1
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Antibiotics (Basel) 2022; 11:antibiotics11020163. [PMID: 35203766 PMCID: PMC8868336 DOI: 10.3390/antibiotics11020163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host’s immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish.
Collapse
|
3
|
Farquharson EL, Lightbown A, Pulkkinen E, Russell T, Werner B, Nugen SR. Evaluating Phage Tail Fiber Receptor-Binding Proteins Using a Luminescent Flow-Through 96-Well Plate Assay. Front Microbiol 2021; 12:741304. [PMID: 34975779 PMCID: PMC8719110 DOI: 10.3389/fmicb.2021.741304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Phages have demonstrated significant potential as therapeutics in bacterial disease control and as diagnostics due to their targeted bacterial host range. Host range has typically been defined by plaque assays; an important technique for therapeutic development that relies on the ability of a phage to form a plaque upon a lawn of monoculture bacteria. Plaque assays cannot be used to evaluate a phage's ability to recognize and adsorb to a bacterial strain of interest if the infection process is thwarted post-adsorption or is temporally delayed, and it cannot highlight which phages have the strongest adsorption characteristics. Other techniques, such as classic adsorption assays, are required to define a phage's "adsorptive host range." The issue shared amongst all adsorption assays, however, is that they rely on the use of a complete bacteriophage and thus inherently describe when all adsorption-specific machinery is working together to facilitate bacterial surface adsorption. These techniques cannot be used to examine individual interactions between a singular set of a phage's adsorptive machinery (like long tail fibers, short tail fibers, tail spikes, etc.) and that protein's targeted bacterial surface receptor. To address this gap in knowledge we have developed a high-throughput, filtration-based, bacterial binding assay that can evaluate the adsorptive capability of an individual set of a phage's adsorption machinery. In this manuscript, we used a fusion protein comprised of an N-terminal bioluminescent tag translationally fused to T4's long tail fiber binding tip (gp37) to evaluate and quantify gp37's relative adsorptive strength against the Escherichia coli reference collection (ECOR) panel of 72 Escherichia coli isolates. Gp37 could adsorb to 61 of the 72 ECOR strains (85%) but coliphage T4 only formed plaques on 8 of the 72 strains (11%). Overlaying these two datasets, we were able to identify ECOR strains incompatible with T4 due to failed adsorption, and strains T4 can adsorb to but is thwarted in replication at a step post-adsorption. While this manuscript only demonstrates our assay's ability to characterize adsorptive capabilities of phage tail fibers, our assay could feasibly be modified to evaluate other adsorption-specific phage proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Sam R. Nugen
- Nugen Research Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
de Aquino NSM, Elias SDO, Tondo EC. Evaluation of PhageDX Salmonella Assay for Salmonella Detection in Hydroponic Curly Lettuce. Foods 2021; 10:1795. [PMID: 34441572 PMCID: PMC8394719 DOI: 10.3390/foods10081795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
Lettuce is one of the most consumed leafy vegetables worldwide and has been involved in multiple foodborne outbreaks. Salmonella is one of the most prevalent etiological agents of foodborne disease (FBD) in lettuces, and its detection may take several days depending on the chosen method. This study evaluates a new rapid method that uses recombinant bacteriophages to detect Salmonella in hydroponic curly lettuce. First, the ability of the assay to detect six Salmonella serovars at three different concentrations (1, 10, and 100 CFU/well) was tested. Second, the detection of Salmonella was tested in lettuces using a cocktail of the same Salmonella serovars and concentrations after a 7 h enrichment. The results of these experiments showed that the detection limit was dependent on the serovar tested. Most serovars were detected in only 2 h when the concentration was 100 CFU/well. Salmonella was detected in 9 h (7 h enrichment + 2 h bioluminescence assay) in all lettuce samples with 10 CFU/25 g or more. Salmonella detection was not influenced by natural microbiota of lettuces. This study demonstrated that the phage assay was sensitive and faster than other detection methods, indicating that it is a better alternative for Salmonella detection on lettuces.
Collapse
Affiliation(s)
- Nathanyelle Soraya Martins de Aquino
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Campus do Vale-Agronomia (ICTA/UFRGS), Av. Bento Gonçalves 9500, Porto Alegre 91501-970, RS CEP, Brazil; (S.d.O.E.); (E.C.T.)
| | | | | |
Collapse
|
5
|
Pereira C, Costa P, Pinheiro L, Balcão VM, Almeida A. Kiwifruit bacterial canker: an integrative view focused on biocontrol strategies. PLANTA 2021; 253:49. [PMID: 33502587 DOI: 10.1007/s00425-020-03549-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Phage-based biocontrol strategies can be an effective alternative to control Psa-induced bacterial canker of kiwifruit. The global production of kiwifruit has been seriously affected by Pseudomonas syringae pv. actinidiae (Psa) over the last decade. Psa damages both Actinidia chinensis var. deliciosa (green kiwifruit) but specially the susceptible Actinidia chinensis var. chinensis (gold kiwifruit), resulting in severe economic losses. Treatments for Psa infections currently available are scarce, involving frequent spraying of the kiwifruit plant orchards with copper products. However, copper products should be avoided since they are highly toxic and lead to the development of bacterial resistance to this metal. Antibiotics are also used in some countries, but bacterial resistance to antibiotics is a serious worldwide problem. Therefore, it is essential to develop new approaches for sustainable agriculture production, avoiding the emergence of resistant Psa bacterial strains. Attempts to develop and establish highly accurate approaches to combat and prevent the occurrence of bacterial canker in kiwifruit plants are currently under study, using specific viruses of bacteria (bacteriophages, or phages) to eliminate the Psa. This review discusses the characteristics of Psa-induced kiwifruit canker, Psa transmission pathways, prevention and control, phage-based biocontrol strategies as a new approach to control Psa in kiwifruit orchards and its advantages over other therapies, together with potential ways to bypass phage inactivation by abiotic factors.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Costa
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Larindja Pinheiro
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP, CEP 18023-000, Brazil.
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
6
|
Pereira C, Costa P, Duarte J, Balcão VM, Almeida A. Phage therapy as a potential approach in the biocontrol of pathogenic bacteria associated with shellfish consumption. Int J Food Microbiol 2020; 338:108995. [PMID: 33316593 DOI: 10.1016/j.ijfoodmicro.2020.108995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
Infectious human diseases acquired from bivalve shellfish consumption constitute a public health threat. These health threats are largely related to the filter-feeding phenomenon, by which bivalve organisms retain and concentrate pathogenic bacteria from their surrounding waters. Even after depuration, bivalve shellfish are still involved in outbreaks caused by pathogenic bacteria, which increases the demand for new and efficient strategies to control transmission of shellfish infection. Bacteriophage (or phage) therapy represents a promising, tailor-made approach to control human pathogens in bivalves, but its success depends on a deep understanding of several factors that include the bacterial communities present in the harvesting waters, the appropriate selection of phage particles, the multiplicity of infection that produces the best bacterial inactivation, chemical and physical factors, the emergence of phage-resistant bacterial mutants and the life cycle of bivalves. This review discusses the need to advance phage therapy research for bivalve decontamination, highlighting their efficiency as an antimicrobial strategy and identifying critical aspects to successfully apply this therapy to control human pathogens associated with bivalve consumption.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Costa
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Duarte
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal; PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, São Paulo, Brazil
| | - Adelaide Almeida
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
8
|
Broniewski JM, Meaden S, Paterson S, Buckling A, Westra ER. The effect of phage genetic diversity on bacterial resistance evolution. ISME JOURNAL 2020; 14:828-836. [PMID: 31896785 PMCID: PMC7031251 DOI: 10.1038/s41396-019-0577-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
CRISPR-Cas adaptive immune systems are found in bacteria and archaea and provide defence against phage by inserting phage-derived sequences into CRISPR loci on the host genome to provide sequence specific immunological memory against re-infection. Under laboratory conditions the bacterium Pseudomonas aeruginosa readily evolves the high levels of CRISPR-based immunity against clonal populations of its phage DMS3vir, which in turn causes rapid extinction of the phage. However, in nature phage populations are likely to be more genetically diverse, which could theoretically impact the frequency at which CRISPR-based immunity evolves which in turn can alter phage persistence over time. Here we experimentally test these ideas and found that a smaller proportion of infected bacterial populations evolved CRISPR-based immunity against more genetically diverse phage populations, with the majority of the population evolving a sm preventing phage adsorption and providing generalised defence against a broader range of phage genotypes. However, those cells that do evolve CRISPR-based immunity in response to infection with more genetically diverse phage acquire greater numbers of CRISPR memory sequences in order to resist a wider range of phage genotypes. Despite differences in bacterial resistance evolution, the rates of phage extinction were similar in the context of clonal and diverse phage infections suggesting selection for CRISPR-based immunity or sm-based resistance plays a relatively minor role in the ecological dynamics in this study. Collectively, these data help to understand the drivers of CRISPR-based immunity and their consequences for bacteria-phage coexistence, and, more broadly, when generalised defences will be favoured over more specific defences.
