1
|
Lee CH, Hsieh MJ, Chang SH, Chiang CL, Fan CL, Liu SJ, Chen WJ, Wang CJ, Hsu MY, Hung KC, Chou CC, Chang PC. Biodegradable Cable-Tie Rapamycin-eluting Stents. Sci Rep 2017; 7:111. [PMID: 28273914 PMCID: PMC5427919 DOI: 10.1038/s41598-017-00131-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/08/2017] [Indexed: 12/03/2022] Open
Abstract
"Cable-tie" type biodegradable stents with drug-eluting nanofiber were developed to treat rabbit denuded arteries in this study. Biodegradable stents were fabricated using poly-L-lactide film following being cut and rolled into a cable-tie type stent. Additionally, drug-eluting biodegradable nanofiber tubes were electrospun from a solution containing poly (lactic-co-glycolic acid), rapamycin, and hexafluoroisopropanol, and then mounted onto the stents. The fabricated rapamycin-eluting cable-tie stents exhibited excellent mechanical properties on evaluation of compression test and collapse pressure, and less than 8% weight loss following being immersed in phosphate-buffered saline for 16 weeks. Furthermore, the biodegradable stents delivered high rapamycin concentrations for over 4 weeks and achieved substantial reductions in intimal hyperplasia associated with elevated heme oxygenase-1 and calponin level on the denuded rabbit arteries during 6 months of follow-up. The drug-eluting cable-tie type stents developed in this study might have high potential impacts for the local drug delivery to treat various vascular diseases.
Collapse
Affiliation(s)
- Cheng-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Chang-Lin Chiang
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Lung Fan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.
| | - Wei-Jan Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Chao-Jan Wang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Ming-Yi Hsu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Kuo-Chun Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Chung-Chuan Chou
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Po-Cheng Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taipei, Taiwan
| |
Collapse
|
2
|
Ganesan MK, Finsterwalder R, Leb H, Resch U, Neumüller K, de Martin R, Petzelbauer P. Three-Dimensional Coculture Model to Analyze the Cross Talk Between Endothelial and Smooth Muscle Cells. Tissue Eng Part C Methods 2017; 23:38-49. [PMID: 27923320 PMCID: PMC5240006 DOI: 10.1089/ten.tec.2016.0299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
The response of blood vessels to physiological and pathological stimuli partly depends on the cross talk between endothelial cells (EC) lining the luminal side and smooth muscle cells (SMC) building the inner part of the vascular wall. Thus, the in vitro analysis of the pathophysiology of blood vessels requires coculture systems of EC and SMC. We have developed and validated a modified three-dimensional sandwich coculture (3D SW-CC) of EC and SMC using open μ-Slides with a thin glass bottom allowing direct imaging. The culture dish comprises an intermediate plate to minimize the meniscus resulting in homogenous cell distribution. Human umbilical artery SMC were sandwiched between coatings of rat tail collagen I. Following SMC quiescence, human umbilical vein EC were seeded on top of SMC and cultivated until confluence. By day 7, EC had formed a confluent monolayer and continuous vascular endothelial (VE)-cadherin-positive cell/cell contacts. Below, spindle-shaped SMC had formed parallel bundles and showed increased calponin expression compared to day 1. EC and SMC were interspaced by a matrix consisting of laminin, collagen IV, and perlecan. Basal messenger RNA (mRNA) expression levels of E-selectin, angiopoietin-1, calponin, and intercellular adhesion molecule 1 (ICAM-1) of the 3D SW-CC was comparable to that of a freshly isolated mouse inferior vena cava. Addition of tumor necrosis factor alpha (TNF α) to the 3D SW-CC induced E-selectin and ICAM-1 mRNA and protein induction, comparable to the EC and SMC monolayers. In contrast, the addition of activated platelets induced a significantly delayed but more pronounced activation in the 3D SW-CC compared to EC and SMC monolayers. Thus, this 3D SW-CC permits analyzing the cross talk between EC and SMC that mediate cellular quiescence as well as the response to complex activation signals.
Collapse
Affiliation(s)
- Minu Karthika Ganesan
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Richard Finsterwalder
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heide Leb
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Karin Neumüller
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Kusuma S, Gerecht S. Derivation of Endothelial Cells and Pericytes from Human Pluripotent Stem Cells. Methods Mol Biol 2016; 1307:213-22. [PMID: 25515528 DOI: 10.1007/7651_2014_149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood vessels serve as the lifeline of nearly all living tissue. Vascular cells derived from human pluripotent stem cells hold great potential for clinical use in the regeneration of diseased vasculature and construction of blood vessels in engineered tissue. By deriving these cells in a controllable and clinically relevant manner harnessing physiological cues, we can obtain populations of cells amenable for transplantation. In this chapter, we describe methods to differentiate human pluripotent stem cells toward a bicellular population of early vascular cells using low oxygen cues, guide these subpopulations into mature endothelial cells and pericytes, and expand the vascular derivatives.
Collapse
Affiliation(s)
- Sravanti Kusuma
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | |
Collapse
|
4
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
5
|
Wanjare M, Kusuma S, Gerecht S. Defining differences among perivascular cells derived from human pluripotent stem cells. Stem Cell Reports 2014; 2:561-75. [PMID: 24936446 PMCID: PMC4050491 DOI: 10.1016/j.stemcr.2014.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
Distinguishing between perivascular cell types remains a hurdle in vascular biology due to overlapping marker expressions and similar functionalities. Clarifying and defining heterogeneities in vitro among perivascular cells could lead to improved cell-based tissue regeneration strategies and a better understanding of human developmental processes. We studied contractile vascular smooth muscle cells (vSMCs), synthetic vSMCs, and pericytes derived from a common human pluripotent stem cell source. Using in vitro cultures, we show unique cell morphology, subcellular organelle organization (namely endoplasmic reticulum, mitochondria, and stress fibers), and expression of smooth muscle myosin heavy chain and elastin for each cell type. While differences in extracellular matrix deposition and remodeling were less pronounced, the multipotency, in vivo, migratory, invasion, and contractile functionalities are distinctive for each cell type. Overall, we define a repertoire of functional phenotypes in vitro specific for each of the human perivascular cell types, enabling their study and use in basic and translational research. Contractile and synthetic vSMCs and pericytes were derived from a common hiPSC line Morphology and organelle organization differ among the perivascular derivatives SMMHC and elastin specify the mature contractile vSMC phenotype Migration, invasion, and contractility are unique for each perivascular cell type.
