1
|
Histamine Immunoreactive Elements in the Central and Peripheral Nervous Systems of the Snail, Biomphalaria spp., Intermediate Host for Schistosoma mansoni. PLoS One 2015; 10:e0129800. [PMID: 26086611 PMCID: PMC4472778 DOI: 10.1371/journal.pone.0129800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022] Open
Abstract
Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites.
Collapse
|
2
|
Biserova NM, Kutyrev IA, Jensen K. GABA in the Nervous System of the CestodesDiphyllobothrium dendriticum(Diphyllobothriidea) andCaryophyllaeus laticeps(Caryophyllidea), with Comparative Analysis of Muscle Innervation. J Parasitol 2014; 100:411-21. [DOI: 10.1645/13-366.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
3
|
Histamine signalling in Schistosoma mansoni: Immunolocalisation and characterisation of a new histamine-responsive receptor (SmGPR-2). Int J Parasitol 2010; 40:1395-406. [DOI: 10.1016/j.ijpara.2010.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/24/2022]
|
4
|
Ribeiro P, Geary TG. Neuronal signaling in schistosomes: current status and prospects for postgenomicsThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2010. [DOI: 10.1139/z09-126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Parasitic platyhelminths of the genus Schistosoma Weinland, 1858 (Trematoda, Digenea) are the etiological agents of human schistosomiasis, one of the most prevalent and debilitating parasitic diseases worldwide. Praziquantel is the only drug treatment available in most parts of the world and the effectiveness of the drug is threatened by the prospect of drug resistance. There is a pressing need to learn more about the basic biology of this organism and to identify molecular targets for new therapeutic drugs. The nervous system of schistosomes coordinates many activities that are essential for parasite survival, and as such is an attractive target for chemotherapeutic intervention. Until recently, very little was known about the molecular mechanisms of neuronal signaling in these organisms, but this is rapidly changing following the completion of the genome sequence and several recent developments in schistosome transgenesis and gene silencing. Here we review the current status of schistosome neurobiology and discuss prospects for future research as the field moves into a postgenomics era. One of the themes that will emerge from this discussion is that schistosomes have a rich diversity of neurotransmitters and receptors, indicating a more sophisticated system of neuronal communication than might be expected of a parasitic flatworm. Moreover, many of these transmitter receptors share little sequence homology with those of the human host, making them ideally suited for selective drug targeting. Strategies for characterization of these important parasite proteins will be discussed.
Collapse
Affiliation(s)
- Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, QC H9X 3V9, Canada
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
5
|
Abstract
SUMMARYAs the most primitive metazoan phylum, the Platyhelminthes occupies a unique position in nervous system evolution. Centrally, their nervous system consists of an archaic brain from which emanate one or more pairs of longitudinal nerve cords connected by commissures; peripherally, a diverse arrangement of nerve plexuses of varying complexity innervate the subsurface epithelial and muscle layers, and in the parasitic taxa they are most prominent in the musculature of the attachment organs and egg-forming apparatus. There is a range of neuronal-cell types, the majority being multi- and bipolar. The flatworm neuron is highly secretory and contains a heterogeneity of vesicular inclusions, dominated by densecored vesicles, whose contents may be released synaptically or by paracrine secretion for presumed delivery to target cells via the extracellular matrix. A wide range of sense organ types is present in flatworms, irrespective of life-styles. The repertoire of neuronal substances identified cytochemically includes all of the major candidate transmitters known in vertebrates. Two groups of native flatworm neuropeptides have been sequenced, neuropeptide F and FMRFamide-related peptides (FaRPs), and immunoreactivities for these have been localised in dense-cored neuronal vesicles in representatives of all major fiatworm groups. There is evidence of co-localisation of peptidergic and cholinergic elements; serotoninergic components generally occupy a separate set of neurons. The actions of neuronal substances in flatworms are largely undetermined, but FaRPs and 5-HT are known to be myoactive in all of the major groups, and there is immuno-cytochemical evidence that they have a role in the mechanism of egg assembly.
