1
|
Prieur DS, Francius C, Gaspar P, Mason CA, Rebsam A. Semaphorin-6D and Plexin-A1 Act in a Non-Cell-Autonomous Manner to Position and Target Retinal Ganglion Cell Axons. J Neurosci 2023; 43:5769-5778. [PMID: 37344233 PMCID: PMC10423046 DOI: 10.1523/jneurosci.0072-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023] Open
Abstract
Semaphorins and Plexins form ligand/receptor pairs that are crucial for a wide range of developmental processes from cell proliferation to axon guidance. The ability of semaphorins to act both as signaling receptors and ligands yields a multitude of responses. Here, we describe a novel role for Semaphorin-6D (Sema6D) and Plexin-A1 in the positioning and targeting of retinogeniculate axons. In Plexin-A1 or Sema6D mutant mice of either sex, the optic tract courses through, rather than along, the border of the dorsal lateral geniculate nucleus (dLGN), and some retinal axons ectopically arborize adjacent and lateral to the optic tract rather than defasciculating and entering the target region. We find that Sema6D and Plexin-A1 act together in a dose-dependent manner, as the number of the ectopic retinal projections is altered in proportion to the level of Sema6D or Plexin-A1 expression. Moreover, using retinal in utero electroporation of Sema6D or Plexin-A1 shRNA, we show that Sema6D and Plexin-A1 are both required in retinal ganglion cells for axon positioning and targeting. Strikingly, nonelectroporated retinal ganglion cell axons also mistarget in the tract region, indicating that Sema6D and Plexin-A1 can act non-cell-autonomously, potentially through axon-axon interactions. These data provide novel evidence for a dose-dependent and non-cell-autonomous role for Sema6D and Plexin-A1 in retinal axon organization in the optic tract and dLGN.SIGNIFICANCE STATEMENT Before innervating their central brain targets, retinal ganglion cell axons fasciculate in the optic tract and then branch and arborize in their target areas. Upon deletion of the guidance molecules Plexin-A1 or Semaphorin-6D, the optic tract becomes disorganized near and extends within the dorsal lateral geniculate nucleus. In addition, some retinal axons form ectopic aggregates within the defasciculated tract. Sema6D and Plexin-A1 act together as a receptor-ligand pair in a dose-dependent manner, and non-cell-autonomously, to produce this developmental aberration. Such a phenotype highlights an underappreciated role for axon guidance molecules in tract cohesion and appropriate defasciculation near, and arborization within, targets.
Collapse
Affiliation(s)
- Delphine S Prieur
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
| | - Cédric Francius
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Alexandra Rebsam
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, F-75012, France
| |
Collapse
|
2
|
Huerga-Gómez I, Martini FJ, López-Bendito G. Building thalamic neuronal networks during mouse development. Front Neural Circuits 2023; 17:1098913. [PMID: 36817644 PMCID: PMC9936079 DOI: 10.3389/fncir.2023.1098913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The thalamic nuclear complex contains excitatory projection neurons and inhibitory local neurons, the two cell types driving the main circuits in sensory nuclei. While excitatory neurons are born from progenitors that reside in the proliferative zone of the developing thalamus, inhibitory local neurons are born outside the thalamus and they migrate there during development. In addition to these cell types, which occupy most of the thalamus, there are two small thalamic regions where inhibitory neurons target extra-thalamic regions rather than neighboring neurons, the intergeniculate leaflet and the parahabenular nucleus. Like excitatory thalamic neurons, these inhibitory neurons are derived from progenitors residing in the developing thalamus. The assembly of these circuits follows fine-tuned genetic programs and it is coordinated by extrinsic factors that help the cells find their location, associate with thalamic partners, and establish connections with their corresponding extra-thalamic inputs and outputs. In this review, we bring together what is currently known about the development of the excitatory and inhibitory components of the thalamocortical sensory system, in particular focusing on the visual pathway and thalamic interneurons in mice.
Collapse
Affiliation(s)
- Irene Huerga-Gómez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | |
Collapse
|
3
|
Cheng Q, Graves MD, Pallas SL. Dynamic Alterations of Retinal EphA5 Expression in Retinocollicular Map Plasticity. Dev Neurobiol 2019; 79:252-267. [PMID: 30916472 PMCID: PMC6506164 DOI: 10.1002/dneu.22675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 11/10/2022]
Abstract
The topographically ordered retinocollicular projection is an excellent system for studying the mechanism of axon guidance. Gradients of EphA receptors in the retina and ephrin-As in the superior colliculus (SC) pattern the anteroposterior axis of the retinocollicular map, but whether they are involved in map plasticity after injury is unknown. Partial damage to the caudal SC at birth creates a compressed, complete retinotopic map in the remaining SC without affecting visual response properties. Previously, we found that the gradient of ephrin-A expression in compressed maps is steeper than normal, suggesting an instructive role in compression. Here we measured EphA5 mRNA and protein levels after caudal SC damage in order to test the hypothesis that changes in retinal EphA5 expression occur that are complementary to the changes in collicular ephrin-A expression. We find that the nasotemporal gradient of EphA5 receptor expression steepens in the retina and overall expression levels change dynamically, especially in temporal retina, supporting the hypothesis. This change in receptor expression occurs after the change in ephrin-A ligand expression. We propose that changes in the retinal EphA5 gradient guide recovery of the retinocollicular projection from early injury. This could occur directly through the change in EphA5 expression instructing retino-SC map compression, or through ephrin-A ligand signaling instructing a change in EphA5 receptor expression that in turn signals the retinocollicular map to compress. Understanding what molecular signals direct compensation for injury is essential to developing rehabilitative strategies and maximizing the potential for recovery.
Collapse
Affiliation(s)
- Qi Cheng
- Neuroscience Institute Georgia State University, Atlanta, GA, USA
| | - Mark D. Graves
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Sarah L. Pallas
- Neuroscience Institute Georgia State University, Atlanta, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
4
|
Mysona BA, Zhao J, Bollinger KE. Role of BDNF/TrkB pathway in the visual system: Therapeutic implications for glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2016; 12:69-81. [PMID: 28751923 DOI: 10.1080/17469899.2017.1259566] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Neuroprotective therapeutics are needed to treat glaucoma, an optic neuropathy that results in death of retinal ganglion cells (RGCs). AREAS COVERED The BDNF/TrkB pathway is important for RGC survival. Temporal and spatial alterations in the BDNF/TrkB pathway occur in development and in response to acute optic nerve injury and to glaucoma. In animal models, BDNF supplementation is successful at slowing RGC death after acute optic nerve injury and in glaucoma, however, the BDNF/TrkB signaling is not the only pathway supporting long term RGC survival. EXPERT COMMENTARY Much remains to be discovered about the interaction between retrograde, anterograde, and retinal BDNF/TrkB signaling pathways in both neurons and glia. An ideal therapeutic agent for glaucoma likely has several modes of action that target multiple mechanisms of neurodegeneration including the BDNF/TrkB pathway.
Collapse
Affiliation(s)
- B A Mysona
- Augusta University Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute. Address: Augusta University Department of Cellular Biology and Anatomy, Health Sciences Campus, 1120 15th Street, Augusta, GA 30912, USA,
| | - J Zhao
- Medical College of Georgia, Department of Ophthalmology at Augusta University, James and Jean Culver Vision Discovery Institute. Address: Medical College of Georgia, Department of Ophthalmology at Augusta University, 1120 15th Street, Augusta, GA 30912, USA,
| | - K E Bollinger
- Medical College of Georgia, Department of Ophthalmology at Augusta University, Augusta University Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute. Address: Medical College of Georgia, Department of Ophthalmology at Augusta University, 1120 15th Street, Augusta, GA 30912, USA,
| |
Collapse
|
5
|
Scalia F, Rasweiler JJ, Danias J. Retinal projections in the short-tailed fruit bat, Carollia perspicillata, as studied using the axonal transport of cholera toxin B subunit: Comparison with mouse. J Comp Neurol 2015; 523:1756-91. [PMID: 25503714 DOI: 10.1002/cne.23723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/28/2014] [Accepted: 11/30/2014] [Indexed: 11/09/2022]
Abstract
To provide a modern description of the Chiropteran visual system, the subcortical retinal projections were studied in the short-tailed fruit bat, Carollia perspicillata, using the anterograde transport of eye-injected cholera toxin B subunit, supplemented by the silver-impregnation of anterograde degeneration following eye removal, and compared with the retinal projections of the mouse. The retinal projections were heavily labeled by the transported toxin in both species. Almost all components of the murine retinal projection are present in Carollia in varying degrees of prominence and laterality. The projections: to the superior colliculus, accessory optic nuclei, and nucleus of the optic tract are predominantly or exclusively contralateral; to the dorsal lateral geniculate nucleus and posterior pretectal nucleus are predominantly contralateral; to the ventral lateral geniculate nucleus, intergeniculate leaflet, and olivary pretectal nucleus have a substantial ipsilateral component; and to the suprachiasmatic nucleus are symmetrically bilateral. The retinal projection in Carollia is surprisingly reduced at the anterior end of the dorsal lateral geniculate and superior colliculus, suggestive of a paucity of the relevant ganglion cells in the ventrotemporal retina. In the superior colliculus, in which the superficial gray layer is very thin, the projection is patchy in places where the layer is locally absent. Except for a posteriorly located lateral terminal nucleus, the other accessory optic nuclei are diminutive in Carollia, as is the nucleus of the optic tract. In both species the cholera toxin labeled sparse groups of apparently terminating axons in numerous regions not listed above. A question of their significance is discussed.
