1
|
Novaes RD, Mouro VGS, Gonçalves RV, Mendonça AAS, Santos EC, Fialho MCQ, Machado-Neves M. Aluminum: A potentially toxic metal with dose-dependent effects on cardiac bioaccumulation, mineral distribution, DNA oxidation and microstructural remodeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:814-826. [PMID: 30032078 DOI: 10.1016/j.envpol.2018.07.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Large amounts of aluminum (Al) are found in wastewater from industrial bauxite mining, which is often responsible for the contamination of drinking water sources in urban and rural communities. Although this metal exhibits broad environmental distribution, its cardiac repercussions are poorly understood, making it difficult to establish diagnostic criteria in cases of Al intoxication. In the absence of clinical data, we used a preclinical model to investigate the impact of Al exposure on heart bioaccumulation, molecular oxidation, micromineral distribution, structural and ultrastructural remodeling of the cardiac tissue. Male Wistar rats were equally randomized into five groups: G1 = distilled water; and G2 to G5 = 0.02, 0.1, 50, and 200 mg/kg aluminum solution, respectively. After 120 days, the hearts were collected and subjected to mineral microanalysis, immunoenzymatic detection of 8-OHdG, as well as bright field, polarizing, scanning and transmission electron microscopy to estimate the extent of the cardiac remodeling and cardiomyocytes ultrastructure. Long-term Al exposure induced dose-dependent bioaccumulation, micromineral imbalance, genomic DNA oxidation, structural and ultrastructural abnormalities of the cardiac tissue, resulting in extensive parenchymal loss, stromal expansion, diffuse inflammatory infiltrate, increased glycoconjugate and collagen deposition, subversion and collapse of the collagen network, reduced myocardial vascularization index, mitochondrial swelling, sarcomere disorganization, myofilament dissociation, and fragmentation in cardiomyocytes. Our findings indicated that the heart was sensitive to Al-mediated toxicity, especially in animals treated with the three highest doses of Al. In response to Al-induced loss of the parenchyma, heart stroma exhibited a reactive and compensatory expansion, which, in combination with the increased distribution of thick myofibrils and degenerated mitochondria in cardiomyocytes, provides morphological evidence that cardiac tissue adaptations are not enough to adjust the relationships between the parenchyma and stroma until a steady state is reached, resulting in continuous pathological remodeling potentially associated with Al-induced proinflammatory and pro-oxidant events.
Collapse
Affiliation(s)
- Rômulo D Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, MG, Brazil.
| | - Viviane G S Mouro
- Department of General Biology, Federal University of Viçosa, MG, Brazil
| | | | - Andrea A S Mendonça
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, MG, Brazil
| | - Eliziária C Santos
- Medicine School, Federal University of Jequitinhonha and Mucuri Valleys, MG, Brazil
| | - Maria C Q Fialho
- Department of Morphology, Federal University of Amazonas, AM, Brazil
| | | |
Collapse
|
2
|
Shantikumar S, Rovira-Llopis S, Spinetti G, Emanueli C. MicroRNAs in Diabetes and Its Vascular Complications. CARDIAC AND VASCULAR BIOLOGY 2017:39-59. [DOI: 10.1007/978-3-319-52945-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
3
|
Tyagi SC, Rodriguez W, Patel AM, Roberts AM, Falcone JC, Passmore JC, Fleming JT, Joshua IG. Hyperhomocysteinemic Diabetic Cardiomyopathy: Oxidative Stress, Remodeling, and Endothelial-Myocyte Uncoupling. J Cardiovasc Pharmacol Ther 2016; 10:1-10. [PMID: 15821833 DOI: 10.1177/107424840501000101] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Accumulation of oxidized-matrix (fibrosis) between the endothelium (the endothelial cells embedded among the myocytes) and cardiomyocytes is a hallmark of diabetes mellitus and causes diastolic impairment. In diabetes mellitus, elevated levels of homocysteine activate matrix metalloproteinase and disconnect the endothelium from myocytes. Extracellular matrix functionally links the endothelium to the cardiomyocyte and is important for their synchronization. However, in diabetes mellitus, a disconnection is caused by activated metalloproteinase, with subsequent accumulation of oxidized matrix between the endothelium and myocyte. This contributes to endothelial-myocyte uncoupling and leads to impaired diastolic relaxation of the heart in diabetes mellitus. Elevated levels of homocysteine in diabetes are attributed to impaired homocysteine metabolism by glucose and insulin and decreased renal clearance. Homocysteine induces oxidative stress and is inversely related to the expression of peroxisome proliferators activated receptor (PPAR). Several lines of evidence suggest that ablation of the matrix metalloproteinase (MMP-9) gene ameliorates the endothelial-myocyte uncoupling in diabetes mellitus. Homocysteine competes for, and decreases the PPARγ activity. In diabetes mellitus, endothelial-myocyte uncoupling is associated with matrix metalloproteinase activation and decreased PPARγ activity. The purpose of this review is to discuss the role of endothelial-myocyte uncoupling in diabetes mellitus and increased levels of homocysteine, causing activation of latent metalloproteinases, decreased levels of thioredoxin and peroxiredoxin, and cardiac tissue inhibitor of metalloproteinase (CIMP) in response to antagonizing PPARγ.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Schilling JM, Roth DM, Patel HH. Caveolins in cardioprotection - translatability and mechanisms. Br J Pharmacol 2015; 172:2114-25. [PMID: 25377989 DOI: 10.1111/bph.13009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022] Open
Abstract
Translation of preclinical treatments for ischaemia-reperfusion injury into clinical therapies has been limited by a number of factors. This review will focus on a single mode of cardiac protection related to a membrane scaffolding protein, caveolin, which regulates protective signalling as well as myocyte ultrastructure in the setting of ischaemic stress. Factors that have limited the clinical translation of protection will be considered specifically in terms of signalling and structural defects. The potential of caveolin to overcome barriers to protection with the ultimate hope of clinical translation will be discussed.
Collapse
Affiliation(s)
- Jan M Schilling
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
5
|
Mühlfeld C. Quantitative morphology of the vascularisation of organs: A stereological approach illustrated using the cardiac circulation. Ann Anat 2014; 196:12-9. [DOI: 10.1016/j.aanat.2012.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/13/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
|
6
|
Konduracka E, Cieslik G, Galicka-Latala D, Rostoff P, Pietrucha A, Latacz P, Gajos G, Malecki MT, Nessler J. Myocardial dysfunction and chronic heart failure in patients with long-lasting type 1 diabetes: a 7-year prospective cohort study. Acta Diabetol 2013; 50:597-606. [PMID: 23358920 PMCID: PMC3778905 DOI: 10.1007/s00592-013-0455-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/20/2013] [Indexed: 12/17/2022]
Abstract
The aim of the study is to evaluate the prevalence and incidence of myocardial dysfunction (MD) and heart failure (HF) in long-lasting (≥10 years) type 1 diabetes without cardiovascular disorders or with hypertension or coronary heart disease (CHD). The study included 1,685 patients with type 1 diabetes (mean baseline age, 51 years; diabetes duration, 36 years). In all patients, echocardiography was performed, NT-proBNP levels were measured, and clinical symptoms were evaluated. A 7-year follow-up was conducted to monitor systolic and diastolic manifestations of MD and HF. At the end of the follow-up period, the prevalence of HF in the entire group was 3.7 %, and the incidence was 0.02 % per year. The prevalence of MD was 14.5 % and the incidence -0.1 % per year. MD and HF were observed only in hypertensive or CHD patients. At baseline, subjects with diastolic HF constituted 85 % of the HF population and those with systolic HF the remaining 15 %. Baseline HF predictors included age, diabetes duration, HbA1c levels, CHD, systolic blood pressure >140 mmHg, and GFR <60 mL/min/1.73 m(2). In patients with type 1 diabetes, MD and HF occurred only when diabetes coexisted with cardiovascular disorders affecting myocardial function. The prevalence and incidence of HF in patients with hypertension and CHD were relatively low. While the cause of this observation remains uncertain, it could probably be explained, at least partially, by the cardioprotective effect of concomitant treatment.
