1
|
Al-Khaz'Aly A, Ghandorah S, Topham JJ, Osman N, Louie T, Farshidfar F, Amrein M. A comprehensive method to analyze single-cell vibrations. Biophys J 2025; 124:77-92. [PMID: 39506334 PMCID: PMC11739874 DOI: 10.1016/j.bpj.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
All living cells vibrate depending on metabolism. It has been hypothesized that vibrations are unique for a given phenotype and thereby suitable to diagnose cancer type and stage and to pre-assess the effectiveness of pharmaceutical treatments in real time. However, cells exhibit highly variable vibrational signals, can be subject to environmental noise, and may be challenging to differentiate, having so far limited the phenomenon's applicability. Here, we combined the sensitive method of force spectroscopy using optical tweezers with comprehensive statistical analysis. After data acquisition, the signal was decomposed into its spectral components via fast Fourier transform. Peaks were parameterized and subjected to principal-component analysis to perform an unbiased multivariate statistical evaluation. This method, which we term cell vibrational profiling (CVP), systematically assesses cellular vibrations. To validate the CVP technique, we conducted experiments on five U251 glioblastoma cells, using 8- to 10-μm polystyrene beads as a control for comparison. We collected raw data using optical tweezers, segmenting into 150+ 5-s intervals. Each segment was converted into power spectra representing a frequency resolution of 10,000 Hz for both cells and controls. U251 glioblastoma cells exhibited significant vibrations at 402.6, 1254.6, 1909.0, 2169.4, and 3462.8 Hz (p < 0.0001). This method was further verified with principal-component analysis modeling, which revealed that, in cell-cell comparisons using the selected frequencies, overlap frequently occurred, and clustering was difficult to discern. In contrast, comparison between cell-bead models showed that clustering was easily distinguishable. Our paper establishes CVP as an unbiased, comprehensive technique to analyze cell vibrations. This technique effectively differentiates between cell types and evaluates cellular responses to therapeutic interventions. Notably, CVP is a versatile, cell-agnostic technique requiring minimal sample preparation and no labeling or external interference. By enabling definitive phenotypic assessments, CVP holds promise as a diagnostic tool and could significantly enhance the evaluation of pharmaceutical treatments.
Collapse
Affiliation(s)
- Ali Al-Khaz'Aly
- Department of Medical Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Computer Science, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Salim Ghandorah
- Department of Medical Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jared J Topham
- Department of Medical Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nasir Osman
- Department of Computer Science, Faculty of Science, University of Calgary, Calgary, AB, Canada; Department of Electrical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Taye Louie
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Farshad Farshidfar
- Department of Oncology, University of Calgary, Calgary, AB, Canada; Department of Biomedical Data Science and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California; Tenaya Therapeutics, South San Francisco, California.
| | - Matthias Amrein
- Department of Medical Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Laue M. Diagnostic electron microscopy in human infectious diseases - Methods and applications. J Microsc 2024. [PMID: 39560601 DOI: 10.1111/jmi.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
Diagnostic electron microscopy (EM) is indispensable in all cases of infectious diseases which deserve or profit from the detection of the entire pathogen (i.e. the infectious unit). The focus of its application has shifted during the last decades from routine diagnostics to diagnostics of special cases, emergencies and the investigation of disease pathogenesis. While the focus of application has changed, the methods remain more or less the same. However, since the number of cases for diagnostic EM has declined as the number of laboratories that are able to perform such investigations, the preservation of the present knowledge is important. The aim of this article is to provide a review of the methods and strategies which are useful for diagnostic EM related to infectious diseases in our days. It also addresses weaknesses as well as useful variants or extensions of established methods. The main techniques, negative staining and thin section EM, are described in detail with links to suitable protocols and more recent improvements, such as thin section EM of small volume suspensions. Sample collection, transport and conservation/inactivation are discussed. Strategies of sample examination and requirements for a proper recognition of structures are outlined. Finally, some examples for the actual application of diagnostic EM related to infectious diseases are presented. The outlook section will discuss recent trends in microscopy, such as automated object recognition by machine learning, regarding their potential in supporting diagnostic EM.
Collapse
Affiliation(s)
- Michael Laue
- Centre for Biological Threats and Special Pathogens (ZBS 4), Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
3
|
Singh H, Kumar P, Urs AB, Augustine J, Mohanty S, Kumar S, Narayan B. The renaissance of multipurpose AMeX method over conventional tissue processing method in the current diagnostic era: a comparative study. Biotech Histochem 2024; 99:432-436. [PMID: 39629660 DOI: 10.1080/10520295.2024.2434743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Many attempts have been made to simplify tissue fixation and processing prior to hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) and genomic DNA extraction. The acetone-methyl benzoate-xylene (AMeX) method, is gaining popularity as an alternative to aqueous formaldehyde fixation followed by alcohol dehydration. We have assessed the efficacy of AMeX for the quality of extracted genomic DNA in addition to H&E and IHC in biopsy specimens of human oral mucosal lesions of size not more than 1 cm. H&E staining showed similar results when AMeX method was compared with conventional fixation and processing. Improved IHC staining quality was observed in the sections of AMeX-processed tissue, as were improved quality and quantity of genomic DNA.
Collapse
Affiliation(s)
- Hanspal Singh
- Department of Oral & Maxillofacial Pathology and Microbiology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Priya Kumar
- Department of Oral & Maxillofacial Pathology and Microbiology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Aadithya B Urs
- Department of Oral & Maxillofacial Pathology and Microbiology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Jeyaseelan Augustine
- Department of Oral & Maxillofacial Pathology and Microbiology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Sujata Mohanty
- Department of Oral & Maxillofacial Surgery, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Somesh Kumar
- Pediatrics Genetics and Research Laboratory, Department of Pediatrics, Maulana Azad Medical College, New Delhi, India
| | - Bhaskar Narayan
- Department of Oral & Maxillofacial Pathology and Microbiology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| |
Collapse
|
4
|
Wang Y, Zhou S, Quan Y, Liu Y, Zhou B, Chen X, Ma Z, Zhou Y. Label-free spatiotemporal decoding of single-cell fate via acoustic driven 3D tomography. Mater Today Bio 2024; 28:101201. [PMID: 39221213 PMCID: PMC11364901 DOI: 10.1016/j.mtbio.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Label-free three-dimensional imaging plays a crucial role in unraveling the complexities of cellular functions and interactions in biomedical research. Conventional single-cell optical tomography techniques offer affordability and the convenience of bypassing laborious cell labelling protocols. However, these methods are encumbered by restricted illumination scanning ranges on abaxial plane, resulting in the loss of intricate cellular imaging details. The ability to fully control cellular rotation across all angles has emerged as an optimal solution for capturing comprehensive structural details of cells. Here, we introduce a label-free, cost-effective, and readily fabricated contactless acoustic-induced vibration system, specifically designed to enable multi-degree-of-freedom rotation of cells, ultimately attaining stable in-situ rotation. Furthermore, by integrating this system with advanced deep learning technologies, we perform 3D reconstruction and morphological analysis on diverse cell types, thus validating groups of high-precision cell identification. Notably, long-term observation of cells reveals distinct features associated with drug-induced apoptosis in both cancerous and normal cells populations. This methodology, based on deep learning-enabled cell 3D reconstruction, charts a novel trajectory for groups of real-time cellular visualization, offering promising advancements in the realms of drug screening and post-single-cell analysis, thereby addressing potential clinical requisites.
Collapse
Affiliation(s)
- Yuxin Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Shizheng Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yue Quan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yu Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
5
|
Mastrangelo R, Okada T, Ogura T, Ogura T, Baglioni P. Direct observation of the effects of chemical fixation in MNT-1 cells: A SE-ADM and Raman study. Proc Natl Acad Sci U S A 2023; 120:e2308088120. [PMID: 38091295 PMCID: PMC10743460 DOI: 10.1073/pnas.2308088120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
Aldehydes fixation was accidentally discovered in the early 20th century and soon became a widely adopted practice in the histological field, due to an excellent staining enhancement in tissues imaging. However, the fixation process itself entails cell proteins denaturation and crosslinking. The possible presence of artifacts, that depends on the specific system under observation, must therefore be considered to avoid data misinterpretation. This contribution takes advantage of scanning electron assisted-dielectric microscopy (SE-ADM) and Raman 2D imaging to reveal the possible presence and the nature of artifacts in unstained, and paraformldehyde, PFA, fixed MNT-1 cells. The high resolution of the innovative SE-ADM technique allowed the identification of globular protein clusters in the cell cytoplasm, formed after protein denaturation and crosslinking. Concurrently, SE-ADM images showed a preferential melanosome adsorption on the cluster's outer surface. The micron-sized aggregates were discernible in Raman 2D images, as the melanosomes signal, extracted through 2D principal component analysis, unequivocally mapped their location and distribution within the cells, appearing randomly distributed in the cytoplasm. Protein clusters were not observed in living MNT-1 cells. In this case, mature melanosomes accumulate preferentially at the cell periphery and are more closely packed than in fixed cells. Our results show that, although PFA does not affect the melanin structure, it disrupts melanosome distribution within the cells. Proteins secondary structure, conversely, is partially lost, as shown by the Raman signals related to α-helix, β-sheets, and specific amino acids that significantly decrease after the PFA treatment.