Collapse
Affiliation(s)
- Frank Scalia
- Departments of Ophthalmology and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, 11203.,SUNY Eye Institute, Brooklyn, NY, 11203
| | - John J Rasweiler
- Department of Obstetrics and Gynecology, SUNY Downstate Medical Center, Brooklyn, NY, 11203
| | - John Danias
- Departments of Ophthalmology and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, 11203.,SUNY Eye Institute, Brooklyn, NY, 11203
| |
Collapse
|
6
|
Abstract
Failure of axon regeneration after central nervous system (CNS) injuries results in permanent functional deficits. Numerous studies in the past suggested that blocking extracellular inhibitory influences alone is insufficient to allow the majority of injured axons to regenerate, pointing to the importance of revisiting the hypothesis that diminished intrinsic regenerative ability critically underlies regeneration failure. Recent studies in different species and using different injury models have started to reveal important cellular and molecular mechanisms within neurons that govern axon regeneration. This review summarizes these observations and discusses possible strategies for stimulating axon regeneration and perhaps functional recovery after CNS injury.
Collapse
Affiliation(s)
- Kai Liu
- FM Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
7
|
Dhande OS, Hua EW, Guh E, Yeh J, Bhatt S, Zhang Y, Ruthazer ES, Feller MB, Crair MC. Development of single retinofugal axon arbors in normal and β2 knock-out mice. J Neurosci 2011; 31:3384-99. [PMID: 21368050 PMCID: PMC3060716 DOI: 10.1523/jneurosci.4899-10.2011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/12/2010] [Accepted: 12/14/2010] [Indexed: 11/21/2022] Open
Abstract
The maturation of retinal ganglion cell (RGC) axon projections in the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC) relies on both molecular and activity-dependent mechanisms. Despite the increasing popularity of the mouse as a mammalian visual system model, little is known in this species about the normal development of individual RGC axon arbors or the role of activity in this process. We used a novel in vivo single RGC labeling technique to quantitatively characterize the elaboration and refinement of RGC axon arbors in the dLGN and SC in wild-type (WT) and β2-nicotinic acetylcholine receptors mutant (β2(-/-)) mice, which have perturbed retinal waves, during the developmental period when eye-specific lamination and retinotopic refinement occurs. Our results suggest that eye-specific segregation and retinotopic refinement in WT mice are not the result of refinement of richly exuberant arbors but rather the elaboration of arbors prepositioned in the proper location combined with the elimination of inappropriately targeted sparse branches. We found that retinocollicular arbors mature ∼1 week earlier than retinogeniculate arbors, although RGC axons reach the dLGN and SC at roughly the same age. We also observed striking differences between contralateral and ipsilateral RGC axon arbors in the SC but not in the LGN. These data suggest a strong influence of target specific cues during arbor maturation. In β2(-/-) mice, we found that retinofugal single axon arbors are well ramified but enlarged, particularly in the SC, indicating that activity-dependent visual map development occurs through the refinement of individual RGC arbors.
Collapse
Affiliation(s)
- Onkar S. Dhande
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neurobiology, Yale University, New Haven, Connecticut 06510
| | - Ethan W. Hua
- Division of Biological Sciences, University of California, San Diego, California 92093
| | - Emily Guh
- Department of Neurobiology, Yale University, New Haven, Connecticut 06510
| | - Jonathan Yeh
- Department of Neurobiology, Yale University, New Haven, Connecticut 06510
| | - Shivani Bhatt
- Department of Neurobiology, Yale University, New Haven, Connecticut 06510
| | - Yueyi Zhang
- Department of Neurobiology, Yale University, New Haven, Connecticut 06510
| | - Edward S. Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4, and
| | - Marla B. Feller
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California 94720
| | - Michael C. Crair
- Department of Neurobiology, Yale University, New Haven, Connecticut 06510
| |
Collapse
|
8
|
Rodger J, Frost DO. Effects of trkB knockout on topography and ocular segregation of uncrossed retinal projections. Exp Brain Res 2009; 195:35-44. [PMID: 19283373 PMCID: PMC2769997 DOI: 10.1007/s00221-009-1746-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 02/16/2009] [Indexed: 11/28/2022]
Abstract
TrkB is an important receptor for brain-derived neurotrophic factor and NT4, members of the neurotrophin family. TrkB signaling is crucial in many activity-dependent and activity-independent processes of neural development. Here, we investigate the role of trkB signaling in the development of two distinct, organizational features of retinal projections--the segregation of crossed and uncrossed retinal inputs along the "lines of projection" that represent a single point in the visual field and the "retinotopic" mapping of retinofugal axons within their cerebral targets. Using anterograde tracing, we obtained quantitative measures of the distribution of retinal projections in the dorsal nucleus of the lateral geniculate body (LGd) and superior colliculus (SC) of wild-type mice and mice homozygous for constitutive null mutation (knockout) of the full-length trkB receptor (trkB(FL)(-/-)). In trkB(FL)(-/-) mice, uncrossed retinal projections cluster normally but there is a topographic expansion in the distribution of these clusters across the SC. By contrast, the absence of trkB signaling has no significant effect on the segregation of crossed and uncrossed retinal projections along the lines of projection in LGd or SC. We conclude that the normal topographic organization of uncrossed retinal projections depends upon trkB signaling, whereas the segregation of crossed and uncrossed retinal projections is trkB-independent. We also found that in trkB(FL)(-/-) mice, neuronal number was reduced in the LGd and SC and in the caudate-putamen. Previous studies by ourselves and others have shown that the number of retinal ganglion cells (RGCs) is unchanged in trkB(FL)(-/-) mice. Together, these results demonstrate that there is no matching of the numbers of RGCs with neuronal numbers in the LGd or SC.
Collapse
Affiliation(s)
- Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology M317, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Douglas O. Frost
- Program in Neuroscience, Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Upton AL, Cordery PM, Thompson ID. Emergence of topography in the developing hamster retinocollicular projection: axial differences and the role of cell death. Eur J Neurosci 2007; 25:2319-28. [PMID: 17445230 DOI: 10.1111/j.1460-9568.2007.05495.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The precise ordering of the hamster retinocollicular projection is established over the first two postnatal weeks, coincident with developmental cell death. We have used quantitative retrograde labelling to define topographic precision in the early postnatal projection, to describe its refinement and to assess the contribution played by selective retinal ganglion cell death. The hamster's short gestation period allows the investigation of events occurring prenatally in other rodents. Discrete injections of fluorescent beads in the superior colliculus followed by isodensity contour analysis of labelled retinal cells reveals a dramatic decrease in the extent of retina labelled between postnatal days 2, 6 and 12 (P2, P6, P12): the 20% contour encloses 38.3%, 8.3% and 1.8% of the retina at these ages. Paired injections of two different tracers at variable rostrocaudal (R-C) separations at P2 produced complete overlap of label even when injections were separated by over 1 mm. This was not true for paired mediolateral injections at P2 that were separated by more than 500 microm. Analysis of the segregation of the two tracers ('nearest-neighbour analysis') shows topography improving with age so that by P12 injections separated rostrocaudally by more than 500 microm produced no overlap in the retina. To examine the contribution of selective ganglion cell death to topographic refinement, animals given paired R-C injections at P2 were allowed to survive until P12. Nearest-neighbour analysis reveals significantly more order in the P2-P12 retinae than after overnight survival. Thus, selective cell death plays a small but appreciable role in correction of topographical errors.
Collapse
Affiliation(s)
- A L Upton
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK.
| | | | | |
Collapse
|
10
|
Lukehurst SS, King CE, Beazley LD, Tay DKC, So KF, Rodger J. Graded ephrin-A2 expression in the developing hamster superior colliculus. Exp Brain Res 2006; 173:546-52. [PMID: 16850319 DOI: 10.1007/s00221-006-0615-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 06/24/2006] [Indexed: 10/24/2022]
Abstract
During development, ephrin gradients guide retinal ganglion cell axons to their appropriate topographic locations in the superior colliculus (SC). Expression of ephrin-A2, assessed immunohistochemically in the developing hamster SC, revealed a rostral(low) to caudal (high) gradient that is most prominent at postnatal days P4 and P7 when topography is established. Double-labelling immunohistochemistry for ephrin-A2 and cell specific markers revealed that ephrin-A2 is expressed exclusively by a subset of neurons. The expression pattern has implications for mechanisms underlying establishment of topography during development and following injury.