Collapse
|
6
|
Abstract
Neuropeptide F (Moniezia expansa) immunoreactivity (NPF-IR) has been detected in the nervous system of plerocercoid and adult stages of the gull-tapeworm Diphyllobothrium dendriticum, using immunocytochemical methodology. The application of the antiserum for this authentic flatworm neuropeptide to whole-mounts and frozen sections of the worm has resulted in new information about its neuroanatomy. Thus, at regular intervals, transverse nerves extend from the main nerve cords laterally, joining the longitudinal lateral minor cords in the cortical parenchyma. In the adult worm, the transverse nerves are located at the posterior border of each proglottis. The medullary parenchyma lacks NPF-IR. The NPF-immunoreactive cell bodies are bi- to multipolar and preferentially located in the peripheral nervous system, in close association with the holdfast musculature of the scolex and the extensive body musculature. NPF-IR was observed in the innervation to the muscular ducts of the reproductive system. The pattern of NPF-IR was compared with that recorded for RFamide- and 5-HT-IR and double-immunostaining has revealed separate populations of serotoninergic and peptidergic neurones.
Collapse
|
7
|
|
8
|
El-Shehabi F, Vermeire JJ, Yoshino TP, Ribeiro P. Developmental expression analysis and immunolocalization of a biogenic amine receptor in Schistosoma mansoni. Exp Parasitol 2009; 122:17-27. [PMID: 19545530 DOI: 10.1016/j.exppara.2009.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/18/2008] [Accepted: 01/05/2009] [Indexed: 11/19/2022]
Abstract
A Schistosoma mansoni G-protein coupled receptor (SmGPCR) was previously cloned and shown to be activated by the biogenic amine, histamine. Here we report a first investigation of the receptor's subunit organization, tissue distribution and expression levels in different stages of the parasite. A polyclonal antibody was produced in rabbits against the recombinant third intracellular loop (il3) of SmGPCR. Western blot studies of the native receptor and recombinant protein expressed in HEK293 cells showed that SmGPCR exists both as a monomer (65 kDa) and an apparent dimer of approximately 130 kDa These species were verified by immunoprecipitation of SmGPCR from S. mansoni extracts, using antibody that was covalently attached to agarose beads. Further investigation determined that the SmGPCR dimer was resistant to treatment with various detergents, 4 M urea and 0.1 M DTT but could be made to dissociate at acidic pH, suggesting the dimer is non-covalent in nature. Confocal immunofluorescence studies revealed significant SmGPCR immunoreactivity in sporocysts, schistosomula and adult worms but not miracidia. SmGPCR was found to be most widely expressed in the schistosomula, particularly the tegument, the subtegumental musculature and the acetabulum. In the adult stage we detected SmGPCR immunofluorescence mainly in the tubercles of male worms and, to a lesser extent, the body wall musculature. Localization in sporocysts was mainly confined to the tegument and cells within parenchymal matrices. A real-time quantitative reverse-transcription PCR analysis revealed that SmGPCR is upregulated at the mRNA level in the parasitic stages compared to the free-living miracidium and cercariae, and it is particularly elevated during early sporocyst and schistosomula development. The results identify SmGPCR as an important parasite receptor with potential functions in muscle and the tegument of S. mansoni.
Collapse
MESH Headings
- Animals
- Antibodies, Helminth/biosynthesis
- Antibodies, Helminth/immunology
- Biomphalaria
- Blotting, Western
- Electrophoresis, Polyacrylamide Gel
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation
- Immunoprecipitation
- Male
- Mice
- Microscopy, Confocal
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rabbits
- Receptors, Biogenic Amine/analysis
- Receptors, Biogenic Amine/biosynthesis
- Receptors, Biogenic Amine/genetics
- Receptors, Biogenic Amine/immunology
- Receptors, G-Protein-Coupled/analysis
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Schistosoma mansoni/immunology
- Schistosoma mansoni/metabolism
- Transfection
Collapse
Affiliation(s)
- Fouad El-Shehabi
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | | | | | | |
Collapse
|
9
|
Rothe BH, Schmidt-Rhaesa A. Architecture of the nervous system in two Dactylopodola species (Gastrotricha, Macrodasyida). ZOOMORPHOLOGY 2008. [DOI: 10.1007/s00435-008-0077-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Ribeiro P, El-Shehabi F, Patocka N. Classical transmitters and their receptors in flatworms. Parasitology 2007; 131 Suppl:S19-40. [PMID: 16569290 DOI: 10.1017/s0031182005008565] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The flatworm nervous system employs a wide repertoire of neuroactive substances, including small chemical messengers, the so called classical transmitters, and several types of neuropeptides. A large body of research accumulated over four decades has provided a wealth of information on the tissue localization and effects of these substances, their biochemistry and, recently, their molecular modes of action in all major classes of flatworms. This evidence will be reviewed, with particular emphasis on the small (classical) transmitters and the receptors that mediate their effects. One of the themes that will emerge from this discussion is that classical transmitters regulate core activities such as movement, metabolism and transport, and thus are essential for survival of the organism. In addition, the evidence shows that flatworms have multiple neurotransmitter receptors, many with unusual pharmacological features, which make them particularly attractive as drug targets. Understanding the molecular basis of these distinctive properties, and developing new, more specific receptor agonists and antagonists will undoubtedly become a major challenge in future research.