Collapse
Affiliation(s)
- Rosangela Mastrangelo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
- NIKKOL GROUP Nikko Chemicals Co., Ltd., Tokyo174-0046, Japan
- Department of Chemistry and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (Center for Colloid and Surface Science), University of Florence, FlorenceI-50019, Italy
| | - Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Taku Ogura
- NIKKOL GROUP Nikko Chemicals Co., Ltd., Tokyo174-0046, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Piero Baglioni
- Department of Chemistry and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (Center for Colloid and Surface Science), University of Florence, FlorenceI-50019, Italy
| |
Collapse
|
6
|
Zhu S, Deen MC, Zhu Y, Gilormini PA, Chen X, Davis OB, Chin MY, Henry AG, Vocadlo DJ. A Fixable Fluorescence-Quenched Substrate for Quantitation of Lysosomal Glucocerebrosidase Activity in Both Live and Fixed Cells. Angew Chem Int Ed Engl 2023; 62:e202309306. [PMID: 37582679 DOI: 10.1002/anie.202309306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Fluorogenic substrates are emerging tools that enable studying enzymatic processes within their native cellular environments. However, fluorogenic substrates that function within live cells are generally incompatible with cellular fixation, preventing their tandem application with fundamental cell biology methods such as immunocytochemistry. Here we report a simple approach to enable the chemical fixation of a dark-to-light substrate, LysoFix-GBA, which enables quantification of glucocerebrosidase (GCase) activity in both live and fixed cells. LysoFix-GBA enables measuring responses to both chemical and genetic perturbations to lysosomal GCase activity. Further, LysoFix-GBA permits simple multiplexed co-localization studies of GCase activity with subcellular protein markers. This tool will aid studying the role of GCase activity in Parkinson's Disease, creating new therapeutic approaches targeting the GCase pathway. This approach also lays the foundation for an approach to create fixable substrates for other lysosomal enzymes.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Matthew C Deen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yanping Zhu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Pierre-André Gilormini
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Xi Chen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Oliver B Davis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Marcus Y Chin
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Anastasia G Henry
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
7
|
Ichikawa T, Wang D, Miyazawa K, Miyata K, Oshima M, Fukuma T. Chemical fixation creates nanoscale clusters on the cell surface by aggregating membrane proteins. Commun Biol 2022; 5:487. [PMID: 35595960 PMCID: PMC9122943 DOI: 10.1038/s42003-022-03437-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale. Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins.
Collapse
Affiliation(s)
- Takehiko Ichikawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Dong Wang
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.,Faculty of Frontier Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kazuki Miyata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.,Faculty of Frontier Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Masanobu Oshima
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan. .,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan. .,Faculty of Frontier Engineering, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
8
|
Kohl P, Greiner J, Rog-Zielinska EA. Electron microscopy of cardiac 3D nanodynamics: form, function, future. Nat Rev Cardiol 2022; 19:607-619. [PMID: 35396547 DOI: 10.1038/s41569-022-00677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
The 3D nanostructure of the heart, its dynamic deformation during cycles of contraction and relaxation, and the effects of this deformation on cell function remain largely uncharted territory. Over the past decade, the first inroads have been made towards 3D reconstruction of heart cells, with a native resolution of around 1 nm3, and of individual molecules relevant to heart function at a near-atomic scale. These advances have provided access to a new generation of data and have driven the development of increasingly smart, artificial intelligence-based, deep-learning image-analysis algorithms. By high-pressure freezing of cardiomyocytes with millisecond accuracy after initiation of an action potential, pseudodynamic snapshots of contraction-induced deformation of intracellular organelles can now be captured. In combination with functional studies, such as fluorescence imaging, exciting insights into cardiac autoregulatory processes at nano-to-micro scales are starting to emerge. In this Review, we discuss the progress in this fascinating new field to highlight the fundamental scientific insight that has emerged, based on technological breakthroughs in biological sample preparation, 3D imaging and data analysis; to illustrate the potential clinical relevance of understanding 3D cardiac nanodynamics; and to predict further progress that we can reasonably expect to see over the next 10 years.
Collapse
Affiliation(s)
- Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Engineering, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Zhang N, Cao W, He X, Xing Y, Yang N. Using methanol to preserve retinas for immunostaining. Clin Exp Ophthalmol 2022; 50:325-333. [PMID: 35040242 DOI: 10.1111/ceo.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Experimental studies on retinal vasculature and retinal ganglion cells (RGCs) investigating the developmental and pathological conditions of the retina mainly rely on whole-mount retinal immunostaining. Methanol, an auxiliary fixed medium for retinal whole-mount preparations, has been used in some studies; however, its application in short- and long-term storage of retinas for further study has not been well described. We aimed to evaluate methanol use as a preservation treatment for further immunostaining of the retina. METHODS We generated oxygen-induced retinopathy (OIR) and optic nerve crush (ONC) mouse models and used their retinas for analysis. We pipetted cold methanol (-20°C) on the surface of the retina to help fix the tissues while promoting permeability, after which the retinas were stored in cold methanol (-20°C) for 1, 6, or 12 months before being evaluated using various optical techniques. Thereafter, retinal whole-mount immunostaining was performed to analyse retinal neovascularisation and retinal hypoxia in OIR model, and retinal ganglion cell survival rate in ONC model. RESULTS Quantitative analysis revealed no significant differences in the fixed retinas after long-term storage in terms of retinal vasculature or retinal hypoxia in the OIR model. Similarly, no significant difference was found in RGC survival rate after long-term storage in methanol. These results suggest that methanol can be used as a storage medium when preserving retinal whole-mount samples. CONCLUSIONS Cold (-20°C) methanol can serve as an effective medium for long-term storage of fixed retinas, which is useful for further research.
Collapse
Affiliation(s)
- Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuejun He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Fulton KA, Briggman KL. Permeabilization-free en bloc immunohistochemistry for correlative microscopy. eLife 2021; 10:63392. [PMID: 33983117 PMCID: PMC8118656 DOI: 10.7554/elife.63392] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
A dense reconstruction of neuronal synaptic connectivity typically requires high-resolution 3D electron microscopy (EM) data, but EM data alone lacks functional information about neurons and synapses. One approach to augment structural EM datasets is with the fluorescent immunohistochemical (IHC) localization of functionally relevant proteins. We describe a protocol that obviates the requirement of tissue permeabilization in thick tissue sections, a major impediment for correlative pre-embedding IHC and EM. We demonstrate the permeabilization-free labeling of neuronal cell types, intracellular enzymes, and synaptic proteins in tissue sections hundreds of microns thick in multiple brain regions from mice while simultaneously retaining the ultrastructural integrity of the tissue. Finally, we explore the utility of this protocol by performing proof-of-principle correlative experiments combining two-photon imaging of protein distributions and 3D EM.
Collapse
Affiliation(s)
- Kara A Fulton
- Brown University, Providence, United States.,National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - Kevin L Briggman
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Center of Advanced European Studies and Research (caesar), Bonn, Germany
| |
Collapse
|
11
|
Rog-Zielinska EA, Moss R, Kaltenbacher W, Greiner J, Verkade P, Seemann G, Kohl P, Cannell MB. Nano-scale morphology of cardiomyocyte t-tubule/sarcoplasmic reticulum junctions revealed by ultra-rapid high-pressure freezing and electron tomography. J Mol Cell Cardiol 2021; 153:86-92. [PMID: 33359037 PMCID: PMC8035077 DOI: 10.1016/j.yjmcc.2020.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022]
Abstract
Detailed knowledge of the ultrastructure of intracellular compartments is a prerequisite for our understanding of how cells function. In cardiac muscle cells, close apposition of transverse (t)-tubule (TT) and sarcoplasmic reticulum (SR) membranes supports stable high-gain excitation-contraction coupling. Here, the fine structure of this key intracellular element is examined in rabbit and mouse ventricular cardiomyocytes, using ultra-rapid high-pressure freezing (HPF, omitting aldehyde fixation) and electron microscopy. 3D electron tomograms were used to quantify the dimensions of TT, terminal cisternae of the SR, and the space between SR and TT membranes (dyadic cleft). In comparison to conventional aldehyde-based chemical sample fixation, HPF-preserved samples of both species show considerably more voluminous SR terminal cisternae, both in absolute dimensions and in terms of junctional SR to TT volume ratio. In rabbit cardiomyocytes, the average dyadic cleft surface area of HPF and chemically fixed myocytes did not differ, but cleft volume was significantly smaller in HPF samples than in conventionally fixed tissue; in murine cardiomyocytes, the dyadic cleft surface area was higher in HPF samples with no difference in cleft volume. In both species, the apposition of the TT and SR membranes in the dyad was more likely to be closer than 10 nm in HPF samples compared to CFD, presumably resulting from avoidance of sample shrinkage associated with conventional fixation techniques. Overall, we provide a note of caution regarding quantitative interpretation of chemically-fixed ultrastructures, and offer novel insight into cardiac TT and SR ultrastructure with relevance for our understanding of cardiac physiology.