Collapse
Affiliation(s)
- Sherralee S Lukehurst
- School of Animal Biology M092, The University of Western Australia, Crawley, WA, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Morin LP, Allen CN. The circadian visual system, 2005. BRAIN RESEARCH REVIEWS 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
12
|
Olavarria JF, Safaeian P. Development of callosal topography in visual cortex of normal and enucleated rats. J Comp Neurol 2006; 496:495-512. [PMID: 16572463 PMCID: PMC2577613 DOI: 10.1002/cne.20938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In normal rats callosal projections in striate cortex connect retinotopically corresponding, nonmirror-symmetric cortical loci, whereas in rats bilaterally enucleated at birth, callosal fibers connect topographically mismatched, mirror-symmetric loci. Moreover, retina input specifies the topography of callosal projections by postnatal day (P)6. To investigate whether retinal input guides development of callosal maps by promoting either the corrective pruning of exuberant axon branches or the specific ingrowth and elaboration of axon branches at topographically correct places, we studied the topography of emerging callosal connections at and immediately after P6. After restricted intracortical injections of anterogradely and retrogradely transported tracers we observed that the normal, nonmirror-symmetric callosal map, as well as the anomalous, mirror-symmetric map observed in neonatally enucleated animals, are present by P6-7, just as collateral branches of simple architecture emerge from their parental axons and grow into superficial cortical layers. Our results therefore do not support the idea that retinal input guides callosal map formation by primarily promoting the large-scale elimination of long, nontopographic branches and arbors. Instead, they suggest that retinal input specifies the sites on the parental axons from which interstitial branches will grow to invade middle and upper cortical layers, thereby ensuring that the location of invading interstitial branches is accurately related to the topographical location of the soma that gives rise to the parental axon. Moreover, our results from enucleated rats suggest that the cues that determine the mirror-symmetric callosal map exert only a weak control on the topography of fiber ingrowth.
Collapse
Affiliation(s)
- Jaime F Olavarria
- Department of Psychology, University of Washington, Seattle, 98195-1525, USA.
| | | |
Collapse
|
13
|
Dunlop SA, Rodger J, Beazley LD. Compensatory and transneuronal plasticity after early collicular ablation. J Comp Neurol 2006; 500:1117-26. [PMID: 17183539 DOI: 10.1002/cne.21221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Plasticity within the visual system was assessed in the quokka wallaby following unilateral superior collicular (SC) ablation at postnatal days (P) 8-10, prior to the arrival of retinal ganglion cell (RGC) axons. At maturity (P100), projections were traced from the eye opposite the ablation, and total RGC numbers were estimated for both eyes. Ablations were partial (28-89% of SC remaining) or complete (0-5% of SC remaining). Projections to the visual centers showed significant bilateral (P < 0.05) increases in absolute volume. Minor anomalous projections also formed within the deep, surviving non-retino-recipient layers of the ablated SC and via a small bundle of RGC axons recrossing the midline to innervate discrete patches in the SC contralateral to the lesion. Total absolute volume of projections did not differ between partial and complete ablations; moreover, values did not differ from normal (P > 0.05). Compared with normal, total RGC numbers were significantly (P < 0.05) reduced in the eye opposite the ablation but increased (P < 0.05) in the other eye. Consequently, the sum of the two RGC populations did not differ from normal (P > 0.05). As in rodents, the visual system in quokka compensates following injury by maintaining a set volume of arborization but does so by forming only minor anomalous projections. Furthermore, increased RGC numbers in the eye ipsilateral to the lesion indicate that compensation occurs transneuronally, thus maintaining total numbers of projecting neurons. The implication is that the visual system acts in concert following unilateral injury to maintain set values for RGC terminal arbors as well as their cell bodies.
Collapse
Affiliation(s)
- Sarah A Dunlop
- School of Animal Biology, Western Australian Institute of Medical Research, The University of Western Australia, Crawley, Australia 6907.
| | | | | |
Collapse
|
14
|
Lohof AM, Mariani J, Sherrard RM. Afferent-target interactions during olivocerebellar development: transcommissural reinnervation indicates interdependence of Purkinje cell maturation and climbing fibre synapse elimination. Eur J Neurosci 2005; 22:2681-8. [PMID: 16324102 DOI: 10.1111/j.1460-9568.2005.04493.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have used a model of postlesional reinnervation to observe the interactions between synaptic partners during neosynaptogenesis to determine how the developmental states of the pre- and postsynaptic cells influence circuit maturation. After unilateral transection of the neonatal rat olivocerebellar pathway (pedunculotomy), axons from the remaining ipsilateral inferior olive grow into the denervated hemicerebellum and develop climbing fibre (CF) terminal arbors on Purkinje cells (PCs) at a later stage of development than normal. However, the significance of delayed CF-PC interactions on subsequent circuit maturation remains poorly defined. To examine this question, we recorded CF-induced currents in PCs and analysed PC morphology during the first two postnatal weeks in control animals and following left unilateral inferior cerebellar pedunculotomy on postnatal day (P)3. Our results show that transcommissural olivary axons multiply-reinnervate PCs in the denervated hemisphere over 4 days following pedunculotomy. Each PC received fewer CFs than did age-matched controls and the maximal multi-reinnervation was reached on P7, 2 days later than in controls. Consequently, the onset of CF synapse elimination in reinnervated PCs was delayed, but then proceeded in parallel with controls so that all PCs were monoinnervated by P15. Furthermore, reinnervated PCs had delayed dendritic maturation and subsequent dendritic abnormalities consistent with the role of CF innervation in PC dendritic growth. Thus, within the olivocerebellar system, our data suggest that target neurons depend upon sufficient afferent investment arriving at the correct time for their normal development, and maturation of the target neuron regulates afferent selection and therefore circuit maturation.
Collapse
Affiliation(s)
- Ann M Lohof
- Laboratoire Développement et Vieillissement du Système Nerveux, UMR 7102 Neurobiologie des Processus Adaptatifs, CNRS et Université Pierre et Marie Curie, Case courrier 14, 9 quai Saint-Bernard, 75005 Paris, France.
| | | | | |
Collapse
|
15
|
Fournier B, Lohof AM, Bower AJ, Mariani J, Sherrard RM. Developmental modifications of olivocerebellar topography: the granuloprival cerebellum reveals multiple routes from the inferior olive. J Comp Neurol 2005; 490:85-97. [PMID: 16041715 DOI: 10.1002/cne.20648] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Correct function of neural circuits depends on highly organized neuronal connections, refined from less precise projections through synaptic elimination, collateral regression, or neuronal death. We examined regressive phenomena that define olivocerebellar topography during maturation from Purkinje cell polyinnervation to monoinnervation. We used bilateral retrograde tracing to determine the source of olivocerebellar afferents to posterior vermis lobules VII-VIII in a model of retained immature Purkinje cell polyinnervation, the granuloprival cerebellum. In controls, labelled neurons were found only in the contralateral inferior olive (ION) clustered in a small ventromedial locus that is congruent with known olivocerebellar topography. In granuloprival animals, olivary labelling appeared more dispersed and was present in homologous ipsilateral regions. Double-labelled neurons were never seen. Retrograde tracing following unilateral olivocerebellar transection in adult granuloprival rats revealed: 1) the origin of the normal (remaining) path projecting through the contralateral inferior peduncle was more localized than in irradiated nonpedunculotomized rats, 2) a small double-crossed path, and 3) a projection that ascends the peduncle ipsilateral to the ION of origin, part of which crosses the midline within the cerebellum. Electrophysiological and immunohistochemical assessment in the neonatal cerebellum revealed that transcommissural paths are not present during development but sprout within the irradiated cerebellum. Therefore, the olivocerebellar projection in the granuloprival rat, as a model of the immature path, shows parasagittal organization similar to that of controls in its normally crossed path but possesses additional abnormal projections. Thus, maturation of olivocerebellar topography involves removal of whole developmental paths to define laterality plus synapse elimination within largely predefined parasagittal zones.
