1
|
Bartlett BA, Klier J, Razavi S. Preparation of bovine serum albumin nanospheres via desolvation: a study of synthesis, characterization, and aging. NANOSCALE 2025; 17:5715-5731. [PMID: 39836150 DOI: 10.1039/d4nr04682j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Serum albumin has myriad uses in biotechnology, but its value as a nanocarrier or nanoplatform for therapeutics is becoming increasingly important, notably with albumin-bound chemotherapeutics. Another emerging field is the fabrication of biopolymeric nanoparticles using albumin as a building block to achieve highly-tunable nonimmunogenic capsules or scaffolds that may be cheaply and reliably produced. The aim of this study was to characterize and optimize the desolvation process used for fabrication of albumin nanoparticles under ambient conditions, studying both glutaraldehyde (GT) and glucose (GLU) as crosslinking agents and the effect of various synthesis conditions including pH, electrolyte concentration, and rate of desolvation on particle size and stability. Particle size, polydispersity index, and zeta potential were investigated, morphology was examined using scanning electron microscopy (SEM), and long-term stability and degradation modes were studied using dynamic light scattering (DLS) and transmission electron microscopy (TEM). It was determined that the optimized synthesis procedure for synthesis of Bovine Serum Albumin (BSA) nanoparticles at the investigated scale under ambient conditions was addition of ethanol at a rate of 0.625 mL min-1via infusion against the vial wall and a pH of 9 with the addition of no other electrolytes. Optimized BSA nanoparticles were synthesized at a size of 86 ± 3.7 nm (σ = 1.85) using glutaraldehyde as a crosslinker and a size of 92 ± 1.9 nm (σ = 0.95) using glucose as a crosslinker with polydispersity indices of 0.08 and 0.05, respectively. Nanoparticles synthesized via the optimized procedure, using both crosslinkers, were found to maintain colloidal stability significantly longer than cases previously reported in the literature, with insignificant changes in hydrodynamic size many months after synthesis.
Collapse
Affiliation(s)
- Blake A Bartlett
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA.
| | - John Klier
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA.
| | - Sepideh Razavi
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
2
|
Holyavka MG, Goncharova SS, Artyukhov VG. Various Options for Covalent Immobilization of Cysteine Proteases-Ficin, Papain, Bromelain. Int J Mol Sci 2025; 26:547. [PMID: 39859263 PMCID: PMC11764635 DOI: 10.3390/ijms26020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties. The objective of this study is to evaluate the impact of covalent immobilization under different conditions on the proteolytic activity of the enzymes. The most favorable results were achieved by immobilizing ficin and bromelain through covalent bonding to medium and high molecular weight chitosans, using 5 and 3.33% glutaraldehyde solutions, respectively. For papain, 5 and 6.67% glutaraldehyde solutions proved to be more effective as crosslinking agents. These findings indicate that covalent immobilization can enhance the performance of these enzymes as biocatalysts, with potential applications in various biotechnological fields.
Collapse
Affiliation(s)
- Marina G. Holyavka
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia (V.G.A.)
- Bioresource Potential of the Seaside Territory Laboratory, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
| | - Svetlana S. Goncharova
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia (V.G.A.)
| | - Valeriy G. Artyukhov
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia (V.G.A.)
| |
Collapse
|
3
|
Liu Y, Peng Y, Zhang C, Chen R, Zhang K. Single-Molecule Detection of Serum MicroRNAs for Medulloblastoma with Biphasic Sandwich Hybridization-Assisted Plasmonic Resonant Scattering Imaging. Anal Chem 2024; 96:18655-18663. [PMID: 39534914 DOI: 10.1021/acs.analchem.4c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
MicroRNA (miRNA) dysregulation is closely related to the occurrence and progression of medulloblastoma (MB). However, the full potential of serum circulating miRNAs in MB diagnosis is restricted by their ultralow abundance in peripheral blood due to blood-brain barrier. Here, we report the direct preamplification-free detection of aberrant expression of oncogenic miRNAs in serum from MB patients by proposing a simple yet robust single-molecule assay that combines biphasic sandwich hybridization in nucleic acids and the dark-field single-particle plasmonic imaging (B2S2PI). In this strategy, signal DNA was prehybridized with target miRNA in homogeneous solution to form sDNA-RNA complexes. Then the captured DNA strands with rationally adjusted surface densities could efficiently capture the sDNA-RNA complexes to generate a well-separated DNA-RNA sandwich structure. The combination of homogeneous and heterogeneous reactions enabled interface-mediated hybridization reactions to maintain molecular stability with fewer bases, making it suitable for the direct amplification-free assays of short miRNA targets. Labeling the DNA-RNA hybrids with plasmatic gold nanotags allowed nondestructive recognition and imaging of individual miRNA targets under mild conditions with high signal-to-noise ratio. By digitally counting and analyzing the bright plasmonic resonant scattering spots, B2S2PI enabled both the measurement of a low femtomolar concentration of circulating miRNA-21 in 5 μL sample volume within a turnaround of 2 h and the discrimination of single base mismatches. Moreover, B2S2PI was universal for detecting miRNAs with different sequences and secondary structures. Further analysis of clinical serum samples revealed that B2S2PI was capable of accurately distinguishing MB patients from noncancer controls with an area under the curve (AUC) of 0.99, which was superior to that of qRT-PCR. B2S2PI holds promise as a novel alternative means for single-molecule miRNA assay and sheds light on the circulating nucleic acid-based liquid biopsy of intracranial malignant tumors.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yijia Peng
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruoping Chen
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
4
|
Hense D, Strube OI. Glutaraldehyde Cross-Linking of Salt-Induced Fibrinogen Hydrogels. ACS Biomater Sci Eng 2024; 10:6927-6937. [PMID: 39422201 PMCID: PMC11558561 DOI: 10.1021/acsbiomaterials.4c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Covalent cross-linking is a common strategy to improve the mechanical properties of biological polymers. The most prominent field of application of such materials is in medicine, for example, in the form of bioprinting, drug delivery, and wound sealants. One biological polymer of particular interest is the blood clotting protein fibrinogen. In the natural process, fibrinogen polymerizes to fibrous hydrogel fibrin. Although the material shows great potential, its costs are very high due to the required enzyme thrombin. Recently, we introduced several approaches to trigger a thrombin-free fibrillogenesis of fibrinogen to a fibrin-like material. Inspired by the natural pathway of blood clotting in which covalent cross-linking stabilizes the clot, this "pseudofibrin" is now developed even further by covalently cross-linking the fibers. In particular, the effect of inexpensive glutaraldehyde on fiber morphology, rheological properties, and irreversible gel dissolution is investigated. Additionally, new insights into the reaction kinetics between fibrinogen and glutaraldehyde are gained. It could be shown that the fibrous structure of pseudofibrin can be retained during cross-linking and that glutaraldehyde significantly improves rheological properties of the hydrogels. Even more important, cross-linking with glutaraldehyde can prevent dissolution of the gels at elevated temperatures.
