1
|
Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, Handa RJ. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front Behav Neurosci 2021; 14:601939. [PMID: 33519393 PMCID: PMC7838595 DOI: 10.3389/fnbeh.2020.601939] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The hypothalamic-pituitary-adrenal axis is a complex system of neuroendocrine pathways and feedback loops that function to maintain physiological homeostasis. Abnormal development of the hypothalamic-pituitary-adrenal (HPA) axis can further result in long-term alterations in neuropeptide and neurotransmitter synthesis in the central nervous system, as well as glucocorticoid hormone synthesis in the periphery. Together, these changes can potentially lead to a disruption in neuroendocrine, behavioral, autonomic, and metabolic functions in adulthood. In this review, we will discuss the regulation of the HPA axis and its development. We will also examine the maternal-fetal hypothalamic-pituitary-adrenal axis and disruption of the normal fetal environment which becomes a major risk factor for many neurodevelopmental pathologies in adulthood, such as major depressive disorder, anxiety, schizophrenia, and others.
Collapse
Affiliation(s)
- Julietta A. Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Natalie J. Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage A. Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Anna I. Bautista
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mina Roueinfar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Taben M. Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Robert J. Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
2
|
Qin C, Li J, Tang K. The Paraventricular Nucleus of the Hypothalamus: Development, Function, and Human Diseases. Endocrinology 2018; 159:3458-3472. [PMID: 30052854 DOI: 10.1210/en.2018-00453] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVH), located in the ventral diencephalon adjacent to the third ventricle, is a highly conserved brain region present in species from zebrafish to humans. The PVH is composed of three main types of neurons, magnocellular, parvocellular, and long-projecting neurons, which play imperative roles in the regulation of energy balance and various endocrinological activities. In this review, we focus mainly on recent findings about the early development of the hypothalamus and the PVH, the functions of the PVH in the modulation of energy homeostasis and in the hypothalamus-pituitary system, and human diseases associated with the PVH, such as obesity, short stature, hypertension, and diabetes insipidus. Thus, the investigations of the PVH will benefit not only understanding of the development of the central nervous system but also the etiology of and therapy for human diseases.
Collapse
Affiliation(s)
- Cheng Qin
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jiaheng Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Ke Tang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Volicer L. Fear of Dementia. J Am Med Dir Assoc 2016; 17:875-8. [DOI: 10.1016/j.jamda.2016.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 01/27/2023]
|
4
|
McMahon SM, Chang CW, Jackson MB. Multiple cytosolic calcium buffers in posterior pituitary nerve terminals. ACTA ACUST UNITED AC 2016; 147:243-54. [PMID: 26880753 PMCID: PMC4772375 DOI: 10.1085/jgp.201511525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/06/2016] [Indexed: 01/03/2023]
Abstract
Researchers have measured the ability of nerve terminals to buffer Ca2+ entering in response to electrical activity to better understand plasticity of hormone release. Cytosolic Ca2+ buffers bind to a large fraction of Ca2+ as it enters a cell, shaping Ca2+ signals both spatially and temporally. In this way, cytosolic Ca2+ buffers regulate excitation-secretion coupling and short-term plasticity of release. The posterior pituitary is composed of peptidergic nerve terminals, which release oxytocin and vasopressin in response to Ca2+ entry. Secretion of these hormones exhibits a complex dependence on the frequency and pattern of electrical activity, and the role of cytosolic Ca2+ buffers in controlling pituitary Ca2+ signaling is poorly understood. Here, cytosolic Ca2+ buffers were studied with two-photon imaging in patch-clamped nerve terminals of the rat posterior pituitary. Fluorescence of the Ca2+ indicator fluo-8 revealed stepwise increases in free Ca2+ after a series of brief depolarizing pulses in rapid succession. These Ca2+ increments grew larger as free Ca2+ rose to saturate the cytosolic buffers and reduce the availability of Ca2+ binding sites. These titration data revealed two endogenous buffers. All nerve terminals contained a buffer with a Kd of 1.5–4.7 µM, and approximately half contained an additional higher-affinity buffer with a Kd of 340 nM. Western blots identified calretinin and calbindin D28K in the posterior pituitary, and their in vitro binding properties correspond well with our fluorometric analysis. The high-affinity buffer washed out, but at a rate much slower than expected from diffusion; washout of the low-affinity buffer could not be detected. This work has revealed the functional impact of cytosolic Ca2+ buffers in situ in nerve terminals at a new level of detail. The saturation of these cytosolic buffers will amplify Ca2+ signals and may contribute to use-dependent facilitation of release. A difference in the buffer compositions of oxytocin and vasopressin nerve terminals could contribute to the differences in release plasticity of these two hormones.
Collapse
Affiliation(s)
- Shane M McMahon
- Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705
| | - Che-Wei Chang
- Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705 Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705
| | - Meyer B Jackson
- Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
5
|
Kagawa N, Honda A, Zenno A, Omoto R, Imanaka S, Takehana Y, Naruse K. Arginine vasotocin neuronal development and its projection in the adult brain of the medaka. Neurosci Lett 2015; 613:47-53. [PMID: 26739197 DOI: 10.1016/j.neulet.2015.12.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
The neurohypophysial peptide arginine vasotocin (AVT) and its mammalian ortholog arginine vasopressin function in a wide range of physiological and behavioral events. Here, we generated a new line of transgenic medaka (Oryzias latipes), which allowed us to monitor AVT neurons by enhanced green fluorescent protein (EGFP) and demonstrate AVT neuronal development in the embryo and the projection of AVT neurons in the adult brain of avt-egfp transgenic medaka. The onset of AVT expression manifested at 2 days postfertilization (dpf) as a pair of signals in the telencephalon of the brain. The telencephalic AVT neurons migrated and converged on the preoptic area (POA) by 4dpf. At the same stage, another onset of AVT expression manifested in the central optic tectum (OT), and they migrated to the ventral part of the hypothalamus (VH) by 6dpf. In the adult brain, the AVT somata with EGFP signals existed in the gigantocellular POA (gPOA), magnocellular POA (mPOA), and parvocellular POA (pPOA) and in the VH. Whereas the major projection of AVT fibers was found from the pPOA and VH to the posterior pituitary, it was also found that AVT neurons in the three POAs send their fibers into wide regions of the brain such as the telencephalon, mesencephalon and diencephalon. This study suggests that the avt-egfp transgenic medaka is a useful model to explore AVT neuronal development and function.
Collapse
Affiliation(s)
- Nao Kagawa
- Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan.
| | - Akira Honda
- Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan.
| | - Akiko Zenno
- Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan.
| | - Ryosuke Omoto
- Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan.
| | - Saya Imanaka
- Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan.
| | - Yusuke Takehana
- Laboratory of Bioresources, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
6
|
Herget U, Ryu S. Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish. Front Neuroanat 2015; 9:2. [PMID: 25729355 PMCID: PMC4325906 DOI: 10.3389/fnana.2015.00002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/07/2015] [Indexed: 02/02/2023] Open
Abstract
The paraventricular nucleus (PVN) of the hypothalamus in mammals coordinates neuroendocrine, autonomic and behavioral responses pivotal for homeostasis and the stress response. A large amount of studies in rodents has documented that the PVN contains diverse neuronal cell types which can be identified by the expression of distinct secretory neuropeptides. Interestingly, PVN cell types often coexpress multiple neuropeptides whose relative coexpression levels are subject to environment-induced plasticity. Due to their small size and transparency, zebrafish larvae offer the possibility to comprehensively study the development and plasticity of the PVN in large groups of intact animals, yet important anatomical information about the larval zebrafish PVN-homologous region has been missing. Therefore we recently defined the location and borders of the larval neurosecretory preoptic area (NPO) as the PVN-homologous region in larval zebrafish based on transcription factor expression and cell type clustering. To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin (AVP), corticotropin-releasing hormone (CRH), proenkephalin a (penka)/b (penkb), neurotensin (NTS), oxytocin (OXT), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), and somatostatin (SST)). Here we extend this chemoarchitectural map to include the degrees of coexpression of two neuropeptides in the same cell by performing systematic pairwise comparisons. Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity. Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish.
Collapse
Affiliation(s)
- Ulrich Herget
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany ; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg Heidelberg, Germany
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| |
Collapse
|
7
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
8
|
Volicer L, Stets K. Acceptability of an Advance Directive That Limits Food and Liquids in Advanced Dementia. Am J Hosp Palliat Care 2014; 33:55-63. [DOI: 10.1177/1049909114554078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Some individuals fear living with advanced dementia and may even commit suicide if they receive dementia diagnosis. Living with advanced dementia could be prevented if a person who cannot feed himself or herself would not be fed by others. The purpose of the study was to find out how acceptable would be an advance directive that includes discontinuation of feeding at certain stage of dementia for relatives of persons who died with dementia. All participants of 2 focus groups would be willing to indicate at least 1 condition in which they would not want to be fed. Some of them would be willing to make a proxy decision to stop feeding in the absence of advance directives.
