation suggest some significant interactions between PpWOX2 and AtWOX2. As an explanation, functional redundancy in the WOX family is suggested for seed plants. Our results demonstrate that the constitutive high expression of PpWOX2 in Arabidopsis and P. pinaster affected embryogenesis-related traits. These findings further support some evolutionary conserved roles of this gene in embryo development of seed plants and have practical implications toward somatic embryogenesis induction in conifers.
Collapse
Affiliation(s)
- Seyedeh Batool Hassani
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Juliane Raschke
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kurt Zoglauer
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea Rupps
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
17
|
A set of nuclear SNP loci derived from single sample double digest RAD and from pool sequencing for large-scale genetic studies in the European beech Fagus sylvatica. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe large-scale spatial genetic structure of European beech, Fagus sylvatica, has been until now poorly studied. We conducted double digest RAD sequencing (ddRADseq) on 54 beech individuals stemming from 36 provenances to discover spatially informative nuclear SNP loci. In addition, two pools derived from 14 early and 14 late flushing individuals each were sequenced with Illumina HiSeq. From an initial amount of 5,464 loci detected by ddRADseq, we selected 559 informative loci. Further 27 additional loci showing significant allelic differences among early and late flushing individuals could be identified after a genotyping on 95 test individuals. The final selection of 578 loci was submitted to probe design for targeted genotyping by sequencing, which yielded 543 loci. The new set of SNP loci should be, after validation on a larger sample size, useful for large-scale genetic studies in this economically-important species.
Collapse
|
18
|
Herklotz V, Kovařík A, Wissemann V, Lunerová J, Vozárová R, Buschmann S, Olbricht K, Groth M, Ritz CM. Power and Weakness of Repetition - Evaluating the Phylogenetic Signal From Repeatomes in the Family Rosaceae With Two Case Studies From Genera Prone to Polyploidy and Hybridization ( Rosa and Fragaria). FRONTIERS IN PLANT SCIENCE 2021; 12:738119. [PMID: 34950159 PMCID: PMC8688825 DOI: 10.3389/fpls.2021.738119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Plant genomes consist, to a considerable extent, of non-coding repetitive DNA. Several studies showed that phylogenetic signals can be extracted from such repeatome data by using among-species dissimilarities from the RepeatExplorer2 pipeline as distance measures. Here, we advanced this approach by adjusting the read input for comparative clustering indirectly proportional to genome size and by summarizing all clusters into a main distance matrix subjected to Neighbor Joining algorithms and Principal Coordinate Analyses. Thus, our multivariate statistical method works as a "repeatomic fingerprint," and we proved its power and limitations by exemplarily applying it to the family Rosaceae at intrafamilial and, in the genera Fragaria and Rosa, at the intrageneric level. Since both taxa are prone to hybridization events, we wanted to show whether repeatome data are suitable to unravel the origin of natural and synthetic hybrids. In addition, we compared the results based on complete repeatomes with those from ribosomal DNA clusters only, because they represent one of the most widely used barcoding markers. Our results demonstrated that repeatome data contained a clear phylogenetic signal supporting the current subfamilial classification within Rosaceae. Accordingly, the well-accepted major evolutionary lineages within Fragaria were distinguished, and hybrids showed intermediate positions between parental species in data sets retrieved from both complete repeatomes and rDNA clusters. Within the taxonomically more complicated and particularly frequently hybridizing genus Rosa, we detected rather weak phylogenetic signals but surprisingly found a geographic pattern at a population scale. In sum, our method revealed promising results at larger taxonomic scales as well as within taxa with manageable levels of reticulation, but success remained rather taxon specific. Since repeatomes can be technically easy and comparably inexpensively retrieved even from samples of rather poor DNA quality, our phylogenomic method serves as a valuable alternative when high-quality genomes are unavailable, for example, in the case of old museum specimens.
Collapse
Affiliation(s)
- Veit Herklotz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - Aleš Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Volker Wissemann
- Institute of Botany, Systematic Botany Group, Justus-Liebig-University, Gießen, Germany
| | - Jana Lunerová
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Radka Vozárová
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Sebastian Buschmann
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | | | - Marco Groth
- CF DNA Sequencing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Christiane M. Ritz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
- Chair of Biodiversity of Higher Plants, Technische Universität Dresden, International Institute (IHI) Zittau, Zittau, Germany
| |
Collapse
|
19
|
Lang C, Weber N, Möller M, Schramm L, Schelm S, Kohlbacher O, Fischer M. Genetic authentication: Differentiation of hazelnut cultivars using polymorphic sites of the chloroplast genome. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
The evolutionary heritage and ecological uniqueness of Scots pine in the Caucasus ecoregion is at risk of climate changes. Sci Rep 2021; 11:22845. [PMID: 34819535 PMCID: PMC8613269 DOI: 10.1038/s41598-021-02098-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/08/2021] [Indexed: 12/04/2022] Open
Abstract
Scots pine is one of the most widely occurring pines, but future projections suggest a large reduction in its range, mostly at the southern European limits. A significant part of its range is located in the Caucasus, a global hot-spot of diversity. Pine forests are an important reservoir of biodiversity and endemism in this region. We explored demographic and biogeographical processes that shaped the genetic diversity of Scots pine in the Caucasus ecoregion and its probable future distribution under different climate scenarios. We found that the high genetic variability of the Caucasian populations mirrors a complex glacial and postglacial history that had a unique evolutionary trajectory compared to the main range in Europe. Scots pine currently grows under a broad spectrum of climatic conditions in the Caucasus, which implies high adaptive potential in the past. However, the current genetic resources of Scots pine are under high pressure from climate change. From our predictions, over 90% of the current distribution of Scots pine may be lost in this century. By threatening the stability of the forest ecosystems, this would dramatically affect the biodiversity of the Caucasus hot-spot.
Collapse
|
21
|
Singewar K, Kersten B, Moschner CR, Hartung E, Fladung M. Transcriptome analysis of North American sweet birch (Betula lenta) revealed a higher expression of genes involved in the biosynthesis of secondary metabolites than European silver birch (B. pendula). JOURNAL OF PLANT RESEARCH 2021; 134:1253-1264. [PMID: 34499285 PMCID: PMC8514364 DOI: 10.1007/s10265-021-01343-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The North American Betula lenta L. (sweet birch) has been used for medicinal reasons for centuries by native Americans. Although sophisticated technologies have rapidly been developed, a large information gap has been observed regarding genetic regulators of medicinally important compounds in sweet birch. Very little is known on the different genes involved in secondary metabolic biosynthesis in sweet birch. To gain a deeper insight into genetic factors, we performed a transcriptome analysis of each three biological samples from different independent trees of sweet and European silver birch (B. pendula Roth). This allowed us to precisely quantify the transcripts of about 24,000 expressed genes including 29 prominent candidate genes putatively involved in the biosynthesis of secondary metabolites like terpenoids, and aromatic benzoic acids. A total number of 597 genes were differentially expressed between B. lenta and B. pendula, while 264 and 210 genes showed upregulation in the bark and leaf of B. lenta, respectively. Moreover, we identified 39 transcriptional regulatory elements, involved in secondary metabolite biosynthesis, upregulated in B. lenta. Our study demonstrated the potential of RNA sequencing to identify candidate genes interacting in secondary metabolite biosynthesis in sweet birch. The candidate genes identified in this study could be subjected to genetic engineering to functionally characterize them in sweet birch. This knowledge can be beneficial to the increase of therapeutically important compounds.