Collapse
Affiliation(s)
- Jenny M Broniewski
- Biosciences, Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK
| | - Sean Meaden
- Biosciences, Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Angus Buckling
- Biosciences, Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK
| | - Edze R Westra
- Biosciences, Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK.
| |
Collapse
|
9
|
Rivera D, Hudson LK, Denes TG, Hamilton-West C, Pezoa D, Moreno-Switt AI. Two Phages of the Genera Felixounavirus Subjected to 12 Hour Challenge on Salmonella Infantis Showed Distinct Genotypic and Phenotypic Changes. Viruses 2019; 11:E586. [PMID: 31252667 PMCID: PMC6669636 DOI: 10.3390/v11070586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Salmonella Infantis is considered in recent years an emerging Salmonella serovar, as it has been associated with several outbreaks and multidrug resistance phenotypes. Phages appear as a possible alternative strategy to control Salmonella Infantis (SI). The aims of this work were to characterize two phages of the Felixounavirus genus, isolated using the same strain of SI, and to expose them to interact in challenge assays to identify genetic and phenotypic changes generated from these interactions. These two phages have a shared nucleotide identity of 97% and are differentiated by their host range: one phage has a wide host range (lysing 14 serovars), and the other has a narrow host range (lysing 6 serovars). During the 12 h challenge we compared: (1) optical density of SI, (2) proportion of SI survivors from phage-infected cultures, and (3) phage titer. Isolates obtained through the assays were evaluated by efficiency of plating (EOP) and by host-range characterization. Genomic modifications were characterized by evaluation of single nucleotide polymorphisms (SNPs). The optical density (600 nm) of phage-infected SI decreased, as compared to the uninfected control, by an average of 0.7 for SI infected with the wide-host-range (WHR) phage and by 0.3 for SI infected with the narrow-host-range (NHR) phage. WHR phage reached higher phage titer (7 × 1011 PFU/mL), and a lower proportion of SI survivor was obtained from the challenge assay. In SI that interacted with phages, we identified SNPs in two genes (rfaK and rfaB), which are both involved in lipopolysaccharide (LPS) polymerization. Therefore, mutations that could impact potential phage receptors on the host surface were selected by lytic phage exposure. This work demonstrates that the interaction of Salmonella phages (WHR and NHR) with SI for 12 h in vitro leads to emergence of new phenotypic and genotypic traits in both phage and host. This information is crucial for the rational design of phage-based control strategies.
Collapse
Affiliation(s)
- Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8320000, Chile.
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile.
| | - Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA.
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA.
| | - Christopher Hamilton-West
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago 8330015, Chile.
| | - David Pezoa
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile.
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8320000, Chile.
- Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile.
| |
Collapse
|
10
|
Biological and molecular characterization of a bacteriophage infecting Xanthomonas campestris pv. campestris, isolated from brassica fields. Arch Virol 2019; 164:1857-1862. [PMID: 31065851 DOI: 10.1007/s00705-019-04263-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/29/2019] [Indexed: 11/27/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot of crucifers. Here, we report a virus that infects Xcc isolated from brassica fields in Brazil. Morphological, molecular and phylogenetic analysis indicated that the isolated virus is a new member of the genus Pbunavirus, family Myoviridae, and we propose the name "Xanthomonas virus XC 2" for this virus. The isolated virus has a narrow host range, infecting only Xcc isolates, and it did not infect unrelated bacteria. These results indicate that the isolated bacteriophage is highly specific for Xcc and may be a potential agent for biological control.
Collapse
|
11
|
Cheng H, Asakura Y, Kanda K, Fukui R, Kawano Y, Okugawa Y, Tashiro Y, Sakai K. Dynamic bacterial community changes in the autothermal thermophilic aerobic digestion process with cell lysis activities, shaking and temperature increase. J Biosci Bioeng 2018; 126:196-204. [DOI: 10.1016/j.jbiosc.2018.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 10/17/2022]
|
12
|
Parallel Evolution of Host-Attachment Proteins in Phage PP01 Populations Adapting to Escherichia coli O157:H7. Pharmaceuticals (Basel) 2018; 11:ph11020060. [PMID: 29925767 PMCID: PMC6027323 DOI: 10.3390/ph11020060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
The emergence of antibiotic resistance has sparked interest in phage therapy, which uses virulent phages as antibacterial agents. Bacteriophage PP01 has been studied for potential bio-control of Escherichia coli O157:H7, its natural host, but in the laboratory, PP01 can be inefficient at killing this bacterium. Thus, the goal of this study was to improve the therapeutic potential of PP01 through short-term experimental evolution. Four replicate populations of PP01 were serially passaged 21 times on non-evolving E. coli O157:H7 with the prediction that the evolved phage populations would adsorb faster and more efficiently kill the host bacteria. Dead-cell adsorption assays and in vitro killing assays confirmed that evolved viruses improved their adsorption ability on E. coli O157:H7, and adapted to kill host bacteria faster than the wildtype ancestor. Sequencing of candidate tail-fiber genes revealed that the phage populations evolved in parallel; the lineages shared two point mutations in gp38 that encodes a host recognition protein, and surprisingly shared a ~600 bp deletion in gp37 that encodes the distal tail fibers. In contrast, no mutations were observed in the gp12 gene encoding PP01’s short tail fibers. We discuss the functional role of the observed mutations, including the possible adaptive role of the evolved deletions. This study demonstrates how experimental evolution can be used to select for viral traits that improve phage attack of an important bacterial pathogen, and that the molecular targets of selection include loci contributing to cell attachment and phage virulence.
Collapse
|
13
|
Protein Expression Modifications in Phage-Resistant Mutants of Aeromonas salmonicida after AS-A Phage Treatment. Antibiotics (Basel) 2018. [PMID: 29518018 PMCID: PMC5872132 DOI: 10.3390/antibiotics7010021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The occurrence of infections by pathogenic bacteria is one of the main sources of financial loss for the aquaculture industry. This problem often cannot be solved with antibiotic treatment or vaccination. Phage therapy seems to be an alternative environmentally-friendly strategy to control infections. Recognizing the cellular modifications that bacteriophage therapy may cause to the host is essential in order to confirm microbial inactivation, while understanding the mechanisms that drive the development of phage-resistant strains. The aim of this work was to detect cellular modifications that occur after phage AS-A treatment in A. salmonicida, an important fish pathogen. Phage-resistant and susceptible cells were subjected to five successive streak-plating steps and analysed with infrared spectroscopy, a fast and powerful tool for cell study. The spectral differences of both populations were investigated and compared with a phage sensitivity profile, obtained through the spot test and efficiency of plating. Changes in protein associated peaks were found, and these results were corroborated by 1-D electrophoresis of intracellular proteins analysis and by phage sensitivity profiles. Phage AS-A treatment before the first streaking-plate step clearly affected the intracellular proteins expression levels of phage-resistant clones, altering the expression of distinct proteins during the subsequent five successive streak-plating steps, making these clones recover and be phenotypically more similar to the sensitive cells.