Collapse
Affiliation(s)
- Maureen Wanjare
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sravanti Kusuma
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA ; Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA ; Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Wang T, Kendig DM, Chang S, Trappanese DM, Chacko S, Moreland RS. Bladder smooth muscle organ culture preparation maintains the contractile phenotype. Am J Physiol Renal Physiol 2012; 303:F1382-97. [PMID: 22896042 PMCID: PMC3518193 DOI: 10.1152/ajprenal.00261.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/13/2012] [Indexed: 01/26/2023] Open
Abstract
Smooth muscle cells, when subjected to culture, modulate from a contractile to a secretory phenotype. This has hampered the use of cell culture for molecular techniques to study the regulation of smooth muscle biology. The goal of this study was to develop a new organ culture model of bladder smooth muscle (BSM) that would maintain the contractile phenotype and aid in the study of BSM biology. Our results showed that strips of BSM subjected to up to 9 days of organ culture maintained their contractile phenotype, including the ability to achieve near-control levels of force with a temporal profile similar to that of noncultured tissues. The technical aspects of our organ culture preparation that were responsible, in part, for the maintenance of the contractile phenotype were a slight longitudinal stretch during culture and subjection of the strips to daily contraction-relaxation. The tissues contained viable cells throughout the cross section of the strips. There was an increase in extracellular collagenous matrix, resulting in a leftward shift in the passive length-tension relationship. There were no significant changes in the content of smooth muscle-specific α-actin, calponin, h-caldesmon, total myosin heavy chain, protein kinase G, Rho kinase-I, or the ratio of SM1 to SM2 myosin isoforms. Moreover the organ cultured tissues maintained functional voltage-gated calcium channels and large-conductance calcium-activated potassium channels. Therefore, we propose that this novel BSM organ culture model maintains the contractile phenotype and will be a valuable tool for the use in cellular/molecular biology studies of bladder myocytes.
Collapse
Affiliation(s)
- Tanchun Wang
- Dept. of Pharmacology and Physiology, Drexel Univ. College of Medicine, 245 N 15th St., MS 488, Philadelphia, PA 19102, USA
| | | | | | | | | | | |
Collapse
|
7
|
Kreipke CW, Rafols JA. Calponin control of cerebrovascular reactivity: therapeutic implications in brain trauma. J Cell Mol Med 2009; 13:262-9. [PMID: 19278456 PMCID: PMC3823353 DOI: 10.1111/j.1582-4934.2008.00508.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/25/2008] [Indexed: 01/04/2023] Open
Abstract
Calponin (Cp) is an actin-binding protein first characterized in chicken gizzard smooth muscle (SM). This review discusses the role of Cp in mediating SM contraction, the biochemical process by which Cp facilitates SM contraction and the function of Cp in the brain. Recent work on the role of Cp in pathological states with emphasis on traumatic brain injury is also discussed. Based on past and present data, the case is presented for targeting Cp for novel genetic and pharmacological therapies aimed at improving outcome following traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Christian W Kreipke
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Jose A Rafols
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, USA
| |
Collapse
|
8
|
Kreipke CW, Morgan NC, Petrov T, Rafols JA. Calponin and caldesmon cellular domains in reacting microvessels following traumatic brain injury. Microvasc Res 2006; 71:197-204. [PMID: 16635497 DOI: 10.1016/j.mvr.2006.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 01/11/2006] [Accepted: 02/09/2006] [Indexed: 01/16/2023]
Abstract
Calponin (Cp) and caldesmon (Cd) are actin-binding proteins involved in the regulation of smooth muscle (SM) tone during blood vessel contraction. While in vitro studies have reported modifications of these proteins during vessel contractility, their role in vivo remains unclear. Traumatic brain injury (TBI) causes disruption of cerebral microvascular tone, leading to sustained contractility in reacting microvessels and cerebral hypoperfusion. This study aimed to determine the spatial and temporal expressions of Cp and Cd in rat cerebral cortical and hippocampal microvessels post-TBI. Reacting microvessels were analyzed in control, 4, 24, and 48 h post-injury. Single and double immunocytochemical techniques together with semiquantitative analyses revealed a Cp upregulation in SM at all time frames post-TBI; with the protein migrating from SM cytosol to the vicinity of the cell membrane. Similarly, Cd immunoreactivity significantly increased in both SM and endothelial cells (En). However, while Cp and Cd in SM remained elevated, their levels in En returned to normal at 48 h post-TBI. The results suggest that Cp and Cd levels increase while compartmentalizing to specific subcellular domains. These changes are temporally associated with modifications in the cytoskeleton and contractile apparatus of SM and En during blood vessel contractility. Furthermore, these changes may underlie the state of sustained contractility and hypoperfusion observed in reacting microvessels after TBI.
Collapse
Affiliation(s)
- Christian W Kreipke
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
9
|
Zhao H, Bringas P, Chai Y. An in vitro model for characterizing the post-migratory cranial neural crest cells of the first branchial arch. Dev Dyn 2006; 235:1433-40. [PMID: 16245337 PMCID: PMC3337696 DOI: 10.1002/dvdy.20588] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cranial neural crest (CNC) is a transient cell population that originates at the crest of the neural fold and gives rise to multiple cell types during craniofacial development. Traditionally, researchers have used tissue explants, such as the neural tube, to obtain primary neural crest cells for their studies. However, this approach has inevitably resulted in simultaneous isolation of neural and non-neural crest cells as both of these cells migrate away from tissue explants. Using the Wnt1-Cre/R26R mouse model, we have obtained a pure population of neural crest cells and established a primary CNC cell culture system in which the cell culture medium best supports the proliferation of E10.5 first branchial arch CNC cells and maintains these cells in their undifferentiated state. Differentiation of CNC cells can be initiated by switching to a differentiation medium. In this model, cultured CNC cells can give rise to neurons, glial cells, osteoblasts, and other cell types, faithfully mimicking the differentiation process of the post-migratory CNC cells in vivo. Taken together, our study shows that the Wnt1-Cre/R26R mouse first branchial arch provides an excellent model for obtaining post-migratory neural crest cells free of any mesodermal contaminants. The cultured neural crest cells are under sustained proliferative, undifferentiated, or lineage-enhanced conditions, hence, serving as a tool for the investigation of the regulatory mechanism of CNC cell fate determination in normal and abnormal craniofacial development.