Collapse
Affiliation(s)
- P Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue Quebec, Canada H9X 3V9.
| | | | | |
Collapse
|
11
|
Hamdan FF, Abramovitz M, Mousa A, Xie J, Durocher Y, Ribeiro P. A novel Schistosoma mansoni G protein-coupled receptor is responsive to histamine. Mol Biochem Parasitol 2002; 119:75-86. [PMID: 11755188 DOI: 10.1016/s0166-6851(01)00400-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new cDNA was cloned from the bloodfluke, Schistosoma mansoni and shown to encode a protein with structural characteristics of a biogenic amine G protein-coupled receptor (GPCR). At the amino acid level, the parasite receptor (SmGPCR) shared about the same level of sequence homology (approximately 30%) with all major types of amine GPCRs and could not be identified on the basis of sequence. SmGPCR exhibited several nonconservative substitutions at key GPCR positions, including an unusual asparagine substitution (Asn(111)) for the highly conserved aspartate of transmembrane (TM) 3. The full-length SmGPCR cDNA was double-tagged with N-terminal FLAG and C-terminal hexahistidine epitopes, and was codon-optimized for expression in cultured HEK293 and COS7 cells. In situ immunofluorescence analyses targeting the two N- and C-terminal epitopes demonstrated that the modified SmGPCR was expressed at high level in mammalian cells and assumed a typical GPCR topology, the N-terminus being extracellular and the C-terminus intracellular. Functional activity assays revealed that SmGPCR was responsive to histamine, which caused a dose-dependent elevation in intracellular Ca2+ (EC50=0.54+/-0.05 microM). An Asn(111)-->Asp mutation had no effect on the responsiveness to histamine, suggesting that SmGPCR does not require the TM3 aspartate for agonist activation, in contrast to most amine GPCRs. None of the other monoamines tested had any significant effect on receptor activity, using assays that measured both Ca2+- and cAMP-mediated signaling. The results suggest that SmGPCR is a novel structural class of histamine receptor that may be unique to flatworms.
Collapse
Affiliation(s)
- Fadi F Hamdan
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Que., H9X 3V9, Ste. Anne de Bellevue, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Younossi-Hartenstein A, Ehlers U, Hartenstein V. Embryonic development of the nervous system of the rhabdocoel flatworm Mesostoma lingua (Abilgaard, 1789). J Comp Neurol 2000; 416:461-74. [PMID: 10660878 DOI: 10.1002/(sici)1096-9861(20000124)416:4<461::aid-cne4>3.0.co;2-a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have analyzed the embryonic development of the Mesostoma nervous system, using a combination of histology, transmission electron microscopy, and wholemount immunohistochemistry. Neural progenitors are formed at an early stage when the Mesostoma embryo constitutes a multilayered mesenchymal mass of cells. A neurectoderm as in vertebrates or arthropods is absent. Only after neurons in the deep layers of the embryo have started differentiating do superficial cells reorganize into an epithelium that will give rise to the epidermis. Neurons are clustered in two anterior, bilaterally symmetric brain hemispheres. An antibody against acetylated beta-tubulin (anti-acTub) that labels neurotubules reveals an invariant pattern of pioneer neurons in the brain of midstage embryos. Pioneer neurons are grouped in several small clusters at characteristic positions. They pioneer several commissural tracts of the brain and two pairs of ventral and dorsal connectives, respectively.