Collapse
Affiliation(s)
- Betty Fournier
- Laboratoire Développement et Vieillissement du Système Nerveux, Unité Mixte de Recherche 7102 Neurobiologie des Processus Adaptatifs, Centre National de la Recherche Scientifique et Université Pierre et Marie Curie, Paris 75005, France
| | | | | | | | | |
Collapse
|
16
|
Cho KS, Yang L, Lu B, Ma HF, Huang X, Pekny M, Chen DF. Re-establishing the regenerative potential of central nervous system axons in postnatal mice. J Cell Sci 2005; 118:863-72. [PMID: 15731004 PMCID: PMC1351228 DOI: 10.1242/jcs.01658] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At a certain point in development, axons in the mammalian central nervous system lose their ability to regenerate after injury. Using the optic nerve model, we show that this growth failure coincides with two developmental events: the loss of Bcl-2 expression by neurons and the maturation of astrocytes. Before postnatal day 4, when astrocytes are immature, overexpression of Bcl-2 alone supported robust and rapid optic nerve regeneration over long distances, leading to innervation of brain targets by day 4 in mice. As astrocytes matured after postnatal day 4, axonal regeneration was inhibited in mice overexpressing Bcl-2. Concurrent induction of Bcl-2 and attenuation of reactive gliosis reversed the failure of CNS axonal re-elongation in postnatal mice and led to rapid axonal regeneration over long distances and reinnervation of the brain targets by a majority of severed optic nerve fibers up to 2 weeks of age. These results suggest that an early postnatal downregulation of Bcl-2 and post-traumatic reactive gliosis are two important elements of axon regenerative failure in the CNS.
Collapse
Affiliation(s)
- Kin-Sang Cho
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Liu Yang
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Bin Lu
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Hong Feng Ma
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Xizhong Huang
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Milos Pekny
- The Arvid Carlsson Institute for Neuroscience, Institute of Clinical Neuroscience, Sahlgrenska Academy, Göteborg University, Medicinaregatan 9A, SE-413 90 Göteborg, Sweden
- Authors for correspondence (e-mail: ; )
| | - Dong Feng Chen
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
- Authors for correspondence (e-mail: ; )
| |
Collapse
|
17
|
Kawasaki T, Takagi Y, Yamatani H, Hirata T. Systematic screening and identification of antigens recognized by monoclonal antibodies raised against the developing lateral olfactory tract. ACTA ACUST UNITED AC 2005; 62:330-40. [PMID: 15514993 DOI: 10.1002/neu.20105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During development, olfactory bulb axons navigate a complex microenvironment composed of myriad molecules to construct a bundle called the lateral olfactory tract. The axons themselves also express thousands of different molecules. In the present study, we produced and characterized six monoclonal antibodies that label the lateral olfactory tract and its surroundings in a unique pattern. The labeling profiles suggested that the antigen molecules recognized by each antibody are heterogeneously distributed around the developing lateral olfactory tract. We developed an efficient screening method to identify the antigen molecules by combining expression of a cDNA library in COS-7 cells and the subsequent immunohistochemical staining of the cells. The systematic screening successfully identified specific cDNA clones for all of the monoclonal antibodies, which highly probably coded for the antigen molecules, and therefore unveiled the molecular nature of local components that embrace the developing lateral olfactory tract in mice.
Collapse
Affiliation(s)
- Takahiko Kawasaki
- Division of Brain Function, National Institute of Genetics, Graduate University for Advanced Studies, Yata 1111, Mishima 411-8540, Japan
| | | | | | | |
Collapse
|
18
|
Abstract
Pathways linking action to perception are generally presented as passing from sensory pathways, through the thalamus, and then to a putative hierarchy of corticocortical links to motor outputs or to memory. Evidence for more direct sensorimotor links is now presented to show that cerebral cortex rarely, if ever, receives messages representing receptor activity only; thalamic inputs to cortex also carry copies of current motor instructions. Pathways afferent to the thalamus represent the primary input to neocortex. Generally they are made up of branching axons that send one branch to the thalamus and another to output centers of the brain stem or spinal cord. The information transmitted through the classical "sensory" pathways to the thalamus represents not only information about the environment and the body, but also about instructions currently on their way to motor centers. The proposed hierarchy of direct corticocortical connections of the sensory pathways is not the only possible hierarchy of cortical connections. There is also a hierarchy of the corticofugal pathways to motor centers in the midbrain, and there are transthalamic corticocortical pathways that may show a comparable hierarchy. The extent to which these hierarchies may match each other, and relate to early developmental changes are poorly defined at present, but are important for understanding mechanisms that can link action and perception in the developing brain.
Collapse
Affiliation(s)
- R W Guillery
- Department of Anatomy, School of Medicine, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
19
|
Abstract
The B fragment of cholera toxin (CTb) is a highly sensitive
anterograde tracer for the labelling of retinal axons. It can reveal
dense retinofugal projections to well-known retinorecipient nuclei
along with sparse but distinct input to target areas that are not
commonly recognized. Following a unilateral injection of CTb into the
vitreous chamber of seven adult cats, we localized the toxin
immunohistochemically in order to identify direct retinal projections
in these animals. Consistent with previous findings, the strongest
projections were observed in the superficial layers of the superior
colliculus, the dorsal and ventral lateral geniculate nuclei, the
pretectal nuclei, the accessory optic nuclei, and the suprachiasmatic
nucleus of the hypothalamus. However, we also found labelled terminals
in several other brain areas, including the zona incerta, the medial
geniculate nucleus, the lateral posterior-pulvinar complex, the lateral
habenular nucleus, and the anterior and lateral hypothalamic regions.
The morphological characteristics of the retinal axon terminals in most
of the identified novel target sites are described.
Collapse
Affiliation(s)
- Isabelle Matteau
- Department of Psychology, University of Montreal, Québec, Canada, H3C 3J7
| | | | | |
Collapse
|
20
|
Hynds DL, Spencer ML, Andres DA, Snow DM. Rit promotes MEK-independent neurite branching in human neuroblastoma cells. J Cell Sci 2003; 116:1925-35. [PMID: 12668729 DOI: 10.1242/jcs.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rit, by sequence homology, is a member of the Ras subfamily of small guanine triphosphatases (GTPases). In PC6 cells, Rit signals through pathways both common to and different from those activated by Ras to promote cell survival and neurite outgrowth. However, the specific morphological changes induced by Rit in human cells are not known. Here, we show in a human neuronal model that Rit increases neurite outgrowth and branching through MEK-dependent and MEK-independent signaling mechanisms, respectively. Adenoviral expression of wild-type or constitutively active Rit increased neurite initiation, elongation and branching on endogenous matrix or a purified laminin-1 substratum of SH-SY5Y cells as assessed using image analysis. This outgrowth was morphologically distinct from that promoted by constitutively active Ras or Raf (evidenced by increased branching and elongation). Constitutively active Rit increased phosphorylation of ERK 1/2, but not Akt, and the MEK inhibitor PD 098059 blocked constitutively active Rit-induced neurite initiation but not elongation or branching. These results suggest that Rit plays a key role in human neuronal development and regeneration through activating both known and as yet undefined signaling pathways.
Collapse
Affiliation(s)
- DiAnna L Hynds
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA.
| | | | | | | |
Collapse
|
21
|
Guillery RW, Sherman SM. The thalamus as a monitor of motor outputs. Philos Trans R Soc Lond B Biol Sci 2002; 357:1809-21. [PMID: 12626014 PMCID: PMC1693090 DOI: 10.1098/rstb.2002.1171] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many of the ascending pathways to the thalamus have branches involved in movement control. In addition, the recently defined, rich innervation of 'higher' thalamic nuclei (such as the pulvinar) from pyramidal cells in layer five of the neocortex also comes from branches of long descending axons that supply motor structures. For many higher thalamic nuclei the clue to understanding the messages that are relayed to the cortex will depend on knowing the nature of these layer five motor outputs and on defining how messages from groups of functionally distinct output types are combined as inputs to higher cortical areas. Current evidence indicates that many and possibly all thalamic relays to the neocortex are about instructions that cortical and subcortical neurons are contributing to movement control. The perceptual functions of the cortex can thus be seen to represent abstractions from ongoing motor instructions.
Collapse
Affiliation(s)
- R W Guillery
- Department of Anatomy, University of Wisconsin School of Medicine, 1300 University Avenue, Madison, WI 53706, USA.
| | | |
Collapse
|
22
|
Cavalcante LA, Garcia-Abreu J, Moura Neto V, Silva LC, Weissmüller G. Modulators of axonal growth and guidance at the brain midline with special reference to glial heparan sulfate proteoglycans. AN ACAD BRAS CIENC 2002; 74:691-716. [PMID: 12563418 DOI: 10.1590/s0001-37652002000400010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bilaterally symmetric organisms need to exchange information between the left and right sides of their bodies to integrate sensory input and to coordinate motor control. Thus, an important choice point for developing axons is the Central Nervous System (CNS) midline. Crossing of this choice point is influenced by highly conserved, soluble or membrane-bound molecules such as the L1 subfamily, laminin, netrins, slits, semaphorins, Eph-receptors and ephrins, etc. Furthermore, there is much circumstantial evidence for a role of proteoglycans (PGs) or their glycosaminoglycan (GAG) moieties on axonal growth and guidance, most of which was derived from simplified models. A model of intermediate complexity is that of cocultures of young neurons and astroglial carpets (confluent cultures) obtained from medial and lateral sectors of the embryonic rodent midbrain soon after formation of its commissures. Neurite production in these cocultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exerted an inhibitory or non-permissive effect on neuritic growth that was correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment with GAG lyases shows minor effects of CS and discloses a major inhibitory or non-permissive role for HS. The results are discussed in terms of available knowledge on the binding of HSPGs to interative proteins and underscore the importance of understanding glial polysaccharide arrays in addition to its protein complement for a better understanding of neuron-glial interactions.