Collapse
Affiliation(s)
- Dominik Hense
- Institute for Chemical Engineering, University of Innsbruck, Innrain 80-82, Innsbruck, AT 6020, Austria
| | - Oliver I. Strube
- Institute for Chemical Engineering, University of Innsbruck, Innrain 80-82, Innsbruck, AT 6020, Austria
| |
Collapse
|
5
|
Abdalbaqi A, Yahya A, Govender K, Muñoz C, Moer GSV, Lucas D, Cabrales P, Palmer AF. Tangential flow filtration facilitated fractionation of polymerized human serum albumin: Insights into the effects of molecular size on biophysical properties. Biotechnol Prog 2024; 40:e3500. [PMID: 39073020 PMCID: PMC11659796 DOI: 10.1002/btpr.3500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Human serum albumin (HSA) is currently used as a plasma expander (PE) to increase blood volume during hypovolemic conditions, such as blood loss. However, its effectiveness is suboptimal in septic shock and burn patients due to their enhanced endothelial permeability, resulting in HSA extravasation into the tissue space leading to edema, and deposition of toxic HSA-bound metabolites. Hence, to expand HSA's applicability toward treating patients with compromised endothelial permeability, HSA has been previously polymerized to increase its molecular size thus compartmentalizing the polymerized HSA (PolyHSA) molecules in the vascular space. Previous studies bracketed PolyHSA between 100 kDa and 0.2 μm. In this research, PolyHSA was synthesized at two cross-link densities 43:1 and 60:1 (i.e., molar ratios of glutaraldehyde to HSA) and subsequently fractionated via tangential flow filtration (TFF) into two narrower brackets: bracket A (500 kDa and 0.2 μm) and bracket B (50-500 kDa). PolyHSA within the same size bracket at different cross-link densities exhibited similar solution viscosity, zeta potential, and osmolality but differed in hydrodynamic diameter. At the same cross-link density, the PolyHSA A bracket showed higher viscosity, lowered zeta potential, and a larger hydrodynamic diameter compared with the PolyHSA B bracket while maintaining osmolality. Interestingly, PolyHSA 43:1 B, PolyHSA 60:1 A, and PolyHSA 60:1 B brackets exhibited colloid osmotic pressure similar to HSA, indicating their potential to serve as PEs.
Collapse
Affiliation(s)
- Amna Abdalbaqi
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Ahmad Yahya
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Krianthan Govender
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Carlos Muñoz
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Daniela Lucas
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Pedro Cabrales
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
6
|
Trefz FM, Balmer M, Peters LM, Bruckmaier RM, Meylan M. Association of results of the glutaraldehyde coagulation test with plasma acute phase protein concentrations and hematologic findings in hospitalized cows. Front Vet Sci 2024; 11:1404809. [PMID: 38962710 PMCID: PMC11220118 DOI: 10.3389/fvets.2024.1404809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction The glutaraldehyde test (GAT) allows for animal-side semi-quantitative estimation of fibrinogen and gamma-globulin concentrations in blood samples of adult cattle and therefore detection of inflammatory disease conditions. However, the test has potential limitations, especially due to the latency period until sufficiently high fibrinogen and/or gamma-globulin concentrations are reached. The aim of the present study was therefore to assess the association between results of GAT with other inflammatory markers including hematologic variables, fibrinogen, plasma haptoglobin and serum amyloid A (SAA) concentrations. Methods For the purpose of this prospective observational study, a convenience sample of 202 cows with a broad range of inflammatory and non-inflammatory clinical conditions was included. The GAT was run on EDTA blood, fibrinogen was measured using the Clauss and the heat precipitation method, and commercially available ELISA tests were used for determination of plasma haptoglobin and SAA concentrations. Results Shortened GAT coagulation times were more closely correlated to serum globulin (rs = -0.72) than to plasma fibrinogen concentrations measured with the heat precipitation (rs = -0.64) and the Clauss method (rs = -0.70). Cows with a markedly (≤3 min) or moderately (4-6 min) shortened coagulation time had higher (p < 0.001) plasma haptoglobin and SAA concentrations than cows with a negative test result. Total leukocyte, monocyte and neutrophil concentrations did not differ significantly between groups. An identified cut-off for the GAT coagulation time of ≤14 min had a sensitivity and specificity of 54.4 and 100%, respectively, for the prediction of an inflammatory state based on clinical findings and/or increased plasma haptoglobin or SAA concentrations. Discussion In conclusion, this study demonstrates considerable diagnostic agreement between positive GAT results and increased plasma concentrations of haptoglobin and SAA. Despite high specificity, the test lacks sensitivity in case of acute inflammatory conditions indicating that plasma acute phase protein concentrations and hematologic findings can provide additional diagnostic information if the GAT is negative.
Collapse
Affiliation(s)
- Florian M. Trefz
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre of Veterinary Clinical Medicine, Ludwig-Maximilians-Universität (LMU) München, Oberschleißheim, Germany
| | - Martina Balmer
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Laureen M. Peters
- Clinical Diagnostic Laboratory, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Mireille Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Kim KS, Lee Y, Lee JH, Lee SS, Chung JM, Jung HS. Optimizing protein crosslinking control: Synergistic quenching effects of glycine, histidine, and lysine on glutaraldehyde reactions. Biochem Biophys Res Commun 2024; 702:149567. [PMID: 38335701 DOI: 10.1016/j.bbrc.2024.149567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Glutaraldehyde (GA) is a protein crosslinker widely used in biochemical and pharmaceutical research because it can rapidly stabilize and immobilize substrates via amine group interactions. However, controlling GA crosslinking is challenging owing to its swift reactivity and the influence of various solution conditions, such as pH and concentrations of the substrate and crosslinker. Although extensive research has focused on GA cross-linking mechanisms, studies on quenching, which is critical for preventing non-specific aggregation during prolonged storage, remain sparse. This study examines the quenching efficiency of a combined amino acid mixture of glycine, histidine, and lysine, which are commonly used as individual quenchers. Our findings, confirmed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis, demonstrate that this amino acid blend offers superior quenching compared to single amino acids, enhancing quenching activity across a wide pH spectrum. These results provide a novel approach for mitigating the high reactivity of GA with implications for improving sample preservation and stabilization in a range of biochemical applications, including microscopy and cell fixation.