Collapse
Affiliation(s)
- E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - R Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - W Kaltenbacher
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Verkade
- School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - G Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M B Cannell
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| |
Collapse
|
12
|
Laue M, Kauter A, Hoffmann T, Möller L, Michel J, Nitsche A. Morphometry of SARS-CoV and SARS-CoV-2 particles in ultrathin plastic sections of infected Vero cell cultures. Sci Rep 2021; 11:3515. [PMID: 33568700 PMCID: PMC7876034 DOI: 10.1038/s41598-021-82852-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 is the causative of the COVID-19 disease, which has spread pandemically around the globe within a few months. It is therefore necessary to collect fundamental information about the disease, its epidemiology and treatment, as well as about the virus itself. While the virus has been identified rapidly, detailed ultrastructural analysis of virus cell biology and architecture is still in its infancy. We therefore studied the virus morphology and morphometry of SARS-CoV-2 in comparison to SARS-CoV as it appears in Vero cell cultures by using conventional thin section electron microscopy and electron tomography. Both virus isolates, SARS-CoV Frankfurt 1 and SARS-CoV-2 Italy-INMI1, were virtually identical at the ultrastructural level and revealed a very similar particle size distribution with a median of about 100 nm without spikes. Maximal spike length of both viruses was 23 nm. The number of spikes per virus particle was about 30% higher in the SARS-CoV than in the SARS-CoV-2 isolate. This result complements a previous qualitative finding, which was related to a lower productivity of SARS-CoV-2 in cell culture in comparison to SARS-CoV.
Collapse
Affiliation(s)
- Michael Laue
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4 (ZBS 4), Robert Koch Institute, Berlin, Germany.
| | - Anne Kauter
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4 (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Tobias Hoffmann
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4 (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Lars Möller
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4 (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Janine Michel
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens 1 (ZBS 1), Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens 1 (ZBS 1), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
13
|
Muñoz‐López Á, Buchmuller B, Wolffgramm J, Jung A, Hussong M, Kanne J, Schweiger MR, Summerer D. Designer Receptors for Nucleotide‐Resolution Analysis of Genomic 5‐Methylcytosine by Cellular Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Álvaro Muñoz‐López
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 6 44227 Dortmund Germany
- International Max Planck Research School Max Planck Institute of Molecular Physiology Otto-Hahn Str. 10 44227 Dortmund Germany
| | - Benjamin Buchmuller
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 6 44227 Dortmund Germany
- International Max Planck Research School Max Planck Institute of Molecular Physiology Otto-Hahn Str. 10 44227 Dortmund Germany
| | - Jan Wolffgramm
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 6 44227 Dortmund Germany
| | - Anne Jung
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 6 44227 Dortmund Germany
| | - Michelle Hussong
- Department of Epigenetics and Tumor Biology, Medical Faculty University of Cologne Kerpener Str. 62 50937 Köln Germany
| | - Julian Kanne
- Department of Epigenetics and Tumor Biology, Medical Faculty University of Cologne Kerpener Str. 62 50937 Köln Germany
| | - Michal R. Schweiger
- Department of Epigenetics and Tumor Biology, Medical Faculty University of Cologne Kerpener Str. 62 50937 Köln Germany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 6 44227 Dortmund Germany
| |
Collapse
|
14
|
Muñoz-López Á, Buchmuller B, Wolffgramm J, Jung A, Hussong M, Kanne J, Schweiger MR, Summerer D. Designer Receptors for Nucleotide-Resolution Analysis of Genomic 5-Methylcytosine by Cellular Imaging. Angew Chem Int Ed Engl 2020; 59:8927-8931. [PMID: 32167219 PMCID: PMC7318601 DOI: 10.1002/anie.202001935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 12/20/2022]
Abstract
We report programmable receptors for the imaging‐based analysis of 5‐methylcytosine (5mC) in user‐defined DNA sequences of single cells. Using fluorescent transcription‐activator‐like effectors (TALEs) that can recognize sequences of canonical and epigenetic nucleobases through selective repeats, we imaged cellular SATIII DNA, the origin of nuclear stress bodies (nSB). We achieve high nucleobase selectivity of natural repeats in imaging and demonstrate universal nucleobase binding by an engineered repeat. We use TALE pairs differing in only one such repeat in co‐stains to detect 5mC in SATIII sequences with nucleotide resolution independently of differences in target accessibility. Further, we directly correlate the presence of heat shock factor 1 with 5mC at its recognition sequence, revealing a potential function of 5mC in its recruitment as initial step of nSB formation. This opens a new avenue for studying 5mC functions in chromatin regulation in situ with nucleotide, locus, and cell resolution.
Collapse
Affiliation(s)
- Álvaro Muñoz-López
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227, Dortmund, Germany.,International Max Planck Research School, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 10, 44227, Dortmund, Germany
| | - Benjamin Buchmuller
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227, Dortmund, Germany.,International Max Planck Research School, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 10, 44227, Dortmund, Germany
| | - Jan Wolffgramm
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227, Dortmund, Germany
| | - Anne Jung
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227, Dortmund, Germany
| | - Michelle Hussong
- Department of Epigenetics and Tumor Biology, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Köln, Germany
| | - Julian Kanne
- Department of Epigenetics and Tumor Biology, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Köln, Germany
| | - Michal R Schweiger
- Department of Epigenetics and Tumor Biology, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Köln, Germany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
15
|
Wick MR. The hematoxylin and eosin stain in anatomic pathology—An often-neglected focus of quality assurance in the laboratory. Semin Diagn Pathol 2019; 36:303-311. [DOI: 10.1053/j.semdp.2019.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Richter KN, Revelo NH, Seitz KJ, Helm MS, Sarkar D, Saleeb RS, D'Este E, Eberle J, Wagner E, Vogl C, Lazaro DF, Richter F, Coy-Vergara J, Coceano G, Boyden ES, Duncan RR, Hell SW, Lauterbach MA, Lehnart SE, Moser T, Outeiro TF, Rehling P, Schwappach B, Testa I, Zapiec B, Rizzoli SO. Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. EMBO J 2018; 37:139-159. [PMID: 29146773 PMCID: PMC5753035 DOI: 10.15252/embj.201695709] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 09/25/2017] [Accepted: 10/06/2017] [Indexed: 12/02/2022] Open
Abstract
Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA-based protocols. Glyoxal acted faster than PFA, cross-linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA-based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining.
Collapse
Affiliation(s)
- Katharina N Richter
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Natalia H Revelo
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
| | - Katharina J Seitz
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
- International Max Planck Research School Molecular Biology, Göttingen, Germany
| | - Martin S Helm
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
- International Max Planck Research School Molecular Biology, Göttingen, Germany
| | | | - Rebecca S Saleeb
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh, UK
| | - Elisa D'Este
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jessica Eberle
- Department of Neural Systems, Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Eva Wagner
- Heart Research Center Göttingen, Department of Cardiology & Pulmonology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) Site Göttingen
| | - Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Auditory Neuroscience Group, Göttingen, Germany
| | - Diana F Lazaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Frank Richter
- International Max Planck Research School Molecular Biology, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Javier Coy-Vergara
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Giovanna Coceano
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Edward S Boyden
- Departments of Brain and Cognitive Science and Biological Engineering, MIT Media Lab and McGovern Institute, Cambridge, MA, USA
| | - Rory R Duncan
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh, UK
| | - Stefan W Hell
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marcel A Lauterbach
- Department of Neural Systems, Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Department of Cardiology & Pulmonology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) Site Göttingen
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Auditory Neuroscience Group, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bolek Zapiec
- Max Planck Research Unit for Neurogenetics, Frankfurt am Main, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| |
Collapse
|
17
|
Martinić I, Eliseeva SV, Nguyen TN, Foucher F, Gosset D, Westall F, Pecoraro VL, Petoud S. Near-infrared luminescent metallacrowns for combined in vitro cell fixation and counter staining. Chem Sci 2017; 8:6042-6050. [PMID: 28989634 PMCID: PMC5625569 DOI: 10.1039/c7sc01872j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023] Open
Abstract
Cell fixation is an essential approach for preserving cell morphology, allowing the targeting and labelling of biomolecules with fluorescent probes. One of the key requirements for more efficient fluorescent labelling is the preservation of cell morphology, which usually requires a combination of several fixation techniques. In addition, the use of a counter stain is often essential to improve the contrast of the fluorescent probes. Current agents possess significant limitations, such as low resistance toward photobleaching and sensitivity to changes in the microenvironment. Luminescent Ln3+ 'encapsulated sandwich' metallacrowns (MCs) overcome these drawbacks and offer complementary advantages. In particular, they emit sharp emission bands, possess a large difference between excitation and emission wavelengths and do not photobleach. Herein, MCs formed with pyrazinehydroxamic acid (Ln3+[Zn(ii)MCpyzHA], Ln3+ = Yb, Nd) were used, combined with near-infrared (NIR) counter staining and fixation agents for HeLa cells upon an initial five minute exposure to UV-A light. The validity and quality of the cell fixation were assessed with Raman spectroscopy. Analysis of the NIR luminescence properties of these MCs was performed under different experimental conditions, including in a suspension of stained cells. Moreover, the high emission intensity of Ln3+[Zn(ii)MCpyzHA] in the NIR region allows these MCs to be used for imaging with standard CCD cameras installed on routine fluorescence microscopes. Finally, the NIR-emitting Ln3+[Zn(ii)MCpyzHA] compounds combine, within a single molecule, features such as cell fixation and staining abilities, good photostability and minimal sensitivity of the emission bands to the local microenvironment, and they are highly promising for establishing the next generation of imaging agents with a single biodistribution.