Collapse
Affiliation(s)
- Ladislav Volicer
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Karen Stets
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Handa RJ, Weiser MJ. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front Neuroendocrinol 2014; 35:197-220. [PMID: 24246855 PMCID: PMC5802971 DOI: 10.1016/j.yfrne.2013.11.001] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, prior to generating an appropriate response is the animal's reproductive status. Thus, PVN neurons express androgen and estrogen receptors and receive input from sites that also express these receptors. Consequently, changes in reproduction and gonadal steroid levels modulate the stress response and this underlies sex differences in HPA axis function. This review examines the make up of the HPA axis and hypothalamo-pituitary-gonadal (HPG) axis and the interactions between the two that should be considered when exploring normal and pathological responses to environmental stressors.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Basic Medical Science, The University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | - Michael J Weiser
- DSM Nutritional Products Ltd., R&D Human Nutrition and Health, Boulder, CO 80301, United States
| |
Collapse
|
10
|
Fernández-Guasti A, Fiedler JL, Herrera L, Handa RJ. Sex, stress, and mood disorders: at the intersection of adrenal and gonadal hormones. Horm Metab Res 2012; 44:607-18. [PMID: 22581646 PMCID: PMC3584173 DOI: 10.1055/s-0032-1312592] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The risk for neuropsychiatric illnesses has a strong sex bias, and for major depressive disorder (MDD), females show a more than 2-fold greater risk compared to males. Such mood disorders are commonly associated with a dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis. Thus, sex differences in the incidence of MDD may be related with the levels of gonadal steroid hormone in adulthood or during early development as well as with the sex differences in HPA axis function. In rodents, organizational and activational effects of gonadal steroid hormones have been described for the regulation of HPA axis function and, if consistent with humans, this may underlie the increased risk of mood disorders in women. Other developmental factors, such as prenatal stress and prenatal overexposure to glucocorticoids can also impact behaviors and neuroendocrine responses to stress in adulthood and these effects are also reported to occur with sex differences. Similarly, in humans, the clinical benefits of antidepressants are associated with the normalization of the dysregulated HPA axis, and genetic polymorphisms have been found in some genes involved in controlling the stress response. This review examines some potential factors contributing to the sex difference in the risk of affective disorders with a focus on adrenal and gonadal hormones as potential modulators. Genetic and environmental factors that contribute to individual risk for affective disorders are also described. Ultimately, future treatment strategies for depression should consider all of these biological elements in their design.
Collapse
Affiliation(s)
| | - J. L. Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - L. Herrera
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - R. J. Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| |
Collapse
|
11
|
Handa RJ, Mani SK, Uht RM. Estrogen receptors and the regulation of neural stress responses. Neuroendocrinology 2012; 96:111-8. [PMID: 22538291 PMCID: PMC3526110 DOI: 10.1159/000338397] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/18/2012] [Indexed: 11/19/2022]
Abstract
It is now well established that estrogens can influence a panoply of physiological and behavioral functions. In many instances, the effects of estrogens are mediated by the 'classical' actions of two different estrogen receptors (ERs), ERα or ERβ. ERα and ERβ appear to have opposing actions in the control of stress responses and modulate different neurotransmitter or neuropeptide systems. Studies elucidating the molecular mechanisms for such regulatory processes are currently in progress. Furthermore, the use of ERα and ERβ knockout mouse lines has allowed the exploration of the importance of these receptors in behavioral responses such as anxiety-like and depressive-like behaviors. This review examines some of the recent advances in our knowledge of hormonal control of neuroendocrine and behavioral responses to stress and underscore the importance of these receptors as future therapeutic targets for control of stress-related signaling pathways.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA.
| | | | | |
Collapse
|
12
|
Handa RJ, Sharma D, Uht R. A role for the androgen metabolite, 5alpha androstane 3beta, 17beta diol (3β-diol) in the regulation of the hypothalamo-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2011; 2:65. [PMID: 22649380 PMCID: PMC3355903 DOI: 10.3389/fendo.2011.00065] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/13/2011] [Indexed: 01/22/2023] Open
Abstract
Activation of the hypothalamo-pituitary-adrenal (HPA) axis is a basic reaction of animals to environmental perturbations that threaten homeostasis. These responses are ultimately regulated by neurons residing within the paraventricular nucleus (PVN) of the hypothalamus. Within the PVN, corticotrophin-releasing hormone (CRH), vasopressin (AVP), and oxytocin (OT) expressing neurons are critical as they can regulate both neuroendocrine and autonomic responses. Estradiol (E2) and testosterone (T) are well known reproductive hormones; however, they have also been shown to modulate stress reactivity. In rodent models, evidence shows that under some conditions E2 enhances stress activated adrenocorticotropic hormone (ACTH) and corticosterone secretion. In contrast, T decreases the gain of the HPA axis. The modulatory role of testosterone was originally thought to be via 5 alpha reduction to the potent androgen dihydrotestosterone (DHT) and its subsequent binding to the androgen receptor, whereas E2 effects were thought to be mediated by estrogen receptors alpha (ERalpha) and beta (ERbeta). However, DHT has been shown to be metabolized to the ERbeta agonist, 5α- androstane 3β, 17β Diol (3β-Diol). The actions of 3β-Diol on the HPA axis are mediated by ERbeta which inhibits the PVN response to stressors. In gonadectomized rats, ERbeta agonists reduce CORT and ACTH responses to restraint stress, an effect that is also present in wild-type but not ERbeta-knockout mice. The neurobiological mechanisms underlying the ability of ERbeta to alter HPA reactivity are not currently known. CRH, AVP, and OT have all been shown to be regulated by estradiol and recent studies indicate an important role of ERbeta in these regulatory processes. Moreover, activation of the CRH and AVP promoters has been shown to occur by 3β-Diol binding to ERbeta and this is thought to occur through alternate pathways of gene regulation. Based on available data, a novel and important role of 3β-Diol in the regulation of the HPA axis is suggested.
Collapse
Affiliation(s)
- Robert J. Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine – PhoenixPhoenix, AZ, USA
- *Correspondence: Robert J. Handa, Department of Basic Medical Sciences, University of Arizona College of Medicine – Phoenix, 425 N. 5th Street, Phoenix, AZ 85004, USA. e-mail:
| | - Dharmendra Sharma
- Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimers Disease Research, University of North Texas Health Sciences CenterFort Worth, TX, USA
| | - Rosalie Uht
- Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimers Disease Research, University of North Texas Health Sciences CenterFort Worth, TX, USA
| |
Collapse
|
13
|
Pócsai K, Bagyura Z, Kálmán M. Components of the basal lamina and dystrophin-dystroglycan complex in the neurointermediate lobe of rat pituitary gland: different localizations of beta-dystroglycan, dystrobrevins, alpha1-syntrophin, and aquaporin-4. J Histochem Cytochem 2010; 58:463-79. [PMID: 20124096 PMCID: PMC2857818 DOI: 10.1369/jhc.2010.954768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 01/21/2010] [Indexed: 11/22/2022] Open
Abstract
The so-called neurointermediate lobe is composed of the intermediate and neural lobes of the pituitary. The present immunohistochemical study investigated components of the basal lamina (laminin, agrin, and perlecan), the dystrophin-dystroglycan complex (dystrophin, beta-dystroglycan, alpha1-dystrobrevin, beta-dystrobrevin, utrophin, and alpha1-syntrophin), and the aquaporins (aquaporin-4 and -9). Glia markers (GFAP, S100, and glutamine synthetase) and components of connective tissue (collagen type I and fibronectin) were also labeled. In the neurohypophysis, immunostaining of basal lamina delineated meningeal invaginations. In these invaginations, vessels were seen to penetrate the organ without submerging into its parenchyma. On the parenchymal side of the invaginations, beta-dystroglycan was detected, whereas utrophin was detected in the walls of vessels. Immunostaining of alpha1-dystrobrevin and alpha1-syntrophin did not delineate the vessels. The cells of the intermediate lobe were fully immunoreactive to alpha1-dystrobrevin and alpha1-syntrophin, whereas components of the basal lamina delineated the contours of the cells. GFAP-immunoreactive processes surrounded them. Aquaporin-4 localized at the periphery of the neurohypophysis, mainly adjacent to the intermediate lobe but not along the vessels. It colocalized only partially with GFAP and not at all with alpha1-syntrophin. Aquaporin-9 was not detected. These results emphasize the possibility that the components of the dystrophin-dystroglycan complex localize differently and raise the question about the roles of dystrobrevins, alpha1-syntrophin, and aquaporin-4 in the functions of the intermediate and neural lobes, respectively.
Collapse
Affiliation(s)
- Károly Pócsai
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzoltó 58, Budapest, H-1094, Hungary
| | | | | |
Collapse
|
14
|
Eaton JL, Holmqvist B, Glasgow E. Ontogeny of vasotocin-expressing cells in zebrafish: selective requirement for the transcriptional regulators orthopedia and single-minded 1 in the preoptic area. Dev Dyn 2008; 237:995-1005. [PMID: 18330923 DOI: 10.1002/dvdy.21503] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The neurohypophysial peptide arginine vasotocin, and its mammalian ortholog arginine vasopressin, influence a wide range of physiological and behavioral responses, including aspects of sexual and social behaviors, osmoregulation, stress response, metabolism, blood pressure, and circadian rhythms. Here, we demonstrate that, in zebrafish (Danio rerio), the vasotocin precursor gene arginine vasotocin-neurophysin (avt) is expressed in two domains in the developing embryo: the dorsal preoptic area and the ventral hypothalamus. In the dorsal preoptic area, avt-expressing cells are intermingled with isotocin-neurophysin (ist) -expressing cells, and these neurons project to the neurohypophysis (posterior pituitary). In the dorsal preoptic area, the transcriptional regulators orthopedia b (otpb) and simple-minded 1 (sim1) are required for expression of both avt and ist. In contrast, otp and sim1 are not required for avt expression in the ventral hypothalamus. Thus, the development of these two avt expression domains is influenced by separate gene regulatory networks.