Collapse
|
14
|
Fan F, Li X, Pang B, Zhang C, Li Z, Zhang L, Li J, Zhang J, Yan M, Liang W, Kan B. The outer-membrane protein TolC of Vibrio cholerae serves as a second cell-surface receptor for the VP3 phage. J Biol Chem 2017; 293:4000-4013. [PMID: 29259138 DOI: 10.1074/jbc.m117.805689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
Receptor recognition is a key step in the initiation of phage infection. Previously, we found that VP3, the T7 family phage of the Vibrio cholerae serogroup O1 biotype El Tor, can adsorb the core oligosaccharide (OS) of lipopolysaccharides of V. cholerae However, some wildtype strains of V. cholerae possessing the intact OS gene cluster still have VP3 binding but are resistant to VP3 infection. Moreover, an OS gene-deletion mutant still exhibits weak VP3 binding, suggesting multiple factors are possibly involved in VP3 binding to V. cholerae Here, we report that the outer-membrane protein TolC of V. cholerae is involved in the host adsorption of VP3. We observed that TolC directly interacts with the VP3 tail fiber protein gp44 and its C-terminal domains, and we also found that three amino acid residues in the outside loops of TolC, at positions 78, 290, and 291, are critical for binding to gp44. Among the VP3-resistant wildtype V. cholerae strains, frequent amino acid residue mutations were observed in the loops around the sites 78, 290, and 291, which were predicted to be exposed to the cell surface. These findings reveal a co-receptor-binding mechanism for VP3 infection of V. cholerae and that both outer-membrane TolC and OS are necessary for successful VP3 infection of V. cholerae We conclude that mutations on the outside loops of the receptor may confer V. cholerae strains with VP3 phage resistance, enabling these strains to survive in environments containing VP3 or related phages.
Collapse
Affiliation(s)
- Fenxia Fan
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Xu Li
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Bo Pang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Cheng Zhang
- the National Institute of Biological Sciences, Beijing 102206, China
| | - Zhe Li
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Lijuan Zhang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Jie Li
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Jingyun Zhang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Meiying Yan
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Weili Liang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206.,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, and
| | - Biao Kan
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, .,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, and
| |
Collapse
|
15
|
Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Cunha Â, Delgadillo I, Romalde JL, Nunes ML, Almeida A. Bacteriophages with potential to inactivate Salmonella Typhimurium: Use of single phage suspensions and phage cocktails. Virus Res 2016; 220:179-92. [PMID: 27126773 DOI: 10.1016/j.virusres.2016.04.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/21/2023]
Abstract
The aim of this study was to compare the dynamics of three previously isolated bacteriophages (or phages) individually (phSE-1, phSE-2 and phSE-5) or combined in cocktails of two or three phages (phSE-1/phSE-2, phSE-1/phSE-5, phSE-2/phSE-5 and phSE-1/phSE-2/phSE-5) to control Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) in order to evaluate their potential application during depuration. Phages were assigned to the family Siphoviridae and revealed identical restriction digest profiles, although they showed a different phage adsorption, host range, burst size, explosion time and survival in seawater. The three phages were effective against S. Typhimurium (reduction of ∼2.0 log CFU/mL after 4h treatment). The use of cocktails was not significantly more effective than the use of single phages. A big fraction of the remained bacteria are phage-resistant mutants (frequency of phage-resistant mutants 9.19×10(-5)-5.11×10(-4)) but phage- resistant bacterial mutants was lower for the cocktail phages than for the single phage suspensions and the phage phSE-1 presented the highest rate of resistance and phage phSE-5 the lowest one. The spectral changes of S. Typhimurium resistant and phage-sensitive cells were compared and revealed relevant differences for peaks associated to amide I (1620cm(-1)) and amide II (1515cm(-1)) from proteins and from carbohydrates and phosphates region (1080-1000cm(-1)). Despite the similar efficiency of individual phages, the development of lower resistance indicates that phage cocktails might be the most promising choice to be used during the bivalve depuration to control the transmission of salmonellosis.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Catarina Moreirinha
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Magdalena Lewicka
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, 2825-182 Caparica, Portugal
| | - Paulo Almeida
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, 2825-182 Caparica, Portugal
| | - Carla Clemente
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, 2825-182 Caparica, Portugal
| | - Ângela Cunha
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ivonne Delgadillo
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jésus L Romalde
- Departamento de Microbiología e Parasitología, CIBUS-Facultad de Biologia, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Maria L Nunes
- CIIMAR/CIMAR-Centro de Investigação Marinha e Ambiental, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Trade-off Mechanisms Shaping the Diversity of Bacteria. Trends Microbiol 2016; 24:209-223. [DOI: 10.1016/j.tim.2015.11.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 01/20/2023]
|
17
|
Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 2016; 363:fnw002. [PMID: 26755501 DOI: 10.1093/femsle/fnw002] [Citation(s) in RCA: 422] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2016] [Indexed: 01/21/2023] Open
Abstract
The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors.
Collapse
Affiliation(s)
- Juliano Bertozzi Silva
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Zachary Storms
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
18
|
Abstract
SUMMARY Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spindles, rods, filaments, spheres, head-tails, bottles, and droplets, and some of these new viruses have been classified into one order, 10 families, and 16 genera. Investigation of model archaeal viruses has yielded important insights into mechanisms underlining various steps in the viral life cycle, including infection, DNA replication and transcription, and virion egression. Many of these mechanisms are unprecedented for any known bacterial or eukaryal viruses. Studies of plasmids isolated from different archaeal hosts have also revealed a striking diversity in gene content and innovation in replication strategies. Highly divergent replication proteins are identified in both viral and plasmid genomes. Genomic studies of archaeal ECEs have revealed a modular sequence structure in which modules of DNA sequence are exchangeable within, as well as among, plasmid families and probably also between viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered regularly interspaced short palindromic repeats) system, to restrict invasive plasmids and viruses. Together, these interactions permit a delicate balance between ECEs and their hosts, which is vitally important for maintaining an innovative gene reservoir carried by ECEs. In conclusion, while research on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade.
Collapse
|
19
|
Jassim SAA, Limoges RG. Natural solution to antibiotic resistance: bacteriophages 'The Living Drugs'. World J Microbiol Biotechnol 2014; 30:2153-70. [PMID: 24781265 PMCID: PMC4072922 DOI: 10.1007/s11274-014-1655-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/18/2014] [Indexed: 12/13/2022]
Abstract
Antibiotics have been a panacea in animal husbandry as well as in human therapy for decades. The huge amount of antibiotics used to induce the growth and protect the health of farm animals has lead to the evolution of bacteria that are resistant to the drug's effects. Today, many researchers are working with bacteriophages (phages) as an alternative to antibiotics in the control of pathogens for human therapy as well as prevention, biocontrol, and therapy in animal agriculture. Phage therapy and biocontrol have yet to fulfill their promise or potential, largely due to several key obstacles to their performance. Several suggestions are shared in order to point a direction for overcoming common obstacles in applied phage technology. The key to successful use of phages in modern scientific, farm, food processing and clinical applications is to understand the common obstacles as well as best practices and to develop answers that work in harmony with nature.
Collapse
Affiliation(s)
- Sabah A. A. Jassim
- Applied Bio Research Inc., 455 Pelissier St., Windsor, ON N9A 6Z9 Canada
| | - Richard G. Limoges
- Applied Bio Research Inc., 455 Pelissier St., Windsor, ON N9A 6Z9 Canada
| |
Collapse
|
20
|
Garcia-Doval C, Luque D, Castón JR, Boulanger P, van Raaij MJ. Crystallization of the C-terminal domain of the bacteriophage T5 L-shaped fibre. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1363-7. [PMID: 24316831 PMCID: PMC3855721 DOI: 10.1107/s1744309113028959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/21/2013] [Indexed: 11/10/2022]
Abstract
Tails of bacteriophage T5 (a member of the Siphoviridae family) were studied by electron microscopy. For the distal parts of the L-shaped tail fibres, which are involved in host cell receptor binding, a low-resolution volume was calculated. Several C-terminal fragments of the fibre were expressed and purified. Crystals of two of them were obtained that belonged to space groups P63 and R32 and diffracted synchrotron radiation to 2.3 and 2.9 Å resolution, respectively. A single-wavelength anomalous dispersion data set to 2.5 Å resolution was also collected from a selenomethionine-derivatized crystal of one of the fragments, which belonged to space group C2.