Collapse
Affiliation(s)
- Ivana Martinić
- Centre de Biophysique Moléculaire , CNRS , UPR 4301 , 45071 Orléans Cedex 2 , France . ;
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire , CNRS , UPR 4301 , 45071 Orléans Cedex 2 , France . ;
| | - Tu N Nguyen
- Department of Chemistry , Willard H. Dow Laboratories , University of Michigan , 930 N. University Ave , Michigan 48109 , USA .
| | - Frédéric Foucher
- Centre de Biophysique Moléculaire , CNRS , UPR 4301 , 45071 Orléans Cedex 2 , France . ;
| | - David Gosset
- Centre de Biophysique Moléculaire , CNRS , UPR 4301 , 45071 Orléans Cedex 2 , France . ;
| | - Frances Westall
- Centre de Biophysique Moléculaire , CNRS , UPR 4301 , 45071 Orléans Cedex 2 , France . ;
| | - Vincent L Pecoraro
- Department of Chemistry , Willard H. Dow Laboratories , University of Michigan , 930 N. University Ave , Michigan 48109 , USA .
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire , CNRS , UPR 4301 , 45071 Orléans Cedex 2 , France . ;
| |
Collapse
|
18
|
Chien JL, Ghassibi MP, Mahadeshwar P, Li P, Liebmann JM, Ritch R, Milman T, Park SC. A Novel Method for Assessing Lamina Cribrosa Structure Ex Vivo Using Anterior Segment Enhanced Depth Imaging Optical Coherence Tomography. J Glaucoma 2017; 26:626-632. [PMID: 28486274 DOI: 10.1097/ijg.0000000000000685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study is to investigate the use of anterior segment enhanced depth imaging (EDI) optical coherence tomography (OCT) for ex vivo lamina cribrosa (LC) imaging. MATERIALS AND METHODS After removing anterior segment and vitreous, the optic nerve head (ONH) tissue of porcine eyes was placed on a customized eye holder for imaging. Serial EDI OCT B-scans (interval, ∼35 μm) of the ONH were obtained using anterior segment module of spectral-domain OCT. Various conditions were tested for better quality LC images. After EDI OCT, serial histologic sections were obtained (distance between sections, ∼5 μm). LC structures in OCT scans were compared with those in histologic sections. Three-dimensional LC reconstructions created using serial OCT scans were compared with LC structures in disc photographs. RESULTS ONHs of 3 enucleated eyes were examined. The LC was more clearly imaged when the retina and part of the prelaminar tissue were removed (quality score, 39.01±3.30 vs. 26.40±5.85; P<0.001) and when the tissue was kept moist during imaging (quality score, 38.70±2.11 vs. 36.18±5.98; P<0.001). LC image quality was similar before and after fixation (quality score, 38.84±6.57 vs. 39.21±9.69; P=0.79). LC beams and part of retrolaminar glial columns identified in OCT scans matched those in histologic sections. LC beams and pores in 3-dimensional reconstructions matched those in disc photographs. CONCLUSIONS High-resolution cross-sectional images of the LC, comparable to histologic sections, can be obtained using anterior segment EDI OCT in ex vivo eyes with proper tissue preparation.
Collapse
Affiliation(s)
- Jason L Chien
- *Moise and Chella Safra Advanced Ocular Imaging Laboratory, Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai §Department of Pathology and Laboratory Medicine, New York Eye and Ear Infirmary of Mount Sinai ‡Bernard and Shirlee Brown Glaucoma Research Laboratory, Harkness Eye Institute, Columbia University Medical Center, Harkness Eye Institute ∥Department of Ophthalmology, Manhattan Eye, Ear and Throat Hospital, New York ¶Department of Ophthalmology, Hofstra Northwell School of Medicine, Hempstead, NY †George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim SO, Kim J, Okajima T, Cho NJ. Mechanical properties of paraformaldehyde-treated individual cells investigated by atomic force microscopy and scanning ion conductance microscopy. NANO CONVERGENCE 2017; 4:5. [PMID: 28386525 PMCID: PMC5359366 DOI: 10.1186/s40580-017-0099-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cell fixation is an essential step to preserve cell samples for a wide range of biological assays involving histochemical and cytochemical analysis. Paraformaldehyde (PFA) has been widely used as a cross-linking fixation agent. It has been empirically recognized in a gold standard protocol that the PFA concentration for cell fixation, CPFA, is 4%. However, it is still not quantitatively clear how the conventional protocol of CPFA is optimized. METHODS Here, we investigated the mechanical properties of cell fixation as a function of CPFA by using atomic force microscopy and scanning ion conductance microscopy. The goal of this study is to investigate the effect of CPFA (0-10 wt%) on the morphological and mechanical properties of live and fixed mouse fibroblast cells. RESULTS We found that both Young's modulus, E, and the fluctuation amplitude of apical cell membrane, am, were almost constant in a lower CPFA (<10-4%). Interestingly, in an intermediate CPFA between 10-1 and 4%, E dramatically increased whereas am abruptly decreased, indicating that entire cells begin to fix at CPFA = ca. 10-1%. Moreover, these quantities were unchanged in a higher CPFA (>4%), indicating that the cell fixation is stabilized at CPFA = ca. 4%, which is consistent with the empirical concentration of cell fixation optimized in biological protocols. CONCLUSIONS Taken together, these findings offer a deeper understanding of how varying PFA concentrations influence the mechanical properties of cells and suggest new avenues for establishing refined cell fixation protocols.
Collapse
Affiliation(s)
- Seong-Oh Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Joonhui Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814 Japan
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
20
|
Bhuiyan DB, Middleton JC, Tannenbaum R, Wick TM. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1139-54. [PMID: 27120980 DOI: 10.1080/09205063.2016.1184121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A bone graft is a complicated structure that provides mechanical support and biological signals that regulate bone growth, reconstruction, and repair. A single-component material is inadequate to provide a suitable combination of structural support and biological stimuli to promote bone regeneration. Multicomponent composite biomaterials lack adequate bonding among the components to prevent phase separation after implantation. We have previously developed a novel multistep polymerization and fabrication process to construct a nano-hydroxyapatite-poly(D,L-lactide-co-glycolide)-collagen biomaterial (abbreviated nHAP-PLGA-collagen) with the components covalently bonded to each other. In the present study, the mechanical properties and osteogenic potential of nHAP-PLGA-collagen are characterized to assess the material's suitability to support bone regeneration. nHAP-PLGA-collagen films exhibit tensile strength very close to that of human cancellous bone. Human mesenchymal stem cells (hMSCs) are viable on 2D nHAP-PLGA-collagen films with a sevenfold increase in cell population after 7 days of culture. Over 5 weeks of culture, hMSCs deposit matrix and mineral consistent with osteogenic differentiation and bone formation. As a result of matrix deposition, nHAP-PLGA-collagen films cultured with hMSCs exhibit 48% higher tensile strength and fivefold higher moduli compared to nHAP-PLGA-collagen films without cells. More interestingly, secretion of matrix and minerals by differentiated hMSCs cultured on the nHAP-PLGA-collagen films for 5 weeks mitigates the loss of mechanical strength that accompanies PLGA hydrolysis.