Collapse
Affiliation(s)
- Kwang Sub Kim
- Division of Chemistry & Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Yeseul Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon , 14662, Gyeonggi, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea; University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jeong Min Chung
- Department of Biotechnology, The Catholic University of Korea, Bucheon , 14662, Gyeonggi, Republic of Korea.
| | - Hyun Suk Jung
- Division of Chemistry & Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
8
|
Shen Y, Wang J, Li Y, Yang CT, Zhou X. Modified Bacteriophage for Tumor Detection and Targeted Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040665. [PMID: 36839030 PMCID: PMC9963578 DOI: 10.3390/nano13040665] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 05/07/2023]
Abstract
Malignant tumor is one of the leading causes of death in human beings. In recent years, bacteriophages (phages), a natural bacterial virus, have been genetically engineered for use as a probe for the detection of antigens that are highly expressed in tumor cells and as an anti-tumor reagent. Furthermore, phages can also be chemically modified and assembled with a variety of nanoparticles to form a new organic/inorganic composite, thus extending the application of phages in biological detection and tumor therapeutic. This review summarizes the studies on genetically engineered and chemically modified phages in the diagnosis and targeting therapy of tumors in recent years. We discuss the advantages and limitations of modified phages in practical applications and propose suitable application scenarios based on these modified phages.
Collapse
Affiliation(s)
- Yuanzhao Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jingyu Wang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuting Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chih-Tsung Yang
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Adelaide, SA 5095, Australia
- Correspondence: (X.Z.); (C.-T.Y.)
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.Z.); (C.-T.Y.)
| |
Collapse
|
9
|
Lee W, Heo E, Koo HB, Cho I, Chang JB. Strong, Chemically Stable, and Enzymatically On-Demand Detachable Hydrogel Adhesion Using Protein Crosslink. Macromol Rapid Commun 2023; 44:e2200750. [PMID: 36484110 DOI: 10.1002/marc.202200750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Achieving strong adhesion between hydrogels and diverse materials is greatly significant for emerging technologies yet remains challenging. Existing methods using non-covalent bonds have limited pH and ion stability, while those using covalent bonds typically lack on-demand detachment capability, limiting their applications. In this study, a general strategy of covalent bond-based and detachable adhesion by incorporating amine-rich proteins in various hydrogels and inducing the interfacial crosslinking of the hydrogels using a protein-crosslinking agent is demonstrated. The protein crosslink offers topological adhesion and can reach a strong adhesion energy of ≈750 J m-2 . The chemistry of the adhesion is characterized and that the inclusion of proteins inside the hydrogels does not alter the hydrogels' properties is shown. The adhesion remains intact after treating the adhered hydrogels with various pH solutions and ions, even at an elevated temperature. The detachment is triggered by treating proteinase solution at the bonding front, causing the digestion of proteins, thus breaking up the interfacial crosslink network. In addition, that this approach can be used to adhere hydrogels to diverse dry surfaces, including glass, elastomers and plastics, is shown. The stable chemistry of protein crosslinks opens the door for various applications in a wide range of chemical environments.
Collapse
Affiliation(s)
- Wonseok Lee
- Department of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eunseok Heo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hye Been Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Basiry D, Entezari Heravi N, Uluseker C, Kaster KM, Kommedal R, Pala-Ozkok I. The effect of disinfectants and antiseptics on co- and cross-selection of resistance to antibiotics in aquatic environments and wastewater treatment plants. Front Microbiol 2022; 13:1050558. [PMID: 36583052 PMCID: PMC9793094 DOI: 10.3389/fmicb.2022.1050558] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The outbreak of the SARS-CoV-2 pandemic led to increased use of disinfectants and antiseptics (DAs), resulting in higher concentrations of these compounds in wastewaters, wastewater treatment plant (WWTP) effluents and receiving water bodies. Their constant presence in water bodies may lead to development and acquisition of resistance against the DAs. In addition, they may also promote antibiotic resistance (AR) due to cross- and co-selection of AR among bacteria that are exposed to the DAs, which is a highly important issue with regards to human and environmental health. This review addresses this issue and provides an overview of DAs structure together with their modes of action against microorganisms. Relevant examples of the most effective treatment techniques to increase the DAs removal efficiency from wastewater are discussed. Moreover, insight on the resistance mechanisms to DAs and the mechanism of DAs enhancement of cross- and co-selection of ARs are presented. Furthermore, this review discusses the impact of DAs on resistance against antibiotics, the occurrence of DAs in aquatic systems, and DA removal mechanisms in WWTPs, which in principle serve as the final barrier before releasing these compounds into the receiving environment. By recognition of important research gaps, research needs to determine the impact of the majority of DAs in WWTPs and the consequences of their presence and spread of antibiotic resistance were identified.
Collapse
Affiliation(s)
- Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Nooshin Entezari Heravi
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Cansu Uluseker
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ilke Pala-Ozkok
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
11
|
Ghosh P, Bag S, Roy P, Chakraborty I, Dasgupta S. Permeation of flavonoid loaded human serum albumin nanoparticles across model membrane bilayers. Int J Biol Macromol 2022; 222:385-394. [PMID: 36155787 DOI: 10.1016/j.ijbiomac.2022.09.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
The rapid growth in the applications of nanoparticles (NPs) in biomedical and pharmaceutical fields requires an understanding of the interactions with the lipid bilayer membrane for further in vivo studies. Zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), negatively charged 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) and positively charged 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) have been used to prepare model lipid membranes and the ability of flavonoid loaded nanoparticles to cross the membranes investigated. The lipid vesicles have been prepared by a freeze-thaw method followed by an extrusion technique and characterised by dynamic light scattering (DLS) and high-resolution transmission electron microscopy (HRTEM). The synthesized model lipid membranes exhibited a bilayer spherical type of morphology with an average diameter of less than 150 nm. A calcein leakage assay and fluorescence anisotropy measurement indicated that the membranes are permeable to the flavonoid (fisetin/morin/epicatechin) loaded human serum albumin nanoparticles. This implies that drug/compound encapsulated nanoparticles are able to effectively cross the lipid bilayer thus permitting the design and development of new compounds that may be encapsulated for safe and potential use in biomedical applications.