Collapse
Affiliation(s)
- Carmela Garcia-Doval
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB–CSIC), Calle Darwin 3, 28049 Madrid, Spain
| | - Daniel Luque
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB–CSIC), Calle Darwin 3, 28049 Madrid, Spain
- Centro Nacional de Microbiología, ISCIII, 28220 Majadahonda, Spain
| | - José R. Castón
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB–CSIC), Calle Darwin 3, 28049 Madrid, Spain
| | - Pascale Boulanger
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, UMR CNRS 8619, 91405 Orsay, France
| | - Mark J. van Raaij
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB–CSIC), Calle Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
21
|
Sieber M, Robb M, Forde SE, Gudelj I. Dispersal network structure and infection mechanism shape diversity in a coevolutionary bacteria-phage system. ISME JOURNAL 2013; 8:504-514. [PMID: 24088626 DOI: 10.1038/ismej.2013.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/17/2013] [Indexed: 11/09/2022]
Abstract
Resource availability, dispersal and infection genetics all have the potential to fundamentally alter the coevolutionary dynamics of bacteria-bacteriophage interactions. However, it remains unclear how these factors synergise to shape diversity within bacterial populations. We used a combination of laboratory experiments and mathematical modeling to test how the structure of a dispersal network affects host phenotypic diversity in a coevolving bacteria-phage system in communities of differential resource input. Unidirectional dispersal of bacteria and phage from high to low resources consistently increased host diversity compared with a no dispersal regime. Bidirectional dispersal, on the other hand, led to a marked decrease in host diversity. Our mathematical model predicted these opposing outcomes when we incorporated modified gene-for-gene infection genetics. To further test how host diversity depended on the genetic underpinnings of the bacteria-phage interaction, we expanded our mathematical model to include different infection mechanisms. We found that the direction of dispersal had very little impact on bacterial diversity when the bacteria-phage interaction was mediated by matching alleles, gene-for-gene or related infection mechanisms. Our experimental and theoretical results demonstrate that the effects of dispersal on diversity in coevolving host-parasite systems depend on an intricate interplay of the structure of the underlying dispersal network and the specifics of the host-parasite interaction.
Collapse
Affiliation(s)
| | - Matthew Robb
- Department of Mathematics, Imperial College London, London, UK
| | - Samantha E Forde
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, CA, USA.
| | | |
Collapse
|
22
|
Westra ER, Swarts DC, Staals RHJ, Jore MM, Brouns SJJ, van der Oost J. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu Rev Genet 2013; 46:311-39. [PMID: 23145983 DOI: 10.1146/annurev-genet-110711-155447] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All organisms need to continuously adapt to changes in their environment. Through horizontal gene transfer, bacteria and archaea can rapidly acquire new traits that may contribute to their survival. However, because new DNA may also cause damage, removal of imported DNA and protection against selfish invading DNA elements are also important. Hence, there should be a delicate balance between DNA uptake and DNA degradation. Here, we describe prokaryotic antiviral defense systems, such as receptor masking or mutagenesis, blocking of phage DNA injection, restriction/modification, and abortive infection. The main focus of this review is on CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated), a prokaryotic adaptive immune system. Since its recent discovery, our biochemical understanding of this defense system has made a major leap forward. Three highly diverse CRISPR/Cas types exist that display major structural and functional differences in their mode of generating resistance against invading nucleic acids. Because several excellent recent reviews cover all CRISPR subtypes, we mainly focus on a detailed description of the type I-E CRISPR/Cas system of the model bacterium Escherichia coli K12.
Collapse
Affiliation(s)
- Edze R Westra
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Rohwer F, Barott K. Viral information. BIOLOGY & PHILOSOPHY 2013; 28:283-297. [PMID: 23482918 PMCID: PMC3585991 DOI: 10.1007/s10539-012-9344-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 09/24/2012] [Indexed: 05/20/2023]
Abstract
Viruses are major drivers of global biogeochemistry and the etiological agents of many diseases. They are also the winners in the game of life: there are more viruses on the planet than cellular organisms and they encode most of the genetic diversity on the planet. In fact, it is reasonable to view life as a viral incubator. Nevertheless, most ecological and evolutionary theories were developed, and continue to be developed, without considering the virosphere. This means these theories need to be to reinterpreted in light of viral knowledge or we need to develop new theory from the viral point-of-view. Here we briefly introduce our viral planet and then address a major outstanding question in biology: why is most of life viral? A key insight is that during an infection cycle the original virus is completely broken down and only the associated information is passed on to the next generation. This is different for cellular organisms, which must pass on some physical part of themselves from generation to generation. Based on this premise, it is proposed that the thermodynamic consequences of physical information (e.g., Landauer's principle) are observed in natural viral populations. This link between physical and genetic information is then used to develop the Viral Information Hypothesis, which states that genetic information replicates itself to the detriment of system energy efficiency (i.e., is viral in nature). Finally, we show how viral information can be tested, and illustrate how this novel view can explain existing ecological and evolutionary theories from more fundamental principles.
Collapse
Affiliation(s)
- Forest Rohwer
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Katie Barott
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 USA
| |
Collapse
|
24
|
Abstract
Although people taking different approaches in the field of nanotechnology may target different size ranges, broadly, nanotechnology has the goal of creating structures in the 1-100 nm size range. This is the same size range that bacteriophages synthesize capsids. Bacteriophages also have the desirable property of self-fabrication or self-assembly--much of capsid structural assembly information is a function of the capsid proteins themselves rather than requiring other proteins. This would seem to make bacteriophage protein-based materials ideal for some nanotechnology applications. So far, the majority of research has taken one of two approaches: first, using filamentous bacteriophage display techniques to identify inorganic nanocrystal-binding peptides and using those peptides and the filamentous phage virions to create novel materials, and second, using a variety of bacteriophage and bacteriophage receptor-binding proteins to functionalize surfaces to create biosensors for bacterial detection. Here, I review these two approaches and speculate on some of the challenges for further development of bacteriophage protein-based self-assembling nanomaterials.
Collapse
|
25
|
Filippov AA, Sergueev KV, He Y, Huang XZ, Gnade BT, Mueller AJ, Fernandez-Prada CM, Nikolich MP. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One 2011; 6:e25486. [PMID: 21980477 PMCID: PMC3182234 DOI: 10.1371/journal.pone.0025486] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 09/06/2011] [Indexed: 01/21/2023] Open
Abstract
Background Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. Methodology/Principal Findings The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. Conclusions/Significance We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.
Collapse
Affiliation(s)
- Andrey A Filippov
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Trojet SN, Caumont-Sarcos A, Perrody E, Comeau AM, Krisch HM. The gp38 adhesins of the T4 superfamily: a complex modular determinant of the phage's host specificity. Genome Biol Evol 2011; 3:674-86. [PMID: 21746838 PMCID: PMC3157838 DOI: 10.1093/gbe/evr059] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tail fiber adhesins are the primary determinants of host range in the T4-type bacteriophages. Among the indispensable virion components, the sequences of the long tail fiber genes and their associated adhesins are among the most variable. The predominant form of the adhesin in the T4-type phages is not even the version of the gene encoded by T4, the archetype of the superfamily, but rather a small unrelated protein (gp38) encoded by closely related phages such as T2 and T6. This gp38 adhesin has a modular design: its N-terminal attachment domain binds at the tip of the tail fiber, whereas the C-terminal specificity domain determines its host receptor affinity. This specificity domain has a series of four hypervariable segments (HVSs) that are separated by a set of highly conserved glycine-rich motifs (GRMs) that apparently form the domain’s conserved structural core. The role of gp38’s various components was examined by a comparative analysis of a large series of gp38 adhesins from T-even superfamily phages with differing host specificities. A deletion analysis revealed that the individual HVSs and GRMs are essential to the T6 adhesin’s function and suggests that these different components all act in synergy to mediate adsorption. The evolutionary advantages of the modular design of the adhesin involving both conserved structural elements and multiple independent and easily interchanged specificity determinants are discussed.