Collapse
Affiliation(s)
- Kiran Singewar
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Max-Eyth- Str. 6, 24118, Kiel, Germany
- Thuenen-Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany
| | - Birgit Kersten
- Thuenen-Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany
| | - Christian R Moschner
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Max-Eyth- Str. 6, 24118, Kiel, Germany
| | - Eberhard Hartung
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Max-Eyth- Str. 6, 24118, Kiel, Germany
| | - Matthias Fladung
- Thuenen-Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany.
| |
Collapse
|
22
|
Impact of Gene Flow and Introgression on the Range Wide Genetic Structure of Quercus robur (L.) in Europe. FORESTS 2021. [DOI: 10.3390/f12101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As for most other temperate broadleaved tree species, large-scale genetic inventories of pedunculate oak (Quercus robur L.) have focused on the plastidial genome, which showed the impact of post-glacial recolonization and manmade seed transfer. However, how have pollen mediated gene flow and introgression impacted the large-scale genetic structure? To answer these questions, we did a genetic inventory on 1970 pedunculate oak trees from 197 locations in 13 European countries. All samples were screened with a targeted sequencing approach on a set of 381 polymorphic loci (356 nuclear SNPs, 3 nuclear InDels, 17 chloroplast SNPs, and 5 mitochondrial SNPs). In a former analysis with additional 1763 putative Quercus petraea trees screened for the same gene markers we obtained estimates on the species admixture of all pedunculate oak trees. We identified 13 plastidial haplotypes, which showed a strong spatial pattern with a highly significant autocorrelation up to a range of 1250 km. Significant spatial genetic structure up to 1250 km was also observed at the nuclear loci. However, the differentiation at the nuclear gene markers was much lower compared to the organelle gene markers. The matrix of genetic distances among locations was partially correlated between nuclear and organelle genomes. Bayesian clustering analysis revealed the best fit to the data for a sub-division into two gene pools. One gene pool is dominating the west and the other is the most abundant in the east. The western gene pool was significantly influenced by introgression from Quercus petraea in the past. In Germany, we identified a contact zone of pedunculate oaks with different introgression intensity, likely resulting from different historical levels of introgression in glacial refugia or during postglacial recolonization. The main directions of postglacial recolonization were south to north and south to northwest in West and Central Europe, and for the eastern haplotypes also east to west in Central Europe. By contrast, the pollen mediated gene flow and introgression from Q. petraea modified the large-scale structure at the nuclear gene markers with significant west–east direction.
Collapse
|
23
|
Lorenz J, Heinrich R, Schneider A, Schwager M, Herklotz V, Wesche K, Ritz CM. Invasive populations of Spiraea tomentosa (Rosaceae) are genetically diverse but decline during succession in forest habitats. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:749-759. [PMID: 33899992 DOI: 10.1111/plb.13275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Population genetic and ecological data may help to control invasive plants, which are considered a major threat to natural habitats. In contrast to expected bottleneck events, genetic diversity of such invasive populations may be high due to extensive propagule pressure or admixture. The ecological impact of invasive species has been broadly evaluated in the field; however, long-term studies on the fate of invasive plants are scarce. We analysed genetic diversity and structure in invasive Spiraea tomentosa populations in eastern Germany and western Poland using Amplified Fragment Length Polymorphism. Potential hybridization between co-occurring diploid Sp. tomentosa and tetraploid Sp. douglasii was investigated using Flow Cytometry. The genetic analyses were complemented by data from a 13-year vegetation study in an area invaded by these Spiraea species. We found no evidence for hybridization between Spiraea species. In populations of Sp. tomentosa both genetic diversity (He = 0.26) and genetic structure (ΦPT = 0.27) were high and comparable to other outcrossing woody plants. Low levels of clonality, presence of seedlings and new patches in sites that had been colonized over the last 13 years imply that populations spread via sexual reproduction. In all habitat types, native species diversity declined following Sp. tomentosa invasion. However, detailed aerial mapping of a forest reserve with ongoing succession revealed that Spiraea spp. populations have declined over a 10-year period. Despite its potential for dispersal and negative effects on native plant communities, invasive Spiraea populations may be controlled by increasing canopy cover in forest habitats.
Collapse
Affiliation(s)
- J Lorenz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
- Technical University Dresden, International Institute (IHI) Zittau, Chair of Biodiversity of Higher Plants, Zittau, Germany
| | - R Heinrich
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
- NABU - Naturschutzstation Ebersbach, Ebersbach-Neugersdorf, Germany
| | - A Schneider
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - M Schwager
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - V Herklotz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - K Wesche
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
- Technical University Dresden, International Institute (IHI) Zittau, Chair of Biodiversity of Higher Plants, Zittau, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Halle-Jena-Leipzig, Germany
| | - C M Ritz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
- Technical University Dresden, International Institute (IHI) Zittau, Chair of Biodiversity of Higher Plants, Zittau, Germany
| |
Collapse
|
24
|
Eusemann P, Liesebach H. Small-scale genetic structure and mating patterns in an extensive sessile oak forest ( Quercus petraea (Matt.) Liebl.). Ecol Evol 2021; 11:7796-7809. [PMID: 34188852 PMCID: PMC8216985 DOI: 10.1002/ece3.7613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/01/2021] [Accepted: 04/08/2021] [Indexed: 11/20/2022] Open
Abstract
Oaks (Quercus) are major components of temperate forest ecosystems in the Northern Hemisphere where they form intermediate or climax communities. Sessile oak (Quercus petraea) forests represent the climax vegetation in eastern Germany and western Poland. Here, sessile oak forms pure stands or occurs intermixed with Scots Pine (Pinus sylvestris). A large body of research is available on gene flow, reproduction dynamics, and genetic structure in fragmented landscapes and mixed populations. At the same time, our knowledge regarding large, contiguous, and monospecific populations is considerably less well developed. Our study is an attempt to further develop our understanding of the reproduction ecology of sessile oak as an ecologically and economically important forest tree by analyzing mating patterns and genetic structure within adult trees and seedlings originating from one or two reproduction events in an extensive, naturally regenerating sessile oak forest. We detected positive spatial genetic structure up to 30 meters between adult trees and up to 40 meters between seedlings. Seed dispersal distances averaged 8.4 meters. Pollen dispersal distances averaged 22.6 meters. In both cases, the largest proportion of the dispersal occurred over short distances. Dispersal over longer distances was more common for pollen but also appeared regularly for seeds. The reproductive success of individual trees was highly skewed. Only 41 percent of all adult trees produced any offspring while the majority did not participate in reproduction. Among those trees that contributed to the analyzed seedling sample, 80 percent contributed 1-3 gametes. Only 20 percent of all parent trees contributed four or more gametes. However, these relatively few most fertile trees contributed 51 percent of all gametes within the seedling sample. Vitality and growth differed significantly between reproducing and nonreproducing adult trees with reproducing trees being more vital and vigorous than nonreproducing individuals. Our study demonstrates that extensive, apparently homogenous oak forests are far from uniform on the genetic level. On the contrary, they form highly complex mosaics of remarkably small local neighborhoods. This counterbalances the levelling effect of long-distance dispersal and may increase the species' adaptive potential. Incorporating these dynamics in the management, conservation, and restoration of oak forests can support the conservation of forest genetic diversity and assist those forests in coping with environmental change.