Collapse
Affiliation(s)
- Hu Zhao
- Center for Craniofacial Molecular Biology School of Dentistry, University of Southern California, Los Angeles, California
| | - Pablo Bringas
- Center for Craniofacial Molecular Biology School of Dentistry, University of Southern California, Los Angeles, California
| | - Yang Chai
- Center for Craniofacial Molecular Biology School of Dentistry, University of Southern California, Los Angeles, California
| |
Collapse
|
10
|
Patil SB, Pawar MD, Bitar KN. Direct association and translocation of PKC-alpha with calponin. Am J Physiol Gastrointest Liver Physiol 2004; 286:G954-63. [PMID: 14726309 DOI: 10.1152/ajpgi.00477.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calponin has been implicated in the regulation of smooth muscle contraction through its interaction with F-actin and inhibition of the actin-activated MgATPase activity of phosphorylated myosin. Calponin has also been shown to interact with PKC. We have studied the interaction of calponin with PKC-alpha and with the low molecular weight heat-shock protein (HSP)27 in contraction of colonic smooth muscle cells. Particulate fractions from isolated smooth muscle cells were immunoprecipitated with antibodies to calponin and Western blot analyzed with antibodies to HSP27 and to PKC-alpha. Acetylcholine induced a sustained increase in the immunocomplexing of calponin with HSP27 and of calponin with PKC-alpha in the particulate fraction, indicating an association of the translocated proteins in the membrane. To examine whether the observed interaction in vivo is due to a direct interaction of calponin with PKC-alpha, a cDNA of 1.3 kb of human calponin gene was PCR amplified. PCR product encoding 622 nt of calponin cDNA (nt 351-972 corresponding to amino acids 92-229) was expressed as fusion glutathione S-transferase (GST) protein in the vector pGEX-KT. We have studied the direct association of GST-calponin fusion protein with recombinant PKC-alpha in vitro. Western blot analysis of the fractions collected after elution with reduced glutathione buffer (pH 8.0) show a coelution of GST-calponin with PKC-alpha, indicating a direct association of GST-calponin with PKC-alpha. These data suggest that there is a direct association of translocated calponin and PKC-alpha in the membrane and a role for the complex calponin-PKC-alpha-HSP27, in contraction of colonic smooth muscle cells.
Collapse
Affiliation(s)
- Suresh B Patil
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
11
|
Kudryashov DS, Vorotnikov AV, Dudnakova TV, Stepanova OV, Lukas TJ, Sellers JR, Watterson DM, Shirinsky VP. Smooth muscle myosin filament assembly under control of a kinase-related protein (KRP) and caldesmon. J Muscle Res Cell Motil 2003; 23:341-51. [PMID: 12630709 DOI: 10.1023/a:1022086228770] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Kinase-related protein (KRP) and caldesmon are abundant myosin-binding proteins of smooth muscle. KRP induces the assembly of unphosphorylated smooth muscle myosin filaments in the presence of ATP by promoting the unfolded state of myosin. Based upon electron microscopy data, it was suggested that caldesmon also possessed a KRP-like activity (Katayama et al., 1995, J Biol Chem 270: 3919-3925). However, the nature of its activity remains obscure since caldesmon does not affect the equilibrium between the folded and unfolded state of myosin. Therefore, to gain some insight into this problem we compared the effects of KRP and caldesmon, separately, and together on myosin filaments using turbidity measurements, protein sedimentation and electron microscopy. Turbidity assays demonstrated that KRP reduced myosin filament aggregation, while caldesmon had no effect. Additionally, neither caldesmon nor its N-terminal myosin binding domain (N152) induced myosin polymerization at subthreshold Mg2+ concentrations in the presence of ATP, whereas the filament promoting action of KRP was enhanced by Mg2+. Moreover, the amino-terminal myosin binding fragment of caldesmon, like the whole protein, antagonizes Mg(2+)-induced myosin filament formation. In electron microscopy experiments, caldesmon shortened myosin filaments in the presence of Mg2+ and KRP, but N152 failed to change their appearance from control. Therefore, the primary distinction between caldesmon and KRP appears to be that caldesmon interacts with myosin to limit filament extension, while KRP induces filament propagation into defined polymers. Transfection of tagged-KRP into fibroblasts and overlay of fibroblast cytoskeletons with Cy3KRP demonstrated that KRP colocalizes with myosin structures in vivo. We propose a new model that through their independent binding to myosin and differential effects on myosin dynamics, caldesmon and KRP can, in concert, control the length and polymerization state of myosin filaments.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Calcium-Binding Proteins/drug effects
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Calmodulin-Binding Proteins/drug effects
- Calmodulin-Binding Proteins/metabolism
- Cells, Cultured
- Chick Embryo
- Chickens
- Kinesins
- Magnesium/metabolism
- Magnesium/pharmacology
- Microscopy, Electron
- Models, Biological
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Proteins/drug effects
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth/ultrastructure
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/ultrastructure
- Myosins/drug effects
- Myosins/metabolism
- Myosins/ultrastructure
- Polymers/metabolism
- Protein Binding/drug effects
- Protein Binding/genetics
- Protein Structure, Tertiary/physiology
- Transfection
Collapse
Affiliation(s)
- Dmitry S Kudryashov
- Laboratory of Cell Motility, Cardiology Research Center, 3rd Cherepkovskaya Street 15A, Moscow 121552, Russia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The action of smooth muscle in the intestinal wall produces tonic contractions that maintain organ dimension against an imposed load such as a bolus of food, as well as forceful contractions that produce muscle shortening to propel the bolus along the gastrointestinal tract. These functions are regulated by intrinsic electrical and mechanical properties of smooth muscle. The complex signaling process that underlies these functions is discussed in this article. We propose a model that describes the facilitation of sustained contraction of smooth muscle cells in the gut.