Collapse
Affiliation(s)
- Sabrina N Trojet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique-UMR 5100, Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
27
|
Gopal PK, Crow VL. Characterization of Loosely Associated Material from the Cell Surface of Lactococcus lactis subsp. cremoris E8 and Its Phage-Resistant Variant Strain 398. Appl Environ Microbiol 2010; 59:3177-82. [PMID: 16349058 PMCID: PMC182434 DOI: 10.1128/aem.59.10.3177-3182.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loosely associated material (LAM) was isolated by gentle extraction procedures from the cell surface of Lactococcus lactis subsp. cremoris E8 and its phage-resistant variant strain 398. LAM from both strains was chemically characterized, and its role in the adsorption of three small isometric bacteriophages, phi 618, phi 833, and phi 852, to the cell surface of the two strains was investigated. The phage-resistant strain (strain 398) produced LAM which differed significantly from the material produced by the parent strain. The total yield of LAM from strain 398 was two- to threefold higher than that from strain E8, and the material contained fivefold more rhamnose and twofold more galactose. Polyacrylamide gel electrophoretic analysis showed that LAM from strain 398 lacked a 21-kDa protein which was present in LAM from the parent strain. Inhibition studies of phage binding by using isolated LAM from two strains showed that although LAM from strain E8 reduced the titer of phi 618 and phi 852 by 53 and 82% respectively, LAM from strain 398 had no effect on the plaque-forming ability of any of the three phages tested. Treatment of LAM from strain E8 with sodium metaperiodate destroyed its ability to bind with phi 618 and phi 852. Phenotypically, strain 398 differed from its parent strain E8 in that it was more prone to cell lysis and required an osmotically adjusted buffer system for the extraction of LAM.
Collapse
Affiliation(s)
- P K Gopal
- Applied Biochemistry Section, New Zealand Dairy Research Institute, Private Bag 11029, Palmerston North, New Zealand
| | | |
Collapse
|
28
|
|
29
|
Evans TJ, Crow MA, Williamson NR, Orme W, Thomson NR, Komitopoulou E, Salmond GPC. Characterization of a broad-host-range flagellum-dependent phage that mediates high-efficiency generalized transduction in, and between, Serratia and Pantoea. MICROBIOLOGY-SGM 2009; 156:240-247. [PMID: 19778959 DOI: 10.1099/mic.0.032797-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A phage (PhiOT8) isolated on Serratia sp. ATCC 39006 was shown to be flagellum-dependent, and to mediate generalized transduction with high efficiency (up to 10(-4) transductants per p.f.u.). PhiOT8 was shown to have a broad host range because it also infected a strain of Pantoea agglomerans isolated from the rhizosphere. Transduction of plasmid-borne antibiotic resistance between the two bacterial genera was demonstrated, consistent with purported ecological roles of phages in dissemination of genes between bacterial genera. Serratia sp. ATCC 39006 and P. agglomerans produce a number of interesting secondary metabolites that have potential applications in cancer therapy and biocontrol of fungal infections. PhiOT8 has utility as a powerful functional genomics tool in these bacteria.
Collapse
Affiliation(s)
- T J Evans
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - M A Crow
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - N R Williamson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - W Orme
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - N R Thomson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - E Komitopoulou
- Leatherhead Food International Limited, Randalls Road, Leatherhead KT22 7RY, UK
| | - G P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
30
|
Chen J, Kriakov J, Singh A, Jacobs WR, Besra GS, Bhatt A. Defects in glycopeptidolipid biosynthesis confer phage I3 resistance in Mycobacterium smegmatis. MICROBIOLOGY-SGM 2009; 155:4050-4057. [PMID: 19744987 DOI: 10.1099/mic.0.033209-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacteriophages have played an important role in the development of genetic tools and diagnostics for pathogenic mycobacteria, including Mycobacterium tuberculosis. However, despite the isolation of numerous phages that infect mycobacteria, the mechanisms of mycobacteriophage infection remain poorly understood, and knowledge about phage receptors is minimal. In an effort to identify the receptor for phage I3, we screened a library of Mycobacterium smegmatis transposon mutants for phage-resistant strains. All four phage I3-resistant mutants isolated were found to have transposon insertions in genes located in a cluster involved in the biosynthesis of the cell-wall-associated glycopeptidolipid (GPL), and consequently the mutants did not synthesize GPLs. The loss of GPLs correlated specifically with phage I3 resistance, as all mutants retained sensitivity to two other mycobacteriophages: D29 and Bxz1. In order to define the minimal receptor for phage I3, we then tested the phage sensitivity of previously described GPL-deficient mutants of M. smegmatis that accumulate biosynthesis intermediates of GPLs. The results indicated that, while the removal of most sugar residues from the fatty acyl tetrapeptide (FATP) core of GPL did not affect sensitivity to phage I3, a single methylated rhamnose, transferred by the rhamnosyltransferase Gtf2 to the FATP core, was critical for phage binding.
Collapse
Affiliation(s)
- Jiemin Chen
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jordan Kriakov
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Albel Singh
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - William R Jacobs
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gurdyal S Besra
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Apoorva Bhatt
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
31
|
|
32
|
Niu YD, Johnson RP, Xu Y, McAllister TA, Sharma R, Louie M, Stanford K. Host range and lytic capability of four bacteriophages against bovine and clinical human isolates of Shiga toxin-producing Escherichia coli O157:H7. J Appl Microbiol 2009; 107:646-56. [PMID: 19302306 DOI: 10.1111/j.1365-2672.2009.04231.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS To evaluate host range and lytic capability of four bacteriophages (rV5, wV7, wV8 and wV11) against Escherichia coli O157:H7 (STEC O157:H7) from cattle and humans. METHODS AND RESULTS Four hundred and twenty-two STEC O157:H7 isolates (297 bovine; 125 human) were obtained in Alberta, Canada. The four phages were serially diluted and incubated for 5 h with overnight cultures of STEC O157:H7 to estimate their multiplicity of infection (MOI). All bovine STEC O157:H7 were subjected to pulsed-field gel electrophoresis (PFGE) and phage typing (PT). Phage wV7 lysed all human and bovine isolates irrespective of PFGE genotype or PT phenotype and exhibited the lowest MOI (0.004-0.006, P < 0.0001) of all phages. Phages rV5 and wV11 exhibited a lower MOI (0.002-0.04, P < 0.0001) than did phage wV8 (25-29) and they had a narrower host range than wV7 or wV8. Phages rV5, wV11 and wV8 lysed 342 (81.0%), 321 (76.1%) and 407 (96.4%), respectively, of the 422 isolates. Susceptibility of bovine STEC O157:H7 to rV5, w11 and wV8 was influenced by PFGE genotype and/or PT phenotype. CONCLUSIONS Phages exhibited activity against the majority of bovine and human STEC O157:H7 isolates. PFGE genotype and/or PT phenotype of the host-target influenced their vulnerability to phage attack. Susceptibility of bovine STEC O157:H7 to phage may also differ among farms. Both lytic capability and host range should be considered in the selection of therapeutic phage for on-farm control of STEC O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY The present work indicates that a four-phage cocktail should be equally effective at mitigating STEC O157:H7 isolates both of bovine and of human origin. Given that some STEC O157:H7 exhibited resistance to some but not all phages, a phage cocktail is the logical approach to efficacious on-farm therapy.