Collapse
|
25
|
Bujdoso G, Illes B, Varjas V, Cseke K. Is "Esterhazy II", an Old Walnut Variety in the Hungarian Gene Bank, the Original Genotype? PLANTS 2021; 10:plants10050854. [PMID: 33922690 PMCID: PMC8146819 DOI: 10.3390/plants10050854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
The old walnut (Juglans regia L.) genotype called "Esterhazy II" was well-known in the Austro-Hungarian Monarchy before World War II, and it can still be found in the Austrian, German and Swiss backyard gardens today. Unfortunately, nowadays, vegetatively propagated progenies of the original "Esterhazy II" are not available anymore around the world because walnut grafting started later than this genotype had become well-known. Although various accessions with "Esterhazy II"-"blood" are available, it is difficult to determine which one can be considered true or the most similar to the original one. In this paper, phenological and nut morphological characteristics of an "Esterhazy II" specimen planted in a Hungarian gene bank were compared to the varieties "Milotai 10" and "Chandler". Examined characteristics were: budbreak, blossom time, type of dichogamy, ripening time, nut and kernel features. An additional SSR fingerprinting was used to identify identical genotypes and to demonstrate the relatedness of the analyzed "Esterhazy II" genotype to the other Hungarian walnut cultivars. It can be concluded that under the name "Esterhazy II", several different genotypes can be observed. All the checked characteristics except budbreak fitted well with the previous descriptions. Our results confirmed that the examined "Esterhazy II" genotype shows high similarity to the "original" "Esterhazy II" described in the literature.
Collapse
Affiliation(s)
- Geza Bujdoso
- Centre for Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Park u. 2, 1223 Budapest, Hungary; (B.I.); (V.V.)
- Correspondence: ; Tel.: +36-30-417-2236
| | - Benjamin Illes
- Centre for Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Park u. 2, 1223 Budapest, Hungary; (B.I.); (V.V.)
| | - Virag Varjas
- Centre for Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Park u. 2, 1223 Budapest, Hungary; (B.I.); (V.V.)
| | - Klara Cseke
- Forest Research Institute, University of Sopron, Várkerület 30/A, 9600 Sárvár, Hungary;
| |
Collapse
|
26
|
Degen B, Yanbaev YA, Ianbaev RY, Bakhtina SY, Gabitova AA, Tagirova AA. Genetic Diversity and Differentiation of Northern Populations of Pedunculate Oak Based on Analysis of New SNP Markers. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421030054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
DNA Markers Reveal Genetic Associations among 11,000-Year-Old Scots Pine (Pinus sylvestris L.) Found in the Baltic Sea with the Present-Day Gene Pools in Lithuania. FORESTS 2021. [DOI: 10.3390/f12030317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We aimed to extract DNA and amplify PCR fragments at the mitochondrial DNA Nad7.1 locus and 11 nuclear microsatellite loci in nine circa 11,000-year-old individuals of Scots pine found at the bottom of the Baltic sea and test the genetic associations with the present-day gene pool of Scots pine in Lithuania. We followed a strict anticontamination protocol in the lab and, simultaneously with the aDNA specimens, tested DNA-free controls. The DNA was extracted by an ATMAB protocol from the ancient wood specimens sampled underwater from Scots pine stumps located circa 20–30 m deep and circa 12 km ashore in western Lithuania. As the references, we used 30 present-day Lithuanian populations of Scots pine with 25–50 individuals each. The aDNA yield was 11–41 ng/μL. The PCR amplification for the mtDNA Nad7.1 locus and the nDNA loci yielded reliable aDNA fragments for three and seven out of nine ancient pines, respectively. The electrophoresis profiles of all the PCR tested DNA-free controls contained the sizing standard only, indicating low likelihood for contamination. At the mtDNA Nad7.1 locus, all three ancient Scots pine individuals had the type A (300 bp) allele, indicating postglacial migration from the refugia in Balkan peninsula. The GENECLASS Bayesian assignment tests revealed relatively stringer and consistent genetic associations between the ancient Scots pine trees and the present-day southern Lithuanian populations (assignment probability 0.37–0.55) and several wetlands in Lithuania. Our study shows that salty sea water efficiently preserves ancient DNA in wood at the quality levels suitable for genetic testing of trees dated back as far as 11,000 years before present.
Collapse
|
28
|
Jürgens N, Oncken I, Oldeland J, Gunter F, Rudolph B. Welwitschia: Phylogeography of a living fossil, diversified within a desert refuge. Sci Rep 2021; 11:2385. [PMID: 33504814 PMCID: PMC7840819 DOI: 10.1038/s41598-021-81150-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/24/2020] [Indexed: 11/30/2022] Open
Abstract
Welwitschia mirabilis is one of the most extraordinary plant species on earth. With a fossil record of 112 My and phylogenetically isolated within the order Gnetales, the monotypic genus Welwitschia has survived only in the northern Namib Desert in Angola and Namibia. Despite its iconic role, the biogeography, ecological niche, and evolutionary history of the species remain poorly understood. Here we present the first comprehensive map of the strongly disjunct species range, and we explore the genetic relationships among all range fragments based on six SSR markers. We also assess the variation of the environmental niche and habitat preference. Our results confirm genetic divergence, which is consistent with the hypothetical existence of two subspecies within Welwitschia. We identify an efficient geographical barrier separating two gene pools at 18.7°S in northern Namibia. We also identify further diversification within each of the two subspecies, with several different gene pools in ten isolated range fragments. Given the presence of well-isolated populations with unique gene pools and the association with different bioclimatic variables, rock types, and habitats within arid river catchments, we can hypothesize that the present intraspecific diversity may have evolved at least in part within the present refuge of the northern Namib Desert.
Collapse
Affiliation(s)
- Norbert Jürgens
- Institute of Plant Sciences and Microbiology, Team Biodiversity, Evolution and Ecology of Plants (BEE), University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany.
| | - Imke Oncken
- Institute of Plant Sciences and Microbiology, Team Biodiversity, Evolution and Ecology of Plants (BEE), University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Jens Oldeland
- Institute of Plant Sciences and Microbiology, Team Biodiversity, Evolution and Ecology of Plants (BEE), University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Felicitas Gunter
- Institute of Plant Sciences and Microbiology, Team Biodiversity, Evolution and Ecology of Plants (BEE), University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Barbara Rudolph
- Institute of Plant Sciences and Microbiology, Team Biodiversity, Evolution and Ecology of Plants (BEE), University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| |
Collapse
|
29
|
Mattera MG, Pastorino MJ, Lantschner MV, Marchelli P, Soliani C. Genetic diversity and population structure in Nothofagus pumilio, a foundation species of Patagonian forests: defining priority conservation areas and management. Sci Rep 2020; 10:19231. [PMID: 33159157 PMCID: PMC7648826 DOI: 10.1038/s41598-020-76096-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/23/2020] [Indexed: 11/08/2022] Open
Abstract
Patagonian forests are the southernmost temperate forests in the world, and Nothofagus pumilio is one of their most ecologically important tree species (i.e., a foundation species). It presents great adaptability and a wide distribution range, making it a suitable model for predicting the performance of trees facing global climate change. N. pumilio forests are increasingly threatened by extreme climatic events and anthropogenic activities. This study aims to identify priority conservation areas and Genetic Zones (GZs) for N. pumilio, promoting the implementation of specific practices to ensure its management and long-term preservation. Thirty-five populations (965 trees) sampled across its distribution (more than 2200 km latitudinally) were genotyped with SSRs, and geographical patterns of genetic variation were identified using Bayesian approaches. The phylogeographic patterns of the species and geomorphological history of the region were also considered. Six priority conservation areas were identified, which hold high allelic richness and/or exclusive allelic variants. Eighteen GZs were delineated based on the genetic structure of this species, and maps showing their distributional range were drawn up. Overall, this study defines management units based on genetic data for N. pumilio for the first time, which will facilitate the establishment of sustainable practices and highlight priorities for investment of conservation funding.