Collapse
Affiliation(s)
- Khalil N Bitar
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Danninger C, Gimona M. Live dynamics of GFP-calponin: isoform-specific modulation of the actin cytoskeleton and autoregulation by C-terminal sequences. J Cell Sci 2000; 113 Pt 21:3725-36. [PMID: 11034901 DOI: 10.1242/jcs.113.21.3725] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The calponin family of F-actin-, tropomyosin- and calmodulin-binding proteins currently comprises three genetic variants. Their functional roles implicated from in vitro studies include the regulation of actomyosin interactions in smooth muscle cells (h1 calponin), cytoskeletal organisation in non-muscle cells (h2 calponin) and the control of neurite outgrowth (acidic calponin). We have now investigated the effects of calponin (CaP) isoforms and their C-terminal deletion mutants on the actin cytoskeleton by time lapse video microscopy of GFP fusion proteins in living smooth muscle cells and fibroblasts. It is shown that h1 CaP associates with the actin stress fibers in the more central part of the cell, whereas h2 CaP localizes to the ends of stress fibres and in the motile lamellipodial protrusions of spreading cells. Cells expressing h2 CaP spread more efficiently than those expressing h1 CaP and expression of GFP h1 CaP resulted in reduced cell motility in wound healing experiments. Notably, expression of GFP h1 CaP, but not GFP h2 CaP, conferred increased resistance of the actin cytoskeleton to the actin polymerization antagonists cytochalasin B and latrunculin B, as well as to the protein kinase inhibitors H7-dihydrochloride and rho-kinase inhibitor Y-27632. These data point towards a dual role of CaP in the stabilization and regulation of the actin cytoskeleton in vivo. Deletion studies further identify an autoregulatory role for the unique C-terminal tail sequences in the respective CaP isoforms.
Collapse
Affiliation(s)
- C Danninger
- Institute of Molecular Biology, Department of Cell Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria
| | | |
Collapse
|
14
|
Foschini MP, Scarpellini F, Gown AM, Eusebi V. Differential Expression of Myoepithelial Markers in Salivary, Sweat and Mammary Glands. Int J Surg Pathol 2000; 8:29-37. [PMID: 11493962 DOI: 10.1177/106689690000800108] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myoepithelial cells (MECs) are contractile elements showing a combined epithelial and smooth muscle phenotype. Among the numerous immunohistochemical markers employed to detect MECs, smooth muscle actin (SMA) is the most widely used. Recently, other markers of smooth muscle differentiation have been demonstrated in MECs, such as calponin, heavy caldesmon (h-caldesmon), and smooth muscle myosin heavy chain (SMM-HC). In the present study normal salivary, mammary, and sweat glands have been studied with four markers of smooth muscle differentiation (SMA, calponin, h-caldesmon, and SMM-HC). The four markers were differentially expressed in the various types of glands. In parotid glands MECs mainly expressed calponin and caldesmon; in submandibular and in cutaneous apocrine and eccrine glands, MECs strongly expressed SMA, calponin, and caldesmon; in minor salivary glands all four markers were equally strongly expressed; and in mammary glands SMA, calponin, and SMM-HC were present both in periductal and periacinar MECs while caldesmon was present in periductal MECs only. In addition to MECs, SMA stained stromal myofibroblasts, sometimes hampering the identification of MECs. Among the other markers, calponin stained only rare stromal myofibroblasts, while caldesmon and SMM-HC were confined to MECs. In conclusion, these latter markers are very useful for identifying MECs. It is suggested that the differential expression of smooth muscle contractile proteins might reflect different functions of MECs in the various sites. Int J Surg Pathol 8(1):29-37, 2000
Collapse
Affiliation(s)
- Maria P. Foschini
- Department of Oncology, Section of Anatomic Pathology "M. Malpighi," University of Bologna, Bellaria Hospital, Bologna, Italy
| | | | | | | |
Collapse
|
15
|
Gunst SJ. Applicability of the sliding filament/crossbridge paradigm to smooth muscle. Rev Physiol Biochem Pharmacol 1999; 134:7-61. [PMID: 10087907 DOI: 10.1007/3-540-64753-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- S J Gunst
- Indiana University School of Medicine, USA
| |
Collapse
|
16
|
Winder SJ, Allen BG, Clément-Chomienne O, Walsh MP. Regulation of smooth muscle actin-myosin interaction and force by calponin. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:415-26. [PMID: 9887965 DOI: 10.1111/j.1365-201x.1998.tb10697.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Smooth muscle contraction is regulated primarily by the reversible phosphorylation of myosin triggered by an increase in sarcoplasmic free Ca2+ concentration ([Ca2+]i). Contraction can, however, be modulated by other signal transduction pathways, one of which involves the thin filament-associated protein calponin. The h1 (basic) isoform of calponin binds to actin with high affinity and is expressed specifically in smooth muscle at a molar ratio to actin of 1:7. Calponin inhibits (i) the actin-activated MgATPase activity of smooth muscle myosin (the cross-bridge cycling rate) via its interaction with actin, (ii) the movement of actin filaments over immobilized myosin in the in vitro motility assay, and (iii) force development or shortening velocity in permeabilized smooth muscle strips and single cells. These inhibitory effects of calponin can be alleviated by protein kinase C (PKC)-catalysed phosphorylation and restored following dephosphorylation by a type 2A phosphatase. Three physiological roles of calponin can be considered based on its in vitro functional properties: (i) maintenance of relaxation at resting [Ca2+]i, (ii) energy conservation during prolonged contractions, and (iii) Ca(2+)-independent contraction mediated by phosphorylation of calponin by PKC epsilon, a Ca(2+)-independent isoenzyme of PKC.