Collapse
Affiliation(s)
- Pooja Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudipta Bag
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pritam Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ishita Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
12
|
Khan AH, Surwase S, Jiang X, Edirisinghe M, Dalvi SV. Enhancing In Vitro Stability of Albumin Microbubbles Produced Using Microfluidic T-Junction Device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5052-5062. [PMID: 34264681 DOI: 10.1021/acs.langmuir.1c01516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidics is an efficient technique for continuous synthesis of monodispersed microbubbles. However, microbubbles produced using microfluidic devices possess lower stability due to quick dissolution of core gas when exposed to an aqueous environment. This work aims at generating highly stable monodispersed albumin microbubbles using microfluidic T-junction devices. Microbubble generation was facilitated by an aqueous phase consisting of bovine serum albumin (BSA) as a model protein and nitrogen (N2) gas. Microbubbles were chemically cross-linked using dilute glutaraldehyde (0.75% v/v) solution and thermally cross-linked by collecting microbubbles in hot water maintained at 368 (±2) K. These microbubbles were then subjected to in vitro dissolution in an air-saturated water. Microbubbles cross-linked with a combined treatment of thermal and chemical cross-linking (TC & CC) had longer dissolution time compared to microbubbles chemically cross-linked (CC) alone, thermally cross-linked (TC) alone, and non-cross-linked microbubbles. Circular dichroism (CD) spectroscopy analysis revealed that percent reduction in alpha-helices of BSA was higher for the combined treatment of TC & CC when compared to other treatments. In contrast to non-cross-linked microbubbles where microbubble shell dissolved completely, a significant shell detachment was observed during the final phase of the dissolution for cross-linked microbubbles captured using high speed camera, depending upon the extent of cross-linking of the microbubble shell. SEM micrographs of the microbubble shell revealed the shell thickness of microbubbles treated with TC & CC to be highest compared to only thermally or only chemically cross-linked microbubbles. Comparison of microbubble dissolution data to a mass transfer model showed that shell resistance to gas permeation was highest for microbubbles subjected to a combined treatment of TC & CC.
Collapse
Affiliation(s)
- Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat India
| | - Swarupkumar Surwase
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat India
| | - Xinyue Jiang
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, United Kingdom
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, United Kingdom
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat India
| |
Collapse
|
13
|
Preparation and characterization of dual-network interpenetrating structure hydrogels with shape memory and self-healing properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Batista AD, Rajpal S, Keitel B, Dietl S, Fresco‐Cala B, Dinc M, Groß R, Sobek H, Münch J, Mizaikoff B. Plastic Antibodies Mimicking the ACE2 Receptor for Selective Binding of SARS-CoV-2 Spike. ADVANCED MATERIALS INTERFACES 2022; 9:2101925. [PMID: 35441074 PMCID: PMC9011513 DOI: 10.1002/admi.202101925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Molecular imprinting has proven to be a versatile and simple strategy to obtain selective materials also termed "plastic antibodies" for a wide variety of species, i.e., from ions to macromolecules and viruses. However, to the best of the authors' knowledge, the development of epitope-imprinted polymers for selective binding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not reported to date. An epitope from the SARS-CoV-2 spike protein comprising 17 amino acids is used as a template during the imprinting process. The interactions between the epitope template and organosilane monomers used for the polymer synthesis are predicted via molecular docking simulations. The molecularly imprinted polymer presents a 1.8-fold higher selectivity against the target epitope compared to non-imprinted control polymers. Rebinding studies with pseudoviruses containing SARS-CoV-2 spike protein demonstrate the superior selectivity of the molecularly imprinted matrices, which mimic the interactions of angiotensin-converting enzyme 2 receptors from human cells. The obtained results highlight the potential of SARS-CoV-2 molecularly imprinted polymers for a variety of applications including chem/biosensing and antiviral delivery.
Collapse
Affiliation(s)
- Alex D. Batista
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Institute of ChemistryFederal University of UberlandiaAv. Joao Naves de Ávila 2121Uberlândia38400‐902Brazil
| | - Soumya Rajpal
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Department of Biochemical Engineering and BiotechnologyIndian Institute of Technology DelhiHauz KhasNew Delhi110 016India
| | - Benedikt Keitel
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Sandra Dietl
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Beatriz Fresco‐Cala
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | | | - Rüdiger Groß
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstr. 189081UlmGermany
| | - Harald Sobek
- Labor Dr. Merk & Kollegen GmbHBeim Braunland 188416OchsenhausenGermany
| | - Jan Münch
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstr. 189081UlmGermany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Hahn‐SchickardSedanstraße 1489077UlmGermany
| |
Collapse
|
15
|
de Souza Lima J, Immich APS, de Araújo PHH, de Oliveira D. Cellulase immobilized on kaolin as a potential approach to improve the quality of knitted fabric. Bioprocess Biosyst Eng 2022; 45:679-688. [PMID: 35015119 DOI: 10.1007/s00449-021-02686-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/26/2021] [Indexed: 12/01/2022]
Abstract
Biopolishing is a textile process that uses cellulases to improve the pilling resistance of fabrics. Although the process improves the pilling resistance, softness and color brightness of fabrics, it causes a significant loss of tensile strength in treated fabrics. The present work studied the use of cellulase immobilized on kaolin by adsorption and covalent bonding in biopolishing to get around this problem. The cellulase immobilization has been reported as promising alternative to overcome the inconvenient of biopolishing, but it has been very poorly explored. The results showed that cellulase immobilized by both covalent bonding and adsorption methods provided to the knitted fabric similar or superior pilling resistance to free cellulase, but with greater tensile strength. Immobilization also allowed for efficient recovery and reuse of the enzyme. The present work is a relevant contribution to the literature, since, as far as we know, it is the first work that shows it is possible to minimize the loss of tensile strength and also reuse the immobilized enzyme, giving a better-quality product and also contribution to reducing the cost of the polishing step.
Collapse
Affiliation(s)
- Janaina de Souza Lima
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Ana Paula Serafini Immich
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Pedro Henrique Hermes de Araújo
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
16
|
Asiimwe N, Lee J, Hong K, murale D, Haque MM, Kim DH, Lee JS. Temporal control of protein labeling by photo-caged benzaldehyde motif and discovery of host cell factors of avian influenza virus infection. Chem Commun (Camb) 2022; 58:9345-9348. [DOI: 10.1039/d2cc04091c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-caged benzaldehyde probes using o-nitrophenylethylene glycol were designed for photo-activated electrophile generation. Unlike radical reaction that produce uncontrolled multiple reaction paths resulting low yield of crosslinking, reaction of electrophile has...
Collapse
|
17
|
Abstract
Bacteriophages are viruses whose ubiquity in nature and remarkable specificity to their host bacteria enable an impressive and growing field of tunable biotechnologies in agriculture and public health. Bacteriophage capsids, which house and protect their nucleic acids, have been modified with a range of functionalities (e.g., fluorophores, nanoparticles, antigens, drugs) to suit their final application. Functional groups naturally present on bacteriophage capsids can be used for electrostatic adsorption or bioconjugation, but their impermanence and poor specificity can lead to inconsistencies in coverage and function. To overcome these limitations, researchers have explored both genetic and chemical modifications to enable strong, specific bonds between phage capsids and their target conjugates. Genetic modification methods involve introducing genes for alternative amino acids, peptides, or protein sequences into either the bacteriophage genomes or capsid genes on host plasmids to facilitate recombinant phage generation. Chemical modification methods rely on reacting functional groups present on the capsid with activated conjugates under the appropriate solution pH and salt conditions. This review surveys the current state-of-the-art in both genetic and chemical bacteriophage capsid modification methodologies, identifies major strengths and weaknesses of methods, and discusses areas of research needed to propel bacteriophage technology in development of biosensors, vaccines, therapeutics, and nanocarriers.