Collapse
Affiliation(s)
- Leny A Cavalcante
- Instituto de Biofísica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, 21949-900, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
23
|
Dunlop SA, Tee LBG, Rodger J, Harvey AR, Roberts JD, Beazley LD. Development of visual projections follows an avian/mammalian-like sequence in the lizard Ctenophorus ornatus. J Comp Neurol 2002; 453:71-84. [PMID: 12357433 DOI: 10.1002/cne.10394] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Development of primary visual projections was examined in a lizard Ctenophorus ornatus by anterograde and retrograde tracing with DiI and by GAP-43 immunohistochemistry. Visual pathway development was essentially similar to that in birds and mammals and thus differed from patterns in fish or amphibians. A number of features characterised the development as mammalian-like. Three phases occurred in rapid succession after laying: outgrowth (2-3 weeks, early), exuberance (4-5 weeks, intermediate), and retraction to the adult pattern (6-8 weeks, late) at about the time of hatching and eye opening. Furthermore, ipsilateral projections developed with only a slight lag relative to the contralateral ones. The dorsally located fovea could be identified from early stages. Optic axons formed transient exuberant projections to the ipsilateral optic tectum, to the opposite optic nerve, and to nonvisual regions. The pattern resembled that formed in the long term by regenerating optic axons in C. ornatus (Dunlop et al. [2000b] J. Comp. Neurol. 416:188-200), suggesting that axons recognise molecular signals associated with the initial exuberant innervation but not those associated with subsequent refinement.
Collapse
Affiliation(s)
- Sarah A Dunlop
- West Australian Institute for Medical Research, Crawley, Western Australia 6009, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Axons that carry information from the sensory periphery first elongate unbranched and form precisely ordered tracts within the CNS. Later, they begin collateralizing into their proper targets and form terminal arbors. Target-derived factors that govern sensory axon elongation and branching-arborization are not well understood. Here we report that Slit2 is a major player in branching-arborization of central trigeminal axons in the brainstem. Embryonic trigeminal axons initially develop unbranched as they form the trigeminal tract within the lateral brainstem; later, they emit collateral branches into the brainstem trigeminal nuclei and form terminal arbors therein. In whole-mount explant cultures of this pathway, embryonic day 15 (E15) rat central trigeminal axons retain their unbranched growth within the tract, whereas E17 trigeminal axons show branching and arborization in the brainstem trigeminal nuclei, much like that seen in vivo. Similar observations were made in E13 and E15 mouse embryos. We cocultured Slit2-expressing tissues or cells with the whole-mount explant cultures of the central trigeminal pathway derived from embryonic rats or mice. When central trigeminal axons are exposed to ectopic Slit2 during their elongation phase, they show robust and premature branching and arborization. Blocking available Slit2 reverses this effect on axon growth. Spatiotemporal expression of Slit2 and Robo receptor mRNAs within the brainstem trigeminal nuclei and the trigeminal ganglion during elongation and branching-arborization further corroborates our experimental results.
Collapse
|
25
|
Salès N, Hässig R, Rodolfo K, Di Giamberardino L, Traiffort E, Ruat M, Frétier P, Moya KL. Developmental expression of the cellular prion protein in elongating axons. Eur J Neurosci 2002; 15:1163-77. [PMID: 11982627 DOI: 10.1046/j.1460-9568.2002.01953.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PrPc, a sialoglycoprotein present in the normal adult hamster brain, is particularly abundant in plastic brain regions but little is known about the level of expression and the localization of the protein during development. Western blot analysis of whole brain homogenates with mab3F4 show very low levels of the three main molecular weight forms of the protein at birth, in contrast to the strong and wide expression of mRNA transcripts. The PrPc levels increase sharply through P14 and are diminished somewhat in the adult. Regional analysis showed that in structures with ongoing growth or plasticity such as the olfactory bulb and hippocampus, PrPc remains high in the adult, while in areas where structural and functional relationships stabilize during development, such as the cortex and the thalamus, PrPc levels decline after the third postnatal week. In the neonate brain PrPc was prominent along fiber tracts similar to markers of axon elongation and in vitro experiments showed that the protein was present on the surface of elongating axons. PrPc is then localized to the synaptic neuropil in close spatio-temporal association with synapse formation. The localization of PrPc on elongating axons suggests a role for the protein in axon growth. In addition, the relative abundance of the protein in developing axon pathways and during synaptogenesis may provide a basis for the age-dependent susceptibility to transmissible spongiform encephalopathies.
Collapse
Affiliation(s)
- Nicole Salès
- INSERM U.334, Service Hospitalier Frédéric Joliot, DRM/DSV/CEA, 4 Place du Général Leclerc, 91401 Orsay Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Frost DO, Ma YT, Hsieh T, Forbes ME, Johnson JE. Developmental changes in BDNF protein levels in the hamster retina and superior colliculus. JOURNAL OF NEUROBIOLOGY 2001; 49:173-87. [PMID: 11745656 DOI: 10.1002/neu.1073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Quantitative studies of ontogenetic changes in the levels of brain-derived neurotrophic factor (BDNF) mRNA and its effector, BDNF protein, are not available for the retinal projection system. We used an electrochemiluminescence immunoassay to measure developmental changes in the tissue concentration of BDNF within the hamster retina and superior colliculus (SC). In the SC, we first detected BDNF (about 9 pg/mg tissue) on embryonic day 14 (E14). BDNF protein concentration in the SC rises about fourfold between (E14) and postnatal day 4 (P4), remains at a plateau through P15, then declines by about one-third to attain its adult level by P18. By contrast, BDNF protein concentration in the retina remains low (about 1 pg/mg tissue) through P12, then increases 4.5-fold to attain its adult level on P18. The developmental changes in retinal and collicular BDNF protein concentrations are temporally correlated with multiple events in the structural and functional maturation of the hamster retinal projection system. Our data suggest roles for BDNF in the cellular mechanisms underlying some of these events and are crucial to the design of experiments to examine those roles.
Collapse
Affiliation(s)
- D O Frost
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
27
|
Crnko-Hoppenjans TA, Mooney RD, Rhoades RW. Neonatally elevated serotonin levels alter terminal arbors of individual retinal ganglion cells in superior colliculus of hamsters. J Comp Neurol 2001; 432:528-36. [PMID: 11268012 DOI: 10.1002/cne.1117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous studies from this laboratory showed that sprouting of serotoninergic (5-HT) axons in the hamster's superior colliculus (SC), induced by a single subcutaneous injection of 5,7-dihydroxytryptamine (5,7-DHT) at birth (postnatal day 0 [P-0]), resulted in an increased terminal distribution of the uncrossed retinocollicular projection that was not associated with any changes in the number or distribution of ipsilaterally projecting retinal ganglion cells. The present study was undertaken to determine what effect this manipulation had on the terminal arbors of such axons. Retinocollicular axons of normal and 5,7-DHT-treated animals were anterogradely labeled with small intraretinal injections of the lipophilic dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) on P-16. After tissue processing on P-19, single retinocollicular axon arbors were reconstructed by using confocal microscopy. Quantitative analysis indicated that arbors from 5,7-DHT-treated hamsters had significantly greater total fiber lengths, areas, and volumes than those from normal animals. There were no differences between axons from the two groups in number of branch points, distribution of relative branch lengths, and numbers of bouton-like swellings. These results support the hypothesis that increased SC concentrations of 5-HT alter development of the uncrossed retinocollicular pathway such that a greater territory is covered by individual terminal arbors but that the number of synaptic contacts per arbor remains constant. This may explain, at least in part, the abnormally widespread distribution of the aggregate ipsilateral projection.
Collapse
Affiliation(s)
- T A Crnko-Hoppenjans
- Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo, Ohio 43614-3035, USA
| | | | | |
Collapse
|
28
|
Bai WZ, Meguro R, Kaiya T, Norita M. Postnatal development of the retinal projection to the nucleus of the optic tract and accessory optic nuclei in the hooded rat. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2001; 64:69-79. [PMID: 11310507 DOI: 10.1679/aohc.64.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinal projections to the nucleus of the optic tract (NOT) and accessory optic nuclei (AON) were studied in the postnatal hooded rat after monocular injection of cholera toxin B subunit (CTB) into the vitreous chamber of the eye. At all postnatal ages, retinal axons were labeled sensitively; they revealed dense projections to the contralateral, and sparse but distinct projections to the ipsilateral, NOT and AON. The CTB labeling enabled the first delineation of the complete morphology of developing retinal axons in the ipsilateral NOT and AON. From postnatal day (P) 1 to P3, axons with complex growth cones were seen, and unbranched collaterals with simple growth cones increased and extended gradually. At P6, complex growth cones disappeared while branched collaterals with simple growth cones as well as small-sized varicosities increased. By P12 (two days before eye-opening) the adult-like pattern of terminal arbors appeared. The branched collaterals with tiny, small-sized varicosities present probably represented developing synaptic boutons. At P16 (after eye opening), the pattern of terminal arbors was well developed, almost to the same extent as in the adult. By contrast, a broadly distributed, transient retinal projection around NOT and AON was gradually eliminated; it started to disappear during the first few postnatal days, and was fully retracted by the time of eye-opening time to a pattern normal for the adult.