Collapse
Affiliation(s)
- M Gabriela Mattera
- Grupo de Genética Ecológica y Mejoramiento Forestal del Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) INTA EEA Bariloche -CONICET, Modesta Victoria 4450, CP: 8400,, S. C. Bariloche, Río Negro, Argentina.
| | - Mario J Pastorino
- Grupo de Genética Ecológica y Mejoramiento Forestal del Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) INTA EEA Bariloche -CONICET, Modesta Victoria 4450, CP: 8400,, S. C. Bariloche, Río Negro, Argentina
| | - M Victoria Lantschner
- Grupo de Ecología de Poblaciones de Insectos del Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) INTA EEA Bariloche -CONICET, Modesta Victoria 4450, CP: 8400, S. C. Bariloche, Río Negro, Argentina
| | - Paula Marchelli
- Grupo de Genética Ecológica y Mejoramiento Forestal del Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) INTA EEA Bariloche -CONICET, Modesta Victoria 4450, CP: 8400,, S. C. Bariloche, Río Negro, Argentina
| | - Carolina Soliani
- Grupo de Genética Ecológica y Mejoramiento Forestal del Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) INTA EEA Bariloche -CONICET, Modesta Victoria 4450, CP: 8400,, S. C. Bariloche, Río Negro, Argentina
| |
Collapse
|
30
|
Pollen Morphology and Variability of Abies alba Mill. Genotypes from South-Western Poland. FORESTS 2020. [DOI: 10.3390/f11111125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to investigate pollen morphology and ranges of intraspecific variability of Abies alba Mill. Pollen grains were collected from nine clonal seed orchards of A. alba in the Sudety Mountains, (South-Western Poland). At each seed orchard, 4–6 grafts were selected. Each individual (graft) was represented by 30 pollen grains and 1440 pollen grains were measured totally. Eight quantitative and four qualitative features of pollen grains were analysed. The diagnostic features of pollen grains for the studied species were: Exine surface of pollen corpus (cappa and leptoma) and sacci, the length of the polar axis (P), pollen shape (P/E ratio), and a new trait—saccus shape (A/B ratio — saccus width (A) to his length (B)). Pollen features made possible to differentiate seven individual genotypes (samples). To our knowledge, this is the first time that the intraspecific and interindividual variability of pollen grains of A. alba were investigated. The most different were the pollen grains from samples—genotypes 13 (Bystrzyca Kłodzka) and 18 (Jugów), and also (although to a lesser extent) genotypes—11 (Kamienna Góra), 30, 31 (Jugów), and 44 (Szklarska Poręba). No significant relationships were observed between the pollen grain traits and the geographical location of the collection sites.
Collapse
|
31
|
Blanc-Jolivet C, Mader M, Bouda HN, Massot M, Daïnou K, Yene G, Opuni-Frimpong E, Degen B. Development of new SNP and INDEL loci for the valuable African timber species Lophira alata. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01173-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe timber of the species Lophira alata (azobe) is very popular for outdoor constructions, which favours its overexploitation and illegal logging. We sampled individuals from Liberia, Ivory Coast, Ghana, Nigeria, Cameroon, Gabon, Congo Brazzaville and Republic Democratic of Congo to discover new nuclear and plastidial SNP and INDEL loci through restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing. From an initial set of 397 loci, a final set of 126 loci was selected for timber tracking purposes.
Collapse
|
32
|
Singewar K, Moschner CR, Hartung E, Fladung M. Identification and analysis of key genes involved in methyl salicylate biosynthesis in different birch species. PLoS One 2020; 15:e0240246. [PMID: 33031447 PMCID: PMC7544025 DOI: 10.1371/journal.pone.0240246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Species of the perennial woody plant genus Betula dominate subalpine forests and play a significant role in preserving biological diversity. In addition to their conventional benefits, birches synthesize a wide range of secondary metabolites having pharmacological significance. Methyl salicylate (MeSA) is one of these naturally occurring compounds constitutively produced by different birch species. MeSA is therapeutically important in human medicine for muscle injuries and joint pain. However, MeSA is now mainly produced synthetically due to a lack of information relating to MeSA biosynthesis and regulation. In this study, we performed a comprehensive bioinformatics analysis of two candidate genes mediating MeSA biosynthesis, SALICYLIC ACID METHYLTRANSFERASE (SAMT) and SALICYLIC ACID-BINDING PROTEIN 2 (SABP2), of high (B. lenta, B. alleghaniensis, B. medwediewii, and B. grossa) and low (B. pendula, B. utilis, B. alnoides, and B. nana) MeSA-producing birch species. Phylogenetic analyses of SAMT and SABP2 genes and homologous genes from other plant species confirmed their evolutionary relationships. Multiple sequence alignments of the amino acid revealed the occurrence of important residues for substrate specificity in SAMT and SABP2. The analysis of cis elements in different birches indicated a functional multiplicity of SAMT and SABP2 and provided insights into the regulation of both genes. We successfully developed six prominent single nucleotide substitution markers that were validated with 38 additional birch individuals to differentiate high and low MeSA-producing birch species. Relative tissue-specific expression analysis of SAMT in leaf and bark tissue of two high and two low MeSA-synthesizing birches revealed a high expression in the bark of both high MeSA-synthesizing birches. In contrast, SABP2 expression in tissues revealed indifferent levels of expression between species belonging to the two groups. The comparative expression and bioinformatics analyses provided vital information that could be used to apply plant genetic engineering technology in the mass production of organic MeSA.
Collapse
Affiliation(s)
- Kiran Singewar
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Thünen Institute of Forest Genetics, Grosshansdorf, Schleswig-Holstein, Germany
| | - Christian R. Moschner
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Eberhard Hartung
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Grosshansdorf, Schleswig-Holstein, Germany
| |
Collapse
|
33
|
Mader M, Schroeder H, Schott T, Schöning-Stierand K, Leite Montalvão AP, Liesebach H, Liesebach M, Fussi B, Kersten B. Mitochondrial Genome of Fagus sylvatica L. as a Source for Taxonomic Marker Development in the Fagales. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1274. [PMID: 32992588 PMCID: PMC7650814 DOI: 10.3390/plants9101274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
European beech, Fagus sylvatica L., is one of the most important and widespread deciduous tree species in Central Europe and is widely managed for its hard wood. The complete DNA sequence of the mitochondrial genome of Fagus sylvatica L. was assembled and annotated based on Illumina MiSeq reads and validated using long reads from nanopore MinION sequencing. The genome assembled into a single DNA sequence of 504,715 bp in length containing 58 genes with predicted function, including 35 protein-coding, 20 tRNA and three rRNA genes. Additionally, 23 putative protein-coding genes were predicted supported by RNA-Seq data. Aiming at the development of taxon-specific mitochondrial genetic markers, the tool SNPtax was developed and applied to select genic SNPs potentially specific for different taxa within the Fagales. Further validation of a small SNP set resulted in the development of four CAPS markers specific for Fagus, Fagaceae, or Fagales, respectively, when considering over 100 individuals from a total of 69 species of deciduous trees and conifers from up to 15 families included in the marker validation. The CAPS marker set is suitable to identify the genus Fagus in DNA samples from tree tissues or wood products, including wood composite products.