Collapse
Affiliation(s)
- Didarul B Bhuiyan
- a Department of Biomedical Engineering, School of Engineering , University of Alabama at Birmingham , Birmingham , AL , USA
| | | | - Rina Tannenbaum
- c Department of Materials Science and Engineering, Program in Chemical and Molecular Engineering , Stony Brook University , Stony Brook , NY , USA
| | - Timothy M Wick
- a Department of Biomedical Engineering, School of Engineering , University of Alabama at Birmingham , Birmingham , AL , USA
| |
Collapse
|
21
|
Stradleigh TW, Ishida AT. Fixation strategies for retinal immunohistochemistry. Prog Retin Eye Res 2015; 48:181-202. [PMID: 25892361 PMCID: PMC4543575 DOI: 10.1016/j.preteyeres.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, University of California, Sacramento, CA 95817, USA.
| |
Collapse
|
22
|
Jenkins J, Draugelis-Dale R, Pinkney A, Iwanowicz L, Blazer V. Flow cytometric method for measuring chromatin fragmentation in fixed sperm from yellow perch (Perca flavescens). Theriogenology 2015; 83:920-31. [DOI: 10.1016/j.theriogenology.2014.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022]
|
23
|
Al-Habian A, Harikumar PE, Stocker CJ, Langlands K, Selway JL. Histochemical and immunohistochemical evaluation of mouse skin histology: comparison of fixation with neutral buffered formalin and alcoholic formalin. J Histotechnol 2014. [DOI: 10.1179/2046023614y.0000000050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Panagiotaki E, Walker-Samuel S, Siow B, Johnson SP, Rajkumar V, Pedley RB, Lythgoe MF, Alexander DC. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res 2014; 74:1902-12. [PMID: 24491802 DOI: 10.1158/0008-5472.can-13-2511] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is a need for biomarkers that are useful for noninvasive imaging of tumor pathophysiology and drug efficacy. Through its use of endogenous water, diffusion-weighted MRI (DW-MRI) can be used to probe local tissue architecture and structure. However, most DW-MRI studies of cancer tissues have relied on simplistic mathematical models, such as apparent diffusion coefficient (ADC) or intravoxel incoherent motion (IVIM) models, which produce equivocal results on the relation of the model parameter estimate with the underlying tissue microstructure. Here, we present a novel technique called VERDICT (Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors) to quantify and map histologic features of tumors in vivo. VERDICT couples DW-MRI to a mathematical model of tumor tissue to access features such as cell size, vascular volume fraction, intra- and extracellular volume fractions, and pseudo-diffusivity associated with blood flow. To illustrate VERDICT, we used two tumor xenograft models of colorectal cancer with different cellular and vascular phenotypes. Our experiments visualized known differences in the tissue microstructure of each model and the significant decrease in cell volume resulting from administration of the cytotoxic drug gemcitabine, reflecting the apoptotic volume decrease. In contrast, the standard ADC and IVIM models failed to detect either of these differences. Our results illustrate the superior features of VERDICT for cancer imaging, establishing it as a noninvasive method to monitor and stratify treatment responses.
Collapse
Affiliation(s)
- Eletheria Panagiotaki
- Authors' Affiliations: Department of Computer Science, Centre for Medical Image Computing; Division of Medicine, Centre for Advanced Biomedical Imaging; UCL Cancer Institute, University College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu B, Ohno N, Saitoh Y, Bai Y, Huang Z, Terada N, Ohno S. Immuno- and Enzyme-histochemistry of HRP for Demonstration of Blood Vessel Permeability in Mouse Thymic Tissues by "In Vivo Cryotechnique". Acta Histochem Cytochem 2014; 47:273-88. [PMID: 25859061 PMCID: PMC4387264 DOI: 10.1267/ahc.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/29/2014] [Indexed: 11/22/2022] Open
Abstract
It is difficult to understand the in vivo permeability of thymic blood vessels, but “in vivo cryotechnique” (IVCT) is useful to capture dynamic blood flow conditions. We injected various concentrations of horseradish peroxidase (HRP) with or without quantum dots into anesthetized mice via left ventricles to examine architectures of thymic blood vessels and their permeability at different time intervals. At 30 sec after HRP (100 mg/ml) injection, enzyme reaction products were weakly detected in interstitium around some thick blood vessels of corticomedullary boundary areas, but within capillaries of cortical areas. At 1 and 3 min, they were more widely detected in interstitium around all thick blood vessels of the boundary areas. At 10 min, they were diffusely detected throughout interstitium of cortical areas, and more densely seen in medullary areas. At 15 min, however, they were uniformly detected throughout interstitium outside blood vessels. At 30 min, phagocytosis of HRP by macrophages was scattered throughout the interstitium, which was accompanied by decrease of HRP reaction intensity in interstitial matrices. Thus, time-dependent HRP distributions in living mice indicate that molecular permeability and diffusion depend on different areas of thymic tissues, resulting from topographic variations of local interstitial flow starting from corticomedullary areas.
Collapse
Affiliation(s)
- Bao Wu
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Yuqin Bai
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Zheng Huang
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Nobuo Terada
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| |
Collapse
|
26
|
Eltoum I, Fredenburgh J, Myers RB, Grizzle WE. Introduction to the Theory and Practice of Fixation of Tissues. J Histotechnol 2013. [DOI: 10.1179/his.2001.24.3.173] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Souza CM, Lima CGP, Alves MJ, Arrais-Silva WW, Giorgio S, Linhares AX, Thyssen PJ. Standardization of histological procedures for the detection of toxic substances by immunohistochemistry in Dipteran larvae of forensic importance. J Forensic Sci 2013; 58:1015-21. [PMID: 23682832 DOI: 10.1111/1556-4029.12140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/06/2012] [Accepted: 06/02/2012] [Indexed: 11/30/2022]
Abstract
Immunohistochemistry (IHC) technique is an alternative toxicological analysis to detect drugs in insects of forensic importance, but it requires thorough histological procedures. In this study, we tested different fixatives--phosphate-buffered paraformaldehyde 4% (PP), Carnoy's fluid (CF), Kahle's solution (KS), ethanol in different concentrations, and ethanol associated to PP and CF, time of fixation and histological processes for dipteran larvae's tissue, aiming to develop a sample preparation protocol for IHC application. A suitable fixation was achieved using PP for 12 and 24 h, CF for 3 h, 70% ethanol for 19 days, and 70% ethanol/CF for 2 h/3 h. Postfixation using negative pressure, two immersions in xylene for 30 min each, and one in xylene plus paraffin for 45 min increased tissue preservation. An immunohistochemical test for cocaine detection was performed using monoclonal benzoylecgonine antibody from mouse, peroxidase-conjugated anti-mouse IgG and visualized by 3,3'-diaminobenzidine method showed these histological procedures didn't compromise antigenicity.
Collapse
Affiliation(s)
- Carina M Souza
- Department of Animal Biology, IB, UNICAMP, Distrito de Barão Geraldo, Campinas, São Paulo, CEP 13083-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Shahmirzadi D, Bruck HA, Hsieh AH. Quantifying the interfibrillar spacing and fibrillar orientation of the aortic extracellular matrix using histology image processing: toward multiscale modeling. IEEE Trans Biomed Eng 2012. [PMID: 23192484 DOI: 10.1109/tbme.2012.2229708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An essential part of understanding tissue microstructural mechanics is to establish quantitative measures of the morphological changes. Given the complex, highly localized, and interactive architecture of the extracellular matrix, developing techniques to reproducibly quantify the induced microstructural changes has been found to be challenging. In this paper, a new method for quantifying the changes in the fibrillar organization is developed using histology images. A combinatorial frequency-spatial image processing approach was developed based on the Fourier and Hough transformations of histology images to measure interfibrillar spacing and fibrillar orientation, respectively. The method was separately applied to the inner and outer wall thickness of native- and elastin-isolated aortic tissues under different loading states. Results from both methods were interpreted in a complementary manner to obtain a more complete understanding of morphological changes due to tissue deformations at the microscale. The observations were consistent in quantifying the observed morphological changes during tissue deformations and in explaining such changes in terms of tissue-scale phenomena. The findings of this study could pave the way for more rigorous modeling of structure-property relationships in soft tissues, with implications extendable to cardiovascular constitutive modeling and tissue engineering.