Collapse
Affiliation(s)
- W Z Bai
- Department of Neurobiology and Anatomy, Niigata University Faculty of Medicine, School of Medicine, Japan
| | | | | | | |
Collapse
|
29
|
Frost DO, Cadet JL. Effects of methamphetamine-induced neurotoxicity on the development of neural circuitry: a hypothesis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 34:103-18. [PMID: 11113502 DOI: 10.1016/s0165-0173(00)00042-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure of the developing brain to methamphetamine has well-studied biochemical and behavioral consequences. We review: (1) the effects of methamphetamine on mature serotonergic and dopaminergic pathways; (2) the mechanisms of methamphetamine neurotoxicity and (3) the role of serotonergic and dopaminergic signaling in sculpting developing neural circuitry. Consideration of these data suggest the types of neural circuit alterations that may result from exposure of the developing brain to methamphetamine and that may underlie functional defects.
Collapse
Affiliation(s)
- D O Frost
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD 21201, USA.
| | | |
Collapse
|
30
|
Abstract
We examined the effects of neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) on trigeminal axon growth patterns. Embryonic (E13-15) wholemount explants of the rat trigeminal pathway including the whisker pads, trigeminal ganglia, and brainstem were cultured in serum-free medium (SFM) or SFM supplemented with NGF or NT-3 for 3 days. Trigeminal axon growth patterns were analyzed with the use of lipophilic tracer DiI. In wholemount cultures grown in SFM, trigeminal axon projections, growth patterns, and differentiation of peripheral and central targets are similar to in vivo conditions. We show that in the presence of NGF, central trigeminal axons leave the tract and grow into the surrounding brainstem regions in the elongation phase without any branching. On the other hand, NT-3 promotes precocious development of short axon collaterals endowed with focal arbors along the sides of the central trigeminal tract. These neurotrophins also affect trigeminal axon growth within the whisker pad. Additionally, we cultured dissociated trigeminal ganglion cells in the presence of NGF, NT-3, or NGF+NT-3. The number of trigeminal ganglion cells, their size distribution under each condition were charted, and axon growth was analyzed following immunohistochemical labeling with TrkA and parvalbumin antibodies. In these cultures too, NGF led to axon elongation and NT-3 to axon arborization. Our in vitro analyses suggest that aside from their survival promoting effects, NGF and NT-3 can differentially influence axon growth patterns of embryonic trigeminal neurons.
Collapse
Affiliation(s)
- Emel Ulupinar
- Department of Cell Biology and Anatomy and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Mark F. Jacquin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Reha S. Erzurumlu
- Department of Cell Biology and Anatomy and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- Correspondence to: Dr. Reha Erzurumlu, Department of Cell Biology and Anatomy, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112.
| |
Collapse
|
31
|
Lyckman AW, Moya KL, Confaloni A, Jhaveri S. Early postnatal expression of L1 by retinal fibers in the optic tract and synaptic targets of the Syrian hamster. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000717)423:1<40::aid-cne4>3.0.co;2-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
|
33
|
Abstract
In mammals there are a few circumstances in which axotomised ganglion cell axons can regenerate. For instance, in vitro explants of retina can be encouraged to regenerate axons into appropriate culture media. Similarly, axotomised ganglion cells can regenerate into a peripheral nerve graft surgically connected to the optic nerve head, and during early development axons are able to regenerate across the retina to re-enter the optic nerve. This is certainly encouraging, but we are a long way from applying these observations to clinical practice. We need to know whether regenerating axons also retain a functional capacity for navigation. We must ask whether a regenerated projection is likely to be topographic rather than disordered. In this brief review we will look at some selected models of ganglion cell regeneration in order to examine this question of navigation in more detail. This is an important issue: the capacity to re-establish appropriate rather than random connections after ganglion cell regeneration would most likely be necessary for any meaningful return of visual function.
Collapse
|
34
|
Khachab MY, Bruce LL. The development of corticocollicular projections in anophthalmic mice. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:179-92. [PMID: 10320757 DOI: 10.1016/s0165-3806(99)00020-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To determine the role of retinal axons in the development of the corticocollicular projection in mice, the lipophilic fluorescent dye, DiI, was used to compare the development of the cortical projections in phenotypically normal (C57BL/6J) mice to that of anophthalmic 129SV/CPorJ mice. Cortical axons in anophthalmic mice found their targets and established a laminar specificity similar to those of cortical axons in normal mice despite the absence of the retinal projection. Cortical axons in normal mice reached the superior colliculus before those in anophthalmic mice and also had a faster rate of growth within the colliculus. Unlike cortical axons in normal mice in early postnatal ages, those in anophthalmic mice formed a disperse bundle in the stratum opticum. Axons labeled by focal applications of DiI into area 17 terminated in a larger and more medial area in anophthalmic mice than in normal mice. Thus, retinal axons are not essential for cortical axons to reach the superior colliculus, but they may have a role in organizing the growth of later-arriving cortical axons. Furthermore, cortical axons can terminate in the superior colliculus with a coarse topography when retinal axons are absent, but they cannot form a topographically refined projection.
Collapse
Affiliation(s)
- M Y Khachab
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178-0405, USA.
| | | |
Collapse
|
35
|
|
36
|
Andersen LB, Schreyer DJ. Constitutive expression of GAP-43 correlates with rapid, but not slow regrowth of injured dorsal root axons in the adult rat. Exp Neurol 1999; 155:157-64. [PMID: 10072292 DOI: 10.1006/exnr.1998.6903] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been postulated that the neuronal growth-associated protein GAP-43 plays an essential role in axon elongation. Although termination of developmental axon growth is generally accompanied by a decline in expression of GAP-43, a subpopulation of dorsal root ganglion (DRG) neurons retains constitutive expression of GAP-43 throughout adulthood. Peripheral nerve regeneration occurring subsequent to injury of the peripheral axon branches of adult DRG neurons is accompanied by renewed elevation of GAP-43 expression. Lesions of DRG central axon branches in the dorsal roots are also followed by some regenerative growth, but little or no increase in GAP-43 expression above the constitutive level is observed. To determine whether dorsal root axon regeneration occurs only from neurons which constitutively express GAP-43, we have used retrograde fluorescent labeling to identify those DRG neurons which extend axons beyond a crush lesion of the dorsal root. Only GAP-43 immunoreactive neurons supported axon regrowth of 7 mm or greater within the first week. At later times, axon regrowth is seen to occur from neurons both with and without GAP-43 immunoreactivity. We conclude that regeneration of injured axons within the dorsal root is not absolutely dependent on the presence of GAP-43, but that expression of GAP-43 is correlated with a capacity for rapid growth.
Collapse
Affiliation(s)
- L B Andersen
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | | |
Collapse
|
37
|
Abstract
The suprachiasmatic nucleus (SCN), the site of the primary mammalian circadian clock, contains one of the densest serotonergic terminal plexes in the brain. Although this fact has been appreciated for some time, only in the last decade has there been substantial approach toward the understanding of the function of serotonin in the circadian rhythm system. The intergeniculate leaflet, which projects to the SCN via the geniculohypothalamic tract, receives serotonergic innervation from the dorsal raphe nucleus, and the SCN receives its serotonergic input from the median raphe nucleus. This separation of serotonergic origins provides the opportunity to investigate the function of the two projections. Loss of serotonergic neurones of the median raphe yields earlier onset and later offset of the nocturnal activity phase, longer duration of the activity phase, and increased sensitivity of circadian rhythm response to light. Despite the simplicity of the origins of serotonergic anatomy with respect to the circadian rhythm system, the actual involvement of serotonin in rhythm modulation is not so obvious. A variety of pharmacological studies have clearly implicated serotonin as a direct regulator of circadian rhythm phase, but others employing different methods suggest that simple elevation of SCN serotonin concentrations does not modify rhythm phase. The most convincing role of serotonin is its apparent ability to modulate sensitivity of the circadian rhythm to light. The putative method for such modulation is via a presynaptic 5-HT1B receptor on the retinohypothalamic tract, the activation of which attenuates photic input to the SCN thereby reducing phase response to light. Serotonin may modulate phase response to benzodiazepines, but does not appear to modify such response to environmentally induced locomotor activity. Current interest in serotonergic modulation of circadian rhythmicity is strong and the research is vigorous. There is an abundance of information about serotonin and circadian rhythm function that lacks a satisfactory framework for its interpretation. The next decade is likely to see the gradual evolution of this framework as the role of serotonin in circadian rhythm regulation is further elucidated.