Collapse
Affiliation(s)
- Y D Niu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Boulanger P, Jacquot P, Plançon L, Chami M, Engel A, Parquet C, Herbeuval C, Letellier L. Phage T5 Straight Tail Fiber Is a Multifunctional Protein Acting as a Tape Measure and Carrying Fusogenic and Muralytic Activities. J Biol Chem 2008; 283:13556-64. [DOI: 10.1074/jbc.m800052200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Forde SE, Thompson JN, Holt RD, Bohannan BJM. Coevolution drives temporal changes in fitness and diversity across environments in a bacteria-bacteriophage interaction. Evolution 2008; 62:1830-9. [PMID: 18452575 DOI: 10.1111/j.1558-5646.2008.00411.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coevolutionary interactions are thought to play a crucial role in diversification of hosts and parasitoids. Furthermore, resource availability has been shown to be a fundamental driver of species diversity. Yet, we still do not have a clear understanding of how resource availability mediates the diversity generated by coevolution between hosts and parasitoids over time. We used experiments with bacteria and bacteriophage to test how resources affect variation in the competitive ability of resistant hosts and temporal patterns of diversity in the host and parasitoid as a result of antagonistic coevolution. Bacteria and bacteriophage coevolved for over 150 bacterial generations under high and low-resource conditions. We measured relative competitive ability of the resistant hosts and phenotypic diversity of hosts and parasitoids after the initial invasion of resistant mutants and again at the end of the experiment. Variation in relative competitive ability of the hosts was both time- and environment-dependent. The diversity of resistant hosts, and the abundance of host-range mutants attacking these phenotypes, differed among environments and changed over time, but the direction of these changes differed between the host and parasitoid. Our results demonstrate that patterns of fitness and diversity resulting from coevolutionary interactions can be highly dynamic.
Collapse
Affiliation(s)
- Samantha E Forde
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| | | | | | | |
Collapse
|
35
|
Plasmid transfer via transduction from Streptococcus thermophilus to Lactococcus lactis. J Bacteriol 2008; 190:3083-7. [PMID: 18263725 DOI: 10.1128/jb.01448-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using Streptococcus thermophilus phages, plasmid transduction in Lactococcus lactis was demonstrated. The transduction frequencies were 4 orders of magnitude lower in L. lactis than in S. thermophilus. These results are the first evidence that there is phage-mediated direct transfer of DNA from S. thermophilus to L. lactis. The implications of these results for phage evolution are discussed.
Collapse
|
36
|
Ostergaard Breum S, Neve H, Heller KJ, Vogensen FK. Temperate phages TP901-1 and phiLC3, belonging to the P335 species, apparently use different pathways for DNA injection in Lactococcus lactis subsp. cremoris 3107. FEMS Microbiol Lett 2008; 276:156-64. [PMID: 17956421 DOI: 10.1111/j.1574-6968.2007.00928.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Five mutants of Lactococcus lactis subsp. cremoris 3107 resistant to phage TP901-1 were obtained after treatment with ethyl methanesulfonate. Two of the mutants were also resistant to phage phiLC3. The remaining three mutants were as sensitive as 3107. Mutants E46 and E100 did not adsorb the two phages. Mutants E119, E121 and E126 adsorbed phage phiLC3 as well as 3107 but phage TP901-1 with significantly reduced efficiency. All, except E46, could be lysogenized with phage TP901-BC1034, a derivative of TP901-1 harboring an erythromycin-resistance marker. However, the lysogenization frequency was 10(3)-10(4) fold higher for 3107 than for the mutants. Mitomycin C induction of lysogenized mutants 3107 indicated that phage propagation was not affected in these four mutants. Electron microscopy and analysis of total DNA of infected cells showed that DNA was liberated from the phage particle during infection of strain 3107 with TP901-1 and that intracellular phage DNA replication occurred. This was not the case for mutants E121 and E126. This strongly suggests that some step starting with triggering DNA release and ending with DNA injection is impaired during infection with TP901-1. As such impairment was not seen when infecting E119, E121 and E126 with phiLC3, we conclude that TP901-1 and phiLC3 either are differently triggered by their receptor or utilize different pathways of injection.
Collapse
Affiliation(s)
- Solvej Ostergaard Breum
- Department of Food Science, Faculty of Life Science, Copenhagen University, Frederiksberg, Denmark
| | | | | | | |
Collapse
|
37
|
Vo ATT, van Duijkeren E, Fluit AC, Hendriks HGCJM, Tooten PCJ, Gaastra W. Comparison of the in vitro pathogenicity of two Salmonella Typhimurium phage types. Comp Immunol Microbiol Infect Dis 2007; 30:11-8. [PMID: 17067673 DOI: 10.1016/j.cimid.2006.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
The in vitro pathogenicity of Salmonella enterica serovar Typhimurium phage type (pt) 90 and pt 506 (also known as DT 104) isolates from human and porcine origin was studied in adhesion and invasion assays to the human cell line Caco-2 and the porcine cell line IPI-2. Interleukin-8 (IL-8) production by these two cell lines in response to stimulation by the two Salmonella phage types was also measured. Generally, Salmonella Typhimurium pt 506 and pt 90 adhered to and invaded Caco-2 cells and IPI-2 cells equally well. The release of IL-8 by Caco-2 cells or by IPI-2 cells was similar, independent of the Salmonella phage type used for stimulation of the cells. These data suggest that Salmonella Typhimurium pt 90 has a similar ability to cause Salmonella infections as Salmonella Typhimurium DT 104.
Collapse
Affiliation(s)
- An T T Vo
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80165, 3508 TD Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Mondigler M, Ayoub AT, Heller KJ. The DNA region of phage BF23 encoding receptor binding protein and receptor blocking lipoprotein lacks homology to the corresponding region of closely related phage T5. J Basic Microbiol 2006; 46:116-25. [PMID: 16598825 DOI: 10.1002/jobm.200510047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Analysis of the DNA region upstream of the BF23 hrs gene revealed a genetic organisation similar to that of closely related phage T5. A gene encoding a lipoprotein (llp(BF23)) is located directly upstream of the gene encoding the receptor binding protein (hrs) but is transcribed in opposite direction. The gene is followed by four open reading frames transcribed in the same direction. The llp (BF23) gene product does not show similarity to the corresponding T5 Llp(T5) protein, however, like Llp(T5) does for FhuA it blocks the BtuB receptor for BF23 infection. While no similarity between BF23 and T5 was observed for the DNA region encoding Llp and the receptor binding protein, the flanking regions were highly similar. Based on our results we conclude that a genetic module, the receptor-binding/receptor-blocking module, exists in phages BF23 and T5. Due to exclusion of homologous recombination within this module, it is hereditary only as an intact module: separation of the receptor-binding gene from the receptor-blocking gene, which apparently results in reduced fitness of the phage due to inactivation of progeny phage by active receptor proteins in the outer membranes of lysed cells, is thus effectively prevented.
Collapse
|
39
|
Vegge CS, Vogensen FK, Mc Grath S, Neve H, van Sinderen D, Brøndsted L. Identification of the lower baseplate protein as the antireceptor of the temperate lactococcal bacteriophages TP901-1 and Tuc2009. J Bacteriol 2006; 188:55-63. [PMID: 16352821 PMCID: PMC1317572 DOI: 10.1128/jb.188.1.55-63.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first step in the infection process of tailed phages is recognition and binding to the host receptor. This interaction is mediated by the phage antireceptor located in the distal tail structure. The temperate Lactococcus lactis phage TP901-1 belongs to the P335 species of the Siphoviridae family, which also includes the related phage Tuc2009. The distal tail structure of TP901-1 is well characterized and contains a double-disk baseplate and a central tail fiber. The structural tail proteins of TP901-1 and Tuc2009 are highly similar, but the phages have different host ranges and must therefore encode different antireceptors. In order to identify the antireceptors of TP901-1 and Tuc2009, a chimeric phage was generated in which the gene encoding the TP901-1 lower baseplate protein (bppL(TP901-1)) was exchanged with the analogous gene (orf53(2009)) of phage Tuc2009. The chimeric phage (TP901-1C) infected the Tuc2009 host strain efficiently and thus displayed an altered host range compared to TP901-1. Genomic analysis and sequencing verified that TP901-1C is a TP901-1 derivative containing the orf53(2009) gene in exchange for bppL(TP901-1); however, a new sequence in the late promoter region was also discovered. Protein analysis confirmed that TP901-1C contains ORF53(2009) and not the lower baseplate protein BppL(TP901-1), and it was concluded that BppL(TP901-1) and ORF53(2009) constitute antireceptor proteins of TP901-1 and Tuc2009, respectively. Electron micrographs revealed altered baseplate morphology of TP901-1C compared to that of the parental phage.