Collapse
Affiliation(s)
- Ewa Konduracka
- Department of Coronary Disease, Jagiellonian University School of Medicine, John Paul II Hospital, Prądnicka 80, 31-202, Krakow, Poland,
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Staniszewska AD, Pensa S, Caffarel MM, Anderson LH, Poli V, Watson CJ. Stat3 is required to maintain the full differentiation potential of mammary stem cells and the proliferative potential of mammary luminal progenitors. PLoS One 2012; 7:e52608. [PMID: 23285109 PMCID: PMC3527594 DOI: 10.1371/journal.pone.0052608] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
Stat3 has a defined role in mammary gland where it is a critical mediator of cell death during post-lactational regression. On the other hand, Stat3 is required for the self-renewal of embryonic stem cells and is sufficient for the induction of a naïve pluripotent state in epiblast stem cells. Mammary stem cells (MaSCs) have a high capacity for self-renewal and can grow robustly in transplantation experiments in vivo. However, a role for Stat3 in MaSCs has not been investigated. Here we show that depletion of Stat3 from basal cells results in reduced primary transplantation efficiency and diminishes the potential to generate ductal, but not alveolar, outgrowths. In addition, Stat3 is required for maximal proliferation of luminal progenitors.
Collapse
Affiliation(s)
| | - Sara Pensa
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Maria M. Caffarel
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lisa H. Anderson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Valeria Poli
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Christine J. Watson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Goyal BR, Mehta AA. Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfuntion. Hum Exp Toxicol 2012; 32:571-90. [PMID: 23174745 DOI: 10.1177/0960327112450885] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several experimental, pathological, epidemiological, and clinical studies have clearly depicted that diabetes mellitus results in cardiac functional and structural changes. Diabetic cardiomyopathy results in both structural and functional alterations in the myocardium. Several mechanisms have been implicated in the pathophysiology of diabetic cardiomyopathy. Of these, metabolic disturbances, myocardial fibrosis, small vessel disease, and cardiac autonomic neuropathy are the major players in the pathophysiology of diabetic cardiomyopathy. This review is intended to discuss various such pathophysiological mechanisms of diabetic cardiomyopathy. We have also described the systolic and diastolic dysfunctioning and its corelation to structural changes in diabetes.
Collapse
Affiliation(s)
- B R Goyal
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | | |
Collapse
|
9
|
Estrada IA, Donthamsetty R, Debski P, Zhou MH, Zhang SL, Yuan JXJ, Han W, Makino A. STIM1 restores coronary endothelial function in type 1 diabetic mice. Circ Res 2012; 111:1166-75. [PMID: 22896585 DOI: 10.1161/circresaha.112.275743] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE The endoplasmic reticulum (ER) is a major intracellular Ca(2+) store in endothelial cells (ECs). The Ca(2+) concentration in the ER greatly contributes to the generation of Ca(2+) signals that regulate endothelial functions. Many proteins, including stromal interaction molecule 1/2 (STIM1/2), Orai1/2/3, and sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 3 (SERCA3), are involved in the ER Ca(2+) refilling after store depletion in ECs. OBJECTIVE This study is designed to examine the role of Ca(2+) in the ER in coronary endothelial dysfunction in diabetes. METHODS AND RESULTS Mouse coronary ECs (MCECs) isolated from diabetic mice exhibited (1) a significant decrease in the Ca(2+) mobilization from the ER when the cells were treated by SERCA inhibitor, and (2) significant downregulation of STIM1 and SERCA3 protein expression in comparison to the controls. Overexpression of STIM1 restored (1) the increase in cytosolic Ca(2+) concentration due to Ca(2+) leak from the ER in diabetic MCECs, (2) the Ca(2+) concentration in the ER, and (3) endothelium-dependent relaxation that was attenuated in diabetic coronary arteries. CONCLUSIONS Impaired ER Ca(2+) refilling in diabetic MCECs, due to the decrease in STIM1 protein expression, attenuates endothelium-dependent relaxation in diabetic coronary arteries, while STIM1 overexpression has a beneficial and therapeutic effect on coronary endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Irene A Estrada
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Maruyama S, Shibata R, Kikuchi R, Izumiya Y, Rokutanda T, Araki S, Kataoka Y, Ohashi K, Daida H, Kihara S, Ogawa H, Murohara T, Ouchi N. Fat-derived factor omentin stimulates endothelial cell function and ischemia-induced revascularization via endothelial nitric oxide synthase-dependent mechanism. J Biol Chem 2011; 287:408-417. [PMID: 22081609 DOI: 10.1074/jbc.m111.261818] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Obesity-related diseases are associated with vascular dysfunction and impaired revascularization. Omentin is a fat-derived secreted protein, which is down-regulated in association with obese complications. Here, we investigated whether omentin modulates endothelial cell function and revascularization processes in vitro and in vivo. Systemic delivery of an adenoviral vector expressing omentin (Ad-omentin) enhanced blood flow recovery and capillary density in ischemic limbs of wild-type mice in vivo, which were accompanied by increased phosphorylation of Akt and endothelial nitric oxide synthase (eNOS). In cultured human umbilical vein endothelial cells (HUVECs), a physiological concentration of recombinant omentin protein increased differentiation into vascular-like structures and decreased apoptotic activity under conditions of serum starvation. Treatment with omentin protein stimulated the phosphorylation of Akt and eNOS in HUVECs. Inhibition of Akt signaling by treatment with dominant-negative Akt or LY294002 blocked the stimulatory effects of omentin on differentiation and survival of HUVECs and reversed omentin-stimulated eNOS phosphorylation. Pretreatment with the NOS inhibitor also reduced the omentin-induced increase in HUVEC differentiation and survival. Omentin protein also stimulated the phosphorylation of AMP-activated protein kinase in HUVECs. Transduction with dominant-negative AMP-activated protein kinase diminished omentin-induced phosphorylation of Akt and omentin-stimulated increase in HUVEC differentiation and survival. Of importance, in contrast to wild-type mice, systemic administration of Ad-omentin did not affect blood flow in ischemic muscle in eNOS-deficient mice in vivo. These data indicate that omentin promotes endothelial cell function and revascularization in response to ischemia through its ability to stimulate an Akt-eNOS signaling pathway.