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry, Health Sciences Center, State University of New York, Stony Brook 11794, USA.
| |
Collapse
|
38
|
Hirata T, Fujisawa H. Environmental control of collateral branching and target invasion of mitral cell axons during development. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199901)38:1<93::aid-neu7>3.0.co;2-n] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Dash PK, Tian LM, Moore AN. Sequestration of cAMP response element-binding proteins by transcription factor decoys causes collateral elaboration of regenerating Aplysia motor neuron axons. Proc Natl Acad Sci U S A 1998; 95:8339-44. [PMID: 9653188 PMCID: PMC20977 DOI: 10.1073/pnas.95.14.8339] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1997] [Accepted: 05/13/1998] [Indexed: 02/08/2023] Open
Abstract
Axonal injury increases intracellular Ca2+ and cAMP and has been shown to induce gene expression, which is thought to be a key event for regeneration. Increases in intracellular Ca2+ and/or cAMP can alter gene expression via activation of a family of transcription factors that bind to and modulate the expression of CRE (Ca2+/cAMP response element) sequence-containing genes. We have used Aplysia motor neurons to examine the role of CRE-binding proteins in axonal regeneration after injury. We report that axonal injury increases the binding of proteins to a CRE sequence-containing probe. In addition, Western blot analysis revealed that the level of ApCREB2, a CRE sequence-binding repressor, was enhanced as a result of axonal injury. The sequestration of CRE-binding proteins by microinjection of CRE sequence-containing plasmids enhanced axon collateral formation (both number and length) as compared with control plasmid injections. These findings show that Ca2+/cAMP-mediated gene expression via CRE-binding transcription factors participates in the regeneration of motor neuron axons.
Collapse
Affiliation(s)
- P K Dash
- Department of Neurobiology and Anatomy, University of Texas-Houston Health Science Center, Houston, TX 77225, USA.
| | | | | |
Collapse
|
40
|
Ling C, Jhaveri S, Schneider GE. Target- as well as source-derived factors direct the morphogenesis of anomalous retino-thalamic projections. J Comp Neurol 1997; 388:454-66. [PMID: 9368853 DOI: 10.1002/(sici)1096-9861(19971124)388:3<454::aid-cne8>3.0.co;2-#] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neonatal tectal lesions in hamsters result in the elimination of a major central target of retinal axons, massively denervate the lateral posterior nucleus of the thalamus (LP), and lead to a marked increase of the retino-LP projection. In such animals, retino-LP axons show all of the normally-occurring terminal types. In addition, large clusters of varicosities, whose tubular configuration resembles the major type of tecto-LP terminals observed in normal animals, are also noted if the tectal lesion is made on the day after birth (P1). If, however, the neonatal lesion occurs on P5 rather than on P1, terminals resembling normal tecto-LP endings are rarely observed; rather, the distribution and morphology of retino-LP terminals bear a greater resemblance to those seen in normal hamsters, but the size and complexity of the terminals, particularly those that form string-like arrangements, is significantly increased. Our findings suggest that the altered morphology of some abnormally induced retino-LP terminals may be orchestrated by target-associated signals. However, there are age-related limitations on the degree to which afferent systems can vary their terminal morphology; these restrictions may derive from the target, or may be a function of intrinsic changes within the cells of origin of the afferent fibers.
Collapse
Affiliation(s)
- C Ling
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
41
|
Maclaren RE, Taylor JS. Regeneration in the developing optic nerve: correlating observations in the opossum to other mammalian systems. Prog Neurobiol 1997; 53:381-98. [PMID: 9364617 DOI: 10.1016/s0301-0082(97)00041-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Regeneration of severed axons within the central nervous system of adult mammals does not normally occur with any degree of success. During development, however, newly forming projections must send axons to distant sites and form appropriate connections with their targets: successful regeneration has been observed during this critical period. The opossum central nervous system develops during early postnatal life and has provided a useful experimental model to investigate this specialized mode of axonal regeneration in mammals. The presence of a clear decision point at the optic chiasm has also provided a useful site at which to investigate the navigational capacity of retinal ganglion cells regenerating along the optic nerve during this critical period. Regeneration failure occurs as the central nervous system progresses from this permissive, developing state to a mature, non-permissive adult state. Studies into the behaviour of glial and neuronal elements around this transition period can help elucidate some of the factors that need to be overcome if regeneration is ever to become successful in adult mammals. The regeneration characteristics of a lesioned projection are dependent upon its developmental stage and are also related to the proximity of axotomy along its pathway. A system of staging is proposed to correlate observations in the opossum optic nerve to other mammalian systems.
Collapse
Affiliation(s)
- R E Maclaren
- Division of Ophthalmology, Royal Berkshire Hospital, London, Reading, U.K
| | | |
Collapse
|
42
|
Confaloni A, Lyckman AW, Moya KL. Developmental shift of synaptic vesicle protein 2 from axons to terminals in the primary visual projection of the hamster. Neuroscience 1997; 77:1225-36. [PMID: 9130800 DOI: 10.1016/s0306-4522(96)00548-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Synaptic vesicle protein 2 is an integral synaptic vesicle membrane glycoprotein which is present in all synapses for which it has been examined. We used an anti-synaptic vesicle protein 2 monoclonal antibody to examine synaptic vesicle protein 2 localization in the developing hamster retinofugal pathway. From postnatal day 0 to day 1, a period of elongation of retinal ganglion cell axons to their central targets, fiber fascicles in the optic tract over the lateral geniculate nucleus were intensely synaptic vesicle protein 2-immunoreactive. Adjacent to the optic tract, single fibers could be seen. We also observed a marked immunostaining in growth cones and fiber fascicles in retinal explants in culture. By postnatal day 2, the staining of single fibers had ended, and by postnatal day 5, during the formation of terminal arbors, numerous fine puncta of synaptic vesicle protein 2 immunoreactivity were distributed within the neuropil of the lateral geniculate nucleus. In the adult, the optic tract was devoid of synaptic vesicle protein 2 staining, while the neuropil contained distinct immunoreactive profiles, particularly in the outer shell of the lateral geniculate. These synaptic vesicle protein 2-positive profiles closely resembled the grape-like clusters and large swellings of two known retinal axon terminal types. Eye removal resulted in the rapid disappearance of these synaptic vesicle protein 2-labelled terminal profiles contralateral to the enucleation. A similar pattern of synaptic vesicle protein 2 immunoreactivity was observed in the superior colliculus. From postnatal day 0 to day 2, retinal fiber fascicles in the stratum griseum superficiale/stratum opticum were darkly stained for synaptic vesicle protein 2. By postnatal day 5, the immunoreactivity shifted to the neuropil and from postnatal day 6 onwards, the synaptic vesicle protein 2 immunoreactivity was more intense in the stratum griseum superficiale than in the optic fibre layer. This study demonstrates dense synaptic vesicle protein 2-labelling of elongating axons both in vivo and in vitro. However, coincident with the transition from retinal ganglion cell axon elongation to terminal arborization, synaptic vesicle protein 2 is progressively restricted to synaptic terminals and becomes undetectable in axons. This study is the first to document an axonal localization of synaptic vesicle protein 2 during development and raises the question as to its role during axonal elongation.
Collapse
Affiliation(s)
- A Confaloni
- INSERM U334, Service Hospitalier Frédéric Joliot-CEA, Orsay, France
| | | | | |
Collapse
|
43
|
Retinal ganglion cell axons recognize specific guidance cues present in the deafferented adult rat superior colliculus. J Neurosci 1996. [PMID: 8756440 DOI: 10.1523/jneurosci.16-16-05106.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During development, retinal ganglion cell axons establish a topographically ordered projection from the retina to the superior colliculus (SC). The putative guidance activities for retinal axons that operate during embryonic development are not detectable in the normal adult SC. However, these cues reappear upon transection of the optic nerve of adult rats. In the present study, we used a modified version of the "stripe assay," in which membranes from either anterior or posterior SC alternated with laminin stripes. Temporal embryonic retinal axons consistently avoid membranes from embryonic posterior SC, but only rarely from adult deafferented SC. However, they are attracted to membranes from both embryonic and adult deafferented anterior SC. Nasal retinal axons only show a significant preference for membranes from posterior SC after deafferentation. When retinal axons were offered a choice to grow on membranes either from their embryonic or their deafferented target regions, they showed a preference for the deafferented SC. On carpets consisting of laminin and membranes from normal SC (not deafferented) or nontarget regions (inferior colliculus), temporal and nasal axons grow either in a random fashion or show preferences for the laminin stripes. Our modified version of the classic stripe assay shows specific growth preferences of embryonic retinal axons for membrane lanes from their appropriate embryonic or deafferented adult target regions. These findings suggest that the deafferentation of the SC in adult rats triggers the reexpression of specific guidance activities for retinal axons. Those "attractive" guidance cues appear to be differentially expressed in the developing and deafferented SC.