Collapse
Affiliation(s)
- A Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles 90095, USA
| | | | | |
Collapse
|
13
|
Abstract
Immunohistochemistry is used to demonstrate histamine-immunoreactivity in the CNS of spiders. We found histamine-immunoreactivity in the photoreceptors of different spiders. Therefore, we suggest that histamine is a neurotransmitter of photoreceptors in all arthropods, since it is also known to occur in the photoreceptors of the other main arthropod taxa (Merostomata, Crustacea, and Insecta). We also describe a system of only six omnisegmental histamine-immunoreactive neurons within the central nervous system. These histamine-immunoreactive neurons can be divided into two subgroups: a dorsal system with two cells per hemisphere and a ventral system with only one cell per hemisphere. All six cells have extended arborizations in both the motor and the sensory areas of all neuromeres in the suboesophageal ganglionic mass. In contrast to araneomorph spiders, two additional sets of histamine-immunoreactive neurons were detected in mygalomorph spiders. The first set consists of seventeen cells with their cell bodies located in the cheliceral ganglion and projecting to central areas of the protocerebrum. The second set contains many if not all sensory projections from the tarsal organs on all eight legs and the pedipalps to the Blumenthal neuropil.
Collapse
Affiliation(s)
- A Schmid
- Biozentrum, Institut für Zoologie, Universität Wien, Austria
| | | |
Collapse
|
14
|
Kitamura Y, Kakimura J, Taniguchi T. Protective effect of talipexole on MPTP-treated planarian, a unique parkinsonian worm model. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 78:23-9. [PMID: 9804058 DOI: 10.1254/jjp.78.23] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The planarian, a flatworm, has a high potential for regeneration, and dopamine plays a key role in its behavior. Planarians treated with MPTP underwent autolysis and individual death in a concentration-dependent manner. When the planarian body was cut into anterior, middle and posterior pieces, each piece subsequently regenerated and reorganized to form a new individual within approximately 10 days. The anterior piece was significantly more sensitive than the middle and posterior pieces to MPTP cytotoxicity. Concomitant treatment with talipexole, an anti-parkinsonian drug, inhibited MPTP-induced autolysis and individual death in a concentration-dependent manner. Pramipexole showed a similar protective effect. In addition, post-treatment with talipexole at 1 hr after MPTP completely inhibited MPTP-induced individual death. Although MPTP treatment caused 30% of the planarians to undergo autolysis and individual death within 12 hr, post-treatment with talipexole even at 12 hr completely rescued the remaining 70% of the planarians from death. These results suggest that the MPTP-treated planarian may be useful as a novel parkinsonian model in which talipexole has a protective effect even in the case of post-treatment.
Collapse
Affiliation(s)
- Y Kitamura
- Department of Neurobiology, Kyoto Pharmaceutical University, Japan
| | | | | |
Collapse
|
15
|
Reuter M, Gustafsson M. Neuronal signal substances in asexual multiplication and development in flatworms. Cell Mol Neurobiol 1996; 16:591-616. [PMID: 8956011 PMCID: PMC11563133 DOI: 10.1007/bf02152059] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/1995] [Accepted: 03/17/1995] [Indexed: 02/03/2023]
Abstract
1. The phenomenon of asexual multiplication is rare in the animal kingdom. It occurs, however, in all main flatworm taxa. Flatworms are characterized by an extensive versatility, ranging from the different types of asexual multiplication to the different orthogonal plans for the nervous system. The role of the nervous system in the asexual multiplication taking place in flatworms is pointed out and discussed. 2. Immunocytochemical studies of the changes in the flatworm neuroanatomy show that the nervous system, particularly the main never cords, has a central role during asexual development. 3. Antibodies to different neuronal substances yield different immunoreactivity patterns and develop according to different time schedules. Serotoninergic nervous elements seem to have a leading role. 4. Substances produced by the nervous system influence fissioning and subsequent regeneration in free-living flatworms in the following ways. (a) A function as a wound hormone has been suggested for the neuropeptide RF-amide. (b) Mitogenic effects have been shown for several biogenic amines and neuropeptides. (c) Inhibitory roles are suggested for somatostatin and melatonin in connection with cell proliferation respective fissioning. 5. Growth factors have been observed both in free-living and parasitic flatworms. 6. Cells reactive to antibodies against epidermal growth factor increase in number in parallel with increases in mitotic activity in the gull tapeworm and occur in regions with high mitotic activity. A correlation between these two phenomena is suggested.