Collapse
Affiliation(s)
- Jennifer L Eaton
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | | | | |
Collapse
|
15
|
Almeida OF, Hassan AH, Holsboer F. Intrahypothalamic neuroendocrine actions of corticotropin-releasing factor. CIBA FOUNDATION SYMPOSIUM 2007; 172:151-69; discussion 169-72. [PMID: 8491085 DOI: 10.1002/9780470514368.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Most studies of the neuroendocrine effects of corticotropin-releasing factor (CRF) have focused on its role in the regulation of the pituitary-adrenal axis; activation of this axis follows release of the peptide from CRF-containing terminals in the median eminence. However, a sizeable proportion of CRF fibres terminate within the hypothalamus itself, where synaptic contacts with other hypothalamic neuropeptidergic neurons (e.g. gonadotropin-releasing hormone-containing and opioidergic neurons) have been identified. Here, we summarize physiological and pharmacological data which provide insights into the nature and significance of these intrahypothalamic connections. It is now clear that CRF is a potent secretagogue of the three major endogenous opioid peptides (beta-endorphin, Met-enkephalin and dynorphin) and that it stimulates opioidergic neurons tonically. In the case of beta-endorphin, another hypothalamic peptide, arginine vasopressin, appears to be an essential mediator of CRF's effect, suggesting the occurrence of CRF synapses on, or in the vicinity of, vasopressin neurons; morphological support for this assumption is still wanting. Evidence for direct and indirect inhibitory effects of CRF on sexual behaviour and secretion of reproductive hormones is also presented; the indirect pathways include opioidergic neurons. An important conclusion from all these studies is that, in addition to its better known functions in producing adaptive responses during stressful situations, CRF might also contribute to the coordinated functioning of various components of the neuroendocrine system under basal conditions. Although feedback regulation of hypothalamic neuronal activity by peripheral steroids is a well-established tenet of endocrinology, data on modulation of the intrahypothalamic actions of CRF by adrenal and sex steroids are just emerging. Some of these newer findings may be useful in framing questions related to the mechanisms underlying disease states (such as depressive illness) in which CRF has been strongly implicated.
Collapse
Affiliation(s)
- O F Almeida
- Department of Neuroendocrinology, Max Planck Institute for Psychiatry Clinical Institute, Munich, Germany
| | | | | |
Collapse
|
16
|
Yamaguchi H, Sasaki K, Satomi Y, Shimbara T, Kageyama H, Mondal MS, Toshinai K, Date Y, González LJ, Shioda S, Takao T, Nakazato M, Minamino N. Peptidomic identification and biological validation of neuroendocrine regulatory peptide-1 and -2. J Biol Chem 2007; 282:26354-60. [PMID: 17609209 DOI: 10.1074/jbc.m701665200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent advances in peptidomics have enabled the identification of previously uncharacterized peptides. However, sequence information alone does not allow us to identify candidates for bioactive peptides. To increase an opportunity to discover bioactive peptides, we have focused on C-terminal amidation, a post-translational modification shared by many bioactive peptides. We analyzed peptides secreted from human medullary thyroid carcinoma TT cells that produce amidated peptides, and we identified two novel amidated peptides, designated neuroendocrine regulatory peptide (NERP)-1 and NERP-2. NERPs are derived from distinct regions of the neurosecretory protein that was originally identified as a product of a nerve growth factor-responsive gene in PC12 cells. Mass spectrometric analysis of the immunoprecipitate using specific antibodies as well as reversed phase-high performance liquid chromatography coupled with radioimmunoassay analysis of brain extract demonstrated the endogenous presence of NERP-1 and NERP-2 in the rat. NERPs are abundant in the paraventricular and supraoptic nuclei of the rat hypothalamus and colocalized frequently with vasopressin but rarely with oxytocin. NERPs dose-dependently suppressed vasopressin release induced by intracerebroventricular injection of hypertonic NaCl or angiotensin II in vivo. NERPs also suppressed basal and angiotensin II-induced vasopressin secretion from hypothalamic explants in vitro. Bioactivity of NERPs required C-terminal amidation. Anti-NERP IgGs canceled plasma vasopressin reduction in response to water loading, indicating that NERPs could be potent endogenous suppressors of vasopressin release. These findings suggest that NERPs are novel modulators in body fluid homeostasis.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kiss A, Søderman A, Bundzikova J, Pirnik Z, Mikkelsen JD. Zolpidem, a selective GABAA receptor α1 subunit agonist, induces comparable Fos expression in oxytocinergic neurons of the hypothalamic paraventricular and accessory but not supraoptic nuclei in the rat. Brain Res Bull 2006; 71:200-7. [PMID: 17113947 DOI: 10.1016/j.brainresbull.2006.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/02/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
Functional activation of oxytocinergic (OXY) cells in the hypothalamic paraventricular (PVN), supraoptic (SON), and accessory (ACC) nuclei was investigated in response to acute treatment with Zolpidem (a GABA(A) receptor agonist with selectivity for alpha(1) subunits) utilizing dual Fos/OXY immunohistochemistry. Zolpidem was administered intraperitoneally in dose 10 mg/kg of BW and 60 min later the animals were sacrificed by transcardial perfusion with fixative. The Fos/OXY co-labelings were analyzed on 40 microm thick serial coronal sections using computerized light microscopy. Zolpidem elicited a concordant Fos/OXY staining in all four PVN sub-areas investigated, including the anterior (15.71+/-2.35%), middle (14.52+/-2.53%), dorsal (13.34+/-2.61%), and periventricular (18.21+/-4.75%) ones, however, had no significant stimulatory effect on OXY cells in the SON. In response to Zolpidem, statistically significant activations were also seen in certain groups of accessory structures including the circular nucleus (13.99+/-3.43%), small clusters of accessory neurons (10.55+/-1.94%), and the lateral hypothalamic perivascular nucleus (9.42+/-2.74%). Between the naive and vehicle controls, the dual Fos/OXY labelings did not elicit any significant differences. Our data provide insight into the topographic patterns of brain activity within the clusters of magnocellular OXY cells in the hypothalamus associated with stimulation of GABA(A) benzodiazepine receptors and for the first time illustrate the triggering contemporaneousness within the cells of the principal and accessory magnocellular nuclei in response to Zolpidem treatment. The present study provides a comparative background that may help in the further understanding of a possible extend of Zolpidem effect on the brain.
Collapse
Affiliation(s)
- Alexander Kiss
- Laboratory of Functional Neuromorphology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska Street 3, 833 06 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
18
|
Salio C, Lossi L, Ferrini F, Merighi A. Neuropeptides as synaptic transmitters. Cell Tissue Res 2006; 326:583-98. [PMID: 16847638 DOI: 10.1007/s00441-006-0268-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/31/2006] [Indexed: 12/20/2022]
Abstract
Neuropeptides are small protein molecules (composed of 3-100 amino-acid residues) that have been localized to discrete cell populations of central and peripheral neurons. In most instances, they coexist with low-molecular-weight neurotransmitters within the same neurons. At the subcellular level, neuropeptides are selectively stored, singularly or more frequently in combinations, within large granular vesicles. Release occurs through mechanisms different from classical calcium-dependent exocytosis at the synaptic cleft, and thus they account for slow synaptic and/or non-synaptic communication in neurons. Neuropeptide co-storage and coexistence can be observed throughout the central nervous system and are responsible for a series of functional interactions that occur at both pre- and post-synaptic levels. Thus, the subcellular site(s) of storage and sorting mechanisms into different neuronal compartments are crucial to the mode of release and the function of neuropeptides as neuronal messengers.