Collapse
Affiliation(s)
- Malte Mader
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Thomas Schott
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Katrin Schöning-Stierand
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
- Center for Bioinformatics, Universität Hamburg, 20146 Hamburg, Germany
| | - Ana Paula Leite Montalvão
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Heike Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Mirko Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Barbara Fussi
- Bavarian Office for Forest Genetics, 83317 Teisendorf, Germany;
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| |
Collapse
|
34
|
Schroeder H, Palczewski S, Degen B. Development of D-Loop mitochondrial markers for amplification of prey DNA from wolf scat. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractAnalysis of wolves dietary is a currently important theme because of the discussion about wolves preying on livestock as sheep or goats. We developed molecular markers to especially amplify the DNA of the prey out of wolf scat. For this purpose, we used the mitochondrial D-Loop using public available sequences for wolf and seven potential prey species (even-toed ungulates). We developed special primers amplifying either the wolves DNA or the prey DNA. In a fragment of 223-225 basepairs (bp) length we identified 21 SNPs, two 1-bp indels and one 3-bp indel, and three microsatellites to separate seven prey species from each other. Validation of the markers was performed by sequencing the PCR products of 12 fresh prey tissues and 20 wolf scat samples using the different primer pairs.
Collapse
|
35
|
Chloroplast Haplotypes of Northern Red Oak (Quercus rubra L.) Stands in Germany Suggest Their Origin from Northeastern Canada. FORESTS 2020. [DOI: 10.3390/f11091025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Northern red oak (Quercus rubra L.) is one of the most important foreign tree species in Germany and considered as a major candidate for prospective sustainable forestry in the face of climate change. Therefore, Q. rubra was subject of many previous studies on its growth traits and attempts to infer the origin of various populations of this species using nuclear and chloroplast DNA markers. However, the exact geographic origin of German red oak stands has still not been identified. Its native range widely extends over North America, and the species can tolerate a broad range of environmental conditions. We genotyped individual trees in 85 populations distributed in Germany and North America using five chloroplast microsatellite and three novel chloroplast CAPS markers, resulting in the identification of 29 haplotypes. The new marker set enabled the identification of several new red oak haplotypes with restricted geographic origin. Some very rare haplotypes helped us narrow down the origin of Q. rubra stands in Germany, especially some stands from North Rhine-Westphalia, to the northern part of the species’ natural distribution area including the Peninsula of Nova Scotia, where the most similar haplotype composition was observed, compared to distinct German stands.
Collapse
|
36
|
Abbate L, Mercati F, Di Noto G, Heuertz M, Carimi F, Fatta del Bosco S, Schicchi R. Genetic Distinctiveness Highlights the Conservation Value of a Sicilian Manna Ash Germplasm Collection Assigned to Fraxinus angustifolia (Oleaceae). PLANTS 2020; 9:plants9081035. [PMID: 32824084 PMCID: PMC7463994 DOI: 10.3390/plants9081035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
The cosmopolitan genus Fraxinus comprises about 40 species occupying several habitats in the Northern Hemisphere. With some species hybridizing and sharing genetic variants, questions remain on the species assignment of germplasm within the genus Fraxinus despite numerous species-specific assessments. A multidisciplinary approach was employed to provide a definitive insight into the genetics of an endangered Fraxinus “manna ash” collection, located in a rich plant biodiversity hotspot of the Madonie Mountains (Sicily). Although the collection size was small, genetic diversity, assessed by chloroplast (cpSSR) and nuclear (nSSR) microsatellites (SSR—Simple Sequence Repeats), allowed identifying three different chloroplast haplotypes, with one (H5) dominant, and several polymorphic loci, able to discriminate most of the local accessions studied. Molecular data were linked to cytofluorimetric and phenotypic evaluations and, contrary to popular belief that manna ash is Fraxinus ornus L., the germplasm currently used for manna production belongs to Fraxinus angustifolia Vahl. Interestingly, joint analysis of our genetic panel with a large European dataset of Fraxinus spp. suggested the presence of a possible glacial refuge in Sicily, confirming its importance as biodiversity source. Our results will be helpful for the design of long-term conservation programs for genetic resources, such as in situ and ex situ conservation, seed collection and tree reintroduction.
Collapse
Affiliation(s)
- Loredana Abbate
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Corso Calatafimi 414, 90129 Palermo, Italy; (L.A.); (F.C.); (S.F.d.B.)
| | - Francesco Mercati
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Corso Calatafimi 414, 90129 Palermo, Italy; (L.A.); (F.C.); (S.F.d.B.)
- Correspondence: ; Tel.: +39-091-6574578
| | - Giuseppe Di Noto
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Via Archirafi 38, 90123 Palermo, Italy; (G.D.N.); (R.S.)
| | - Myriam Heuertz
- Institut National de Recherche Pour l’agriculture, l’alimentation et l’environnement (INRAE), Univ. Bordeaux, BIOGECO, 69 route d’Arcachon, F-33610 Cestas, France;
| | - Francesco Carimi
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Corso Calatafimi 414, 90129 Palermo, Italy; (L.A.); (F.C.); (S.F.d.B.)
| | - Sergio Fatta del Bosco
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Corso Calatafimi 414, 90129 Palermo, Italy; (L.A.); (F.C.); (S.F.d.B.)
| | - Rosario Schicchi
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Via Archirafi 38, 90123 Palermo, Italy; (G.D.N.); (R.S.)
| |
Collapse
|
37
|
Pakull B, Schindler L, Mader M, Kersten B, Blanc-Jolivet C, Paulini M, Lemes MR, Ward SE, Navarro CM, Cavers S, Sebbenn AM, di Dio O, Guichoux E, Degen B. Development of nuclear SNP markers for Mahogany (Swietenia spp.). CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractSwietenia species are the most valuable American tropical timbers and have been heavily overexploited for decades. The three species are listed as either vulnerable or endangered by IUCN and are included on Appendix II of CITES, yet illegal exploitation continues. Here, we used restriction associated DNA sequencing to develop a new set of 120 SNP markers for Swietenia sp., suitable for MassARRAY®iPLEX™ genotyping. These markers can be used for population genetic studies and timber tracking purposes.
Collapse
|
38
|
Honorio Coronado EN, Blanc-Jolivet C, Mader M, García-Dávila CR, Aldana Gomero D, Del Castillo Torres D, Flores Llampazo G, Hidalgo Pizango G, Sebbenn AM, Meyer-Sand BRV, Paredes-Villanueva K, Tysklind N, Troispoux V, Massot M, Carvalho C, de Lima HC, Cardoso D, Degen B. SNP Markers as a Successful Molecular Tool for Assessing Species Identity and Geographic Origin of Trees in the Economically Important South American Legume Genus Dipteryx. J Hered 2020; 111:346-356. [PMID: 32402074 DOI: 10.1093/jhered/esaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Dipteryx timber has been heavily exploited in South America since 2000s due to the increasing international demand for hardwood. Developing tools for the genetic identification of Dipteryx species and their geographical origin can help to promote legal trading of timber. A collection of 800 individual trees, belonging to 6 different Dipteryx species, was genotyped based on 171 molecular markers. After the exclusion of markers out of Hardy-Weinberg equilibrium or with no polymorphism or low amplification, 83 nuclear, 29 chloroplast, 13 mitochondrial single nucleotide polymorphisms (SNPs), and 2 chloroplast and 5 mitochondrial INDELS remained. Six genetic groups were identified using Bayesian Structure analyses of the nuclear SNPs, which corresponded to the different Dipteryx species collected in the field. Seventeen highly informative markers were identified as suitable for species identification and obtained self-assignment success rates to species level of 78-96%. An additional set of 15 molecular markers was selected to determine the different genetic clusters found in Dipteryx odorata and Dipteryx ferrea, obtaining self-assignment success rates of 91-100%. The success to assign samples to the correct country of origin using all or only the informative markers improved when using the nearest neighbor approach (69-92%) compared to the Bayesian approach (33-80%). While nuclear and chloroplast SNPs were more suitable for differentiating the different Dipteryx species, mitochondrial SNPs were ideal for determining the genetic clusters of D. odorata and D. ferrea. These 32 selected SNPs will be invaluable genetic tools for the accurate identification of species and country of origin of Dipteryx timber.