Collapse
Affiliation(s)
| | - Julie M. Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Sullivan MV, Stockburn WJ, Hawes PC, Mercer T, Reddy SM. Green synthesis as a simple and rapid route to protein modified magnetic nanoparticles for use in the development of a fluorometric molecularly imprinted polymer-based assay for detection of myoglobin. NANOTECHNOLOGY 2021; 32:095502. [PMID: 33242844 PMCID: PMC8314874 DOI: 10.1088/1361-6528/abce2d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 05/26/2023]
Abstract
We have developed a low-cost molecularly imprinted polymer (MIP)-based fluorometric assay to directly quantify myoglobin in a biological sample. The assay uses a previously unreported method for the development of microwave-assisted rapid synthesis of aldehyde functionalized magnetic nanoparticles, in just 20 min. The aldehyde functionalized nanoparticles have an average size of 7.5 nm ± 1.8 and saturation magnetizations of 31.8 emu g-1 with near-closed magnetization loops, confirming their superparamagnetic properties. We have subsequently shown that protein tethering was possible to the aldehyde particles, with 0.25 ± 0.013 mg of myoglobin adsorbed to 20 mg of the nanomaterial. Myoglobin-specific fluorescently tagged MIP (F-MIP) particles were synthesized and used within the assay to capture myoglobin from a test sample. Excess F-MIP was removed from the sample using protein functionalized magnetic nanoparticles (Mb-SPION), with the remaining sample analyzed using fluorescence spectroscopy. The obtained calibration plot of myoglobin showed a linear correlation ranging from 60 pg ml-1 to 6 mg ml-1 with the limit of detection of 60 pg ml-1. This method was successfully used to detect myoglobin in spiked fetal calf serum, with a recovery rate of more than 93%.
Collapse
Affiliation(s)
- Mark V Sullivan
- Research Centre for Smart Materials, Department of Chemistry, School
of Natural Sciences, University of Central
Lancashire, Preston, PR1 2HE, United Kingdom
- Leicester School of Pharmacy, De
Montford University, The Gateway, Leicester, LE1 9BH,
United Kingdom
| | - William J Stockburn
- Division of Forensic and Applied Sciences, School of Natural
Sciences, University of Central
Lancashire, Preston, PR1 2HE, United Kingdom
| | - Philippa C Hawes
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24
0NF, United Kingdom
| | - Tim Mercer
- Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy,
School of Natural Sciences University of Central
Lancashire, Preston, PR1 2HE, United Kingdom
| | - Subrayal M Reddy
- Research Centre for Smart Materials, Department of Chemistry, School
of Natural Sciences, University of Central
Lancashire, Preston, PR1 2HE, United Kingdom
| |
Collapse
|
19
|
Yanagihara Y, Hayashi S, Koge J, Honda H, Yamasaki R, Yamada Y, Oda Y, Iwaki T, Kira JI. Immunotherapy-refractory vacuolar myopathy with mucin deposition in scleromyxedema: A possible role of fibroblast growth factor 2. Neuropathology 2020; 40:492-495. [PMID: 32424839 DOI: 10.1111/neup.12659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 11/30/2022]
Abstract
Scleromyxedema (SME) is characterized by widespread waxy papules on the skin, with mucin deposits in the upper dermis. Twenty-one SME cases of myopathy have been reported; of the cases, six showed vacuolar formation, and two showed mucin deposition. We report the first case of SME with mucin-associated vacuolated fibers. A 45-year-old woman with SME developed progressive proximal muscle weakness. Muscle biopsy revealed myopathic changes with numerous vacuoles linked to mucin in the affected muscle fibers, which were heavily immunostained for fibroblast growth factor 2 (FGF2). Despite repeated high dose oral prednisolone and intravenous immunoglobulin administrations, muscle weakness recurred continuingly, culminating in death due to congestive heart failure. Immunotherapy was partly effective in our case, although it was refractory. Treatment responsiveness in patients with SME myopathy varied; however, due to its rarity, the mechanism remains to be elucidated. To address this issue, we investigated muscle specimens immunohistochemically and detected marked upregulation of FGF2 in the affected muscle fibers of our patient. FGF2, a strong myogenesis inhibitor, may exert a suppressive effect on muscle fiber regeneration, which may have conferred refractoriness to our patient's SME myopathy.
Collapse
Affiliation(s)
- Yuki Yanagihara
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Hayashi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junpei Koge
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Bulat K, Dybas J, Kaczmarska M, Rygula A, Jasztal A, Szczesny-Malysiak E, Baranska M, Wood BR, Marzec KM. Multimodal detection and analysis of a new type of advanced Heinz body-like aggregate (AHBA) and cytoskeleton deformation in human RBCs. Analyst 2020; 145:1749-1758. [PMID: 31913373 DOI: 10.1039/c9an01707k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of aggregate, formed in human red blood cells (RBCs) in response to glutaraldehyde treatment, was discovered and analyzed with the classical and advanced biomolecular imaging techniques. Advanced Heinz body-like aggregates (AHBA) formed in a single human RBC are characterized by a higher level of hemoglobin (Hb) degradation compared to typical Heinz bodies, which consist of hemichromes. The complete destruction of the porphyrin structure of Hb and the aggregation of the degraded proteins in the presence of Fe3+ ions are observed. The presence of such aggregated, highly degraded proteins inside RBCs, without cell membrane destruction, has been never reported before. For the first time the spatial differentiation of two kinds of protein mixtures inside a single RBC, with different phenylalanine (Phe) conformations, is visualized. The non-resonant Raman spectra of altered RBCs with AHBA are characterized by the presence of a strong band located at 1037 cm-1, which confirms that glutaraldehyde interacts strongly with Phe. The shape-shifting of RBCs from a biconcave disk to a spherical structure and sinking of AHBA to the bottom of the cell are observed. Results reveal that the presence of AHBA should be considered when fixing RBCs and indicate the analytical potential of Raman spectroscopy, atomic force microscopy and scanning near-field optical microscopy in AHBA detection and analysis.