Collapse
Affiliation(s)
- Chiara Salio
- Dipartimento di Morfofisiologia Veterinaria and Rita Levi Montalcini Center for Brain Repair, Via Leonardo da Vinci 44, 10095, Grugliasco (TO), Italy
| | | | | | | |
Collapse
|
19
|
Merali Z, Kent P, Du L, Hrdina P, Palkovits M, Faludi G, Poulter MO, Bédard T, Anisman H. Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects. Biol Psychiatry 2006; 59:594-602. [PMID: 16197926 DOI: 10.1016/j.biopsych.2005.08.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 05/03/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Postmortem levels of several stress- and depression-relevant neuropeptides were assessed in brain regions of depressed suicides relative to control subjects that had died of other causes. METHODS Brains of suicides and those that died from other causes were collected soon after death (typically <6 hours). Immunoreactivity levels (ir) of corticotropin-releasing hormone (CRH-ir) and arginine vasopressin (AVP-ir), and the bombesin analogs, gastrin-releasing peptide (GRP-ir), and neuromedin B (NMB-ir), were assessed. RESULTS Levels of CRH-ir among suicides were elevated in the locus coeruleus (LC), frontopolar, dorsolateral prefrontal (DMPFC) and ventromedial prefrontal cortices, but were reduced at the dorsovagal complex (DVC). The concentration of AVP-ir was elevated at the paraventricluar hypothalamic nucleus, LC, and DMPFC, and reduced at the DVC. Finally, GRP and NMB variations, which might influence anxiety states, were limited, although GRP-ir within the LC of suicides was higher than in control subjects, while NMB-ir was reduced at the DVC of suicides. CONCLUSIONS The data show several neuropeptide changes in relation to suicide, although it is premature to ascribe these outcomes specifically to the suicide act versus depression. Likewise, it is uncertain whether the neuropeptide alterations were etiologically related to suicide/depression or secondary to the depressive state.
Collapse
Affiliation(s)
- Zul Merali
- Institute of Mental Health Research, University of Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Alponti RF, Breno MC, Mancera JM, Martin-Del-Rio MP, Silveira PF. Distribution of somatostatin immunoreactivity in the brain of the snake Bothrops jararaca. Gen Comp Endocrinol 2006; 145:270-9. [PMID: 16288754 DOI: 10.1016/j.ygcen.2005.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 08/16/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022]
Abstract
The distribution of perikarya and fibers containing somatostatin was studied in the brain of the snake Bothrops jararaca by means of immunohistochemistry using an antiserum against synthetic somatostatin. Immunoreactive perikarya and fibers were localized in telencephalic, diencephalic and mesencephalic areas. In the telencephalon, numerous immunoreactive perikarya were found in the medial, dorsomedial, dorsal and lateral cortex, mainly in the deep plexiform layer, less so in the cellular layer, but not in the superficial plexiform layer. Immunoreactive perikarya were also observed in the dorsal ventricular ridge, the nucleus of the diagonal band of Broca, amygdaloid complex, septum and lamina terminalis. In the diencephalon, labelled cells were observed in the paraventricular, periventricular hypothalamic and in the recessus infundibular nuclei. In the mesencephalon, immunoreactive perikarya were seen in the mesencephalic reticular formation, reticular nucleus of the isthmus and torus semicircularis. Labelled fibers ran along the diencephalic floor and the inner zone of the median eminence, and ended in the neural lobe of the hypophysis. Other fibers were observed in the outer zone of the median eminence close to the portal vessels and in the septum, lamina terminalis, retrochiasmatic nucleus, deep layers of the tectum, periventricular gray and granular layer of the cerebellum. Our data suggest that somatostatin may function as a mediator of adenohypophysial secretion as well as neurotransmitter and/or neuromodulator which can regulate the neurohypophysial peptides in the snake B. jararaca.
Collapse
Affiliation(s)
- R F Alponti
- Laboratory of Pharmacology, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
21
|
Sharman G, Ghorbel M, Leroux M, Beaucourt S, Wong LF, Murphy D. Deciphering the mechanisms of homeostatic plasticity in the hypothalamo-neurohypophyseal system—genomic and gene transfer strategies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:151-82. [PMID: 14769434 DOI: 10.1016/j.pbiomolbio.2003.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hypothalamo-neurohypophyseal system (HNS) is the specialised brain neurosecretory apparatus responsible for the production of a peptide hormone, vasopressin, that maintains water balance by promoting water conservation at the level of the kidney. Dehydration evokes a massive increase in the regulated release of hormone from the HNS, and this is accompanied by a plethora of changes in morphology, electrical properties and biosynthetic and secretory activity, all of which are thought to facilitate hormone production and delivery, and hence the survival of the organism. We have adopted a functional genomic strategy to understand the activity dependent plasticity of the HNS in terms of the co-ordinated action of cellular and genetic networks. Firstly, using microarray gene-profiling technologies, we are elucidating which genes are expressed in the HNS, and how the pattern of expression changes following physiological challenge. The next step is to use transgenic rats to probe the functions of these genes in the context of the physiological integrity of the whole organism.
Collapse
Affiliation(s)
- Greig Sharman
- Molecular Neuroendocrinology Research Group, The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | | | | | | | | | | |
Collapse
|
22
|
Wei R, Sternberg EM. IL-1β-mediated neuropeptide and immediate early gene mRNA induction is defective in Lewis hypothalamic cell cultures. J Neuroimmunol 2004; 146:114-25. [PMID: 14698853 DOI: 10.1016/j.jneuroim.2003.10.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We previously found that Lewis (LEW/N) hypothalamic cells respond to interleukin-1beta (IL-1beta) with reduced corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) peptide synthesis and secretion compared to Fischer (F344/N) cells. To investigate whether this peptide hyporesponsiveness in LEW/N cells is secondary to their deficient mRNA expression, temporal mRNA expression patterns of CRH, AVP, and several hypothalamic neuropeptides induced by IL-1beta in LEW/N and F344/N hypothalamic dissociated cell cultures were delineated by quantitative real-time polymerase chain reaction (RT-PCR). To investigate the molecular mechanisms underlying neuropeptide mRNA induction in cells of both strains, temporal mRNA expression patterns of immediate early genes (IEGs) and several signal transduction-associated molecules were also examined. We found that LEW/N hypothalamic cells were hyporesponsive to IL-1beta induction of neuropeptide and IEG mRNA, while LEW/N cells transcribed more IL-1 receptor and inducible nitric oxide synthase (iNOS) compared to F344N/N cells, suggesting that LEW/N and F344/N hypothalamic cells are differentially activated by IL-1beta.
Collapse
Affiliation(s)
- Rongtai Wei
- Integrative Neural Immune Program, NIMH, NIH, 36 Convent Drive, Building 36, Room 1A23, Bethesda, MD 20892-4020, USA
| | | |
Collapse
|
23
|
Landry M, Vila-Porcile E, Hökfelt T, Calas A. Differential routing of coexisting neuropeptides in vasopressin neurons. Eur J Neurosci 2003. [DOI: 10.1046/j.1460-9568.2002.00162.x-i1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Landry M, Vila-Porcile E, Hökfelt T, Calas A. Differential routing of coexisting neuropeptides in vasopressin neurons. Eur J Neurosci 2003; 17:579-89. [PMID: 12814355 DOI: 10.1046/j.1460-9568.2003.02472.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The functional implications of intraneuronal coexistence of different neuropeptides depend on their respective targeting to release sites. In the rat hypothalamic magnocellular neurons, we investigated a possible differential routing of the coexpressed galanin and vasopressin. The respective location of proteins and messengers was assessed with double immunogold and in situ hybridization combining confocal and electron microscope analysis. The various populations of labelled granules were quantitatively compared in three subcellular compartments: perikarya, local processes and posthypophyseal nerve endings. Three subpopulations of granules were detected in all three compartments, but their respective amount showed significant differences. Galanin alone was immunolocalized in some secretory granules, vasopressin alone in others, and both peptides in a third subpopulation of granules. The major part of the granules containing vasopressin, either alone or in association with galanin, is found in neurohypophyseal nerve endings. In contrast, galanin single-labelled granules represent the most abundant population in dendritic processes, while double-labelled granules are more numerous in perikarya. This indicates a preferential distribution of the two peptides in the different compartments of magnocellular neurons. Furthermore, galanin and vasopressin messenger RNAs were detected at different domains of the endoplasmic reticulum, suggesting that translation might also occur at different locations, thus leading to partial segregation of galanin and vasopressin cargoes between two populations of secretory granules. The present study provides, for the first time in mammals, evidence suggesting that galanin and vasopressin are only partly copackaged and undergo a preferential targeting toward dendrites or neurohypophysis, suggesting different functions, autocrine/paracrine and endocrine, respectively.
Collapse
Affiliation(s)
- Marc Landry
- INSERM EPI 9914, Institut François Magendie, Université Victor Segalen, Bordeaux, France.
| | | | | | | |
Collapse
|
25
|
Hussy N. Glial cells in the hypothalamo-neurohypophysial system: key elements of the regulation of neuronal electrical and secretory activity. PROGRESS IN BRAIN RESEARCH 2002; 139:95-112. [PMID: 12436929 DOI: 10.1016/s0079-6123(02)39010-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Nicolas Hussy
- CNRS-UMR 5101, CCIPE, 141 rue de la Cardonille, 34094 Montpellier, France.
| |
Collapse
|
26
|
Abstract
The term neuropeptides commonly refers to a relatively large number of biologically active molecules that have been localized to discrete cell populations of central and peripheral neurons. I review here the most important histological and functional findings on neuropeptide distribution in the central nervous system (CNS), in relation to their role in the exchange of information between the nerve cells. Under this perspective, peptide costorage (presence of two or more peptides within the same subcellular compartment) and coexistence (concurrent presence of peptides and other messenger molecules within single nerve cells) are discussed in detail. In particular, the subcellular site(s) of storage and sorting mechanisms within neurons are thoroughly examined in the view of the mode of release and action of neuropeptides as neuronal messengers. Moreover, the relationship of neuropeptides and other molecules implicated in neural transmission is discussed in functional terms, also referring to the interactions with novel unconventional transmitters and trophic factors. Finally, a brief account is given on the presence of neuropeptides in glial cells.