Collapse
Affiliation(s)
- M Reuter
- Department of Biology, Abo Akademi University, Finland
| | | |
Collapse
|
16
|
Eriksson KS, Johnston RN, Shaw C, Halton DW, Panula PA. Widespread distribution of histamine in the nervous system of a trematode flatworm. J Comp Neurol 1996; 373:220-7. [PMID: 8889923 DOI: 10.1002/(sici)1096-9861(19960916)373:2<220::aid-cne5>3.0.co;2-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In general, most flatworms contain very little histamine (HA) and their nervous systems often lack, or contain very few, histaminergic elements. However, preliminary studies in our laboratory have revealed that the frog lung parasite, Haplometra cylindracea (Trematoda: Digenea), contains HA in a very high concentration. For this reason, the present study was undertaken to study the localization and synthesis of HA in this worm by using immunocytochemistry and high-pressure liquid chromatography (HPLC). Essentially all parts of the nervous system of H. cylindracea showed HA-like immunoreactivity. The paired cerebral ganglia and nerves emanating from these, including the longitudinal nerve cords, were intensely immunoreactive. The musculature of the pharynx, oral and ventral suckers, and those of the reproductive organs were all innervated by HA-immunoreactive fibers. Fiber plexuses beneath the tegument and throughout the parenchyma also showed HA-like immunoreactivity. HPLC studies revealed one of the highest HA concentrations in the animal kingdom, 6.49 +/- 1.36 nmole/mg protein, in the worm. The frog lung and blood contained very low concentrations of HA and could be excluded as sources for HA, while an enzyme assay revealed that the worm produces HA by decarboxylation of histidine. Thus, it is likely that H. cylindracea uses HA as a neurotransmitter or modulator.
Collapse
Affiliation(s)
- K S Eriksson
- Department of Biology, Abo Akademi University, Finland.
| | | | | | | | | |
Collapse
|
17
|
The organization of the nervous system in Plathelminthes. The neuropeptide F-immunoreactive pattern in Catenulida, Macrostomida, Proseriata. ZOOMORPHOLOGY 1995. [DOI: 10.1007/bf00403257] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Abstract
The flatworms occupy a position at the base of the metazoan phylogenetic tree; they have a bilateral symmetric nervous system and an archaic brain. The following aspects, brought into focus by the use of new methods, will be dealt with in the present paper. 1. The high degree of diversity on all levels of the flatworm nervous system (NS). 2. The concept of main nerve cords is defined and the use of this concept in avoiding confusions in the terminology of nerve cords is stressed. 3. The archaic nature of the stomatogastric NS is reviewed. 4. The new data about neuronal celltypes implying advanced features at this low phylogenetic level. 5. The ultrastructural studies of neuronal cells indicating (A) that a common secretory cell type containing dense-core vesicles is archaic and a likely progenitor cell type for conventional neurons of advanced flatworms and (B) that an independent evolution of synaptic structures and glial cells has occurred inside the flatworm taxon. 6. The multitude of neuroactive substances demonstrated by light microscopic histofluorescence, immunocytochemistry, liquid chromatography, and HPLC. The cholinergic, aminergic, and peptidergic substances often occur in different neuronal compartments.
Collapse
Affiliation(s)
- M Reuter
- Department of Biology, Abo Akademi University, Finland
| | | |
Collapse
|
19
|
Brownlee DJ, Fairweather I, Johnston CF, Rogan MT. Immunocytochemical localization of serotonin (5-HT) in the nervous system of the hydatid organism, Echinococcus granulosus (Cestoda, Cyclophyllidea). Parasitology 1994; 109 ( Pt 2):233-41. [PMID: 8084668 DOI: 10.1017/s0031182000076356] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The localization and distribution of the serotoninergic components of the nervous system in the hydatid organism, Echinococcus granulosus, were determined by immunocytochemical techniques in conjunction with confocal scanning laser microscopy (CSLM). The distribution of serotonin immunoreactivity (IR) paralleled that previously described for cholinesterase activity, although it was more widespread. Nerve cell bodies and nerve fibres immunoreactive for 5-HT were present throughout the central nervous system (CNS), occurring in the paired lateral, posterior lateral and rostellar ganglia, their connecting commissures and nerve rings in the scolex and in the ten longitudinal nerve cords that run posteriorly throughout the body of the worm. A large population of nerve cell bodies was associated with the lateral nerve cords. In the peripheral nervous system (PNS), immunoreactive nerve fibres occurred in well-developed nerve plexuses innervating the somatic musculature and the musculature of the rostellum and suckers. The genital atrium and associated reproductive ducts were richly innervated with serotoninergic nerve cell bodies and nerve fibres.