Collapse
Affiliation(s)
- S J Winder
- Smooth Muscle Research Group, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
17
|
Birukov KG, Bardy N, Lehoux S, Merval R, Shirinsky VP, Tedgui A. Intraluminal pressure is essential for the maintenance of smooth muscle caldesmon and filamin content in aortic organ culture. Arterioscler Thromb Vasc Biol 1998; 18:922-7. [PMID: 9633932 DOI: 10.1161/01.atv.18.6.922] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different forms of mechanical stimulation are among the physiological factors constantly acting on the vessel wall. We previously demonstrated that subjecting vascular smooth muscle cells (VSMCs) in culture to cyclic stretch increased the expression of high-molecular-weight caldesmon, a marker protein of a differentiated, contractile, VSMC phenotype. In the present work the effects of mechanical factors, in the form of circumferential stress and shear stress, on the characteristics of SM contractile phenotype were studied in an organ culture of rabbit aorta. Application of an intralumininal pressure of 80 mm Hg to aortic segments cultured in Dulbecco's modified Eagle's medium containing 20% fetal calf serum for 3 days prevented the decrease in high-molecular-weight caldesmon content (70+/-4% of initial level in nonpressurized vessel, 116+/-17% at 80 mm Hg) and filamin content (80+/-5% in nonpressurized vessel, 100+/-2% at 80 mm Hg). SM myosin and low-molecular-weight caldesmon contents showed no dependence on vessel pressurization. Neither endothelial denudation nor alteration of intraluminal flow rates affected marker protein content in 3-day vessel culture, thus excluding the possibility of any shear or endothelial effects. Maintenance of high high-molecular-weight caldesmon and filamin levels in the organ cultures of pressurized and stretched vessels demonstrates the positive role of mechanical factors in the control of the VSMC differentiated phenotype.
Collapse
Affiliation(s)
- K G Birukov
- Laboratory of Molecular Endocrinology, Cardiology Research Center of the Russian Academy of Medical Sciences, Moscow
| | | | | | | | | | | |
Collapse
|
18
|
Obata H, Hayashi K, Nishida W, Momiyama T, Uchida A, Ochi T, Sobue K. Smooth muscle cell phenotype-dependent transcriptional regulation of the alpha1 integrin gene. J Biol Chem 1997; 272:26643-51. [PMID: 9334246 DOI: 10.1074/jbc.272.42.26643] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The expressional regulation of chicken alpha1 integrin in smooth muscle cells was studied. The alpha1 integrin mRNA was expressed developmentally and was distributed dominantly in vascular and visceral smooth muscles in chick embryos. In a primary culture of smooth muscle cells, alpha1 integrin expression was dramatically down-regulated during serum-induced dedifferentiation. Promoter analyses revealed that the 5'-upstream region (-516 to +281) was sufficient for transcriptional activation in differentiated smooth muscle cells but not in dedifferentiated smooth muscle cells or chick embryo fibroblasts. Like other alpha integrin promoters, the promoter region of the alpha1 integrin gene lacks TATA and CCAAT boxes and contains binding sites for AP1 and AP2. The essential difference from other alpha integrin promoters is the presence of a CArG box-like motif. Deletion and site-directed mutation analyses revealed that the CArG box-like motif was an essential cis-element for transcriptional activation in differentiated smooth muscle cells, whereas the binding sites for AP1 and AP2 were not. Using specific antibodies, a nuclear protein factor specifically bound to the CArG box-like motif was identified as serum response factor. These results indicate that alpha1 integrin expression in smooth muscle cells is regulated transcriptionally in a phenotype-dependent manner and that serum response factor binding plays a crucial role in this regulation.
Collapse
Affiliation(s)
- H Obata
- Department of Neurochemistry and Neuropharmacology, Biomedical Research Center, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Ohmi K, Masuda T, Yamaguchi H, Sakurai T, Kudo Y, Katsuki M, Nonomura Y. A novel aortic smooth muscle cell line obtained from p53 knock out mice expresses several differentiation characteristics. Biochem Biophys Res Commun 1997; 238:154-8. [PMID: 9299470 DOI: 10.1006/bbrc.1997.7218] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Here we report that we could obtain a highly differentiated smooth muscle cell line by screening the expression of a-smooth muscle actin from p53 knook out mice aorta. This cell revealed extended bipolar shape and expressed h-caldesmon and calponin as well as a-smooth muscle actin as protein markers of differentiated smooth muscle. Further intracellular calcium increase was induced by application of noradrenaline in a dose dependent manner and calcium oscillation was also observed in a higher dose (100 microM). Appropriate application of 5-azacytidine enhanced these tendencies and induced slow contraction by endothelin-1 and phenylephrine.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Line
- Cell Separation
- Clone Cells
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Muscle Contraction/genetics
- Muscle Proteins/biosynthesis
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Norepinephrine/pharmacology
- Receptors, Adrenergic, alpha/biosynthesis
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- K Ohmi
- Department of 1st Pharmacology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Jiang Z, Grange RW, Walsh MP, Kamm KE. Adenovirus-mediated transfer of the smooth muscle cell calponin gene inhibits proliferation of smooth muscle cells and fibroblasts. FEBS Lett 1997; 413:441-5. [PMID: 9303552 DOI: 10.1016/s0014-5793(97)00944-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Smooth muscle cell calponin (h1 or basic isoform) is an actin-binding protein that inhibits actomyosin MgATPase activity and is abundantly expressed in differentiated smooth muscle. Western blots showed bovine tracheal (BT) smooth muscle cells in culture expressed only 2 +/- 1% (n = 8) of the amount of calponin in tissues, while NIH-3T3 fibroblasts expressed none. We tested the hypothesis that introduction of calponin to cultured BT and 3T3 cells would inhibit cytoskeletal activities associated with cell proliferation. To achieve high-efficiency expression, an adenovirus encoding the CMV-calponin construct (Adv-CaP) was generated by homologous recombination in 293 cells. With greater than 90% of BT and 3T3 cells infected with Adv-CaP, calponin expression (32 and 11 microg/mg total protein, respectively) was similar to that in smooth muscle tissues (51 microg/mg). Cells were infected with Adv-CaP for 48 h, replated at low density and proliferation rates were assessed by cell density and [3H]thymidine incorporation. Cell growth and DNA synthesis by Adv-CaP-infected cells were inhibited to one-third control values for both BT and 3T3 cells. Expressed calponin was localized primarily on stress fibers in both cell types. Calponin may act at the cytoskeletal level to retard signaling pathways that normally lead to tight coupling between cell shape and DNA synthesis.