Collapse
Affiliation(s)
- A Merighi
- Department of Veterinary Morphophysiology, Rita Levi-Montalcini Center for Brain Repair, University of Torino, UE, Italy.
| |
Collapse
|
27
|
Abstract
The magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) express multiple kinds of genes, including not only the classical hormones arginine vasopressin (AVP) and oxytocin (OXT), but also other physiologically active substances including neuropeptides, their receptors, and nitric oxide (NO) synthase, the rate-limiting enzyme in the synthesis of NO under physiological condition. For example, osmotic stimuli such as dehydration and chronic salt loading cause a wide range of changes of the expression levels of the genes and marked induction of the expression of the genes in the SON. The expression of the NO synthase gene in the SON under physiological conditions is reviewed.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | |
Collapse
|
28
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Transgenic Models for Studies of Oxytocin and Vasopressin. TRANSGENIC MODELS IN ENDOCRINOLOGY 2001. [DOI: 10.1007/978-1-4615-1633-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Watt JA, Hobbs NK. Interleukin-1beta immunoreactivity in identified neurons of the rat magnocellular neurosecretory system: evidence for activity-dependent release. J Neurosci Res 2000; 60:478-89. [PMID: 10797550 DOI: 10.1002/(sici)1097-4547(20000515)60:4<478::aid-jnr6>3.0.co;2-r] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interleukin-1beta has been demonstrated in neurons of the rat hypothalamus, including cells of the magnocellular neurosecretory system and tuberoinfundibular system (Lechan et al., [1990] Brain Res. 514:135-140). Despite its potential importance to regulation of neuroendocrine function, however, neither the specific cell types that express interleukin-1beta or the conditions that may result in its release have yet been described. Therefore, we utilized a combination of immunocytochemical and immunoelectron microscopic localization, in conjunction with Western blot analysis, on normonatremic, hypernatremic, and lactating rats to assess the site of synthesis and potential secretion characteristics of interleukin-1beta in the rat magnocellular neurosecretory system. Interleukin-1beta immunoreactivity was localized within both oxytocin and vasopressin neurons in the paraventricular, supraoptic, accessory and periventricular hypothalamic nuclei. Additionally, interleukin-1beta immunoreactive fibers were localized in the zona interna and zona externa of the median eminence and in the neurohypophysis. Immunoelectron microscopic analysis revealed that interleukin-1beta immunoreactivity is associated with small spherical structures, distinct from neurosecretory granules, in neurosecretory axons within the neurohypophysis. Furthermore, stimulation of heightened neurosecretory activity via chronic osmotic challenge and lactation resulted in a marked diminution in levels of interleukin-1beta immunoreactivity in the neurohypophysis with a subsequent return to normal levels after cessation of the stimuli. Western blot analysis confirmed the existence of interleukin-1beta protein in the neurohypophysis and provided further evidence for reduction in levels of IL-1beta immunoreactivity after stimulation of secretory activity. These results suggest an endogenous neuronal source of interleukin-1beta exists within the rat magnocellular neurosecretory system under normal physiological conditions. The potential for activity-dependent release of IL-1beta and implications for the involvement of interleukin-1beta in regulation of neurosecretory activity are discussed.
Collapse
Affiliation(s)
- J A Watt
- Department of Biology, Montana State University, Bozeman 59717, USA.
| | | |
Collapse
|
31
|
Zhang L, Karpinski E, Benishin CG. Prostaglandin E2 modulates a non-inactivating potassium current in rat neurohypophyseal nerve terminals. Neurochem Int 1999; 35:345-55. [PMID: 10517695 DOI: 10.1016/s0197-0186(99)00073-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A non-inactivating voltage dependent K+ channel current was observed in neuro-hypophyseal nerve terminals. This current was sensitive to inhibition by 4-aminopyridine and tetraethyl ammonium chloride, but was not sensitive to inhibition by alpha- or beta-dendrotoxin. Prostaglandin E2 (PGE2) modulated the voltage-dependent K+ channel, through a receptor-mediated process, as indicated by meclofenamate sensitivity, and this involved the activation of G protein(s), as indicated by sensitivity to guanosine-5'-O-(2-thiodiphosphate) (GDPfS). After short periods of incubation (e.g. 5 min), PGE2 increased the non-inactivating current. Following longer incubation periods with PGE2 (e.g. 20 min), the non-inactivating current declined. Forskolin and the cyclic adenosine monophosphate (AMP) analogs 8-bromo- and dibutyryl cyclic AMP, and Sp-cyclic AMPs inhibited the current, but did not mimic the increase in current caused by PGE2. Also, the cyclic AMP antagonist Rp-cyclic AMPs did not block the increase in current induced by PGE2. These results indicate that activation of cyclic AMP-dependent protein kinase (PKA) is not involved in mediating the stimulatory actions of PGE2. These observations provide evidence that PGE2 may contribute to the regulation of hormone release from the posterior pituitary by modulating K+ channels. However, the post-receptor mechanisms of subcellular signal transduction underlying this effect remain unknown.
Collapse
Affiliation(s)
- L Zhang
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
32
|
Glasgow E, Kusano K, Chin H, Mezey E, Young WS, Gainer H. Single cell reverse transcription-polymerase chain reaction analysis of rat supraoptic magnocellular neurons: neuropeptide phenotypes and high voltage-gated calcium channel subtypes. Endocrinology 1999; 140:5391-401. [PMID: 10537171 DOI: 10.1210/endo.140.11.7136] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Magnocellular neurosecretory cells (MNCs) in the hypothalamo-neurohypophysial system that express and secrete the nonapeptides oxytocin (OT) and vasopressin (VP) were evaluated for the expression of multiple genes in single magnocellular neurons from the rat supraoptic nucleus using a single cell RT-PCR protocol. We found that all cells representing the two major phenotypes, the OT and VP MNCs, express a small, but significant, amount of the other nonapeptide's messenger RNA (mRNA). In situ hybridization histochemical analyses confirmed this observation. A third phenotype, containing equivalent amounts of OT and VP mRNA, was detected in about 19% of the MNCs from lactating female supraoptic nuclei. Analyses of these phenotypes for other coexisting peptide mRNAs (e.g. CRH, cholecystokinin, galanin, dynorphin, and the calcium-binding protein, calbindin) generally confirmed expectations from the literature, but revealed cell to cell variation in their coexpression. Our results also show that the high voltage-activated calcium channel subunit genes, alpha1A-D, alpha2, and beta1-4 are expressed in virtually all MNCs. However, the alpha1E subunit gene is not expressed at detectable levels in these cells. The expression of all of the beta-subunit genes in each MNC may account for the variations in physiological and pharmacological properties of the high voltage-activated channels found in these neurons. (Endocrinology 140: 5391-5401, 1999)
Collapse
Affiliation(s)
- E Glasgow
- Laboratory of Neurochemistry, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
33
|
Wilke RA, Lupardus PJ, Grandy DK, Rubinstein M, Low MJ, Jackson MB. K+ channel modulation in rodent neurohypophysial nerve terminals by sigma receptors and not by dopamine receptors. J Physiol 1999; 517 ( Pt 2):391-406. [PMID: 10332090 PMCID: PMC2269354 DOI: 10.1111/j.1469-7793.1999.00391.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. Sigma receptors bind a diverse group of chemically unrelated ligands, including pentazocine, apomorphine (a dopamine receptor agonist) and haloperidol (a dopamine receptor antagonist). Although sigma binding sites are widely distributed, their physiological roles are poorly understood. Here, the whole-terminal patch-clamp technique was used to demonstrate that sigma receptors modulate K+ channels in rodent neurohypophysis. 2. Previous work suggested that dopamine type 4 (D4) receptors modulate neurohypophysial K+ current, so this study initially tested the role of dopamine receptors. Experiments using transgenic mice lacking D2, D3 or D4 receptors indicated that the reduction of K+ current by PPHT and U101958 (ligands thought to be selective for dopamine receptors) is not mediated by dopamine receptors. The sensitivity of the response to U101958 (a drug that binds to D4 receptors) was the same in both wild-type and D4 receptor-deficient mice. 3. Experiments with other ligands revealed a pharmacological signature inconsistent with any known dopamine receptor. Furthermore, dopamine itself (at 100 microM) had no effect. Thus, despite the activity of a number of putative dopamine receptor ligands, dopamine receptors play no role in the modulation of neurohypophysial K+ channels. 4. Because of the negative results regarding dopamine receptors, and because some of the dopamine receptors ligands used here are known to bind also to sigma receptors, experiments were conducted to test for the involvement of sigma receptors. In rat neurohypophysis the sigma receptor ligands SKF10047, pentazocine, and ditolylguanidine all reversibly inhibited K+ current in a concentration-dependent fashion, as did haloperidol and apomorphine (ligands that bind to both dopamine and sigma receptors). The activity of these and other ligands tested here matches the reported binding specificity for sigma receptors. 5. Fifteen candidate endogenous sigma receptor ligands, including biogenic amines (e.g dopamine and serotonin), steroids (e.g. progesterone), and peptides (e.g. neuropeptide Y), were screened for activity at the sigma receptor. All were without effect. 6. Haloperidol reduced K+ current proportionally at all voltages without shifting the voltage dependence of activation and inactivation. Sigma receptor ligands inhibited current through two distinct K+ channels, the A-channel and the Ca2+-dependent K+ channel. In rat, all drugs reduced current through both channels proportionally, suggesting that both channels are modulated by a single population of sigma receptors. In contrast, mouse peptidergic nerve terminals either have two receptors which are sensitive to these drugs, or a single receptor that is differentially coupled to ion channel function. 7. The inhibition of voltage-activated K+ current by sigma receptors would be expected to enhance the secretion of oxytocin and vasopressin from the neurohypophysis.