Collapse
Affiliation(s)
| | | | - Malte Mader
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | | | | | | | | | | | - Barbara R V Meyer-Sand
- Departamento de Fitotecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, SP, Brazil
| | - Kathelyn Paredes-Villanueva
- Carrera de Ingeniería Forestal, Laboratorio de Dendrocronología, Facultad de Ciencias Agrícolas, Universidad Autónoma Gabriel René Moreno, El Vallecito, Santa Cruz, Bolivia
| | - Niklas Tysklind
- INRA, UMR0745 EcoFoG, AgroParisTech, Cirad, CNRS, Université des Antilles, Université de Guyane, Campus Agronomique, Kourou Cedex, France
| | - Valerie Troispoux
- INRA, UMR0745 EcoFoG, AgroParisTech, Cirad, CNRS, Université des Antilles, Université de Guyane, Campus Agronomique, Kourou Cedex, France
| | - Marie Massot
- BIOGECO, INRAE, University of Bordeaux, Cestas, France
| | - Catarina Carvalho
- Escola Nacional de Botânica Tropical, Horto, Rio de Janeiro, RJ, Brazil.,Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Haroldo C de Lima
- Escola Nacional de Botânica Tropical, Horto, Rio de Janeiro, RJ, Brazil.,Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia, Ondina, Salvador, BA, Brazil
| | - Bernd Degen
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| |
Collapse
|
39
|
Genetic Diversity of Paeonia rockii (Flare Tree Peony) Germplasm Accessions Revealed by Phenotypic Traits, EST-SSR Markers and Chloroplast DNA Sequences. FORESTS 2020. [DOI: 10.3390/f11060672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: This study, based on the first collection of cultivated Paeonia rockii (flare tree peony, FTP) germplasm across the main distribution area by our breeding desires, comprehensively evaluates these accessions by using phenotypic traits, expressed sequence tag (EST)-simple sequence repeat (SSR) markers and chloroplast DNA sequences (cpDNA). The results show that these accessions collected selectively by us can represent the genetic background information of FTP as a germplasm of tree crops. Background and Objectives: FTP has high cultural, ornamental and medicinal value traditionally, as well as recently presenting a significance as an emerging edible oil with high α-linolenic acid contents in the seeds. The objectives of this study are to reveal the characteristics of the genetic diversity of FTP, as well as to provide scientific suggestions for the utilization of tree peony breeding and the conservation of germplasm resource. Materials and Methods: Based on the phenotypic traits, EST-SSR markers and chloroplast DNA sequence variation, we studied the diversity of a newly established population of 282 FTP accessions that were collected and propagated by ourselves in our breeding project in recent years. Results: (1) There was an abundant variation in phenotype of the accessions, and the phenotypic variation was evenly distributed within the population, without significant hierarchical structure, (2) the EST-SSR data showed that these 282 accessions had relatively high genetic diversity, in which a total of 185 alleles were detected in 34 pairs of primers. The 282 accessions were divided into three distinct groups, and (3) the chloroplast DNA sequences (cpDNA) data indicated that these accessions had a higher genetic diversity than the population level and a lower genetic diversity than the species level of wild P. rockii, and the existing spatial genetic structure of these accessions can be divided into two branches. Conclusions: From the results of the three analyses, we found that these accessions can fully reflect the genetic background information of FTP germplasm resources, so their protection and utilization will be of great significance for genetic improvement of woody peonies.
Collapse
|
40
|
Predicting the geographic origin of Spanish Cedar (Cedrela odorata L.) based on DNA variation. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01282-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Lunerová J, Herklotz V, Laudien M, Vozárová R, Groth M, Kovařík A, Ritz CM. Asymmetrical canina meiosis is accompanied by the expansion of a pericentromeric satellite in non-recombining univalent chromosomes in the genus Rosa. ANNALS OF BOTANY 2020; 125:1025-1038. [PMID: 32095807 PMCID: PMC7262465 DOI: 10.1093/aob/mcaa028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/24/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Despite their abundant odd-ploidy (2n = 5x = 35), dogroses (Rosa sect. Caninae) are capable of sexual reproduction due to their unique meiosis. During canina meiosis, two sets of chromosomes form bivalents and are transmitted by male and female gametes, whereas the remaining chromosomes form univalents and are exclusively transmitted by the egg cells. Thus, the evolution of chromosomes is expected to be driven by their behaviour during meiosis. METHODS To gain insight into differential chromosome evolution, fluorescence in situ hybridization was conducted for mitotic and meiotic chromosomes in four dogroses (two subsections) using satellite and ribosomal DNA probes. By exploiting high-throughput sequencing data, we determined the abundance and diversity of the satellite repeats in the genus Rosa by analysing 20 pentaploid, tetraploid and diploid species in total. KEY RESULTS A pericentromeric satellite repeat, CANR4, was found in all members of the genus Rosa, including the basal subgenera Hulthemia and Hesperhodos. The satellite was distributed across multiple chromosomes (5-20 sites per mitotic cell), and its genomic abundance was higher in pentaploid dogroses (2.3 %) than in non-dogrose species (1.3 %). In dogrose meiosis, univalent chromosomes were markedly enriched in CANR4 repeats based on both the number and the intensity of the signals compared to bivalent-forming chromosomes. Single-nucleotide polymorphisms and cluster analysis revealed high intragenomic homogeneity of the satellite in dogrose genomes. CONCLUSIONS The CANR4 satellite arose early in the evolution of the genus Rosa. Its high content and extraordinary homogeneity in dogrose genomes is explained by its recent amplification in non-recombining chromosomes. We hypothesize that satellite DNA expansion may contribute to the divergence of univalent chromosomes in Rosa species with non-symmetrical meiosis.
Collapse
Affiliation(s)
- Jana Lunerová
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Veit Herklotz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - Melanie Laudien
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
- Technical University Dresden, International Institute Zittau (IHI), Chair of Biodiversity of Higher Plants, Zittau, Germany
| | - Radka Vozárová
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
- Masaryk University, Faculty of Science, Brno, Czech Republic
| | - Marco Groth
- Leibniz Institute on Ageing – Fritz Lipmann Institute, Jena, Germany
| | - Aleš Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Christiane M Ritz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| |
Collapse
|
42
|
Müller NA, Kersten B, Leite Montalvão AP, Mähler N, Bernhardsson C, Bräutigam K, Carracedo Lorenzo Z, Hoenicka H, Kumar V, Mader M, Pakull B, Robinson KM, Sabatti M, Vettori C, Ingvarsson PK, Cronk Q, Street NR, Fladung M. A single gene underlies the dynamic evolution of poplar sex determination. NATURE PLANTS 2020; 6:630-637. [PMID: 32483326 DOI: 10.1038/s41477-020-0672-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
Although hundreds of plant lineages have independently evolved dioecy (that is, separation of the sexes), the underlying genetic basis remains largely elusive1. Here we show that diverse poplar species carry partial duplicates of the ARABIDOPSIS RESPONSE REGULATOR 17 (ARR17) orthologue in the male-specific region of the Y chromosome. These duplicates give rise to small RNAs apparently causing male-specific DNA methylation and silencing of the ARR17 gene. CRISPR-Cas9-induced mutations demonstrate that ARR17 functions as a sex switch, triggering female development when on and male development when off. Despite repeated turnover events, including a transition from the XY system to a ZW system, the sex-specific regulation of ARR17 is conserved across the poplar genus and probably beyond. Our data reveal how a single-gene-based mechanism of dioecy can enable highly dynamic sex-linked regions and contribute to maintaining recombination and integrity of sex chromosomes.