Collapse
Affiliation(s)
- Christina S Vegge
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
40
|
Vegge CS, Brøndsted L, Neve H, Mc Grath S, van Sinderen D, Vogensen FK. Structural characterization and assembly of the distal tail structure of the temperate lactococcal bacteriophage TP901-1. J Bacteriol 2005; 187:4187-97. [PMID: 15937180 PMCID: PMC1151708 DOI: 10.1128/jb.187.12.4187-4197.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tail structures of bacteriophages infecting gram-positive bacteria are largely unexplored, although the phage tail mediates the initial interaction with the host cell. The temperate Lactococcus lactis phage TP901-1 of the Siphoviridae family has a long noncontractile tail with a distal baseplate. In the present study, we investigated the distal tail structures and tail assembly of phage TP901-1 by introducing nonsense mutations into the late transcribed genes dit (orf46), tal(TP901-1) (orf47), bppU (orf48), bppL (orf49), and orf50. Transmission electron microscopy examination of mutant and wild-type TP901-1 phages showed that the baseplate consisted of two different disks and that a central tail fiber is protruding below the baseplate. Evaluation of the mutant tail morphologies with protein profiles and Western blots revealed that the upper and lower baseplate disks consist of the proteins BppU and BppL, respectively. Likewise, Dit and Tal(TP901-1) were shown to be structural tail proteins essential for tail formation, and Tal(TP901-1) was furthermore identified as the tail fiber protein by immunogold labeling experiments. Determination of infection efficiencies of the mutant phages showed that the baseplate is fundamental for host infection and the lower disk protein, BppL, is suggested to interact with the host receptor. In contrast, ORF50 was found to be nonessential for tail assembly and host infection. A model for TP901-1 tail assembly, in which the function of eight specific proteins is considered, is presented.
Collapse
Affiliation(s)
- Christina S Vegge
- Department of Food Science, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
41
|
Dupont K, Janzen T, Vogensen FK, Josephsen J, Stuer-Lauridsen B. Identification of Lactococcus lactis genes required for bacteriophage adsorption. Appl Environ Microbiol 2004; 70:5825-32. [PMID: 15466520 PMCID: PMC522090 DOI: 10.1128/aem.70.10.5825-5832.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this work was to identify genes in Lactococcus lactis subsp. lactis IL1403 and Lactococcus lactis subsp. cremoris Wg2 important for adsorption of the 936-species phages bIL170 and phi 645, respectively. Random insertional mutagenesis of the two L. lactis strains was carried out with the vector pGh9:ISS1, and integrants that were resistant to phage infection and showed reduced phage adsorption were selected. In L. lactis IL1403 integration was obtained in the ycaG and rgpE genes, whereas in L. lactis Wg2 integration was obtained in two genes homologous to ycbC and ycbB of L. lactis IL1403. rgpE and ycbB encode putative glycosyltransferases, whereas ycaG and ycbC encode putative membrane-spanning proteins with unknown functions. Interestingly, ycaG, rgpE, ycbC, and ycbB are all part of the same operon in L. lactis IL1403. This operon is probably involved in biosynthesis and transport of cell wall polysaccharides (WPS). Binding and infection studies showed that phi645 binds to and infects L. lactis Wg2, L. lactis IL1403, and L. lactis IL1403 strains with pGh9:ISS1 integration in ycaG and rgpE, whereas bIL170 binds to and infects only L. lactis IL1403 and cannot infect Wg2. These results indicate that phi 645 binds to a WPS structure present in both L. lactis IL1403 and L. lactis Wg2, whereas bIL170 binds to another WPS structure not present in L. lactis Wg2. Binding of bIL170 and phi 645 to different WPS structures was supported by alignment of the receptor-binding proteins of bIL170 and phi 645 that showed no homology in the C-terminal part.
Collapse
Affiliation(s)
- Kitt Dupont
- Department of Food Science, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | | | |
Collapse
|
42
|
Salgado CJ, Zayas M, Villafane R. Homology between two different Salmonella phages: Salmonella enterica serovar Typhimurium phage P22 and Salmonella enterica serovar Anatum var. 15 + phageepsilon34. Virus Genes 2004; 29:87-98. [PMID: 15215687 DOI: 10.1023/b:viru.0000032792.86188.fb] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A distinguishing feature of many microorganisms, belonging to the Gram negative group of bacteria, is the presence of the lipopolysaccharide on their cell surface. Salmonella is a prominent member of this group of bacteria. Many Salmonella phages use the LPS as the initial receptor in the infection process and they can distinguish subtle changes in the LPS molecules. The phage protein that is responsible for recognition of these cells is the tail or tailspike protein (TSP). Those TSPs, which use LPS as a receptor, are prokaryotic LPS-binding proteins. As an initial step in using phage TSPs as model systems for a detailed molecular genetic analysis of protein-LPS interactions, a comparison of two phages and their TSPs from two different Salmonella bacterial viruses (phages), Salmonella enterica serovar Typhimurium phage P22 and Salmonella enterica serovar Anatum var. 15 + phage epsilon34, is being carried out. This present study shows significant viral protein homology between many viral structural proteins from these two phages including their TSPs. Significantly this report suggests a general structural motif for part of the TSP of phages and suggests that a more detailed comparative analysis of these TSPs is warranted.
Collapse
|
43
|
Kivelä HM, Daugelavicius R, Hankkio RH, Bamford JKH, Bamford DH. Penetration of membrane-containing double-stranded-DNA bacteriophage PM2 into Pseudoalteromonas hosts. J Bacteriol 2004; 186:5342-54. [PMID: 15292135 PMCID: PMC490941 DOI: 10.1128/jb.186.16.5342-5354.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The icosahedral bacteriophage PM2 has a circular double-stranded DNA (dsDNA) genome and an internal lipid membrane. It is the only representative of the Corticoviridae family. How the circular supercoiled genome residing inside the viral membrane is translocated into the gram-negative marine Pseudoalteromonas host has been an intriguing question. Here we demonstrate that after binding of the virus to an abundant cell surface receptor, the protein coat is most probably dissociated. During the infection process, the host cell outer membrane becomes transiently permeable to lipophilic gramicidin D molecules proposing fusion with the viral membrane. One of the components of the internal viral lipid core particle is the integral membrane protein P7, with muralytic activity that apparently aids the process of peptidoglycan penetration. Entry of the virion also causes a limited depolarization of the cytoplasmic membrane. These phenomena differ considerably from those observed in the entry process of bacteriophage PRD1, a dsDNA virus, which uses its internal membrane to make a cell envelope-penetrating tubular structure.
Collapse
Affiliation(s)
- Hanna M Kivelä
- Faculty of Biosciences and Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
44
|
Stuer-Lauridsen B, Janzen T, Schnabl J, Johansen E. Identification of the host determinant of two prolate-headed phages infecting Lactococcus lactis. Virology 2003; 309:10-7. [PMID: 12726722 DOI: 10.1016/s0042-6822(03)00012-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A gene responsible for host determination was identified in two prolate-headed bacteriophages of the c2 species infecting strains of Lactococcus lactis. The identification of the host determinant gene was based on low DNA sequence homology in a specific open reading frame (ORF) between prolate-headed phages with different host ranges. When a host carrying this ORF from one phage on a plasmid was infected with another phage, we obtained phages with an altered host range at a frequency of 10(-6) to 10(-7). Sequencing of phage DNA originating from 10 independent single plaques confirmed that a genetic recombination had taken place at different positions between the ORF on the plasmid and the infecting phage. The adsorption of the recombinant phages to their bacterial hosts had also changed to match the phage origin of the ORF. Consequently, it is concluded that this ORF codes for the host range determinant.