Collapse
Affiliation(s)
- Sonomi Maruyama
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Cardiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Ryosuke Kikuchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasuhiro Izumiya
- Department of Cardiology, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | - Taku Rokutanda
- Department of Cardiology, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | - Satoshi Araki
- Department of Cardiology, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | - Yoshiyuki Kataoka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Koji Ohashi
- Department of Molecular Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyuki Daida
- Department of Cardiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shinji Kihara
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | - Hisao Ogawa
- Department of Cardiology, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Noriyuki Ouchi
- Department of Molecular Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
11
|
Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol 2011; 13:303-9. [PMID: 21336304 DOI: 10.1038/ncb2171] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/15/2010] [Indexed: 01/05/2023]
Abstract
It is well established that lysosomes play an active role during the execution of cell death. A range of stimuli can lead to lysosomal membrane permeabilization (LMP), thus inducing programmed cell death without involvement of the classical apoptotic programme. However, these lysosomal pathways of cell death have mostly been described in vitro or under pathological conditions. Here we show that the physiological process of post-lactational regression of the mammary gland is accomplished through a non-classical, lysosomal-mediated pathway of cell death. We found that, during involution, lysosomes in the mammary epithelium undergo widespread LMP. Furthermore, although cell death through LMP is independent of executioner caspases 3, 6 and 7, it requires Stat3, which upregulates the expression of lysosomal proteases cathepsin B and L, while downregulating their endogenous inhibitor Spi2A (ref. 8). Our findings report a previously unknown, Stat3-regulated lysosomal-mediated pathway of cell death under physiological circumstances. We anticipate that these findings will be of major importance in the design of treatments for cancers such as breast, colon and liver, where cathepsins and Stat3 are commonly overexpressed and/or hyperactivated respectively.
Collapse
|
12
|
Ceylan-Isık A, Hünkar T, Aşan E, Kaymaz F, Arı N, Söylemezoǧlu T, Renda N, Soncul H, Bali M, Karasu Ç. Cod liver oil supplementation improves cardiovascular and metabolic abnormalities in streptozotocin diabetic rats. J Pharm Pharmacol 2010; 59:1629-41. [DOI: 10.1211/jpp.59.12.0004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Abnormalities in the metabolism of essential fatty acids and the results of increased oxidative stress have been implicated in cardiovascular disorders observed in diabetes mellitus. This study, therefore, aimed to investigate the effects of cod liver oil (CLO, Lysi Ltd, Iceland), which comprises mainly an antioxidant vitamin A, n:3 polyunsaturated fatty acids (n:3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on cardiovascular abnormalities in streptozotocin (STZ)-diabetic rats. Two days after single STZ (55 mg kg−1, i.p.) or vehicle injection, diabetes was verified by increased blood glucose, and non-diabetic and diabetic rats were left untreated or treated with CLO (0.5 mL kg−1 daily, by intragastric probing) for 12 weeks. Plasma glucose, triacylglycerol and cholesterol concentrations were significantly elevated in 12-week untreated-diabetic rats; CLO provided better weight gain, entirely prevented the plasma lipid abnormalities, but partially controlled the glycaemia in diabetic rats. In isolated aorta rings, diabetes resulted in increased phenylephrine-induced vasoconstriction and isoprenaline-induced vasorelaxation, impaired endothelium-dependent vasodilatation and unchanged responsiveness to sodium nitroprusside. CLO treatment completely prevented endothelial deficiency, partly corrected the phenylephrine-induced vasoconstriction and did not affect the responses to isoprenaline and sodium nitroprusside in diabetic aorta. Diabetes also produced a marked decrease in the rate of spontaneously beating right atria and a significant increase in basal contractile force of left ventricular papillary muscle. The responsiveness of right atria to the positive chronotropic effect of isoprenaline was significantly decreased in diabetic rats, and was increased in CLO-treated diabetic rats. The positive chronotropic effect of noradrenaline was markedly increased in diabetic atria, but prevented by CLO treatment. Diabetes also resulted in an increased positive inotropic response of papillary muscle to both noradrenaline and isoprenaline, which were prevented by CLO treatment. CLO treatment also resulted in lower tissue sensitivity (pD2) to these agonists in diabetic papillary muscle. Ventricular hydroxy-proline content was found to be unchanged among the experimental groups. The ultrastructure of diabetic myocardium displayed various degenerations (i.e. intracellular oedema, myofibrillar fragmentation, condensed pleomorphic mitochondria, thick capillary irregular basement membrane, swollen endothelial cells), which were partially prevented by CLO treatment. We conclude that the supplementation with CLO is effective in preventing cardiovascular disorders observed in experimental diabetes.
Collapse
Affiliation(s)
- Aslı Ceylan-Isık
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Tuǧba Hünkar
- Institute of Forensic Medicine, Ankara University, Ankara, Turkey
| | - Esin Aşan
- Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Fugen Kaymaz
- Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nuray Arı
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Nurten Renda
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Halim Soncul
- Department of Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Musa Bali
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Çimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | |
Collapse
|
13
|
Tang Y, Nyengaard JR, Andersen JB, Baandrup U, Gundersen HJG. The application of stereological methods for estimating structural parameters in the human heart. Anat Rec (Hoboken) 2009; 292:1630-47. [PMID: 19714657 DOI: 10.1002/ar.20952] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study describes and exemplifies generally applicable design-based stereological methods for obtaining quantitative estimates of the numbers and sizes of capillaries, cardiomyocytes, and cardiomyocyte nuclei in immersion-fixed human left ventricles (N = 6). The design-based stereological methods are valid in all cardiac investigations onto quantifying changes in structure and function as seen under various conditions such as during development, aging, hypertrophy, and following ischemia/reperfusion. The applied principles of unbiased stereology were as follows: 1) uniform random sampling was taken at all levels, also in respect to orientations, for estimates of length and mean sizes. 2) All global structural quantities were estimated as total quantity = density x volume of the left ventricle. As an example, the left ventricle contains 1.5 x 10(9) capillaries with a total length of just below 200 km. 3) Stereological methods were used for estimating the volume density, surface area density, and length density of capillaries and cardiomyocytes. The numerical density of cardiomyocyte nuclei and capillaries was estimated, using the optical and physical disector, respectively. 4) In all local quantities, "size" was estimated either directly, using unbiased estimators to obtain the average individual size and size distribution parameters, or indirectly, using the relationship that: average size = total quantity/total number. In the six hearts constituting this study, we observed the anticipated correlation between left ventricular volume and global estimates such as total number of capillaries. There were no correlation between local quantities and total left ventricular volume (e.g., average star volume of individual cardiomyocytes).