Collapse
Affiliation(s)
- Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Neves MI, Araújo M, Barrias CC, Granja PL, Sousa A. Multiplatform Protein Detection and Quantification Using Glutaraldehyde-Induced Fluorescence for 3D Systems. J Fluoresc 2019; 29:1171-1181. [PMID: 31493174 DOI: 10.1007/s10895-019-02433-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022]
Abstract
Glutaraldehyde (GTA) is a dialdehyde used as biological fixative and its interaction with proteins like bovine serum albumin (BSA) has been well described. Additionally, GTA is known to induce fluorescence when interacting with BSA molecules. In this work, it is developed a new sensitive and reproducible method for BSA quantification using GTA crosslinking to endow fluorescence to BSA molecules. This method can be used with standard lab equipment, providing a low cost, fast-tracking and straightforward approach for BSA quantification. Techniques such as confocal laser scanning microscopy (CLSM) and spectrofluorometry are applied for quantitative assessment, and widefield fluorescence microscopy for qualitative assessment. Qualitative and quantitative correlations between BSA content and GTA-induced fluorescence are verified. BSA concentrations as low as 62.5 μg/mL are detected using CLSM. This method can be highly advantageous for protein quantification in three-dimensional hydrogel systems, specially to evaluate protein loading/release in protein delivery or molecular imprinting systems. Graphical Abstract Preparation and analysis of glutaraldehyde-induced protein-fluorescence in 3D hydrogels. Alginate-methacrylate hydrogels containing varying amounts of bovine serum albumin (BSA) are prepared by photopolymerization and then incubated in glutaraldehyde solutions. Samples observation is performed using confocal laser scanning microscopy, spectrofluorometry and widefield fluorescence microscopy. Data is processed and retrieves a quantitative correlation between protein content and fluorescence levels.
Collapse
Affiliation(s)
- Mariana I Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FEUP- Faculdade de Engenharia da Universidade do Porto, Universidade do Porto, Rua Dr Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Pedro L Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FEUP- Faculdade de Engenharia da Universidade do Porto, Universidade do Porto, Rua Dr Roberto Frias s/n, 4200-465, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Aureliana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
22
|
Tan S, Chan APC, Li P. Nanoencapsulation of Organic Phase Change Material in Water via Coacervation Using Amphoteric Copolymer. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suqing Tan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Albert P. C. Chan
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Pei Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
23
|
Ouimet CM, Dawod M, Grinias J, Assimon VA, Lodge J, Mapp AK, Gestwicki JE, Kennedy RT. Protein cross-linking capillary electrophoresis at increased throughput for a range of protein-protein interactions. Analyst 2019; 143:1805-1812. [PMID: 29565056 DOI: 10.1039/c7an02098h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tools for measuring affinities and stoichiometries of protein-protein complexes are valuable for elucidating the role of protein-protein interactions (PPIs) in governing cell functions and screening for PPI modulators. Such measurements can be challenging because PPIs can span a wide range of affinities and include stoichiometries from dimers to high order oligomers. Also, most techniques require large amounts of protein which can hamper research for difficult to obtain proteins. Protein cross-linking capillary electrophoresis (PXCE) has the potential to directly measure PPIs and even resolve multiple PPIs while consuming attomole quantities. Previously PXCE has only been used for high affinity, 1 : 1 complexes; here we expand the utility of PXCE to access a wide range of PPIs including weak and multimeric oligomers. Use of glutaraldehyde as the cross-linking agent was key to advancing the method because of its rapid reaction kinetics. A 10 s reaction time was found to be sufficient for cross-linking and quantification of seven different PPIs with Kd values ranging from low μM to low nM including heat shock protein 70 (Hsp70) interacting with heat shock organizing protein (3.8 ± 0.7 μM) and bcl2 associated anthanogene (26 ± 6 nM). Non-specific cross-linking of protein aggregates was found to be minimal at protein concentrations <20 μM as assessed by size exclusion chromatography. PXCE was sensitive enough to measure changes in PPI affinity induced by the protein nucleotide state or point mutations in the protein-binding site. Further, several interactions could be resolved in a single run, including Hsp70 monomer, homodimer and Hsp70 complexed the with c-terminus of Hsp70 interacting protein (CHIP). Finally, the throughput of PXCE was increased to 1 min per sample suggesting potential for utility in screening.
Collapse
Affiliation(s)
- Claire M Ouimet
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - James Grinias
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. and Department of Chemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Victoria A Assimon
- Department of Pharmaceutical Chemistry, University of California at San Francisco, California 94158, USA
| | - Jean Lodge
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. and Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco, California 94158, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. and Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Yeager AN, Weber PK, Kraft ML. Cholesterol is enriched in the sphingolipid patches on the substrate near nonpolarized MDCK cells, but not in the sphingolipid domains in their plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2004-2011. [PMID: 29684331 DOI: 10.1016/j.bbamem.2018.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/15/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Information about the distributions of cholesterol and sphingolipids within the plasma membranes of mammalian cells provides insight into the roles of these molecules in membrane function. In this report, high-resolution secondary ion mass spectrometry was used to image the distributions of metabolically incorporated rare isotope-labeled sphingolipids and cholesterol on the surfaces of nonpolarized epithelial cells. Sphingolipid domains that were not enriched with cholesterol were detected in the plasma membranes of subconfluent Madin-Darby canine kidney cells. Surprisingly, cholesterol-enriched sphingolipid patches were observed on the substrate adjacent to these cells. Based on the shapes of these cholesterol-enriched sphingolipid patches on the substrate and their proximity to cellular projections, we hypothesize that they are deposits of membranous particles released by the cell.
Collapse
Affiliation(s)
- Ashley N Yeager
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, United States
| | - Mary L Kraft
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, United States.
| |
Collapse
|
25
|
Köhler M, Neff C, Perez C, Brunner C, Pardon E, Steyaert J, Schneider G, Locher KP, Zenobi R. Binding Specificities of Nanobody•Membrane Protein Complexes Obtained from Chemical Cross-Linking and High-Mass MALDI Mass Spectrometry. Anal Chem 2018; 90:5306-5313. [PMID: 29562137 DOI: 10.1021/acs.analchem.8b00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The application of nanobodies as binding partners for structure stabilization in protein X-ray crystallography is taking an increasingly important role in structural biology. However, the addition of nanobodies to the crystallization matrices might complicate the optimization of the crystallization process, which is why analytical techniques to screen and characterize suitable nanobodies are useful. Here, we show how chemical cross-linking combined with high-mass matrix-assisted laser/desorption ionization mass spectrometry can be employed as a fast screening technique to determine binding specificities of intact nanobody•membrane protein complexes. Titration series were performed to rank the binding affinity of the interacting nanobodies. To validate the mass spectrometry data, microscale thermophoresis was used, which showed binding affinities of the stronger binding nanobodies, in the low μM range. In addition, mass spectrometry provides access to the stoichiometry of the complexes formed, which enables the definition of conditions under which homogeneous complex states are present in solution. Conformational changes of the membrane protein were investigated and competitive binding experiments were used to delimit the interaction sites of the nanobodies, which is in agreement with crystal structures obtained. The results show the diversity of specifically binding nanobodies in terms of binding affinity, stoichiometry, and binding site, which illustrates the need for an analytical screening approach.