Collapse
Affiliation(s)
- R A Wilke
- Department of Medicine, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hatton GI. Astroglial modulation of neurotransmitter/peptide release from the neurohypophysis: present status. J Chem Neuroanat 1999; 16:203-21. [PMID: 10422739 DOI: 10.1016/s0891-0618(98)00067-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reviewed in this article are those studies that have contributed heavily to our current conceptualizations of glial participation in the functioning of the magnocellular hypothalamo-neurohypophysial system. This system undergoes remarkable morphological and functional reorganization induced by increased demand for peptide synthesis and release, and this reorganization involves the astrocytic elements in primary roles. Under basal conditions, these glia appear to be vested with the responsibility of controlling the neuronal microenvironment in ways that reduce neuronal excitability, restrict access to neuronal membranes by neuroactive substances and deter neuron neuron interactions within the system. With physiological activation, the glial elements, via receptor-mediated mechanisms, take up new positions. This permissively facilitates neuron neuron interactions such as the exposure of neuronal membranes to released peptides and the formation of gap junctions and new synapses, enhances and prolongs the actions of those excitatory neurotransmitters for which there are glial uptake mechanisms, and facilitates the entry of peptides into the blood. In addition, subpopulations of these glia either newly synthesize or increase synthesis of neuroactive peptides for which their neuronal neighbors have receptors. Release of these peptides by the glia or their functional roles in the system have not yet been demonstrated.
Collapse
Affiliation(s)
- G I Hatton
- Department of Neuroscience, University of California, Riverside 92521, USA.
| |
Collapse
|
35
|
van Leeuwen FW, Verwer RW, Spence H, Evans DA, Burbach JP. The magnocellular neurons of the hypothalamo-neurohypophyseal system display remarkable neuropeptidergic phenotypes leading to novel insights in neuronal cell biology. PROGRESS IN BRAIN RESEARCH 1999; 119:115-26. [PMID: 10074784 DOI: 10.1016/s0079-6123(08)61565-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
For decades the magnocellular neurons of the hypothalamo-neurophypophyseal system (HNS), in which either vasopressin or oxytocin are produced and released into the bloodstream, have been playing a pivotal role in fundamental discoveries in the nervous system. The primary structure of vasopressin and oxytocin was the first of all neuropeptides to be published, i.e., in the 1950s by the Nobel prize laureate Du Vigneaud. Moreover, many trend-setting discoveries have their origin in the HNS, which abundantly expresses vasopressin and oxytocin, clearly displays its function and is relatively easily to manipulate. Examples are the phenomenon of coexpression of neuropeptides, patch-clamping of nerve endings, axonal transport of RNA, neuroglia interactions and the behavioral effects. An extraordinarily intriguing example is the homozygous Brattleboro rat, which lacks vasopressin by a germ-line mutation, and has disclosed many of the fundamental characteristics of peptidergic neurons, and neurons in general. In this chapter we will discuss a few of them, in particular the recent data on mutations in vasopressin RNA. It is to be expected that the HNS will retain its informative role in the next decades.
Collapse
Affiliation(s)
- F W van Leeuwen
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Van Koughnet K, Smirnova O, Hyman SE, Borsook D. Proenkephalin transgene regulation in the paraventricular nucleus of the hypothalamus by lipopolysaccharide and interleukin-1? J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990308)405:2<199::aid-cne5>3.0.co;2-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Gainer H, Chin H. Molecular diversity in neurosecretion: reflections on the hypothalamo-neurohypophysial system. Cell Mol Neurobiol 1998; 18:211-30. [PMID: 9535291 PMCID: PMC11560193 DOI: 10.1023/a:1022568904002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. The diversity of molecules involved in various aspects of neurosecretion, such as proprotein processing, axonal transport of large dense core vesicles (LDCVs), and regulated secretion, is discussed in the context of the hypothalamo-neurohypophysial system (HNS). 2. Recent studies have uncovered a family of at least seven processing enzymes known as proprotein convertases (PCs) which are involved in proteolytically cleaving protein precursors at paired basic amino acid motifs to yield biologically active peptides. Three of these, PC1(3), 2, and 5, are found in neurons and are involved in producing regulated secretory peptide products. 3. The axonal transport of LDCVs occurs on microtubule tracks by still unknown mechanisms. There are over 11 distinct kinesin-related molecules that have now been identified as possible microtubule motor candidates. 4. Calcium channels in the nervous system are known to be derived from at least five alpha-subunit and four beta-subunit genes with multiple alternatively spliced isoforms in each case. These could account, in part, for the varied calcium currents found in the HNS. 5. The large number of proteins and isoforms now demonstrated to be involved in regulated secretion are discussed, with a focus on LDCV compositions and the synaptotagmin gene family.
Collapse
Affiliation(s)
- H Gainer
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
38
|
Cellular localization of the prohormone convertases in the hypothalamic paraventricular and supraoptic nuclei: selective regulation of PC1 in corticotrophin-releasing hormone parvocellular neurons mediated by glucocorticoids. J Neurosci 1997. [PMID: 8987779 DOI: 10.1523/jneurosci.17-02-00563.1997] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The prohormone convertases (PCs) are processing enzymes that activate proproteins via cleavage at specific single or pairs of basic residues. The hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON) are primary sites of biosynthesis of several neuroendocrine hormone precursors, including provasopressin (pro-AVP), pro-oxytocin (pro-OT), and procorticotrophin-releasing hormone (pro-CRH), which require post-translational processing to yield active products. Using in situ hybridization, we observed PC1 and PC5 mRNAs in PVN and SON magnocellular neurons, while PC2 mRNA was observed in both magnocellular and parvocellular PVN neurons as well as magnocellular SON neurons. Similar to furin, PC7 mRNA was expressed throughout the PVN and SON, whereas PACE4 mRNA levels were undetectable. Both immunohistochemical and Western blot studies were performed to demonstrate the presence of PC proteins and forms in the PVN and SON. Using double-labeling in situ hybridization, we examined the cellular colocalization of each PC mRNA with pro-AVP, pro-OT, and pro-CRH mRNAs in PVN and SON. PC1 mRNA was colocalized with both AVP and OT mRNA in PVN and SON magnocellular neurons. All AVP, OT, and CRH neurons expressed PC2. In contrast, PC5 mRNA was colocalized only with OT mRNA. We examined the effects of adrenalectomy (ADX) on PVN PC mRNA levels. PC1 mRNA levels were increased selectively within CRH/AVP parvocellular neurons but were unchanged in PVN magnocellular AVP or OT neurons. These results established the anatomical organization of each convertase and proneuropeptide substrates in the PVN and SON and suggested potential roles for each enzyme under resting and stimulated conditions.