Collapse
Affiliation(s)
- Yong Tang
- Stereology and Electron Microscopy Research Laboratory, University of Aarhus, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
14
|
Insulin induced translocation of Na+/K+ -ATPase is decreased in the heart of streptozotocin diabetic rats. Acta Pharmacol Sin 2009; 30:1616-24. [PMID: 19915586 DOI: 10.1038/aps.2009.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIM To investigate the effect of acute insulin administration on the subcellular localization of Na(+)/K(+)-ATPase isoforms in cardiac muscle of healthy and streptozotocin-induced diabetic rats. METHODS Membrane fractions were isolated with subcellular fractionation and with cell surface biotinylation technique. Na(+)/K(+)-ATPase subunit isoforms were analysed with ouabain binding assay and Western blotting. Enzyme activity was measured using 3-O-methylfluorescein-phosphatase activity. RESULTS In control rat heart muscle alpha1 isoform of Na(+)/K(+) ATPase resides mainly in the plasma membrane fraction, while alpha2 isoform in the intracellular membrane pool. Diabetes decreased the abundance of alpha1 isoform (25 %, P<0.05) in plasma membrane and alpha2 isoform (50%, P<0.01) in the intracellular membrane fraction. When plasma membrane fractions were isolated by discontinuous sucrose gradients, insulin-stimulated translocation of alpha2- but not alpha1-subunits was detected. Alpha1-subunit translocation was only detectable by cell surface biotinylation technique. After insulin administration protein level of alpha2 increased by 3.3-fold, alpha1 by 1.37-fold and beta1 by 1.51-fold (P<0.02) in the plasma membrane of control, and less than 1.92-fold (P<0.02), 1.19-fold (not significant) and 1.34-fold (P<0.02) in diabetes. The insulin-induced translocation was wortmannin sensitive. CONCLUSION This study demonstrates that insulin influences the plasma membrane localization of Na(+)/K(+)-ATPase isoforms in the heart. alpha2 isoform translocation is the most vulnerable to the reduced insulin response in diabetes. alpha1 isoform also translocates in response to insulin treatment in healthy rat. Insulin mediates Na(+)/K(+)-ATPase alpha1- and alpha2-subunit translocation to the cardiac muscle plasma membrane via a PI3-kinase-dependent mechanism.
Collapse
|
15
|
Mühlfeld C, Nyengaard JR, Mayhew TM. A review of state-of-the-art stereology for better quantitative 3D morphology in cardiac research. Cardiovasc Pathol 2009; 19:65-82. [PMID: 19144544 DOI: 10.1016/j.carpath.2008.10.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022] Open
Abstract
The aim of stereological methods in biomedical research is to obtain quantitative information about three-dimensional (3D) features of tissues, cells, or organelles from two-dimensional physical or optical sections. With immunogold labeling, stereology can even be used for the quantitative analysis of the distribution of molecules within tissues and cells. Nowadays, a large number of design-based stereological methods offer an efficient quantitative approach to intriguing questions in cardiac research, such as "Is there a significant loss of cardiomyocytes during progression from ventricular hypertrophy to heart failure?" or "Does a specific treatment reduce the degree of fibrosis in the heart?" Nevertheless, the use of stereological methods in cardiac research is rare. The present review article demonstrates how some of the potential pitfalls in quantitative microscopy may be avoided. To this end, we outline the concepts of design-based stereology and illustrate their practical applications to a wide range of biological questions in cardiac research. We hope that the present article will stimulate researchers in cardiac research to incorporate design-based stereology into their study designs, thus promoting an unbiased quantitative 3D microscopy.
Collapse
|
16
|
Lasker SP, McLachlan C, Wang L, Ali SMK, Jelinek HF. Oxidative stress and cardio myocyte apoptosis: Possibility of development of myocardial disarray in diabetes. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Sen U, Tyagi N, Moshal KS, Kartha GK, Rosenberger D, Henderson BC, Joshua IG, Tyagi SC. Cardiac synchronous and dys-synchronous remodeling in diabetes mellitus. Antioxid Redox Signal 2007; 9:971-8. [PMID: 17508918 DOI: 10.1089/ars.2007.1597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glucose-mediated impairment of homocysteine (Hcy) metabolism and decrease in renal clearance contribute to hyperhomocysteinemia (HHcy) in diabetes. The Hcy induces oxidative stress, inversely relates to the expression of peroxisome proliferators activated receptor (PPAR), and contributes to diabetic complications. Extracellular matrix (ECM) functionally links the endothelium to the myocyte and is important for cardiac synchronization. However, in diabetes and hyperhomocysteinemia, a "disconnection" is caused by activated matrix metalloproteinase with subsequent accumulation of oxidized matrix (fibrosis) between the endothelium and myocyte (E-M). This contributes to "endothelial-myocyte uncoupling," attenuation of cardiac synchrony, leading to diastolic heart failure (DHF), and cardiac dys-synchronizatrion. The decreased levels of thioredoxin and peroxiredoxin and cardiac tissue inhibitor of metalloproteinase are in response to antagonizing PPARgamma.
Collapse
Affiliation(s)
- Utpal Sen
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta 2007; 380:24-30. [PMID: 17343838 PMCID: PMC2755046 DOI: 10.1016/j.cca.2007.01.026] [Citation(s) in RCA: 619] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 01/13/2007] [Accepted: 01/21/2007] [Indexed: 12/26/2022]
Abstract
Obesity is characterized by low-grade systemic inflammation. Adiponectin is an adipose tissue-derived hormone, which is downregulated in obesity. Adiponectin displays protective actions on the development of various obesity-linked diseases. Several clinical studies demonstrate the inverse relationship between plasma adiponectin levels and several inflammatory markers including C-reactive protein. Adiponectin attenuates inflammatory responses to multiple stimuli by modulating signaling pathways in a variety of cell types. The anti-inflammatory properties of adiponectin may be a major component of its beneficial effects on cardiovascular and metabolic disorders including atherosclerosis and insulin resistance. In this review, we focus on the role of adiponectin in regulation of inflammatory response and discuss its potential as an anti-inflammatory marker.
Collapse
Affiliation(s)
- Noriyuki Ouchi
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA.
| | | |
Collapse
|
19
|
Pandya NM, Dhalla NS, Santani DD. Angiogenesis--a new target for future therapy. Vascul Pharmacol 2006; 44:265-74. [PMID: 16545987 DOI: 10.1016/j.vph.2006.01.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 01/17/2006] [Indexed: 12/15/2022]
Abstract
Development of blood vessels from in situ differentiating endothelial cells (EC) is called vasculogenesis, whereas sprouting of new blood vessels from the pre-existing ones is termed angiogenesis or neovascularisation. Angiogenesis, the growth of new blood vessels, is essential during tissue repair, foetal development, and female reproductive cycle. In contrast, uncontrolled angiogenesis promotes tumor and retinopathies, while inadequate angiogenesis can lead to coronary artery disease. A balance between pro-angiogenic and anti-angiogenic growth factors and cytokines tightly controls angiogenesis. With the identification of several proangiogenic molecules such as the vascular endothelial cell growth factor (VEGF), the fibroblast growth factors (FGFs), and the angiopoietins, and the recent description of specific inhibitors of angiogenesis such as platelet factor-4, angiostatin, endostatin, and vasostatin, it is recognized that therapeutic interference with vasculature formation offers a tool for clinical applications in various pathologies. Inhibition of angiogenesis can prevent diseases such as cancer, diabetic nephropathy, arthritis, psoriasis, whereas stimulation of angiogenesis is beneficial in the treatment of coronary artery disease (CAD), cardiac failure, tissue injury, etc. One of the most specific and critical regulators of angiogenesis is vascular endothelial growth factor (VEGF), which regulates endothelial proliferation, permeability, and survival. Substantial evidence also implicates VEGF as an angiogenic mediator in tumors and intraocular neovascular syndromes, and numerous clinical trials are presently testing the hypothesis that inhibition of VEGF may have therapeutic value.