Collapse
Affiliation(s)
- Martin Köhler
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| | - Christoph Neff
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| | - Camilo Perez
- Institute of Molecular Biology and Biophysics , ETH Zürich , Otto-Stern-Weg 5 , 8093 Zurich , Switzerland
| | - Cyrill Brunner
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| | | | | | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics , ETH Zürich , Otto-Stern-Weg 5 , 8093 Zurich , Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| |
Collapse
|
26
|
Peng CA, Russo J, Lyda TA, Marcotte WR. Polyelectrolyte Fiber Assembly of Plant-Derived Spider Silk-like Proteins. Biomacromolecules 2017; 18:740-746. [PMID: 28196414 DOI: 10.1021/acs.biomac.6b01552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spider dragline silk is a proteinaceous material that combines superior toughness and biocompatibility, which makes it a promising biomaterial. The distinct protein structure and the fiber formation process contribute to the superior toughness of dragline silk. Previously, we have produced recombinant spider silk-like proteins in transgenic tobacco that are readily purified from plant extracts. The plant-derived spidroin-like proteins consisted of native major ampullate spidroin 1 or spidroin 2 N- and C-termini flanking 8, 16, or 32 copies of their respective consensus block repeats (mini-spidroins). Here, we present the generation of fibers from mini-spidroins (rMaSp1R8 and rMaSp2R8) by polyelectrolyte complex formation using an anionic polyelectrolyte, gellan gum. Mini-spidroins, when treated with acetic acid and cross-linked by glutaraldehyde, formed a thin film at the interface when overlaid with a gellan gum solution. Immediate pulling of the film resulted in autofluorescent fibrous materials from either mini-spidroin alone or a combination of rMaSp1R8 and rMaSp2R8 (70:30). Addition of chitosan to the mini-spidroin solutions permitted continuous fiber production until the spinning dope supply was exhausted. When air-dried as-spun fibers were rehydrated and stretched in water, the fiber diameter decreased and the overall toughness improved. This study showed that spider silk-like fibers can be produced in large quantities through charge attraction that assembles chitosan, mini-spidroins, and gellan gum into fibrous complexes. We speculate that the spider silk self-assembly process in the duct may involve attraction of variously charged chitinous polymers, spidroins, and glycoproteins.
Collapse
Affiliation(s)
- Congyue Annie Peng
- Department of Genetics and Biochemistry, Clemson University , 130 McGinty Court, Robert F. Poole Agricultural Center, Room 154, Clemson, South Carolina 29634, United States
| | - Julia Russo
- Department of Genetics and Biochemistry, Clemson University , 130 McGinty Court, Robert F. Poole Agricultural Center, Room 154, Clemson, South Carolina 29634, United States
| | - Todd A Lyda
- Department of Genetics and Biochemistry, Clemson University , 130 McGinty Court, Robert F. Poole Agricultural Center, Room 154, Clemson, South Carolina 29634, United States
| | - William R Marcotte
- Department of Genetics and Biochemistry, Clemson University , 130 McGinty Court, Robert F. Poole Agricultural Center, Room 154, Clemson, South Carolina 29634, United States
| |
Collapse
|
27
|
Tris(hydroxymethyl)phosphine, P(CH 2 OH) 3 – A convenient and effective new reagent for the fixation of protein samples for SEM imaging. Micron 2016; 89:28-33. [DOI: 10.1016/j.micron.2016.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/12/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022]
|
28
|
Lu T, Wang L, Jiang Y, Liu Q, Huang C. Hexagonal boron nitride nanoplates as emerging biological nanovectors and their potential applications in biomedicine. J Mater Chem B 2016; 4:6103-6110. [PMID: 32263498 DOI: 10.1039/c6tb01481j] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of nanomaterials in the biological and medical areas has attracted great attention. Cytotoxicity, stability and solubility are the prerequisites for a nanomaterial to be considered for application in the field of biomedicine. Here, we suggest a simple method to produce highly dispersed water-soluble ultrathin h-BN nanoplates whose size measures ca. 30-60 nm in diameter and 1.6 nm in thickness. Moreover, we demonstrate that h-BN nanoplates can act as a reliable biological nanovector to carry proteins by cross-linking immobilization. Furthermore, the biocompatibility of h-BN nanoplates has also been explored via an apoptosis assay. In addition, a successful attempt has been made to investigate the potency of h-BN nanoplates as an immunostimulating adjuvant in a mouse immunization experiment. Preliminary results show that the level of antibody response stimulated by an antigen protein (bovine serum albumin) linked with h-BN is ca. 4 times higher than that by the antigen protein alone. This work gives evidence that water-soluble h-BN nanoplates are of high biocompatibility and low reactogenicity and therefore they can serve as an excellent biomedical platform for nanoparticle-biomolecular interactions. They preserve and even enhance the bioacitivities of the cross-linked antigen proteins, which strongly suggests their use in nanoparticle vaccine design.
Collapse
Affiliation(s)
- Tun Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350002, China
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Ghosh P, Bag S, Singha Roy A, Subramani E, Chaudhury K, Dasgupta S. Solubility enhancement of morin and epicatechin through encapsulation in an albumin based nanoparticulate system and their anticancer activity against the MDA-MB-468 breast cancer cell line. RSC Adv 2016. [DOI: 10.1039/c6ra20441d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mor-HSA-NPs and EC-HSA-NPs are effective on MDA-MB-468 breast cancer cell lines.
Collapse
Affiliation(s)
- Pooja Ghosh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Sudipta Bag
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Atanu Singha Roy
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Elavarasan Subramani
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Koel Chaudhury
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Swagata Dasgupta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
31
|
Aslan TN, Aşık E, Volkan M. Preparation and labeling of surface-modified magnetoferritin protein cages with a rhenium(i) carbonyl complex for magnetically targeted radiotherapy. RSC Adv 2016. [DOI: 10.1039/c5ra19696e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Labeling of magnetoferritin samples with rhenium in the form of low oxidation state rhenium(i)–tricarbonyl complex, [Re(CO)3(H2O)3]+.