Collapse
Affiliation(s)
- Danial Shahmirzadi
- Department of Biomedical Engineering, Columbia University, New York, NY 10025, USA.
| | | | | |
Collapse
|
29
|
Zeng F, Yang W, Huang J, Chen Y, Chen Y. Determination of the lowest concentrations of aldehyde fixatives for completely fixing various cellular structures by real-time imaging and quantification. Histochem Cell Biol 2012. [DOI: 10.1007/s00418-012-1058-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Bai Y, Wu B, Terada N, Saitoh Y, Ohno N, Saitoh S, Ohno S. Immunohistochemical analysis of various serum proteins in living mouse thymus with "in vivo cryotechnique". Med Mol Morphol 2012; 45:129-39. [PMID: 23001295 DOI: 10.1007/s00795-011-0549-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/09/2011] [Indexed: 10/27/2022]
Abstract
It has been difficult to clarify the precise localizations of soluble serum proteins in thymic tissues of living animals with conventional immersion- or perfusion-fixation followed by alcohol dehydration owing to ischemia and anoxia. In this study, "in vivo cryotechnique" (IVCT) followed by freeze-substitution fixation was performed to examine the thymic structures of living mice and immunolocalizations of intrinsic or extrinsic serum proteins, which were albumin, immunoglobulin G1 (IgG1), IgA, and IgM, as well as intravenously injected bovine serum albumin (BSA). Mouse albumin was more clearly immunolocalized in blood vessels and interstitial matrices of the thymic cortex than in tissues prepared by the conventional methods. The immunoreactivities of albumin and IgG1 were stronger than those of IgA and IgM in the interstitium of subcapsular cortex. The injected BSA was time-dependently immunolocalized in blood vessels and the interstitium of corticomedullary areas at 3.5 h after its injection, and then gradually diffused into the interstitium of the whole cortex at 6 h and 12 h. Thus, IVCT revealed definite immunolocalizations of serum albumin and IgG1 in the interstitium of thymus of living mice, indicating different accessibility of serum proteins from the corticomedullary areas, not from the subcapsular cortex of living animals, depending on various molecular sizes and concentrations.
Collapse
Affiliation(s)
- Yuqin Bai
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Suzuki Y, Imada T, Yamaguchi I, Yoshitake H, Sanada H, Kashiwagi T, Takaba K. Effects of prolonged water washing of tissue samples fixed in formalin on histological staining. Biotech Histochem 2011; 87:241-8. [PMID: 21958122 PMCID: PMC3793282 DOI: 10.3109/10520295.2011.613410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of prolonged water washing after fixation for 48 h in 10% (v/v) phosphate-buffered neutral formalin on the quality of representative histological staining methods were evaluated using samples of liver, kidney, spleen and thymus collected from three male Crl:CD(SD)(IGS) rats and one male beagle dog. Because door-to-door courier services in Japan prohibit handling formalin, our goal was to confirm that formalin fixed wet tissue samples could be stored in tap water rather than formalin during transportation of the samples without decreasing the quality of their staining or immunohistochemistry. Each tissue sample was allocated randomly to one of three groups: 12 min, 3 days and 7 days of washing in running tap water; samples then were routinely embedded in paraffin and sectioned. The sections were stained with hematoxylin and eosin, perio-dic acid-Schiff, azan, and the TdT-mediated dUTP-biotin nick end labeling (TUNEL) method. Immunohistochemical staining for Factor VIII, ED-1 and CD3 also was assessed. Prolonged water washing for up to 7 days did not affect the morphology or stainability by standard histological methods, or the intensity and frequency of positive reactions using the TUNEL method. Only immunohistochemical staining of Factor VIII was altered in both the rat and dog sections after 7 days of water washing. The intensity of positive reactions of Factor VIII immunohistochemistry after 7 days water washing was still strong enough to detect microscopically. Therefore, prolonged water washing for up to 7 days after formalin fixation does not have seriously detrimental effects on the quality and characteristics of paraffin sections stained by various methods, including immunohistochemistry.
Collapse
Affiliation(s)
- Y Suzuki
- Toxicological Research Laboratories Kyowa Hakko Kirin, Co., Ltd., Sunto-gun, Shizuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Luft JH. Fixation for biological ultrastructure. I. A viscometric analysis of the interaction between glutaraldehyde and bovine serum albumin. J Microsc 2011. [DOI: 10.1111/j.1365-2818.1992.tb03235.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Salma A, Chow A, Ammirati M. Setting up a microneurosurgical skull base lab: technical and operational considerations. Neurosurg Rev 2011; 34:317-26; discussion 326. [PMID: 21614429 DOI: 10.1007/s10143-011-0317-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 11/21/2010] [Accepted: 01/07/2011] [Indexed: 11/25/2022]
Abstract
Microneurosurgical cadaveric dissections have become popular due to their usefulness in obtaining a working knowledge of the microneurosurgical anatomy in a controlled environment. This same controlled environment is also conducive to experiment with new surgical approaches. These factors have increased the number of microneurosurgical anatomic laboratories. Despite the increase in microneurosurgical laboratories, there is very little literature regarding the logistics of starting and maintaining a new neurosurgical laboratory. The aim of this paper is to provide a general road map and basic guidelines in starting and running a microneurosurgical dissection laboratory. The information in this paper is based on a review of the literature and on the experience we gained in organizing and managing the Dardinger Microneurosurgical Skull Base Laboratory at The Ohio State University.
Collapse
Affiliation(s)
- Asem Salma
- Department of Neurological Surgery, The Ohio State University Medical Center, 1645 Neil Avenue, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
34
|
Subcellular localization of cytoplasmic lattice-associated proteins is dependent upon fixation and processing procedures. PLoS One 2011; 6:e17226. [PMID: 21359190 PMCID: PMC3040232 DOI: 10.1371/journal.pone.0017226] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/26/2011] [Indexed: 01/18/2023] Open
Abstract
We and others have recently demonstrated by immuno-EM and mutation analysis that two oocyte-restricted maternal effect genes, PADI6 and MATER, localize, in part, to the oocyte cytoplasmic lattices (CPLs). During these ongoing studies, however, we found that the localization of these factors by confocal immunofluorescence (IF) analysis can vary dramatically depending upon how the oocytes and embryos are processed, with the localization pattern sometimes appearing more uniformly cytoplasmic while at other times appearing to be primarily cortical. We set out to better understand this differential staining pattern by testing a range of IF protocol parameters, changing mainly time and temperature conditions of the primary antibody solution incubation, as well as fixation methods. We found by confocal IF whole mount analysis that PADI6 and MATER localization in germinal vesicle stage oocytes is mainly cytoplasmic when the oocytes are fixed and then incubated with primary antibodies at room temperature for 1 hour, while the localization of these factors is largely limited to the cortex when the oocytes are fixed and incubated in primary antibody at 4°C overnight. We then probed sections of fixed/embedded ovaries and isolated two-cell embryos with specific antibodies and found that, under these conditions, PADI6 and MATER were again primarily cytoplasmically localized, although the staining for these factors is slightly more cortical at the two-cell stage. Taken together, our results suggest that the localization of CPL-associated proteins by confocal IF is particularly affected by processing conditions. Further, based on our current observations, it appears that PADI6 and MATER are primarily distributed throughout the cytoplasm as opposed to the oocyte subcortex.
Collapse
|
35
|
Shahmirzadi D, Hsieh AH. An efficient technique for adjusting and maintaining specific hydration levels in soft biological tissues in vitro. Med Eng Phys 2010; 32:795-801. [PMID: 20678998 DOI: 10.1016/j.medengphy.2010.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/26/2010] [Accepted: 04/29/2010] [Indexed: 01/07/2023]
Abstract
Elucidating how mechanics is affected by hydration in soft biological tissues is critical for understanding the potential effects of diseases where tissue extracellular matrix (ECM) is altered. The ability to control ECM water content is necessary for studying hydration-dependent tissue mechanics and for minimizing confounding effects caused by differences in tissue water content among specimens. In this paper, we describe an approach to adjust and maintain water content using a two-stage hydration technique, in order to overcome unique challenges faced in mechanical testing of biological tissues. Bovine aortic tissue was selected to demonstrate the approach. A liquid phase approach using PEG solutions allowed for efficient initial adjustment of tissue hydration. This was followed by a vapor phase approach using a humidity chamber for maintaining stable water content for a defined test duration of 45 min. Incubation in PEG solution brought bovine aortic tissue samples to equilibrium water content in approximately 6 h, much more efficiently than using a humidity chamber alone. Characteristic relationships between tissue water content and PEG concentration as well as relative humidity were obtained. It was found that PEG concentrations ranging from 0 to 40% had an inverse relationship with tissue water content ranging from 80 to 380%, which corresponded to relative humidities between 53 and 99%.
Collapse
Affiliation(s)
- Danial Shahmirzadi
- Orthopaedic Mechanobiology Laboratory, Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States.
| | | |
Collapse
|
36
|
Chen HB, Yamabayashi S, Ou B, Tanaka Y, Ohno S, Tsukahara S. Histochemical study on rat tear film and ocular surface epithelial cells. Curr Eye Res 2009. [DOI: 10.1080/02713689808951237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Sun L, Wang D, Zubovits JT, Yaffe MJ, Clarke GM. An improved processing method for breast whole-mount serial sections for three-dimensional histopathology imaging. Am J Clin Pathol 2009; 131:383-92. [PMID: 19228644 DOI: 10.1309/ajcpvbzz4ikjhy3u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To develop and validate improved processing methods for producing diagnostic-quality, whole-mount serial sections for 3-dimensional imaging of whole-breast histopathologic studies, we subjected 4-mm-thick whole-specimen slices to a 38-hour microwave-assisted protocol. Morphologic features, antigenicity, and tissue shrinkage were evaluated. A schedule using the tissue processor was optimized by evaluating the serial section yield for 3 schedules. The microwave-based processing schedule is adequate for producing diagnostic-quality whole-mount breast serial sections of an area up to 6,000 mm(2) and is compatible with a variety of immunohistochemical stains. A mean +/- SE total tissue shrinkage of 8.4% +/- 0.2% resulted. For the tissue processor, optimal results are obtained using a 59-hour schedule. Total fixation and processing time for whole-mount serial breast sections has been reduced from 21 days to 38 hours, with microwave assistance, and to 59 hours without. No adverse effects of microwaves on morphologic features, antigenicity, or gross tissue dimensions were observed.