Collapse
Affiliation(s)
- Nilesh M Pandya
- Department of Pharmacology, C. U. Shah College of Pharmacy and Research, Wadhwan City-363030, Dist. Surendranagar, India.
| | | | | |
Collapse
|
20
|
Mühlfeld C, Singer D, Engelhardt N, Richter J, Schmiedl A. Electron microscopy and microcalorimetry of the postnatal rat heart (Rattus norvegicus). Comp Biochem Physiol A Mol Integr Physiol 2005; 141:310-8. [PMID: 15993636 DOI: 10.1016/j.cbpb.2005.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 11/15/2022]
Abstract
The interplay of ultrastructure and tissue metabolism was examined in neonatal, infant and adult rat hearts by electron microscopy and microcalorimetry. Morphometry was used to determine parameters of oxygen diffusion capacity (distance between capillaries and mitochondria, capillary surface density) and oxidative metabolic capacity (mitochondrial volume fraction). Thin slices and large samples of living tissue were examined calorimetrically to quantify aerobic metabolism and ischemia tolerance, respectively. After birth, rat hearts grow in parallel to body mass and show characteristics of cellular hypertrophy. Capillary surface density increases from neonatal to infant rats, and decreases to an intermediate value in adult rats. The distance between capillaries and mitochondria shows no significant changes throughout postnatal development. Mitochondrial volume fraction increases continuously until adulthood. The specific aerobic tissue metabolic rate is higher in the neonatal than in the infant and adult rat. However, the ischemic decline in metabolic rate is much slower in the neonatal rat, reflecting an elevated hypoxia tolerance. In conclusion, the neonatal rat heart exhibits a high metabolic rate despite a low mitochondrial volume fraction. The subsequent structural rearrangements can be interpreted as long-term adaptations to the increased postnatal workload and may contribute to the progressive loss of hypoxia tolerance.
Collapse
Affiliation(s)
- C Mühlfeld
- Department of Anatomy, Division of Electron Microscopy, University of Göttingen, Germany.
| | | | | | | | | |
Collapse
|
21
|
Srinivasan M, Herrero P, McGill JB, Bennik J, Heere B, Lesniak D, Davila-Roman VG, Gropler RJ. The Effects of Plasma Insulin and Glucose on Myocardial Blood Flow in Patients With Type 1 Diabetes Mellitus. J Am Coll Cardiol 2005; 46:42-8. [PMID: 15992633 DOI: 10.1016/j.jacc.2005.03.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 02/04/2005] [Accepted: 03/10/2005] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The objective of this study was to determine the impact of insulin and glucose on myocardial vasodilator function in patients with type 1 diabetes mellitus (T1DM). BACKGROUND The relative importance of plasma insulin and glucose levels on the abnormal vasodilator function observed in T1DM is unknown. METHODS Twenty T1DM patients underwent positron emission tomography studies to measure myocardial blood flow (MBF) (in ml/g/min) at rest (MBFr) and during adenosine (MBFa), both under baseline metabolic conditions and then during either hyperinsulinemic-euglycemic clamp (HE) (n = 10; 40 +/- 9 years, 8 female subjects, hemoglobin A1c [HbA1c] 7.8 +/- 1.1%) or hyperinsulinemic-hyperglycemic clamp (HH) (n = 10; 44 +/- 12 years, 8 female subjects, hemoglobin A1c 7.7 +/- 0.6%). RESULTS Both groups showed similar MBFr and MBFa under baseline metabolic conditions (p = NS). Compared with baseline conditions, MBFr increased in the HH group (p < 0.005), whereas it did not change in the HE group. Compared with baseline conditions, MBFa decreased in the HH group (p < 0.05) but did not change in the HE group. Myocardial perfusion reserve (MPR) (MBFa/MBFr) was similar between the HE and HH groups at baseline (p = NS). During clamp, MPR tended to decrease in the HH group (p < 0.1) but did not change in the HE group (p = NS) when compared with baseline conditions. However, during the clamp MPR was significantly lower in the HH group when compared with the HE group (p < 0.0001). CONCLUSIONS In the short term, hyperglycemia has a deleterious effect on myocardial vasodilator function, which outweighs the beneficial effect of hyperinsulinemia.
Collapse
Affiliation(s)
- Muthayyah Srinivasan
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Searls YM, Smirnova IV, Fegley BR, Stehno-Bittel L. Exercise Attenuates Diabetes-Induced Ultrastructural Changes in Rat Cardiac Tissue. Med Sci Sports Exerc 2004; 36:1863-70. [PMID: 15514499 DOI: 10.1249/01.mss.0000145461.38224.ec] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION/PURPOSE Exercise is an effective nonpharmacological treatment in the prevention of mortality and morbidity due to cardiovascular disease in Type I diabetes. This study sought to explore the effects of endurance exercise on the ultrastructural changes seen in diabetic cardiomyopathy. METHODS Seven-week-old rats were divided into three groups consisting of sedentary nondiabetic control, sedentary diabetic, and exercised diabetic animals. Diabetes was induced using streptozotocin injection, and the exercised animals were run daily on a treadmill for 9 wk. Changes in heart ultrastructure were analyzed using transmission electron microscopy. RESULTS Ultrastructural changes in the left ventricle produced by diabetes included changes in myofibrillar arrangements, disrupted mitochondria, and increased cytoplasmic area with an increase in lipid amounts and an increase in individual collagen fiber cross-sectional surface area. Also, an increase in heterochromatin lining the nuclear envelope and an increase in invaginations of the nuclear membrane were observed in cardiomyocytes from diabetic rats when compared with the nuclei from nondiabetic cells. Exercise was found to significantly attenuate the diabetes-induced changes in collagen fibrils, cytoplasmic area, and level of mitochondrial disruption. In contrast, exercise did not appear to significantly influence myofibril volume density, lipid accumulation, or nuclear deformities. CONCLUSION These findings indicate that exercise restores specific ultrastructural characteristics of diabetic cardiomyopathy returning them toward nondiabetic phenotypes, particularly in the mitochondria and extracellular matrix proteins.
Collapse
Affiliation(s)
- Yvonne M Searls
- Departments of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The presence of a diabetic cardiomyopathy, independent of hypertension and coronary artery disease, is still controversial. This systematic review seeks to evaluate the evidence for the existence of this condition, to clarify the possible mechanisms responsible, and to consider possible therapeutic implications. The existence of a diabetic cardiomyopathy is supported by epidemiological findings showing the association of diabetes with heart failure; clinical studies confirming the association of diabetes with left ventricular dysfunction independent of hypertension, coronary artery disease, and other heart disease; and experimental evidence of myocardial structural and functional changes. The most important mechanisms of diabetic cardiomyopathy are metabolic disturbances (depletion of glucose transporter 4, increased free fatty acids, carnitine deficiency, changes in calcium homeostasis), myocardial fibrosis (association with increases in angiotensin II, IGF-I, and inflammatory cytokines), small vessel disease (microangiopathy, impaired coronary flow reserve, and endothelial dysfunction), cardiac autonomic neuropathy (denervation and alterations in myocardial catecholamine levels), and insulin resistance (hyperinsulinemia and reduced insulin sensitivity). This review presents evidence that diabetes is associated with a cardiomyopathy, independent of comorbid conditions, and that metabolic disturbances, myocardial fibrosis, small vessel disease, cardiac autonomic neuropathy, and insulin resistance may all contribute to the development of diabetic heart disease.