Collapse
Affiliation(s)
- D J Brownlee
- School of Biology and Biochemistry, Queen's University of Belfast, Northern Ireland
| | | | | | | |
Collapse
|
20
|
Histamine immunoreactivity in the central nervous system of the spider Cupiennius salei. Cell Tissue Res 1993. [DOI: 10.1007/bf00333707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
The nervous system of Bothriomolus balticus (Proseriata) ?a contribution to the knowledge of the orthogon in the Plathelminthes. ZOOMORPHOLOGY 1993. [DOI: 10.1007/bf00403089] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Eriksson K, Gustafsson M, Akerlind G. High-performance liquid chromatographic analysis of monoamines in the cestode Diphyllobothrium dendriticum. Parasitol Res 1993; 79:699-702. [PMID: 8295909 DOI: 10.1007/bf00932514] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The presence of biogene monoamines in adult and larval Diphyllobothrium dendriticum (Cestoda) was investigated by high-performance liquid chromatography with electrochemical detection (HPLC-ED). The biogene amines serotonin (5-HT), dopamine (DA), noradrenaline (NA), and adrenaline (A) as well as many of their precursors and metabolites, comprising a total of 15 different substances, were analyzed. 5-HT, DOPA, DA, NA, and A were detected in the worm, with 5-HT, DOPA, and DA being the dominating amines. The DA metabolites DOPAC and 3-MT or the 5-HT precursor 5-hydroxytryptophan could not be detected, but two unidentified substances, believed to be catecholic, were present in the worm. A high concentration of DOPA was measured in the proglottids and especially in the eggs. This is the first report of A in a flatworm.
Collapse
Affiliation(s)
- K Eriksson
- Department of Biology, Abo Akademi University, Finland
| | | | | |
Collapse
|
23
|
Homberg U, Hildebrand JG. Histamine-immunoreactive neurons in the midbrain and suboesophageal ganglion of sphinx moth Manduca sexta. J Comp Neurol 1991; 307:647-57. [PMID: 1869635 DOI: 10.1002/cne.903070410] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper describes the distribution of histamine-like immunoreactivity in the midbrain and suboesophageal ganglion of the sphinx moth Manduca sexta. Intense immunocytochemical staining was detected in ten bilateral pairs of neurons in the median protocerebrum and in one pair of neurons in the suboesophageal ganglion. Whereas most areas of the brain and suboesophageal ganglion are innervated by one or more of these neurons, typically no immunoreactive fibers were found in the mushroom bodies, the protocerebral bridge, and the lateral horn of the protocerebrum. The 11 histamine-immunoreactive neurons were reconstructed from serial sections. Ten neurons have bilateral arborizations, often with axonal projections in symmetric areas of both hemispheres. One neuron, whose soma resides in the lateral protocerebrum, has only unilateral projections. Of the 11 neurons, 6 occur in pairs with similar morphological features. In addition to these neurons, weak histamine-like immunoreactivity was detected in 7-13 interneurons that were not reconstructed individually. The central projections of the ocellar nerves from the intracranial ocelli also exhibit histamine-like immunoreactivity. The single-cell reconstructions reveal similarities between the organization of histamine- and serotonin-immunoreactive neurons in the brain and suboesophageal ganglion of this insect.
Collapse
Affiliation(s)
- U Homberg
- Fakultät für Biologie, Universität Konstanz, Federal Republic of Germany
| | | |
Collapse
|
24
|
Gustafsson MK, Eriksson K. Localization and identification of catecholamines in the nervous system of Diphyllobothrium dendriticum (Cestoda). Parasitol Res 1991; 77:498-502. [PMID: 1924256 DOI: 10.1007/bf00928417] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the central and peripheral nervous system of larval and adult Diphyllobothrium dendriticum, catecholamines were detected using the glyoxylic acid-induced fluorescence method. High-pressure liquid chromatography (HPLC) analysis revealed the presence of dopa (about 65 ng/g fresh weight) and dopamine (5 ng/g fresh weight).
Collapse
|