Collapse
Affiliation(s)
- Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany.
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | - Niklas Mähler
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Carolina Bernhardsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katharina Bräutigam
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Hans Hoenicka
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vikash Kumar
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Malte Mader
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Birte Pakull
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | - Maurizio Sabatti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Cristina Vettori
- Institute of Biosciences and BioResources, Division of Florence, National Research Council, Sesto Fiorentino, Italy
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Quentin Cronk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
43
|
Briones MV, Hoenicka H, Cañas LA, Beltrán JP, Hanelt D, Sharry S, Fladung M. Efficient evaluation of a gene containment system for poplar through early flowering induction. PLANT CELL REPORTS 2020; 39:577-587. [PMID: 32052127 PMCID: PMC7165154 DOI: 10.1007/s00299-020-02515-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The early flowering system HSP::AtFT allowed a fast evaluation of a gene containment system based on the construct PsEND1::barnase-barstar for poplar. Transgenic lines showed disturbed pollen development and sterility. Vertical gene transfer through pollen flow from transgenic or non-native plant species into their crossable natural relatives is a major concern. Gene containment approaches have been proposed to reduce or even avoid gene flow among tree species. However, evaluation of genetic containment strategies for trees is very difficult due to the long-generation times. Early flowering induction would allow faster evaluation of genetic containment in this case. Although no reliable methods were available for the induction of fertile flowers in poplar, recently, a new early flowering approach was developed. In this study, early flowering poplar lines containing the gene construct PsEND1::barnase-barstar were obtained. The PsEND1 promoter was chosen due to its early expression pattern, its versality and efficiency for generation of male-sterile plants fused to the barnase gene. RT-PCRs confirmed barnase gene activity in flowers, and pollen development was disturbed, leading to sterile flowers. The system developed in this study represents a valuable tool for gene containment studies in forest tree species.
Collapse
Affiliation(s)
- M Valentina Briones
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, B1900, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1900, La Plata, Argentina
| | - Hans Hoenicka
- Thünen Institute of Forest Genetics, 22927, Grosshansdorf, Germany.
| | - Luis A Cañas
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022, Valencia, Spain
| | - José Pío Beltrán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022, Valencia, Spain
| | - Dieter Hanelt
- Institut für Pflanzenwissenschaften und Mikrobiologie, Universität Hamburg, 22609, Hamburg, Germany
| | - Sandra Sharry
- Laboratorio de Investigaciones de la Madera (LIMAD), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, B1900, La Plata, Argentina
- CIT-Viedma, Universidad Nacional de Río Negro, R8500, Viedma, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), B1900, La Plata, Argentina
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927, Grosshansdorf, Germany
| |
Collapse
|
44
|
Blanc-Jolivet C, Bakhtina S, Yanbaev R, Yanbaev Y, Mader M, Guichoux E, Degen B. Development of new SNPs loci on Quercus robur and Quercus petraea for genetic studies covering the whole species’ distribution range. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01141-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractWe used double digest restriction site associated DNA sequencing (ddRAD) to develop new geographically informative nuclear SNP loci in Quercus robur and Quercus petraea. Genotypes derived from sequence data of 95 individuals covering the distribution range of the species were analysed to select geographically informative and polymorphic loci within Russia and Germany. We successfully screened a selected set of 119 loci on a MassARRAY® iPLEX™ platform on 190 individuals from 19 locations in Russia. The newly developed loci will be useful for genetic studies over the whole distribution range of both species.
Collapse
|
45
|
Khan A, Asaf S, Khan AL, Shehzad T, Al-Rawahi A, Al-Harrasi A. Comparative Chloroplast Genomics of Endangered Euphorbia Species: Insights into Hotspot Divergence, Repetitive Sequence Variation, and Phylogeny. PLANTS 2020; 9:plants9020199. [PMID: 32033491 PMCID: PMC7076480 DOI: 10.3390/plants9020199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/30/2022]
Abstract
Euphorbia is one of the largest genera in the Euphorbiaceae family, comprising 2000 species possessing commercial, medicinal, and ornamental importance. However, there are very little data available on their molecular phylogeny and genomics, and uncertainties still exist at a taxonomic level. Herein, we sequence the complete chloroplast (cp) genomes of two species, E. larica and E. smithii, of the genus Euphorbia through next-generation sequencing and perform a comparative analysis with nine related genomes in the family. The results revealed that the cp genomes had similar quadripartite structure, gene content, and genome organization with previously reported genomes from the same family. The size of cp genomes ranged from 162,172 to 162,358 bp with 132 and 133 genes, 8 rRNAs, 39 tRNA in E. smithii and E. larica, respectively. The numbers of protein-coding genes were 85 and 86, with each containing 19 introns. The four-junction regions were studied and results reveal that rps19 was present at JLB (large single copy region and inverted repeat b junction) in E. larica where its complete presence was located in the IRb (inverted repeat b) region in E. smithii. The sequence comparison revealed that highly divergent regions in rpoC1, rpocB, ycf3, clpP, petD, ycf1, and ndhF of the cp genomes might provide better understanding of phylogenetic inferences in the Euphorbiaceae and order Malpighiales. Phylogenetic analyses of this study illustrate sister clades of E. smithii with E. tricullii and these species form a monophyletic clade with E. larica. The current study might help us to understand the genome architecture, genetic diversity among populations, and evolutionary depiction in the genera.
Collapse
Affiliation(s)
- Arif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (A.K.); (S.A.); (A.A.-R.)
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (A.K.); (S.A.); (A.A.-R.)
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (A.K.); (S.A.); (A.A.-R.)
- Correspondence: (A.L.K.); (A.A.-H.)
| | - Tariq Shehzad
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar;
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (A.K.); (S.A.); (A.A.-R.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (A.K.); (S.A.); (A.A.-R.)
- Correspondence: (A.L.K.); (A.A.-H.)
| |
Collapse
|
46
|
Walas Ł, Ganatsas P, Iszkuło G, Thomas PA, Dering M. Spatial genetic structure and diversity of natural populations of Aesculus hippocastanum L. in Greece. PLoS One 2019; 14:e0226225. [PMID: 31826015 PMCID: PMC6905551 DOI: 10.1371/journal.pone.0226225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022] Open
Abstract
Horse-chestnut (Aesculus hippocastanum L.) is an endemic and relict species from the Mediterranean biodiversity hotspot and a popular ornamental tree. Knowledge about the evolutionary history of this species remains scarce. Here, we ask what historical and ecological factors shaped the pattern of genetic diversity and differentiation of this species. We genotyped 717 individuals from nine natural populations using microsatellite markers. The influence of distance, topography and habitat variables on spatial genetic structure was tested within the approaches of isolation-by-distance and isolation-by-ecology. Species niche modeling was used to project the species theoretical range through time and space. The species showed high genetic diversity and moderate differentiation for which topography, progressive range contraction through the species’ history and long-term persistence in stable climatic refugia are likely responsible. A strong geographic component was revealed among five genetic clusters that are connected with very limited gene flow. The environmental variables were a significant factor in the spatial genetic structure. Modeling results indicated that future reduction of the species range may affect its survival. The possible impact of climate changes and high need of in situ conservation are discussed.