Collapse
Affiliation(s)
- Zhi You Fang
- University of Queensland, Brisbane, 4012, Australia
| | | | | |
Collapse
|
24
|
Martin CA, Petousi N, Chawla S, Hockaday AR, Burgess AJ, Fraser JA, Huang CLH, Skepper JN. The effect of extracellular tonicity on the anatomy of triad complexes in amphibian skeletal muscle. J Muscle Res Cell Motil 2004; 24:407-15. [PMID: 14677643 DOI: 10.1023/a:1027356410698] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ultrastructural features of tubular-sarcoplasmic (T-SR) triad junctions and measures of cell volume following graded increases of extracellular tonicity were compared under physiological conditions recently shown to produce spontaneous release of intracellularly stored Ca2+ in fully polarized amphibian skeletal muscle fibres. The fibres were fixed using solutions of equivalent tonicities prior to processing for electron microscopy. The resulting anatomical sections demonstrated a partially reversible cell shrinkage corresponding to substantial increases in intracellular solute or ionic strength graded with extracellular tonicity. Serial thin sections through triad structures confirmed the presence of geometrically close but anatomically isolated transverse (T-) tubular and sarcoplasmic reticular (SR) membranes contrary to earlier suggestions for the development of luminal continuities between these structures in hypertonic solutions. They also quantitatively demonstrated accompanying decreases in T-SR distances, increased numbers of sections that showed closely apposed T and SR membranes, tubular luminal swelling and reductions in luminal volume of the junctional SR, all correlated with the imposed increases in extracellular osmolarity. Fully polarized fibres correspondingly showed elementary Ca(2+)-release events ('sparks', in 100 mM-sucrose-Ringer solution), sustained Ca2+ elevations and propagated Ca2+ waves (> or = 350-500 mM sucrose) following exposure to physiological Ringer solutions of successively greater tonicities. These were absent in hypotonic, isotonic or less strongly hypertonic (approximately 50 mM sucrose-Ringer) solutions. Yet exposure to hypotonic solutions also disrupted T-SR junctional anatomy. It increased the tubular diameters and T-SR distances and reduced their area of potential contact. The spontaneous release of intracellularly stored Ca2+ thus appears more closely to correlate with the expected changes in intracellular solute strength or a reduction in absolute T-SR distance rather than disruption of an optimal anatomical relationship between T and SR membranes taking place with either increases or decreases in extracellular tonicity.
Collapse
Affiliation(s)
- Claire A Martin
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Shibata R, Ouchi N, Kihara S, Sato K, Funahashi T, Walsh K. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem 2004; 279:28670-4. [PMID: 15123726 DOI: 10.1074/jbc.m402558200] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity is a risk factor for the development of cardiovascular diseases that are associated with impaired angiogenesis. Adiponectin is an adipocyte-specific adipocytokine with anti-atherogenic and anti-diabetic properties, and its plasma levels are reduced in association with obesity-linked diseases. Here, we investigated whether adiponectin regulates angiogenesis in response to tissue ischemia using adiponectin knock-out (KO) mice. Angiogenic repair of ischemic hind limbs was impaired in adiponectin-KO mice compared with wild-type (WT) mice as evaluated by laser Doppler flow method and capillary density analyses. Adenovirus-mediated supplement of adiponectin accelerated angiogenic repair in both adiponectin-KO and WT mice. Intramuscular injection of an adenovirus encoding dominant-negative AMP-activated kinase diminished the improvement in limb perfusion seen in WT mice and abolished the adiponectin-induced enhancement of perfusion. These data indicate that adiponectin can function to stimulate angiogenesis in response to ischemic stress by promoting AMP-activated kinase signaling. Therefore, adiponectin may be useful in the treatment for obesity-related vascular deficiency diseases.
Collapse
Affiliation(s)
- Rei Shibata
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street W611, Boston, Massachusetts 02118 , USA
| | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Zhiheng He
- Section on Vascular Cell Biology and Complications, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Place, Boston, MA 02215, USA
| | | |
Collapse
|
27
|
Camp TM, Tyagi SC, Senior RM, Hayden MR, Tyagi SC. Gelatinase B(MMP-9) an apoptotic factor in diabetic transgenic mice. Diabetologia 2003; 46:1438-45. [PMID: 12928773 DOI: 10.1007/s00125-003-1200-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Revised: 05/05/2003] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Although matrix metalloproteinase-9 (MMP-9) is specifically induced and apoptosis of endothelial cells is evidenced in diabetes mellitus, the mechanism of endocardial endothelial dysfunction in diabetes mellitus is not clear. The increase in MMP-9 activity is associated with endocardial endothelial apoptosis and dysfunction in diabetes mellitus. METHODS Diabetes was created by injecting 65 mg/kg alloxan in tail vein of MMP-9 knockout (-/-) and wild-type (WT, C57BL/J6) mice. At 8 weeks mice were grouped: (i) WT+saline; (ii) WT+alloxan; (iii) MMP+saline; (iv) MMP+alloxan. The MMP-9 genotype was determined by observing single PCR product of different mobility than the PCR product from wild-type in blood from tail vein. RESULTS MMP-9 activity, measured by zymography, increased in plasma and in the left ventricle of alloxan-induced diabetic wild-type mice. The concentrations of cardiac inhibitor of metalloproteinase, that blocks MMP-9 activity, were decreased in diabetic MMP-9 knockouts as well as in wild-type mice. Diabetes induced apoptosis, detected by TUNEL assays, in wild-type but not in MMP-9 knockouts. Endocardial endothelial function was severely impaired in diabetic wild-type mice compared with normoglycaemic animals, while non-diabetic MMP-9 knockout mice showed partial endocardial endothelial dysfunction which was not further exacerbated by the developments of diabetes. CONCLUSION/INTERPRETATION The results suggest an association between increased MMP-9 activity and endocardial endothelial apoptosis in diabetic mice, while genetic ablation of MMP-9 correlated with amelioration of endocardial endothelial dysfunction and apoptosis.
Collapse
Affiliation(s)
- T M Camp
- Department of Physiology and Biophysics, University of Louisville, 500 South Preston Street, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
28
|
Koch M, Wendorf M, Dendorfer A, Wolfrum S, Schulze K, Spillmann F, Schultheiss HP, Tschöpe C. Cardiac kinin level in experimental diabetes mellitus: role of kininases. Am J Physiol Heart Circ Physiol 2003; 285:H418-23. [PMID: 12637359 DOI: 10.1152/ajpheart.00677.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus impairs the cardiac kallikrein-kinin system by reducing cardiac kallikrein (KLK) and kininogen levels, a mechanism that may contribute to the deleterious outcome of cardiac ischemia in this disease. We studied left ventricular (LV) function and bradykinin (BK) coronary outflow in buffer-perfused, isolated working hearts (n = 7) of controls and streptozotocin (STZ)-induced diabetic rats before and after global ischemia. With the use of selective kininase inhibitors, the activities of angiotensin I-converting enzyme, aminopeptidase P, and neutral endopeptidase were determined by analyzing the degradation kinetics of exogenously administered BK during sequential coronary passages. Basal LV function and coronary flow were impaired in STZ-induced diabetic rats. Neither basal nor postischemic coronary BK outflow differed between control and diabetic hearts. Reperfusion after 15 min of ischemia induced a peak in coronary BK outflow that was of the same extent and duration in both groups. In diabetic hearts, total cardiac kininase activity was reduced by 41.4% with an unchanged relative kininase contribution compared with controls. In conclusion, despite reduced cardiac KLK synthesis, STZ-induced diabetic hearts are able to maintain kinin liberation under basal and ischemic conditions because of a primary impairment or a secondary downregulation of kinin-degrading enzymes.