Collapse
|
39
|
Abstract
Based on functional characterizations with electrophysiological techniques, the channels in nerve terminals appear to be as diverse as channels in nerve cell bodies (Table I). While most presynaptic Ca2+ channels superficially resemble either N-type or L-type channels, variations in detail have necessitated the use of subscripts and other notations to indicate a nerve terminal-specific subtype (e.g., Wang et al., 1993). Variations such as these pose a serious obstacle to the identification of presynaptic channels based solely on the effects of channel blockers on synaptic transmission. Pharmacological sensitivity alone is not likely to help in determining functional properties. Crucial details, such as voltage sensitivity and inactivation, require direct examination. It goes without saying that every nerve terminal membrane contains Ca2+ channels as an entry pathway so that Ca2+ can trigger secretion. However, there appears to be no general specification of channel type, other than the exclusion of T-type Ca2+ channels. T-type Ca2+ channels are defined functionally by strong inactivation and low threshold. Some presynaptic Ca2+ channels inactivate (posterior pituitary and Xenopus nerve terminals), and others have a somewhat reduced voltage threshold (retinal bipolar neurons and squid giant synapse). Perhaps it is just a matter of time before a nerve terminal Ca2+ channel is found with both of these properties. The high threshold and strong inactivation of T-type Ca2+ channels are thought to be adaptations for oscillations and the regulation of bursting activity in nerve cell bodies. The nerve terminals thus far examined have no endogenous electrical activity, but rather are driven by the cell body. On functional grounds, it is then reasonable to anticipate finding T-type Ca2+ channels in nerve terminals that can generate electrical activity on their own. The rarity of such behavior in nerve terminals may be associated with the rarity of presynaptic T-type Ca2+ channels. In four of the five preparations reviewed in this chapter--motor nerve, squid giant synapse, ciliary ganglion, and retina bipolar neurons--evidence was presented that supports a location for Ca2+ channels that is very close to active zones of secretion. All of these synapses secrete from clear vesicles, and the speed and specificity of transduction provided by proximity may be a common feature of these rapid synapses. In contrast, the posterior pituitary secretion apparatus may be triggered by higher-affinity Ca2+ receptors and lower concentrations of Ca2+ (Lindau et al., 1992). This would correspond with the slower performance of peptidergic secretion, but because of the large stimuli needed to evoke release from neurosecretosomes, the possibility remains that the threshold for secretion is higher than that reported. While the role of Ca2+ as a trigger of secretion dictates a requirement for voltage-activated Ca2+ channels as universal components of the presynaptic membrane, the presence of other channels is more difficult to predict. Depolarizations caused by voltage-activated Na+ channels activate the presynaptic Ca2+ channels, but whether this depolarization requires Na+ channels in the presynaptic membrane itself may depend on the electrotonic length of the nerve terminal. Variations in density between motor nerve terminals may reflect species differences in geometry. The high Na+ channel density in the posterior pituitary reflects the great electrotonic length of this terminal arbor. Whether Na+ channels are abundant or not in a presynaptic membrane, K+ channels provide the most robust mechanism for limiting depolarization-induced Ca2+ entry. K+ channel blockers enhance transmission at most synapses. In general, K+ channels are abundant in nerve terminals, although their apparent lower priority compared to Ca2+ channels in the eyes of many investigators leaves us with fewer detailed investigations in some preparations. Most nerve terminals have more than
Collapse
Affiliation(s)
- M B Jackson
- Department of Physiology, University of Wisconsin, Madison 53706-1532, USA
| |
Collapse
|
40
|
Privette TH, Wang JQ, Ingenito AJ, Terrian DM. Dentate granule cells as a central cardioregulatory site in the rat. Brain Res 1994; 656:295-301. [PMID: 7820590 DOI: 10.1016/0006-8993(94)91473-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dentate granule cells can be selectively destroyed by intrahippocampal injections of colchicine. This study evaluates the consequences of granule cell destruction on blood pressure regulation in the normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rat (SHR). Bilateral destruction of dentate granule cells at 6 weeks of age produced a significant increase in blood pressure in the WKY that lasted for approximately 3 weeks, and a biphasic effect (increase then decrease) in the SHR that resulted in a significant hypotensive period that persisted for 6 weeks. Granule cell destruction at 11 weeks produced a maximal hypertension in the SHR that preceded age-matched controls by 4 weeks, but produced only a small transient increase in WKY blood pressure. Dentate granule cells are the exclusive source of prodynorphin-derived peptides in the hippocampal formation and their synthesis is regulated by glucocorticoids. Evidence suggests glucocorticoids may be involved in the regulation of blood pressure and hypertension. We determined that chronic high levels of corticosterone significantly reduced hippocampal dynorphin B levels in normotensive Sprague-Dawley rats. In addition, we confirmed that naive SHRs also contain significantly lower levels of hippocampal dynorphin B. These results suggest (i) that dentate granule cells represent a discrete neural site that may exert a tonic inhibitory influence on blood pressure, (ii) that dentate granule cells are not required for the full expression of hypertension in the SHR, and (iii) that chronic high levels of corticosterone can reduce dynorphin B levels in the dentate granule cells of normotensive rats.
Collapse
Affiliation(s)
- T H Privette
- Department of Anatomy and Cell Biology, East Carolina University School of Medicine, Greenville, NC 27858-4354
| | | | | | | |
Collapse
|
41
|
Van de Heijning BJ, Maigret C, Koekkoek-van den Herik I, Smelik WF, van Wimersma Greidanus TB. Dynorphin-A and vasopressin release in the rat: a structure-activity study. Neuropeptides 1994; 26:371-8. [PMID: 7936124 DOI: 10.1016/0143-4179(94)90021-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects on vasopressin (VP) release of three dynorphin-A fragments and two antidynorphin antisera were tested in vivo and in vitro. In vivo, the order of potency to inhibit VP release 30 min upon i.c.v. injection was: dynorphin-A-(1-17) > dynorphin-A-(1-13) > dynorphin-A-(1-8). l.c.v. co-administration of 10 nmoles of the specific endopeptidase-inhibitor cFPAAF-pAB and dynorphin-A-(1-8) also suppressed VP secretion. Dynorphin-A-(1-17) antiserum enhanced VP release 20 and 60 min after i.c.v. injection. The antiserum that recognized dynorphin-A-(1-13) elevated VP plasma levels at 60 min post-injection. In vitro, dynorphin-A-(1-8) suppressed electrically evoked VP release from the isolated neural lobe. VP release was not affected by dynorphin-A-(1-13), dynorphin-A-(1-17), naloxone, or by the anti-dynorphin antisera. These data indicate that dynorphin-A-(1-17), rather than dynorphin-A-(1-8), plays a role in the centrally located control of neurohypophysial VP release, whereas dynorphin-A-(1-8) is involved in the control located in the posterior pituitary. The synthetic intermediate fragment dynorphin-A-(1-13) appears to affect VP release both centrally and peripherally.
Collapse
Affiliation(s)
- B J Van de Heijning
- Rudolf Magnus Institute, Department of Pharmacology, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Bielefeldt K, Jackson MB. Phosphorylation and dephosphorylation modulate a Ca(2+)-activated K+ channel in rat peptidergic nerve terminals. J Physiol 1994; 475:241-54. [PMID: 8021831 PMCID: PMC1160374 DOI: 10.1113/jphysiol.1994.sp020065] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. Ca(2+)-activated K+ channels regulate the excitability of many nerve terminals. A Ca(2+)-activated K+ channel present in the membranes of rat posterior pituitary nerve terminals runs down following the formation of excised patches. This run-down process reflects enzymatic dephosphorylation. 2. Both Mg-ATP and the protein phosphatase inhibitor okadaic acid prevented run-down of channel activity in excised patches. The okadaic acid sensitivity suggests that run-down resulted from dephosphorylation by a type 1 protein phosphatase. 3. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) accelerated run-down by accelerating okadaic acid-sensitive dephosphorylation. GTP gamma S had no effect on the activity of the protein kinase in these patches. These results suggest a direct coupling between a G-protein and a protein phosphatase. 4. After run-down, channel activity could be restored by Mg-ATP; restoration depended on ATP hydrolysis, but did not require Ca2+ or a second messenger. Restoration of channel activity by ATP was blocked by staurosporine and 1-(5-isoquinolinylsulphonyl)-3-methylpiperizine, but not by more specific inhibitors of protein kinases. 5. Restoration of channel activity by phosphorylation was very sensitive to membrane potential; increasing the voltage by as little as 10 mV could dramatically enhance recovery. 6. Ca2+ and voltage acted synergistically to enhance phosphorylation; higher [Ca2+] permitted phosphorylation at more negative potentials. 7. During trains of high frequency stimulation under current clamp, action potentials were influenced by both the protein phosphatase and protein kinase, indicating that enzymatic modulation of channel gating occurs under physiological conditions. An important implication of these results is that voltage-dependent phosphorylation could play a role in use-dependent depression of secretion from nerve terminals.
Collapse
Affiliation(s)
- K Bielefeldt
- Department of Physiology, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
43
|
Herbert J. Peptides in the limbic system: neurochemical codes for co-ordinated adaptive responses to behavioural and physiological demand. Prog Neurobiol 1993; 41:723-91. [PMID: 7908139 DOI: 10.1016/0301-0082(93)90033-o] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Herbert
- Department of Anatomy, University of Cambridge, U.K
| |
Collapse
|
44
|
López Avalos MD, Mancera JM, Pérez-Fígares JM, Fernández-Llebrez P. Immunocytochemical localization of corticotropin-releasing factor in the brain of the turtle, Mauremys caspica. ANATOMY AND EMBRYOLOGY 1993; 188:163-71. [PMID: 8214631 DOI: 10.1007/bf00186250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Brain sections of the turtle, Mauremys caspica were studied by means of an antiserum against rat corticotropin-releasing factor. Immunoreactive neurons were identified in telencephalic, diencephalic and mesencephalic areas such as the cortex, nucleus caudatus, nucleus accumbens, amygdala, subfornical organ, paraventricular nucleus, hypothalamic dorsolateral aggregation, nucleus of the paraventricular organ, infundibular nucleus, pretectal nucleus, periventricular grey, reticular formation and nucleus of the raphe. Many immunoreactive cells located near the ependyma were bipolar, having an apical dendrite that contacted the cerebrospinal fluid. Immunoreactive fibers were seen in these locations and in the lamina terminalis, lateral forebrain bundle, supraoptic nucleus, median eminence, neurohypophysis, tectum opticum, torus semicircularis and deep mesencephalic nucleus. Parvocellular bipolar immunoreactive neurons from the paraventricular and infundibular nuclei projected axons that joined the hypothalamo-hypophysial tract and reached the outer zone of median eminence, and the neural lobe of the hypophysis where immunoreactive fibers terminated close to intermediate lobe cells. From these results it can be concluded that, as in other vertebrates, corticotropin-releasing factor in the turtle may act as a releasing factor and, centrally, as a neurotransmitter or neuromodulator.