Collapse
|
38
|
Jiménez N, Vocking K, van Donselaar EG, Humbel BM, Post JA, Verkleij AJ. Tannic acid-mediated osmium impregnation after freeze-substitution: a strategy to enhance membrane contrast for electron tomography. J Struct Biol 2008; 166:103-6. [PMID: 19162195 DOI: 10.1016/j.jsb.2008.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 11/16/2022]
Abstract
In this technical note we report a tannic acid-mediated osmium impregnation method that, applied after freeze-substitution, increases membrane contrast in cells for transmission electron microscopy and tomography studies. The general staining that is achieved allows visualization of organelles, plasma membrane and associated specializations (e.g. caveolae) in non-post-stained plastic sections by conventional transmission electron microscopy. In combination with electron tomography it results in membranes with a proper contrast and equal staining pattern through the depth of the tomograms. The protocol that we contribute can serve as starting point for those willing to improve the membrane contrast of their specimens or to make 3D studies on the architecture of membranous compartments by electron tomography.
Collapse
Affiliation(s)
- Nuria Jiménez
- Department of Cellular Architecture and Dynamics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Fixation procedures for flow cytometric analysis of environmental bacteria. J Microbiol Methods 2008; 75:127-34. [DOI: 10.1016/j.mimet.2008.05.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/16/2008] [Accepted: 05/17/2008] [Indexed: 11/23/2022]
|
40
|
Falconi M, Teti G, Zago M, Pelotti S, Gobbi P, Breschi L, Mazzotti G. Effect of Fixative on Chromatin Structure and DNA Detection. Microsc Res Tech 2007; 70:599-606. [PMID: 17323367 DOI: 10.1002/jemt.20440] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we analyzed the chromatin ultrastructure in interphase cells after different chemical fixations. In light of the fact that there is little information regarding the fixation of biological samples in combination with molecular biology methods (such as DNA extraction and in situ hybridization methods) we analyzed the ultrastructure of chromatin in interphase cells fixed with different fixatives and tested under the same conditions for both DNA extraction and in situ hybridization. The results showed that, among the different combinations and concentrations we analyzed, the solution of 4% paraformaldehyde/0.1% glutaraldehyde was the best compromise in order to achieve a well-preserved morphology, successful DNA extraction, and specific signaling of in situ hybridization, suggesting a low interference of this fixative with the chromatin organization.
Collapse
Affiliation(s)
- Mirella Falconi
- Department of Anatomical Sciences, University of Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Since the introduction of the fluorescence-labeled antibody method by Coons et al. [Immunological properties of antibody containing a fluorescent group. Proc Soc Exp Biol Med 47, 200-2002], many immunohistochemical methods have been refined to obtain high sensitivity with low background staining at both light and electron microscopic levels. Heat-induced antigen retrieval (HIAR) reported by Shi et al. in the early 1990s has greatly contributed to immunohistochemical analysis for formalin-fixed and paraffin-embedded (FFPE) materials, particularly in the field of pathology. Although antigen retrieval techniques including enzyme digestion, treatment with protein denaturants and heating have been considered tricky and mysterious techniques, the mechanisms of HIAR have been rapidly elucidated. Heating cleaves crosslinks (methylene bridges) and add methylol groups in formaldehyde-fixed proteins and nucleic acids and extends polypeptides to unmask epitopes hidden in the inner portion of antigens or covered by adjacent macromolecules. In buffers having an appropriate pH and ion concentration, epitopes are exposed without entangling the extended polypeptides during cooling process, since polypeptides may strike a balance between hydrophobic attraction force and electrostatic repulsion force. Recent studies have demonstrated that HIAR is applicable for immunohistochemistry with various kinds of specimens, i.e., FFPE materials, frozen sections, plastic-embedded specimens, and physically fixed tissues at both the light- and electron-microscopic levels, and have suggested that the mechanism of HIAR is common to aldehyde-fixed and aldehyde-unfixed materials. Furthermore, heating has been shown to be effective for flow cytometry, nucleic acid histochemistry (fluorescein in situ hybridization (FISH), in situ hybridization (ISH), and terminal deoxynucleotidyl transferase-mediated nick labeling (TUNEL)), and extraction and analysis of macromolecules in both FFPE archive materials and specimens processed by other procedures. In this article, we review mechanism of HIAR and application of heating in both immunohistochemistry and other histochemical reactions.
Collapse
Affiliation(s)
- Shuji Yamashita
- Electron Microscope Laboratory, School of Medicine, Keio University, 35-Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
42
|
Falconi M, Teti G, Lanciotti C, Galanzi A, Mazzotti G. High resolution morphological analysis of in situ human chromosomes. Micron 2006; 37:146-53. [PMID: 16361104 DOI: 10.1016/j.micron.2005.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 08/09/2005] [Accepted: 08/26/2005] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to analyze the inner structure of chromosomes in cells arrested, fixed and cryosectioned in metaphase. The chromosomes in metaphase maps prepared using standard cytogenetic protocols, are usually covered by cellular debris, which obscures the structural details on the surface and limits analysis by techniques when using nanometric resolution. By using cryosectioning, the debris is removed and it is possible to analyze the internal structure of the chromosomes. We described the ultrastructure of chromosome sections fixed with either acetic acid, methanol or glutaraldehyde, evaluating the effect and the influence of the fixative on the morphology. Furthermore, we subjected those cells previously fixed with glutaraldehyde to osmic maceration in order to better visualize the intracellular structure. All samples were examined with a Field Emission In Lens Scanning Electron Microscope (FEISEM), which allows high-resolution analysis of biological samples without any metal coating. The results showed a package morphology in samples fixed with glutaraldehyde, mainly due to the high capacity of the fixative to strongly crosslink the proteins. In contrast, the fibrillar structure seen in cryosections fixed with acetic acid/methanol is due to the propensity of the fixatives to extract and remove proteins. We propose that in situ chromosomes fixed with glutaraldehyde and then osmicated are a good model for studying the inner structure of chromosomes by using high resolution scanning electron microscopy.
Collapse
Affiliation(s)
- M Falconi
- Department of Anatomical Sciences, Via Irnerio, 48, 40126 Bologna, Italy
| | | | | | | | | |
Collapse
|
43
|
Yamaguchi T, Mukaisho KI, Yamamoto H, Shiomi H, Kurumi Y, Sugihara H, Tani T. Disruption of erythrocytes distinguishes fixed cells/tissues from viable cells/tissues following microwave coagulation therapy. Dig Dis Sci 2005; 50:1347-55. [PMID: 16047486 DOI: 10.1007/s10620-005-2786-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Microwave coagulation therapy (MCT) has recently been applied to treat hepatic tumors. However, the histological changes in the liver following MCT have not been fully elucidated. A type of cell death known as microwave fixation has been reported in areas adjacent to the microwave irradiator electrodes, and these areas are without acid phosphatase (AcP) activity. Diagnosis of microwave-fixed tissue by hematoxylin and eosin (HE) staining is very difficult because morphology is well maintained for months. In an effort to clarify the histological changes and the mechanisms of microwave fixation, we performed HE staining, enzyme histochemistry for AcP, and electron microscopy in both rat and human liver samples after MCT. Although the microwave-fixed tissues maintained their structure on HE staining, membranes of microwave-fixed cells were seriously damaged and there were no apparent organelle structures in these cells on electron microscopy. Erythrocytes were also damaged in these tissues on both light and electron microscopy. The cause of microwave fixation is thought to be injury of the membrane, which is similar to coagulative necrosis. In conclusion, microwave fixation can be considered a type of coagulative necrosis without enzyme digestion. Disruption of erythrocytes on HE staining is an interesting and important diagnostic clue in distinguishing nonviable fixed tissues from viable tissues following MCT.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Department of Surgery, Shiga University of Medical Science, Seta-tsukinowa-cho, Ohtsu, Shiga, 520-2192, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Wickert H, Göttler W, Krohne G, Lanzer M. Maurer's cleft organization in the cytoplasm of plasmodium falciparum-infected erythrocytes: new insights from three-dimensional reconstruction of serial ultrathin sections. Eur J Cell Biol 2005; 83:567-82. [PMID: 15679102 DOI: 10.1078/0171-9335-00432] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maurer's clefts are single-membrane-limited structures in the cytoplasm of erythrocytes infected with the human malarial parasite Plasmodium falciparum. The currently accepted model suggests that Maurer's clefts act as an intermediate compartment in protein transport processes from the parasite across the cytoplasm of the host cell to the erythrocyte surface, by receiving and delivering protein cargo packed in vesicles. This model is mainly based on two observations. Firstly, single-section electron micrographs have shown, within the cytoplasm of infected erythrocytes, stacks of long slender membranes in close vicinity to round membrane profiles considered to be vesicles. Secondly, proteins that are transported from the parasite to the erythrocyte surface as well as proteins facilitating the budding of vesicles have been found in association with Maurer's clefts. Verification of this model would be greatly assisted by a better understanding of the morphology, dimensions and origin of the Maurer's clefts. Here, we have generated and analyzed three-dimensional reconstructions of serial ultrathin sections covering segments of P. falciparum-infected erythrocytes of more than 1 microm thickness. Our results indicate that Maurer's clefts are heterogeneous in structure and size. We have found Maurer's clefts consisting of a single disk-shaped cisternae localized beneath the plasma membrane. In other examples, Maurer' clefts formed an extended membranous network that bridged most of the distance between the parasite and the plasma membrane of the host erythrocyte. Maurer's cleft membrane networks were composed of both branched membrane tubules and stacked disk-shaped membrane cisternae that eventually formed whorls. Maurer's clefts were visible in other cells as a loose membrane reticulum composed of scattered tubular and disk-shaped membrane profiles. We have not seen clearly discernable isolated vesicles in the analyzed erythrocyte segments suggesting that the current view of how proteins are transported within the Plasmodium-infected erythrocyte may need reconsideration.