Collapse
Affiliation(s)
- Matthias Koch
- Department of Cardiology and Pneumology, University Hospital Benjamin Franklin, Free University of Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Accumulation of oxidized-matrix between the endothelium and myocytes is associated with endocardial endothelial (EE) dysfunction in diabetes and heart failure. High levels of circulating homocysteine (Hcy) have been demonstrated in diabetes mellitus (DM). These high levels of Hcy (hyperhomocysteinemia, HHcy) have a negative correlation with peroxisome proliferator activated receptor (PPAR) expression. Studies have demonstrated that Hcy decreases bioavailability of endothelial nitric oxide (eNO), generates nitrotyrosine, and activates latent matrix metalloproteinase (MMP), instigating EE dysfunction. PPAR ligands ameliorate endothelial dysfunction and DM. In addition Hcy competes with PPAR ligands. The understanding of molecular, cellular, and extracellular mechanisms by which Hcy amplifies DM will have therapeutic ramifications for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
30
|
Al-Shafei AIM, Wise RG, Gresham GA, Carpenter TA, Hall LD, Huang CLH. Magnetic resonance imaging analysis of cardiac cycle events in diabetic rats: the effect of angiotensin-converting enzyme inhibition. J Physiol 2002; 538:555-72. [PMID: 11790819 PMCID: PMC2290083 DOI: 10.1113/jphysiol.2001.012857] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Non-invasive magnetic resonance imaging (MRI) was used to characterize changes in left and right ventricular cardiac cycles following induction of experimental, streptozotocin (STZ)-induced, diabetes in male Wistar rats at different ages. The effects of the angiotensin-converting enzyme (ACE) inhibitor captopril upon such chronic physiological changes were then evaluated, also for the first time. Diabetes was induced at the age of 7 weeks in two experimental groups, of which one group was subsequently maintained on captopril (2 g l(-1))-containing drinking water, and at 10 and 13 weeks in two further groups. The fifth group provided age-matched controls. All groups (each n = 4 animals) were scanned consistently at 16 weeks, in parallel with timings used in earlier studies that employed this experimental model. Cine magnetic resonance (MR) image acquisition provided transverse sections through both ventricles at twelve time points covering systole and most of diastole. These yielded reconstructions of cardiac anatomy used to derive critical functional indices and their dependence upon time following the triggering electrocardiographic R waves. The left and right ventricular end-diastolic (EDV), end-systolic (ESV) and stroke volumes (SV), and ejection fractions (EF) calculated from each, control and experimental, group showed matching values. This confirmed a necessary condition requiring balanced right and left ventricular outputs and further suggested that STZ-induced diabetes produced physiological changes in both ventricles. Absolute left and right ventricular SVs were significantly altered in all diabetic animals; EDVs and EFs significantly altered in animals diabetic from 7 and 10 but not 13 weeks. When normalized to body weight, left and right ventricular SVs had significantly altered in animals diabetic from 7 and 10 weeks but not 13 weeks. Normalized left ventricular EDVs were also significantly altered in animals diabetic from 7 and 10 weeks. However, normalized right ventricular EDVs were significantly altered only in animals made diabetic from 7 weeks. Diabetic hearts showed major kinetic changes in left and right ventricular contraction (ejection) and relaxation (filling). Both the initial rates of volume change (dV/dt) in both ventricles and the plots of dV/dt values through the cardiac cycle demonstrated more gradual developments of tension during systole and relaxation during diastole. Estimates of the derived left ventricular performance parameters of cardiac output, cardiac power output and stroke work in control animals were comparable with human values when normalized to both body (or cardiac) weight and heart rate. All deteriorated with diabetes. Comparisons of experimental groups diabetic from 7 weeks demonstrated that captopril treatment relieved the alterations in critical volumes, dependence of SV upon EDV, kinetics of systolic contraction and diastolic relaxation and in the derived indicators of ventricular performance. This study represents the first demonstration using non-invasive MRI of early, chronic changes in diastolic filling and systolic ejection in both the left and the right ventricles and of their amelioration by ACE inhibition following STZ-induction of diabetes in intact experimental animals.
Collapse
Affiliation(s)
- Ahmad I M Al-Shafei
- Herchel Smith Laboratory for Medicinal Chemistry, University of Cambridge School of Clinical Medicine, Forvie Site, Robinson Way, Cambridge CB2 2PZ, UK
| | | | | | | | | | | |
Collapse
|
31
|
Al-Shafei AIM, Wise RG, Gresham GA, Bronns G, Carpenter TA, Hall LD, Huang CLH. Non-invasive magnetic resonance imaging assessment of myocardial changes and the effects of angiotensin-converting enzyme inhibition in diabetic rats. J Physiol 2002; 538:541-53. [PMID: 11790818 PMCID: PMC2290059 DOI: 10.1113/jphysiol.2001.012856] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A non-invasive cine magnetic resonance imaging (MRI) technique was developed to allow, for the first time, detection and characterization of chronic changes in myocardial tissue volume and the effects upon these of treatment by the angiotensin-converting enzyme (ACE) inhibitor captopril in streptozotocin (STZ)-diabetic male Wistar rats. Animals that had been made diabetic at the ages of 7, 10 and 13 weeks and a captopril-treated group of animals made diabetic at the age of 7 weeks were scanned. The findings were compared with the results from age-matched controls. All animal groups (n = 4 animals in each) were consistently scanned at 16 weeks. Left and right ventricular myocardial volumes were reconstructed from complete data sets of left and right ventricular transverse sections which covered systole and most of diastole using twelve equally incremented time points through the cardiac cycle. The calculated volumes remained consistent through all twelve time points of the cardiac cycle in all five experimental groups and agreed with the corresponding post-mortem determinations. These gave consistent myocardial densities whose values could additionally be corroborated by previous reports, confirming the validity of the quantitative MRI results and analysis. The myocardial volumes were conserved in animals whose diabetes was induced at 13 weeks but were significantly increased relative to body weight in animals made diabetic at 7 and 10 weeks. Captopril treatment, which was started immediately after induction of diabetes, prevented the development of this relative hypertrophy in both the left and right ventricles. We have thus introduced and validated quantitative MRI methods in a demonstration, for the first time, of chronic myocardial changes in both the right and left ventricles of STZ-diabetic rats and their prevention by the ACE inhibitor captopril.