Collapse
Affiliation(s)
- Łukasz Walas
- Institute of Dendrology, Polish Academy of Sciences, Parkowa, Kórnik, Poland
- * E-mail:
| | - Petros Ganatsas
- Aristotle University of Thessaloniki, School of Forestry and Natural Environment, Laboratory of Silviculture, Thessaloniki, Greece
| | - Grzegorz Iszkuło
- Institute of Dendrology, Polish Academy of Sciences, Parkowa, Kórnik, Poland
- Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana, Zielona Góra, Poland
| | - Peter A. Thomas
- School of Biological Sciences, Keele University, Staffordshire, United Kingdom
- Harvard Forest, Harvard University, Petersham, MA, United States of America
| | - Monika Dering
- Institute of Dendrology, Polish Academy of Sciences, Parkowa, Kórnik, Poland
- Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego, Poznań, Poland
| |
Collapse
|
47
|
Köbölkuti ZA, Cseke K, Benke A, Báder M, Borovics A, Németh R. Allelic variation in candidate genes associated with wood properties of cultivated poplars (Populus). Biol Futur 2019; 70:286-294. [PMID: 34554544 DOI: 10.1556/019.70.2019.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Since Populus has veritable value as timber, plywood, pulp, and paper, genomic research should create the sound basis for further breeding toward desirable wood quality attributes. MATERIALS AND METHODS In this study, we addressed the need for a research methodology that initially identifies and then characterize candidate genes encoding enzymes with wood property phenotypic traits, toward the aim of developing a genomics-based breeding technology. RESULTS On 23 different poplar species/hybrid samples, we successfully amplified 55 primers designed on Populus trichocarpa L. Considering the number of polymorphic sites, out of 73,206 bp, 51 SNPs and 31 indel events were found. Non-synonymous single base mutations could be detected in number of 30, 21 out of 164 sequences were the number of minimum recombination events and 41 significant pairwise comparisons between loci could be detected. DISCUSSION AND CONCLUSION Our results provide a roadmap for a future association genetic study between nucleotide diversity and precise evaluation of phenotype.
Collapse
Affiliation(s)
- Zoltán Attila Köbölkuti
- Department of Tree Breeding, National Agricultural Research and Innovation Centre, Forest Research Institute, Várkerulet 30/A, Sárvár, 9600, Hungary.
| | - Klára Cseke
- Department of Tree Breeding, National Agricultural Research and Innovation Centre, Forest Research Institute, Várkerulet 30/A, Sárvár, 9600, Hungary
| | - Attila Benke
- Department of Tree Breeding, National Agricultural Research and Innovation Centre, Forest Research Institute, Várkerulet 30/A, Sárvár, 9600, Hungary
| | - Mátyás Báder
- Simonyi Karoly Faculty of Engineering, Wood Sciences and Applied Arts, University of Sopron, Bajcsy Zs. u. 4, 9400, Sopron, Hungary
| | - Attila Borovics
- Department of Tree Breeding, National Agricultural Research and Innovation Centre, Forest Research Institute, Várkerulet 30/A, Sárvár, 9600, Hungary
| | - Róbert Németh
- Simonyi Karoly Faculty of Engineering, Wood Sciences and Applied Arts, University of Sopron, Bajcsy Zs. u. 4, 9400, Sopron, Hungary
| |
Collapse
|
48
|
Schott T, Schroeder H, Schöning-Stierand K, Kersten B. The complete chloroplast genome sequence of Pinus cembra L. (Pinaceae). Mitochondrial DNA B Resour 2019; 4:4202-4203. [PMID: 33366383 PMCID: PMC7707747 DOI: 10.1080/23802359.2019.1693297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The Swiss pine (Pinus cembra) is a montane tree in Central Europe and, therefore, known for its hardiness against severe winter colds. The seeds are harvested and eaten as pine nuts. We assembled and characterized the complete chloroplast genome of P. cembra to serve as a valuable resource in future genetic studies. The complete plastome sequence is 116,609 bp in length and contains 113 genes including 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. A phylogenetic analysis of 34 Pinus plastome sequences shows that Pinus sibirica is the nearest relative to P. cembra and that there is a distinct clustering together with the other members of the section Quinquefoliae.
Collapse
Affiliation(s)
- Thomas Schott
- Institute of Forest Genetics, Thünen Institute, Grosshansdorf, Germany
| | - Hilke Schroeder
- Institute of Forest Genetics, Thünen Institute, Grosshansdorf, Germany
| | | | - Birgit Kersten
- Institute of Forest Genetics, Thünen Institute, Grosshansdorf, Germany
| |
Collapse
|
49
|
Yan M, Liu R, Li Y, Hipp AL, Deng M, Xiong Y. Ancient events and climate adaptive capacity shaped distinct chloroplast genetic structure in the oak lineages. BMC Evol Biol 2019; 19:202. [PMID: 31684859 PMCID: PMC6829957 DOI: 10.1186/s12862-019-1523-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Understanding the origin of genetic variation is the key to predict how species will respond to future climate change. The genus Quercus is a species-rich and ecologically diverse woody genus that dominates a wide range of forests and woodland communities of the Northern Hemisphere. Quercus thus offers a unique opportunity to investigate how adaptation to environmental changes has shaped the spatial genetic structure of closely related lineages. Furthermore, Quercus provides a deep insight into how tree species will respond to future climate change. This study investigated whether closely related Quercus lineages have similar spatial genetic structures and moreover, what roles have their geographic distribution, ecological tolerance, and historical environmental changes played in the similar or distinct genetic structures. RESULTS Despite their close relationships, the three main oak lineages (Quercus sections Cyclobalanopsis, Ilex, and Quercus) have different spatial genetic patterns and occupy different climatic niches. The lowest level and most homogeneous pattern of genetic diversity was found in section Cyclobalanopsis, which is restricted to warm and humid climates. The highest genetic diversity and strongest geographic genetic structure were found in section Ilex, which is due to their long-term isolation and strong local adaptation. The widespread section Quercus is distributed across the most heterogeneous range of environments; however, it exhibited moderate haplotype diversity. This is likely due to regional extinction during Quaternary climatic fluctuation in Europe and North America. CONCLUSIONS Genetic variations of sections Ilex and Quercus were significantly predicted by geographic and climate variations, while those of section Cyclobalanopsis were poorly predictable by geographic or climatic diversity. Apart from the different historical environmental changes experienced by different sections, variation of their ecological or climatic tolerances and physiological traits induced varying responses to similar environment changes, resulting in distinct spatial genetic patterns.
Collapse
Affiliation(s)
- Mengxiao Yan
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Ruibin Liu
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Li
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- The Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
- The Field Museum, 1400 S Lake Shore Drive, Chicago, IL, 60605, USA
| | - Min Deng
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Yanshi Xiong
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
50
|
Development of SNP markers for the African timber species Nauclea diderrichii. CONSERV GENET RESOUR 2019. [DOI: 10.1007/s12686-019-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|