Collapse
Affiliation(s)
- M D López Avalos
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | |
Collapse
|
45
|
Abstract
Hypothalamic neurosecretory neurons transcribe, translate, store, and secrete a large number of chemical messengers. The neurons contain hypothalamic signal substances that regulate the secretion of anterior pituitary hormones as well as the neurohypophysial peptides vasopressin and oxytocin. In addition to the classical hypophysiotropic hormones, a large number of neuropeptides and classical transmitters of amine and amino acid nature are present in the same cells. This is particularly evident in the magnocellular neurons of the supraoptic and paraventricular nuclei, and in parvocellular neurons of the arcuate and paraventricular nuclei. The changes in gene expression induced by experimental manipulations and the colocalization chemical messengers in hypothalamic neurosecretory neurons and its possible significance is summarized in this review.
Collapse
Affiliation(s)
- B Meister
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
46
|
Whitnall MH. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 1993; 40:573-629. [PMID: 8484004 DOI: 10.1016/0301-0082(93)90035-q] [Citation(s) in RCA: 423] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M H Whitnall
- Department of Physiology, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5145
| |
Collapse
|
47
|
Gray RS, Muehleisen DP, Katahira EJ, Bollenbacher WE. A 28-kDa cerebral neuropeptide from Manduca sexta: relationship to the insect prothoracicotropic hormone. Cell Mol Neurobiol 1993; 13:39-58. [PMID: 8458062 PMCID: PMC11566960 DOI: 10.1007/bf00712988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/1992] [Accepted: 09/16/1992] [Indexed: 01/30/2023]
Abstract
1. A 28-kDa peptide from the brain of the tobacco hornworm, Manduca sexta, was purified via HPLC. The peptide copurified with the insect neurohormone, prothoracicotropic hormone (PTTH), through two HPLC columns. 2. Immunocytochemistry using polyclonal antibodies against the 28-kDa peptide revealed that the peptide was produced in the same protocerebral neurons that produce PTTH. Western blot analysis demonstrated that the 28-kDa peptide and big PTTH are different molecules. 3. A PTTH in vitro bioassay indicated that despite having chromatographic properties similar to those of big PTTH and being produced by the same neurons, the 28-kDa peptide did not have PTTH activity. 4. Amino acid sequence analysis yielded a 27 N-terminal amino acid sequence that had no similarity with known peptides. 5. Immunocytochemical studies revealed that the 28-kDa peptide is present as early as 30% embryonic development and is absent by adult eclosion. This is in contrast to big PTTH, which is expressed throughout the Manduca life cycle. 6. These data suggest that the 28-kDa peptide is another secretory phenotype of the lateral neurosecretory cell group III (L-NSC III) which may have functions distinct from those for big PTTH or may act synergistically with big PTTH.
Collapse
Affiliation(s)
- R S Gray
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | | | |
Collapse
|
48
|
Westbrook AL, Regan SA, Bollenbacher WE. Developmental expression of the prothoracicotropic hormone in the CNS of the tobacco hornworm Manduca sexta. J Comp Neurol 1993; 327:1-16. [PMID: 8432902 DOI: 10.1002/cne.903270102] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The prothoracicotropic hormone is an insect neuropeptide released into the hemolymph to signal molting and metamorphosis through its stimulation of steroidogenesis. The only known source of the prothoracicotropic hormone in the tobacco hornworm, Manduca sexta, has been a group of lateral cerebral neurosecretory cells, the L-NSC III. In this study, the developmental and spatial distribution of the prothoracicotropic hormone was examined throughout the life cycle of Manduca. In common with many vertebrates and invertebrates in which neuropeptides are located in several regions within the central nervous system (CNS), the prothoracicotropic hormone phenotype in Manduca is expressed by CNS neurons in addition to the L-NSC III. These neurons are located in the brain, frontal ganglion, and subesophageal ganglion. One cerebral neurosecretory cell group, the ventromedial neurons, expresses the prothoracicotropic hormone phenotype and the behavioral neurohormone, eclosion hormone. Whereas the L-NSC III and the ventromedial neurons express the peptide phenotype throughout the life cycle, the other neurons express the peptide only during the embryonic and larval stages. This precise spatial and temporal expression of the prothoracicotropic hormone by different groups of neurosecretory cells raises the possibility that in Manduca the peptide may, in addition to its known neuroendocrine function, play other physiological roles in different ways at different stages of the life cycle.
Collapse
Affiliation(s)
- A L Westbrook
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | |
Collapse
|
49
|
Bielefeldt K, Rotter JL, Jackson MB. Three potassium channels in rat posterior pituitary nerve terminals. J Physiol 1992; 458:41-67. [PMID: 1302271 PMCID: PMC1175143 DOI: 10.1113/jphysiol.1992.sp019405] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. The patch clamp technique was used to investigate the K+ channels in the membranes of nerve terminals in thin slices prepared from the rat posterior pituitary. 2. Depolarization of the membrane produced a high density of K+ current. With a holding potential of -80 mV, test pulses to +50 mV activated a K+ current which was inactivated by 65% within 200 ms. Hyperpolarizing prepulses enhanced the transient K+ current, with half-maximal enhancement at -87 mV. Depolarizing prepulses reduced or eliminated the transient K+ current. 3. In cell-attached patches formed with pipettes containing 130 mM KCl, three types of K+ channel could be distinguished on the basis of single-channel properties. One channel had a conductance of 33 pS and was inactivated with a time constant of 18 ms. A second channel had a conductance of 134 pS and was inactivated with a time constant of 71 ms. A third channel had a conductance of 27 pS, was activated relatively slowly with a time constant of 65 ms, and was not inactivated during test pulses of up to one second in duration. 4. Inactivation of the whole-cell K+ current was a biphasic process with two exponential components. The fast component had a time constant of 22 ms (at +50 mV), corresponding well with the time constant of decay of average current in cell-attached patches containing only the rapidly inactivating K+ channel. The slow component of inactivation had a time constant of 104 ms (at +50 mV), which was similar to but slightly slower than the time constant of decay of the average current in cell-attached patches containing only the slowly inactivating K+ channel. Inactivation of the slow transient K+ current became more rapid with increasing depolarization. 5. The low-conductance rapidly inactivating K+ channel had a lower voltage threshold for activation than the other two K+ channels. 6. Both inactivating K+ channels were enhanced in a similar manner by prior hyperpolarization. There was no difference with regard to voltage mid-point or steepness. 7. The large-conductance slowly inactivating K+ channel was activated by Ca2+ at the inner membrane surface. The resting intracellular Ca2+ was sufficiently high to produce significant activation of this channel without depolarization-induced Ca2+ entry. 8. Removal of Ca2+ from the bathing solution produced a -10 mV shift in the voltage dependence of enhancement of both transient K+ currents by prior hyperpolarization. This could be explained as a surface charge effect.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Bielefeldt
- Department of Physiology, University of Wisconsin Medical School, Madison 53706
| | | | | |
Collapse
|
50
|
Callahan MF, Thore CR, Sundberg DK, Gruber KA, O'Steen K, Morris M. Excitotoxin paraventricular nucleus lesions: stress and endocrine reactivity and oxytocin mRNA levels. Brain Res 1992; 597:8-15. [PMID: 1477737 DOI: 10.1016/0006-8993(92)91499-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electrolytic lesion of the paraventricular nucleus (PVN) of the hypothalamus blocks the tachycardia response to stress. The current study examined the effects of chemical lesion of PVN parvocellular neurons on the cardiovascular and endocrine responses to stress and on the content of hypothalamic oxytocin (OT) mRNA levels. Acute footshock stress increased heart rate in both ibotenic acid lesion and control groups of animals; however, the tachycardia was significantly lower in animals with a PVN lesion than the controls. Lesion of the PVN also attenuated the increase in plasma OT induced by stress, 4-fold in the lesion group versus 20-fold for the controls. There was not a generalized decrease in hormonal responsiveness since the OT response to an osmotic challenge was exaggerated in the lesion group. There was no difference between the groups in the arterial pressure and vasopressin responses to acute stress. Neurotoxin lesions of the PVN also resulted in significant depletions of VP and OT in all levels of the spinal cord and decreased OT levels in the dorsal brainstem. Ibotenic acid lesions of the PVN resulted in no significant changes in OT mRNA in the PVN, SON and PP. In addition, the 48-h dehydration resulted in a significant increase in plasma OT and OT mRNA in the PVN. These data indicate that the parvocellular neurons of the PVN play a role in integration of cardiovascular and endocrine responses to both stressful and osmotic stimuli and provide further evidence that parvocellular OT and VP neurons project to the brainstem and spinal cord.
Collapse
Affiliation(s)
- M F Callahan
- Department of Medicine, Bowman Gray School of Medicine, Wake Forest University Medical Center, Winston-Salem, NC 27157
| | | | | | | | | | | |
Collapse
|