Collapse
Affiliation(s)
- Ahmad I M Al-Shafei
- Herchel Smith Laboratory for Medicinal Chemistry, University of Cambridge School of Clinical Medicine, Forvie Site, Robinson Way, Cambridge CB2 2PZ, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Forder JR, Bui JD, Buckley DL, Blackband SJ. MR imaging measurement of compartmental water diffusion in perfused heart slices. Am J Physiol Heart Circ Physiol 2001; 281:H1280-5. [PMID: 11514298 DOI: 10.1152/ajpheart.2001.281.3.h1280] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial tissue slices were isolated from the left ventricular free wall (7 slices) and left ventricular papillary muscle (3 slices) of New Zealand White male rabbits (n = 4) and were subsequently superfused with a modified St. Thomas' Hospital cardioplegic solution at 19 degrees C. The diffusion-weighted images were obtained with a 600-MHz nuclear magnetic resonance spectrometer using diffusion gradient b-values that ranged from 166 to 6,408 s/mm(2); the apparent diffusion coefficient of water in the tissues were subsequently calculated. All of the tissue samples that were studied exhibited nonmonoexponential diffusion. Data from seven slices were mathematically fitted by a biexponential expression with a fast diffusion component of 0.72 +/- 0.07 x 10(-3) mm(2)/s, and a slow diffusion component of 0.060 +/- 0.033 x 10(-3) mm(2)/s. The fast component dominated the calculated apparent diffusion coefficient of the tissue, composed of 82 +/- 3% of the overall diffusion-dependent signal decay. Thus myocardial tissue exhibits characteristics consistent with multiple compartments of diffusion. This work has important implications for myocardial diffusion tensor imaging, as well as the changes in diffusion that have been reported following myocardial ischemia.
Collapse
Affiliation(s)
- J R Forder
- Department of Neuroscience, University of Florida, Gainesville 32611, USA.
| | | | | | | |
Collapse
|
33
|
Zaman AK, Fujii S, Sawa H, Goto D, Ishimori N, Watano K, Kaneko T, Furumoto T, Sugawara T, Sakuma I, Kitabatake A, Sobel BE. Angiotensin-converting enzyme inhibition attenuates hypofibrinolysis and reduces cardiac perivascular fibrosis in genetically obese diabetic mice. Circulation 2001; 103:3123-8. [PMID: 11425779 DOI: 10.1161/01.cir.103.25.3123] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Obesity and insulin resistance are associated with accelerated macrovascular and microvascular coronary disease, cardiomyopathic phenomena, and increased concentrations and activity in blood of plasminogen activator inhibitor type 1 (PAI-1), the primary physiological inhibitor of fibrinolysis. METHODS AND RESULTS To determine whether hypofibrinolysis in blood and tissues and its potential sequelae could be attenuated pharmacologically, we studied genetically modified obese mice. By 10 weeks of age, obese mice exhibited increases in left ventricular weight and glucose and immunoreactive insulin in blood. PAI-1 activity in blood measured spectrophotometrically was significantly elevated as well. The difference compared with values in lean controls widened by 20 weeks of age. Perivascular fibrosis in coronary arterioles and small coronary arteries was evident in obese mice 10 and 20 weeks of age, paralleling increases in PAI-1 and tissue factor expression evident by immunohistochemical image analysis, in situ hybridization, and reverse transcription-polymerase chain reaction. Inhibition of ACE activity initiated in obese mice 10 weeks of age and continued for 20 weeks arrested the increase in PAI-1 activity in blood and in cardiac PAI-1 and tissue factor mRNA as well as coronary perivascular fibrosis. CONCLUSIONS Thus, inhibition of proteo(fibrino)lysis and augmented tissue factor expression in the heart precede and may contribute to the coronary perivascular fibrosis seen with obesity and insulin resistance. Furthermore, inhibition of ACE activity can attenuate all 3 phenomena.
Collapse
Affiliation(s)
- A K Zaman
- Department of Cardiovascular Medicine, CREST, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vascularization of the Heart During Normal and Pathological Growth. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1569-2590(08)60166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Skepper JN, Pierson RN, Young VK, Rees JA, Powell JM, Navaratnam V, Cary NR, Tew DN, Bacon PJ, Wallwork J, White DJ, Menon DK. Cytochemical demonstration of sites of hydrogen peroxide generation and increased vascular permeability in isolated pig hearts after ischaemia and reperfusion. Microsc Res Tech 1998; 42:369-85. [PMID: 9766431 DOI: 10.1002/(sici)1097-0029(19980901)42:5<369::aid-jemt7>3.0.co;2-k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Isolated pig hearts, subsequently perfused with pig or human blood, were prepared for the cytochemical demonstration of sites of hydrogen peroxide generation and increased vascular permeability. Oxidant stress was associated with ultrastructural changes commonly seen following myocardial reperfusion. In addition, the precipitation of cerium perhydroxide following perfusion with physiological saline containing cerium chloride suggested the vascular endothelium and leukocytes as sources of oxidants. This was associated with rapid penetration of horseradish peroxidase through the intercellular clefts of the vascular endothelium into the interstitial space, suggesting increased vascular leakiness at these sites. The rapid penetration of horseradish peroxidase was observed at all monitored periods of reperfusion with pig or human blood. This indicates that the increased permeability occurred during the ischaemic period and continued during reperfusion. Morphological damage was greatest in pig hearts reperfused with whole human blood and this was attenuated if the blood was preabsorbed to remove antibodies prior to reperfusion. We conclude that oxidant stress was initiated during ischaemia and continued during reperfusion in this model.
Collapse
Affiliation(s)
- J N Skepper
- Multi-Imaging Centre, Department of Anatomy, University of Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vér A, Szántó I, Bányász T, Csermely P, Végh E, Somogyi J. Changes in the expression of Na+/K+-ATPase isoenzymes in the left ventricle of diabetic rat hearts: effect of insulin treatment. Diabetologia 1997; 40:1255-62. [PMID: 9389416 DOI: 10.1007/s001250050818] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Na+/K+-ATPase related strophanthidin sensitive 3-O-methylfluorescein-phosphatase activity, [3H]ouabain binding and expression of Na+/K+-ATPase subunit isoforms were measured in the left ventricle of the heart of normal and streptozotocin-diabetic rats with and without insulin treatment. Compared to control animals, the enzyme activity was 0.75 +/- 0.09 and 0.62 +/- 0.06 times lower in rats diabetic for 2 and for 4 weeks, respectively. This was associated with a proportional decrease of the [3H]ouabain binding sites. Immunoblots indicated a 0.76 +/- 0.08 and 0.61 +/- 0.08-fold decrease of alpha1, a 0.68 +/- 0.09 and 0.41 +/- 0.04-fold decrease of alpha2 subunit in 2- and 4-week diabetic rats, respectively relative to controls. Beta1 subunit decreased proportionally 0.71 +/- 0.07 and 0.38 +/- 0.06-fold, and beta2 decreased 0.75 +/- 0.08 and 0.31 +/- 0.06-fold, respectively. Northern blot analysis revealed a significant reduction in mRNA level of Na+/K+-ATPase subunit isoforms after 2 and 4 weeks of diabetes (for alpha1 66.2 +/- 8.2 and 55.9 +/- 7.8% of controls for alpha2 91.7 +/- 12.1 and 41.1 +/- 7.1% of controls and for beta subunit 93.4 +/- 11.1 and 49.8 +/- 6.8% of controls, respectively). Although, mRNA levels of isoform reverted to even higher levels than the control values after insulin treatment, insulin caused only a partial recovery of enzyme activity, [3H]ouabain binding capacity and protein expression. We have obtained evidence that in cardiac left ventricle there are more than one type of Na+/K+-ATPase alpha and beta subunit isoforms which are affected in diabetes and by insulin treatment. The time course of diabetes induced changes and the degree of involvement suggest that the Na+/K+-ATPase isoforms are altered individually.
Collapse
Affiliation(s)
- A Vér
- Semmelweis University of Medicine, Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|