Collapse
|
44
|
Thornton SK, Withington DJ, McCrossan D, Ingham NJ. The effect of dark-rearing, strobe-rearing and acute visual cortex removal on the visual responses in the superficial superior colliculus of the guinea-pig. Neurosci Lett 1996; 213:216-20. [PMID: 8873153 DOI: 10.1016/0304-3940(96)12851-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Extracellular multi-unit responses to visual stimuli were recorded in the cells of the superficial layers of the superior colliculus (SC) in four groups of adult guinea-pigs: a control group, a strobe-reared group, a dark-reared group and a group with the ipsilateral visual cortex removed acutely. Single unit visual responses were also recorded in a control and a dark-reared group. When guinea-pigs were either strobe or dark-reared from birth, the number of directionally selective responses in the superficial SC decreased significantly. Acute removal of the visual cortex had no affect on the number of directionally selective cells recorded in the SC. The correlation between azimuthal visual receptive field and rostrocaudal position of the recording electrode in the SC was not significantly different from the control group following strobe, dark-rearing or acute visual cortex removal. These data imply that, during early development, visual information is necessary for directional selectivity of the visual responses in the superficial SC. However, the map of visual azimuthal space is essentially unperturbed by visual restriction (in the form of dark or strobe-rearing) or acute visual cortex removal.
Collapse
Affiliation(s)
- S K Thornton
- Department of Physiology, University of Leeds, UK
| | | | | | | |
Collapse
|
45
|
Jhaveri S, Erzurumlu RS, Schneider GE. The optic tract in embryonic hamsters: fasciculation, defasciculation, and other rearrangements of retinal axons. Vis Neurosci 1996; 13:359-74. [PMID: 8737287 DOI: 10.1017/s0952523800007604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The early development of the optic tract in hamsters was studied by labeling retinal axons with Dil applied to the eye, and then examining the labeled axons in flatmount preparations of the rostral brain stem. This technique permits a panoramic view of the entire retinal projection, from the chiasm to the caudal end of the superior colliculus. In the E11 embryo, retinal axons have reached the chiasm. They defasciculate as they emerge from the nerve, prior to reaching the ventral midline of the diencephalon, then converge again as they pass over to the opposite side. At the midline, many axonal trajectories crisscross, implying some shuffling of relative positions. Retinal axons are tightly bundled within the optic tract. Upon reaching the ventral border of the lateral geniculate body (LGB), they splay out over the nucleus, revealing a wavefront of pioneer axons individually distributed across the rostro-caudal extent of the LGB. Later-emerging retinal axons course over the surface of the thalamus in waves; subsequent waves of axons interdigitate between the lead fibers without fasciculating along them. Past the LGB, the axons undergo a second change in relative positions as the ribbon of fibers swerves caudally, prior to entering the superior colliculus. Retinal axons are tipped with growth cones of varying morphologies. No strong correlation is evident between the structural complexity of the growth cone and its position within the tract. In the majority of cases, ipsilaterally and contralaterally directed axons follow a similar developmental course along the optic tract, without any indication of a temporal lag in the ipsilateral projection as claimed in earlier reports. Understanding the changes in spatial distribution of embryonic retinal axons as they navigate along the optic tract provides a further step towards elucidating how point-to-point projections form in developing sensory systems.
Collapse
Affiliation(s)
- S Jhaveri
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
46
|
Kapfhammer JP. Myelin-associated neurite growth inhibitors: regulators of plastic changes of neural connections in the central nervous system. PROGRESS IN BRAIN RESEARCH 1996; 108:183-202. [PMID: 8979802 DOI: 10.1016/s0079-6123(08)62540-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Casagrande VA, Wiencken AE. Prenatal development of axon outgrowth and connectivity. PROGRESS IN BRAIN RESEARCH 1996; 108:83-93. [PMID: 8979795 DOI: 10.1016/s0079-6123(08)62533-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- V A Casagrande
- Department of Cell Biology, Vanderbilt University, Nashville, TN 37232-2175, USA
| | | |
Collapse
|
48
|
MacLaren RE, Taylor JS. A critical period for axon regrowth through a lesion in the developing mammalian retina. Eur J Neurosci 1995; 7:2111-8. [PMID: 8542068 DOI: 10.1111/j.1460-9568.1995.tb00633.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although the central nervous system of mature mammals is incapable of regeneration, certain elements present in the developing system must permit and promote the growth of new axons to their initial targets. We investigate whether the environment of a developing visual system is capable of supporting regeneration in the Brazilian opossum Monodelphis domestica, in which the retinofugal system develops postnatally. Retinae were lesioned up to the 16th postnatal day and analysed for regeneration after a further 7-10 days. Anterograde tracing with Dil showed axons to have regrown from the axotomized area of retina directly through the lesion. Retrograde tracing with horseradish peroxidase injected into the superior colliculus confirmed that axons from the lesioned area of retina had grown to an appropriate position in the midbrain. The proportion of retinae in which axonal continuity was restored across the lesion decreased as the visual system matured, falling to zero after the 12th postnatal day. Thus a critical period exists in the postnatal opossum in which a retinal lesion permits axon passage. Correlating these results to the known pattern of retinofugal pathway development provides an insight into factors that may restrict this critical period to the 12th postnatal day, and suggests that at least some of the axotomized neurons are regenerating.
Collapse
Affiliation(s)
- R E MacLaren
- Department of Human Anatomy, University of Oxford, UK
| | | |
Collapse
|
49
|
Chen DF, Jhaveri S, Schneider GE. Intrinsic changes in developing retinal neurons result in regenerative failure of their axons. Proc Natl Acad Sci U S A 1995; 92:7287-91. [PMID: 7638182 PMCID: PMC41324 DOI: 10.1073/pnas.92.16.7287] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The failure of mature mammalian central nervous system axons to regenerate after transection is usually attributed to influences of the extraneuronal milieu. Using explant cocultures of retina and midbrain tectum from hamsters, we have found evidence that these influences account for failure of regrowth of only a small minority of retinal axons. For most of the axons, there is a programmed loss of ability to elongate in the central nervous system. We show that there is a precipitous decline in the ability of retinal axons to reinnervate tectal targets when the retina is derived from pups on or after postnatal day 2, even when the target is embryonic. By contrast, embryonic retinal axons can regrow into tectum of any age, overcoming growth-inhibiting influences of glial factors.
Collapse
Affiliation(s)
- D F Chen
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
50
|
Métin C, Irons WA, Frost DO. Retinal ganglion cells in normal hamsters and hamsters with novel retinal projections. I. Number, distribution, and size. J Comp Neurol 1995; 353:179-99. [PMID: 7745130 DOI: 10.1002/cne.903530203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We examined the number, spatial distribution, and size of ganglion cells in the retinae of normal Syrian hamsters and hamsters with retinal projections to the auditory and somatosensory nuclei of the thalamus, induced by neonatal surgery. As revealed by retrograde filling with horseradish peroxidase, there are about 64,600 contralaterally projecting retinal ganglion cells (RGCs) and 1,700 ipsilaterally projecting RGCs in the retinae of normal adult hamsters. Contralaterally projecting RGCs are distributed throughout the retina and have two local density peaks located within a central streak of high RGC density that is oriented approximately along the nasal-temporal axis. RGC density falls above and below the central streak, with a steeper gradient towards the upper retina. Ipsilaterally projecting RGCs are diffusely distributed within a crescent at the inferotemporal retinal periphery and are most dense at the internal border of the crescent. The soma diameter of contralaterally projecting RGCs ranges from 6 to 25 microns; the diameter distribution is unimodal, with a peak in the 10-13 microns range and is skewed toward smaller values, with an elongated tail towards higher values. Contralaterally projecting RGCs tend to be smaller in regions of higher density. Ipsilaterally projecting RGCs tend to be larger than contralaterally projecting RGCs both globally and within the temporal crescent, and their size distributions tend to be less regular and less well related to local density. The retinae of neonatally operated hamsters with novel retinal projections to the auditory. and somatosensory systems contain about one-fourth the normal number of contralaterally projecting RGCs, whose relative density distribution is approximately normal despite the drastic reduction of absolute RGC density. The range and distribution of RGC soma diameters are similar in normal and neonatally operated hamsters, and, in operated as in normal hamsters, contralaterally projecting RGC somata tend to be smaller in regions of higher density. Our results in normal hamsters suggest a role for intraretinal mechanisms in the determination of RGC size. Our findings in neonatally operated hamsters suggest that, despite the reduced number of RGCs in these animals, the same types of RGCs are found in the retinae of normal and neonatally operated hamsters.
Collapse
Affiliation(s)
- C Métin
- Institut Alfred Fessard, CNRS UPR 2212, Gif-sur-Yvette, France
| | | | | |
Collapse
|