Collapse
Affiliation(s)
- Z Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
21
|
Antibodies to Novel Myoepithelium-Associated Proteins Distinguish Benign Lesions and Carcinoma in Situ From Invasive Carcinoma of the Breast. ACTA ACUST UNITED AC 1997. [DOI: 10.1097/00022744-199709000-00002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Ferhat L, Charton G, Represa A, Ben-Ari Y, der Terrossian E, Khrestchatisky M. Acidic calponin cloned from neural cells is differentially expressed during rat brain development. Eur J Neurosci 1996; 8:1501-9. [PMID: 8758957 DOI: 10.1111/j.1460-9568.1996.tb01612.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Calponin is an actin-, tropomyosin- and Ca2+ calmodulin-binding protein that inhibits in vitro the actomyosin MgATPase. Basic and acidic variants of calponin have been described to date. Although the cerebral expression of calponin remained controversial for some time, transcripts encoding acidic calponin in the adult rat brain and in cultured cerebellar cells have been reported. In the present work, we report the expression of acidic calponin mRNAs and the isolation of cDNAs encoding the full-length acidic calponin in cultured neuronal and glial cells and in adult rat brain. Sequence analysis reveals that acidic calponin in the brain is identical to that previously described in rat aortic vascular smooth muscle. In situ hybridization shows that calponin is highly expressed during ontogenesis in granule cells of the dentate gyrus of the hippocampus, in all layers of the olfactory bulb and in cerebellar granule neurons of the external and internal layers. In the adult rat brain, calponin expression decreased in these fields, but increased in choroid plexus cells. Bergmann glial cells were also labelled by a calponin probe. The reverse transcription-coupled polymerase chain reaction confirms that calponin mRNA levels are highest in the early stages of hippocampal development and that expression levels are low in adult hippocampi. The developmental expression pattern of brain acidic calponin suggests that calponin could be involved in contractile activity associated with neural cell proliferation or neuronal migration.
Collapse
Affiliation(s)
- L Ferhat
- Université René Descartes, Paris V, INSERM U29, 123 Bld de Port Royal,75014 Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Miano JM, Olson EN. Expression of the smooth muscle cell calponin gene marks the early cardiac and smooth muscle cell lineages during mouse embryogenesis. J Biol Chem 1996; 271:7095-103. [PMID: 8636144 DOI: 10.1074/jbc.271.12.7095] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although several genes are considered markers for vascular smooth muscle cell (SMC) differentiation, few have been rigorously tested for SMC specificity in mammals, particularly during development where considerable overlap exists between different muscle gene programs. Here we describe the temporospatial expression pattern of the SMC calponin gene (formerly h1 or basic calponin) during mouse embryogenesis and in adult mouse tissues and cell lines. Whereas SMC calponin mRNA expression is restricted exclusively to SMCs in adult tissues, during early embryogenesis, SMC calponin transcripts are expressed throughout the developing cardiac tube as well as in differentiating SMCs. Transcription of the SMC calponin gene initiates at two closely juxtaposed sites in the absence of a consensus TATAA or initiator element. Transient transfection assays in cultured SMC demonstrated that high level SMC calponin promoter activity required no more than 549 nucleotides of 5 sequence. In contrast to the strict cell type-specificity of SMC calponin mRNA expression, the SMC calponin promoter showed activity in several cell lines that do not express the endogenous SMC calponin gene. These results demonstrate that SMC calponin responds to cardiac and smooth muscle gene regulatory programs and suggest that the cardiac and smooth muscle cell lineages may share a common gene regulatory program early in embryogenesis, which diverges as the heart matures. The finding that the isolated SMC calponin promoter is active in a wider range of cells than the endogenous SMC calponin gene also suggests that long-range repression or higher order regulatory mechanism(s) are involved in cell-specific regulation of SMC calponin expression.