Collapse
Affiliation(s)
- Birgitte Stuer-Lauridsen
- Department of Genetics and Microbiology, Applied Biotechnology, Chr. Hansen A/S, DK-2970 Hørsholm, Denmark.
| | | | | | | |
Collapse
|
45
|
Abstract
Cyanobacteria of the genera Synechococcus and Prochlorococcus dominate the prokaryotic component of the picophytoplankton in the oceans. It is still less than 10 years since the discovery of phages that infect marine Synechococcus and the beginning of the characterisation of these phages and assessment of their ecological impact. Estimations of the contribution of phages to Synechococcus mortality are highly variable, but there is clear evidence that phages exert a significant selection pressure on Synechococcus community structure. In turn, there are strong selection pressures on the phage community, in terms of both abundance and composition. This review focuses on the factors affecting the diversity of cyanophages in the marine environment, cyanophage interactions with their hosts, and the selective pressures in the marine environment that affect cyanophage evolutionary biology.
Collapse
Affiliation(s)
- Nicholas H Mann
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
46
|
Abstract
Viruses occur throughout the biosphere. Cells of Eukarya, Bacteria, and Archaea are infected by a variety of viruses that considerably outnumber the host cells. Although viruses have adapted to different host systems during evolution and many different viral strategies have developed, certain similarities can be found. Viruses encounter common problems during their entry process into the host cells, and similar strategies seem to ensure, for example, that the movement toward the site of replication and the translocation through the host membrane occur. The penetration of the host cell's external envelope involves, across the viral world, either fusion between two membranes, channel formation through the host envelope, disruption of the membrane vesicle, or a combination of these events. Endocytic-type events may occur during the entry of a bacterial virus as well as during the entry of an animal virus; the same applies for membrane fusion.
Collapse
Affiliation(s)
- Minna M Poranen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland.
| | | | | |
Collapse
|
47
|
Abstract
During the twenty years or so since the discovery of tiny photosynthetic cells of the genus Synechococcus in marine oceanic systems, a tremendous expansion of interest has been seen in the literature pertaining to these organisms. The fact that they are ubiquitous and abundant in major oceanic regimes underlies their ecological importance as significant contributors to marine C fixation. Recent advances in the physiology and biochemistry of these organisms are presented here, focusing on strains of the MC-A and MC-B clusters; it is stressed that the data contained herein should be put into the context of the ecological niche occupied by particular genotypes in situ. This system is ripe for joining the often separate disciplines of molecular ecology and microbial physiology and provides a great opportunity to tease out the underlying processes that both mediate organism evolution and also the environmental factors that dictate this.
Collapse
Affiliation(s)
- David J Scanlan
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
48
|
Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, Unno H. Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl Environ Microbiol 2003; 69:170-6. [PMID: 12513992 PMCID: PMC152390 DOI: 10.1128/aem.69.1.170-176.2003] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between Escherichia coli O157:H7 and its specific bacteriophage PP01 was investigated in chemostat continuous culture. Following the addition of bacteriophage PP01, E. coli O157:H7 cell lysis was observed by over 4 orders of magnitude at a dilution rate of 0.876 h(-1) and by 3 orders of magnitude at a lower dilution rate (0.327 h(-1)). However, the appearance of a series of phage-resistant E. coli isolates, which showed a low efficiency of plating against bacteriophage PP01, led to an increase in the cell concentration in the culture. The colony shape, outer membrane protein expression, and lipopolysaccharide production of each escape mutant were compared. Cessation of major outer membrane protein OmpC production and alteration of lipopolysaccharide composition enabled E. coli O157:H7 to escape PP01 infection. One of the escape mutants of E. coli O157:H7 which formed a mucoid colony (Mu) on Luria-Bertani agar appeared 56 h postincubation at a dilution rate of 0.867 h(-1) and persisted until the end of the experiment (approximately 200 h). Mu mutant cells could coexist with bacteriophage PP01 in batch culture. Concentrations of the Mu cells and bacteriophage PP01 increased together. The appearance of mutant phage, which showed a different host range among the O157:H7 escape mutants than wild-type PP01, was also detected in the chemostat culture. Thus, coevolution of phage and E. coli O157:H7 proceeded as a mutual arms race in chemostat continuous culture.
Collapse
Affiliation(s)
- Katsunori Mizoguchi
- Department of Bioengineering, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Plançon L, Janmot C, le Maire M, Desmadril M, Bonhivers M, Letellier L, Boulanger P. Characterization of a high-affinity complex between the bacterial outer membrane protein FhuA and the phage T5 protein pb5. J Mol Biol 2002; 318:557-69. [PMID: 12051859 DOI: 10.1016/s0022-2836(02)00089-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Binding of bacteriophage T5 to Escherichia coli cells is mediated by specific interactions between the receptor-binding protein pb5 (67.8 kDa) and the outer membrane iron-transporter FhuA. A histidine-tagged form of pb5 was overproduced and purified. Isolated pb5 is monomeric and organized mostly as beta-sheets (51%). pb5 functionality was attested in vivo by its ability to impair infection of E. coli cells by phage T5 and Phi80, and to prevent growth of bacteria on iron-ferrichrome as unique iron source. pb5 was functional in vitro, since addition of an equimolar concentration of pb5 to purified FhuA prevented DNA release from phage T5. However, pb5 alone was not sufficient for the conversion of FhuA into an open channel. Direct interaction of pb5 with FhuA was demonstrated by isolating a pb5/FhuA complex using size-exclusion chromatography. The stoichiometry, 1 mol of pb5/1 mol of FhuA, was deduced from its molecular mass, established by analytical ultracentrifugation after determination of the amount of bound detergent. SDS-PAGE and differential scanning calorimetry experiments highlighted the great stability of the complex: (i) it was not dissociated by 2% SDS even when the temperature was raised to 70 degrees C; (ii) thermal denaturation of the complex occurred at 85 degrees C, while pb5 and FhuA were denatured at 45 degrees C and 74 degrees C, respectively. The stability of the complex renders it suitable for high-resolution structural studies, allowing future analysis of conformational changes into both FhuA and pb5 upon adsorption of the virus to its host.
Collapse
Affiliation(s)
- L Plançon
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR CNRS 8619, Université Paris Sud, Bât 430, 91 405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Hung CH, Wu HC, Tseng YH. Mutation in the Xanthomonas campestris xanA gene required for synthesis of xanthan and lipopolysaccharide drastically reduces the efficiency of bacteriophage (phi)L7 adsorption. Biochem Biophys Res Commun 2002; 291:338-43. [PMID: 11846409 DOI: 10.1006/bbrc.2002.6440] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
(Phi)L7 is a lytic phage infecting the gram-negative Xanthomonas campestis pv. campestris, a plant pathogen. To study phage-host interaction, a (phi)L7-resistant mutant was isolated from strain Xc17 by mini-Tn5 transposition and designated CH7LR. CH7LR could not plate (phi)L7 in double-layered assay and formed turbid clearing zones when the cell lawn was dropped with a high titer of (phi)L7. Sequence analysis showed that the mutated gene is xanA coding for phosphoglucomutase/phosphomannomutase, required for the synthesis of lipopolysaccharide and exopolysaccharide (xanthan). The involvement of xanA was confirmed by isolating another mutant with interrupted xanA and complementing with the cloned wild-type gene. Nonmucoid mutants are still sensitive to (phi)L7, indicating that xanthan is not involved in (phi)L7 adsorption. Since the mutants still exhibited low efficiencies of phage adsorption, we predict, by analogy with the cases in other bacteriophages of gram-negative bacteria, that other outer membrane components such as a protein are required for the formation of a complex receptor.
Collapse
Affiliation(s)
- Chih-Hsin Hung
- Institute of Molecular Biology, National Chung Hsing University, Taiwan, Republic of China
| | | | | |
Collapse
|