Collapse
Affiliation(s)
- Hannes Wickert
- Division of Electron Microscopy Biocenter, University of Würzburg, Germany
| | | | | | | |
Collapse
|
45
|
Doan LL, Tanner MK, Grimes HL. Intranuclear staining of proteins in heterogeneous cell populations and verification of nuclear localization by flow cytometric analysis. J Immunol Methods 2003; 279:193-8. [PMID: 12969560 DOI: 10.1016/s0022-1759(03)00184-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe techniques to detect nuclear transcription factors in thymocyte subsets using flow cytometry. We have adapted a method that minimizes autofluorescence of fixed cells, thereby allowing the detection of proteins expressed at low levels. An accompanying method in which the cytoplasm is removed from stained cells allows the confirmation of nuclear localization. These methods combine to provide a sensitive alternative approach for detecting nuclear proteins within heterogeneous cell populations.
Collapse
Affiliation(s)
- Loretta L Doan
- Institute for Cellular Therapeutics, University of Louisville Medical School, Louisville, KY 40202, USA
| | | | | |
Collapse
|
46
|
Gordon KM, Duckett L, Daul B, Petrie HT. A simple method for detecting up to five immunofluorescent parameters together with DNA staining for cell cycle or viability on a benchtop flow cytometer. J Immunol Methods 2003; 275:113-21. [PMID: 12667675 DOI: 10.1016/s0022-1759(03)00009-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this manuscript, we describe modifications to a commercial three-laser benchtop flow cytometer, as well as relevant biological methods, that allow analysis of up to five immunofluorescent parameters together with an ultraviolet (UV)-excitable DNA stain. This method allows expanded capacity for multiparameter immunophenotyping of complex mixed cell populations, together with accurate measurements of DNA content (cell cycle) or cell viability, on a stable, end-user operated platform.
Collapse
|
47
|
Hyllested JL, Veje K, Ostergaard K. Histochemical studies of the extracellular matrix of human articular cartilage--a review. Osteoarthritis Cartilage 2002; 10:333-43. [PMID: 12027534 DOI: 10.1053/joca.2002.0519] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This paper reviews the histochemistry of the extracellular matrix of human articular cartilage. No systematic review of histochemical knowledge and techniques in the study of articular cartilage has been published previously. METHODS AND RESULTS Literature was searched in the Winspirs Medline database from 1960 to 2000. Only techniques applicable for bright field or polarization microscopy were considered. Unless otherwise noted, all applies to hyaline cartilage. The most widely used fixatives are adequate for routine staining of proteins, but proteoglycan fixation is problematic, and no one fixative can be recommended. Proteoglycan can be stained reliably but it is problematic that, at low substrate concentrations, these methods are not stoichiometric. Collagen can be stained efficiently, although attempts to differentiate collagen types have not been successful. CONCLUSIONS Detailed studies of fixation and staining procedures should be carried out and standards for cartilage sampling, handling and evaluation agreed upon if results from different laboratories are to be compared.
Collapse
Affiliation(s)
- J L Hyllested
- Osteoarthritis Research Unit, Institute for Inflammation Research (IIR), 7521 Finsencentre, National University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | |
Collapse
|
48
|
Shyu JS, Chen CJ, Chiu CC, Huang SC, Harn HJ. Correlation of human papillomavirus 16 and 18 with cervical neoplasia in histological typing and clinical stage in Taiwan: an in-situ polymerase chain reaction approach. J Surg Oncol 2001; 78:101-9. [PMID: 11579387 DOI: 10.1002/jso.1128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVES In situ polymerase chain reaction (ISPCR) promises to considerably enhance our ability to detect a few copies of target nucleic acid sequences in fixed tissues and cells. The aim of this study was to investigate cervical carcinoma to determine the human papillomavirus (HPV) types on paraffin-embedded tissue sections by ISPCR and standard in situ hybridization. The results will correlate the morphological characteristics of lesions with viral typing results. METHODS This study examined prevalence of HPV 16 and 18 DNA in biopsies from 85 cervical cancer patients by ISPCR, employing HPV 16, 18 consensus primers. There are 45 patients with squamous cell carcinomas, 13 with adenocarcinoma, 2 with adenosquamous carcinomas, 3 with small cell carcinomas, and 22 carcinoma in situ. The relation between the types of HPV detected, tumor type, and clinical stage were analyzed. RESULTS Fifty-two of 85 biopsies were HPV 16- or 18-positive, HPV 16 being the most prevalent type. Squamous cell carcinoma had a high prevalence of HPV 16 and adenocarcinoma had a high prevalence of HPV 18. HPV 18 was the predominant type among high clinical stage (III-IV) cases while HPV 16 and mixed HPV 16 with HPV18 were significantly correlated with low clinical stage (0-I-II). CONCLUSION Our results indicate that certain malignant cervical tumor phenotypes and stages correlate with specific HPV type, and that ISPCR is a sensitive and fast method to detect HPV in these patients.
Collapse
Affiliation(s)
- J S Shyu
- Department of Pathology, Armed Force Taoyuan Hospital, Taoyuan, Taiwan, ROC
| | | | | | | | | |
Collapse
|
49
|
Boeck G. Current status of flow cytometry in cell and molecular biology. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 204:239-98. [PMID: 11243596 DOI: 10.1016/s0074-7696(01)04006-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes recent developments in flow cytometry (FC). It gives an overview of techniques currently available, in terms of apparatus and sample handling, a guide to evaluating applications, an overview of dyes and staining methods, an introduction to internet resources, and a broad listing of classic references and reviews in various fields of interest, as well as some recent interesting articles.
Collapse
Affiliation(s)
- G Boeck
- Institute for General and Experimental Pathology, University Innsbruck, Medical School, Austria
| |
Collapse
|
50
|
Talman EA, Boughner DR. Effect of altered hydration on the internal shear properties of porcine aortic valve cusps. Ann Thorac Surg 2001; 71:S375-8. [PMID: 11388228 DOI: 10.1016/s0003-4975(01)02546-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dehydration of tissue due to glutaraldehyde fixation has been reported and was examined in this study of porcine aortic valve cusps. The effect of altered hydration on cusp internal shear properties was also examined. METHODS Hydration level was assessed by wet mass measurement of cusps stored in solutions for times up to 1000 minutes. Solutions used in this study included Hanks solution, porcine blood, 0.5% glutaraldehyde, and several dextran solutions. Shear testing was performed on physiologically hydrated, superhydrated, and dehydrated cusps. RESULTS There was very little difference between the physiologic and superhydrated leaflets; however, dehydration caused significant stiffening with increased hysteresis and stress relaxation. CONCLUSIONS Glutaraldehyde has been shown to increase shear stiffness of valve cusps. Tissue dehydration also increased shear stiffness but increased stress relaxation and hysteresis, which was contrary to observations reported after glutaraldehyde fixation. The significant effect of dehydration on cusp mechanical properties does not account for the effects observed after glutaraldehyde fixation, but it demonstrates that hydration level is an important factor that affects internal shear properties of valve cusps.
Collapse
Affiliation(s)
- E A Talman
- The John P. Robarts Research Institute and Department of Medical Biophysics, University of Western Ontario, London, Canada
| | | |
Collapse
|