Collapse
Affiliation(s)
- J M Miano
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
24
|
Samaha FF, Ip HS, Morrisey EE, Seltzer J, Tang Z, Solway J, Parmacek MS. Developmental pattern of expression and genomic organization of the calponin-h1 gene. A contractile smooth muscle cell marker. J Biol Chem 1996; 271:395-403. [PMID: 8550594 DOI: 10.1074/jbc.271.1.395] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Calponin-h1 is a 34-kDa myofibrillar thin filament, actin-binding protein that is expressed exclusively in smooth muscle cells (SMCs) in adult animals. To examine the molecular mechanisms that regulate SMC-specific gene expression, we have examined the temporal, spatial, and cell cycle-regulated patterns of expression of calponin-h1 gene expression and isolated and structurally characterized the murine calponin-h1 gene. Calponin-h1 mRNA is expressed exclusively in SMC-containing tissues in adult animals. During murine embryonic development, calponin-h1 gene expression is (i) detectable in E9.5 embryos in the dorsal aorta, cardiac outflow tract, and tubular heart, (ii) sequentially up-regulated in SMC-containing tissues, and (iii) down-regulated to non-detectable levels in the heart during late fetal development. In addition, the gene is expressed in resting rat aortic SMCs, but its expression is rapidly down-regulated when growth-arrested cells reenter phase G1 of the cell cycle and proliferate. Calponin-h1 is encoded by a 10.7-kilobase single copy gene composed of seven exons, which is part of a multigene family. Transient transfection analyses demonstrated that 1.5 kilobases of calponin-h1 5'-flanking sequence is sufficient to program high level transcription of a luciferase reporter gene in cultured primary rat aortic SMCs and the smooth muscle cell line, A7r5. Taken together, these data suggest that the calponin-h1 gene will serve as an excellent model system with which to examine the molecular mechanisms that regulate SMC lineage specification, differentiation, and phenotypic modulation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Biological Evolution
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Line
- Cloning, Molecular
- DNA, Complementary
- Gene Expression Regulation, Developmental
- Humans
- Mice
- Microfilament Proteins
- Molecular Sequence Data
- Multigene Family
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Phenotype
- Promoter Regions, Genetic
- Rats
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Calponins
Collapse
Affiliation(s)
- F F Samaha
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- S J Winder
- MRC Group in Signal Transduction, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
26
|
Birukov KG, Shirinsky VP, Stepanova OV, Tkachuk VA, Hahn AW, Resink TJ, Smirnov VN. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol Cell Biochem 1995; 144:131-9. [PMID: 7623784 DOI: 10.1007/bf00944392] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The exertion of periodic dynamic strain on the arterial wall is hypothesized to be relevant to smooth muscle cell morphology and function. This study has investigated the effect of cyclic mechanical stretching on rabbit aortic smooth muscle cell proliferation and expression of contractile phenotype protein markers. Cells were cultured on flexible-bottomed dishes and cyclic stretch was applied (frequency 30 cycles/min, 15% elongation) using a Flexercell Strain unit. Cyclic stretch potentiated smooth muscle cell proliferation in serum-activated cultures but not in cultures maintained in 0.5% fetal calf serum. Stretching induced a serum-independent increase of h-caldesmon expression and this effect was reversible following termination of mechanical stimulation. Strain was without effect on smooth muscle myosin or calponin expression. In cells grown on laminin stretch-induced h-caldesmon expression was more prominent than in cells cultured on collagen types I and IV, poly-L-lysine and gelatin. These data suggest that cyclic mechanical stimulation possesses dual effect on vascular smooth muscle cell phenotype characteristics since it: 1) potentiates proliferation, an attribute of a dedifferentiated phenotype; and 2) increases expression of h-caldesmon considered a marker of a differentiated smooth muscle cell state.
Collapse
Affiliation(s)
- K G Birukov
- Laboratory of Molecular Endocrinology, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | | | | | |
Collapse
|
27
|
Torihashi S, Gerthoffer WT, Kobayashi S, Sanders KM. Identification and classification of interstitial cells in the canine proximal colon by ultrastructure and immunocytochemistry. HISTOCHEMISTRY 1994; 101:169-83. [PMID: 8056618 DOI: 10.1007/bf00269542] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ultrastructure and immunocytochemistry of interstitial cells (ICs) in the canine proximal colon were investigated. Three types of ICs were found within the tunica muscularis. (1) ICs were located along the submucosal surface of the circular muscle (IC-SM). These cells shared many features of smooth muscle cells, including myosin thick filaments and immunoreactivity to smooth muscle gamma actin, myosin light chain, and calponin antibodies. IC-SM were clearly different from smooth muscle cells in that contractile filaments were less abundant and intermediate filaments consisted of vimentin instead of desmin. (2) ICs in the region of the myenteric plexus (IC-MY) were similar to IC-SM, but these cells had no thick filaments or immunoreactivity to smooth muscle gamma actin or calponin antibodies. (3) The fine structures and immunoreactivity of ICs within the muscle layers (IC-BU) were similar to IC-MY, but IC-BU lacked a definite basal lamina and membrane caveolae. IC-BU and IC-MY were both immunopositive for vimentin. Since all ICs were immunopositive for vimentin, vimentin antibodies may be a useful tool for distinguishing between ICs and smooth muscle cells. Each class of ICs was closely associated with nerve fibers, made specialized contacts with smooth muscle cells, and formed multicellular networks. A combination of ultrastructural and immunocytochemical techniques helps the identification and classification of ICs by revealing the fine structures and determining the "chemical coding" of each class of ICs.
Collapse
Affiliation(s)
- S Torihashi
- Department of Physiology, University of Nevada School of Medicine, Reno 89557
| | | | | | | |
Collapse
|
28
|
Walsh MP, Carmichael JD, Kargacin GJ. Characterization and confocal imaging of calponin in gastrointestinal smooth muscle. Am J Physiol Cell Physiol 1993; 265:C1371-8. [PMID: 8238486 DOI: 10.1152/ajpcell.1993.265.5.c1371] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Calponin isolated from chicken gizzard smooth muscle binds in vitro to actin in a Ca(2+)-independent manner and thereby inhibits the actin-activated Mg(2+)-adenosinetriphosphatase of smooth muscle myosin. This inhibition is relieved when calponin is phosphorylated by protein kinase C or Ca2+/calmodulin-dependent protein kinase II, suggesting that calponin is involved in thin filament-associated regulation of smooth muscle contraction. To further examine this possibility, calponin was isolated from toad stomach smooth muscle, characterized biochemically, and localized in intact isolated cells. Toad stomach calponin had the same basic biochemical properties as calponin from other sources. Confocal immunofluorescence microscopy revealed that calponin in intact smooth muscle cells was localized to long filamentous structures that were colabeled by antibodies to actin or tropomyosin. Preservation of the basic biochemical properties of calponin from species to species suggests that these properties are relevant for its in vivo function. Its colocalization with actin and tropomyosin indicates that calponin is associated with the thin filament in intact smooth muscle cells.
Collapse
Affiliation(s)
- M P Walsh
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
29
|
Abstract
Calponin is a basic, approximately 34,000 M(r), smooth muscle-specific protein which is developmentally expressed in up to four isoforms. Calponin binds very strongly to actin in a Ca(2+)-independent manner and is localized to the thin filaments in smooth muscle, where it is present at a stoichiometry of 1 mol calponin/7 mol actin. The interaction of calponin with actin inhibits the actomyosin MgATPase (cross-bridge cycling rate) without affecting myosin phosphorylation. The calponin-actin interaction is blocked and calponin-mediated inhibition of the actomyosin MgATPase is reversed upon phosphorylation of calponin by either PKC or CaM kinase II; these properties are restored upon dephosphorylation of calponin by a type 2A protein phosphatase. Consistent with these in vitro findings, calponin is phosphorylated in intact smooth muscle in response to contractile stimuli. The increasing body of evidence, both in vitro and in vivo, strongly supports calponin phosphorylation-dephosphorylation as a thin filament-linked regulatory system in smooth muscle.
Collapse
Affiliation(s)
- S J Winder
- MRC Group in Signal Transduction, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
30
|
Nishida W, Kitami Y, Hiwada K. cDNA cloning and mRNA expression of calponin and SM22 in rat aorta smooth muscle cells. Gene 1993; 130:297-302. [PMID: 8359698 DOI: 10.1016/0378-1119(93)90435-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We cloned and sequenced cDNAs encoding calponin (Calp) and SM22 (smooth muscle-specific 22-kDa protein) from rat aorta (RaA) smooth muscle (Smu) cells. The 1504-bp calp cDNA contains a single open reading frame (ORF) which encodes 297 amino acids (aa) (M(r) 33,342). The 1186-bp SM22 cDNA contains a single ORF which encodes 201 aa (M(r) 22,601). There were 43% identical aa in a 181-aa overlap between RaA Calp and SM22. Especially for the C-terminal region of SM22 and for the first repeat motif of Calp, 70% identity was observed. Northern blot analysis revealed that the calp and SM22 mRNAs were expressed in RaA Smu, but not in rat cardiac and skeletal muscles. SM22 mRNA was much more abundant than calp mRNA in RaA (3- to 4-fold). The expression levels of the calp and SM22 mRNAs in RaA showed a significant increase for 5 to 15 week old rats (1.5- to 3-fold) with vascular development and blood pressure elevation. No significant differences were observed in the expression of the RaA calp and SM22 mRNAs between normotensive (Wistar Kyoto) and spontaneously hypertensive rats (SHR).
Collapse
MESH Headings
- Aging/metabolism
- Amino Acid Sequence
- Animals
- Aorta
- Base Sequence
- Calcium-Binding Proteins/genetics
- Cells, Cultured
- Cloning, Molecular
- DNA
- Male
- Microfilament Proteins
- Molecular Sequence Data
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Sequence Homology, Amino Acid
- Calponins
Collapse
Affiliation(s)
- W Nishida
- Second Department of Internal Medicine, Ehime University School of Medicine, Japan
| | | | | |
Collapse
|
31
|
Marty MS, Loch-Caruso R. Nickel-induced increases in gap junctional communication in the uterine cell line SK-UT-1. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1993; 29A:215-20. [PMID: 8463186 DOI: 10.1007/bf02634186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previous studies have suggested that gap junctions may have a role in various uterine functions, including parturition. Because nickel has been demonstrated to increase uterine contractility in vitro, the effect of nickel (II) chloride on gap junctional communication was assessed in a tumorigenic uterine cell line, SK-UT-1 (ATCC HTB 114). Cells were exposed in vitro to 25 and 50 microM NiCl2 for 24 h or 100 microM NiCl2 for 3, 12, and 24 h, then functional gap junctional communication was measured as the transfer of Lucifer yellow dye from microinjected donor cells to their primary neighbor cells. Dye transfer was significantly increased only in cell cultures exposed to 100 microM NiCl2 for 24 h, compared to untreated controls, lower doses, and shorter exposure periods. This response was inhibited by the simultaneous co-treatment of SK-UT-1 cells with magnesium by adding 100 microM MgSO4 to the dosing medium. Possible mechanisms and implications for these findings are discussed.
Collapse
Affiliation(s)
- M S Marty
- Department of Environmental and Industrial Health, School of Public Health II, University of Michigan, Ann Arbor 48109
| | | |
Collapse
|
32
|
Winder SJ, Sutherland C, Walsh MP. A comparison of the effects of calponin on smooth and skeletal muscle actomyosin systems in the presence and absence of caldesmon. Biochem J 1992; 288 ( Pt 3):733-9. [PMID: 1471986 PMCID: PMC1131947 DOI: 10.1042/bj2880733] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thiosphosphorylated smooth muscle myosin and skeletal muscle myosin, both of which express Ca(2+)-independent actin-activated MgATPase activity, were used to examine the functional effects of calponin and caldesmon separately and together. Separately, calponin and caldesmon inhibited the actin-activated MgATPase activities of thiophosphorylated smooth muscle myosin and skeletal muscle myosin, calponin being significantly more potent in both systems. Calponin-mediated inhibition resulted from the interaction of calponin with actin since it could be reversed by increasing the actin concentration. Caldesmon had no significant influence on the calponin-induced inhibition of the smooth muscle actomyosin ATPase, nor did calponin have a significant effect on caldesmon-induced inhibition. In the skeletal muscle system, however, caldesmon was found to override the inhibitory effect of calponin. This difference probably reflects the lower affinity of skeletal muscle actin for calponin compared with that of smooth muscle actin. Calponin inhibition of skeletal muscle actin-activated myosin MgATPase was not significantly affected by troponin/tropomyosin, suggesting that the thin filament can readily accommodate calponin in addition to the troponin complex, or that calponin may be able to displace troponin. Calponin also inhibited acto-phosphorylated smooth muscle heavy meromyosin and acto-skeletal muscle heavy meromyosin MgATPases. The most appropriate protein preparations for analysis of the regulatory effects of calponin in the actomyosin system therefore would be smooth muscle actin, tropomyosin and thiophosphorylated myosin, and for analysis of the kinetic effects of calponin on the actomyosin ATPase cycle they would be smooth muscle actin, tropomyosin and phosphorylated heavy meromyosin, due to the latter's solubility.
Collapse
Affiliation(s)
- S J Winder
- MRC Group in Signal Transduction, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|