Collapse
Affiliation(s)
- Tuğba Nur Aslan
- Department of Chemistry
- Middle East Technical University
- Ankara 06800
- Turkey
| | - Elif Aşık
- Department of Biotechnology
- Middle East Technical University
- Ankara 06800
- Turkey
| | - Mürvet Volkan
- Department of Chemistry
- Middle East Technical University
- Ankara 06800
- Turkey
| |
Collapse
|
32
|
March JK, Pratt MD, Lowe CW, Cohen MN, Satterfield BA, Schaalje B, O'Neill KL, Robison RA. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants. Microbiologyopen 2015; 4:764-73. [PMID: 26185111 PMCID: PMC4618609 DOI: 10.1002/mbo3.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/13/2015] [Accepted: 06/23/2015] [Indexed: 01/11/2023] Open
Abstract
This study investigated (1) the susceptibility of Bacillus anthracis (Ames strain), Bacillus subtilis (ATCC 19659), and Clostridium sporogenes (ATCC 3584) spores to commercially available peracetic acid (PAA)- and glutaraldehyde (GA)-based disinfectants, (2) the effects that heat-shocking spores after treatment with these disinfectants has on spore recovery, and (3) the timing of heat-shocking after disinfectant treatment that promotes the optimal recovery of spores deposited on carriers. Suspension tests were used to obtain inactivation kinetics for the disinfectants against three spore types. The effects of heat-shocking spores after disinfectant treatment were also determined. Generalized linear mixed models were used to estimate 6-log reduction times for each spore type, disinfectant, and heat treatment combination. Reduction times were compared statistically using the delta method. Carrier tests were performed according to AOAC Official Method 966.04 and a modified version that employed immediate heat-shocking after disinfectant treatment. Carrier test results were analyzed using Fisher's exact test. PAA-based disinfectants had significantly shorter 6-log reduction times than the GA-based disinfectant. Heat-shocking B. anthracis spores after PAA treatment resulted in significantly shorter 6-log reduction times. Conversely, heat-shocking B. subtilis spores after PAA treatment resulted in significantly longer 6-log reduction times. Significant interactions were also observed between spore type, disinfectant, and heat treatment combinations. Immediately heat-shocking spore carriers after disinfectant treatment produced greater spore recovery. Sporicidal activities of disinfectants were not consistent across spore species. The effects of heat-shocking spores after disinfectant treatment were dependent on both disinfectant and spore species. Caution must be used when extrapolating sporicidal data of disinfectants from one spore species to another. Heat-shocking provides a more accurate picture of spore survival for only some disinfectant/spore combinations. Collaborative studies should be conducted to further examine a revision of AOAC Official Method 966.04 relative to heat-shocking.
Collapse
Affiliation(s)
- Jordon K March
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Michael D Pratt
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Chinn-Woan Lowe
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Marissa N Cohen
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Benjamin A Satterfield
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Bruce Schaalje
- Department of Statistics, 230 TMCB, Brigham Young University, Provo, Utah, 84602
| | - Kim L O'Neill
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| |
Collapse
|
33
|
Zhou Z, Piepenbreier F, Marthala VR, Karbacher K, Hartmann M. Immobilization of lipase in cage-type mesoporous organosilicas via covalent bonding and crosslinking. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.07.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Kaieda S, Plivelic TS, Halle B. Structure and kinetics of chemically cross-linked protein gels from small-angle X-ray scattering. Phys Chem Chem Phys 2014; 16:4002-11. [DOI: 10.1039/c3cp54219j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
Talekar S, Joshi A, Joshi G, Kamat P, Haripurkar R, Kambale S. Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Adv 2013. [DOI: 10.1039/c3ra40818c] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
36
|
Liu Z, Wang H, Li B, Liu C, Jiang Y, Yu G, Mu X. Biocompatible magnetic cellulose–chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33033d] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Li Y, Yang Y. Formaldehyde-Free Chemical and Enzymatic Crosslinking of Plant Proteins. ACTA ACUST UNITED AC 2011. [DOI: 10.1108/rjta-15-04-2011-b001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Alves PM, Carvalho RA, Moraes IC, Luciano CG, Bittante AMQ, Sobral PJ. Development of films based on blends of gelatin and poly(vinyl alcohol) cross linked with glutaraldehyde. Food Hydrocoll 2011. [DOI: 10.1016/j.foodhyd.2011.03.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Zhu L, Hu RP, Wang HY, Wang YJ, Zhang YQ. Bioconjugation of neutral protease on silk fibroin nanoparticles and application in the controllable hydrolysis of sericin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10298-10302. [PMID: 21846144 DOI: 10.1021/jf202036v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bombyx mori silk fibroin is a protein-based macromolecular biopolymer with remarkable biocompatibility. Silk fiber was degummed and subjected to a series of treatments, including dissolution and dialysis, to yield an aqueous solution of silk fibroin, which was introduced rapidly into excess acetone to produce crystalline silk fibroin nanoparticles (SFNs). The SFNs were conjugated covalently with a neutral protease (NP) using glutaraldehyde as the cross-linking reagent. The objective of this study was to determine the optimal conditions for biosynthesis of the SFN-NP bioconjugates. First, SFN-NP was obtained by covalent cross-linking of SFN and NP at an SFN/NP ratio of 5-8 mg:1 IU with 0.75% glutaraldehyde for 6 h at 25 °C. When adding 50 IU of the enzyme, the residual activity of biological conjugates was increased to 31.45%. Studies on the enzyme activity of SFN-NP and its kinetics showed that the stability of SFN-NP bioconjugates was greater than that of the free enzyme, the optimum reactive temperature range was increased by 5-10 °C, and the optimum pH value range was increased to 6.5-8.0. Furthermore, the thermal stability was improved to some extent. A controlled hydrolysis test using the poorly water-soluble protein sericin as a substrate and SFN-NP as the enzyme showed that the longer the reaction time (within 1 h), the smaller the molecular mass (<30 kDa) is of the sericin peptide produced. The SFN-NP bioconjugate is easily recovered by centrifugation and can be used repeatedly. The highly efficient processing technology and the use of SFN as a novel vector for a protease has great potential for research and the development of food processing.
Collapse
Affiliation(s)
- Lin Zhu
- National Engineering Laboratory for Modern Silk, and Silk Biotechnology Laboratory, School of Basic Medical and Biological Sciences, Soochow University, No. 199, 702-2303 Room, Renai Road, Dushuhu Higher Edu. Town, Suzhou 215123, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Luft JH. Fixation for biological ultrastructure. I. A viscometric analysis of the interaction between glutaraldehyde and bovine serum albumin. J Microsc 2011. [DOI: 10.1111/j.1365-2818.1992.tb03235.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Zhou Y, Jia Y, Buehler PW, Chen G, Cabrales P, Palmer AF. Synthesis, biophysical properties, and oxygenation potential of variable molecular weight glutaraldehyde-polymerized bovine hemoglobins with low and high oxygen affinity. Biotechnol Prog 2011; 27:1172-84. [PMID: 21584950 DOI: 10.1002/btpr.624] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/02/2011] [Indexed: 12/31/2022]
Abstract
In a recent study, ultrahigh molecular weight (Mw ) glutaraldehyde-polymerized bovine hemoglobins (PolybHbs) were synthesized with low O2 affinity and exhibited no vasoactivity and a slight degree of hypertension in a 10% top-load model.(1) In this work, we systematically investigated the effect of varying the glutaraldehyde to hemoglobin (G:Hb) molar ratio on the biophysical properties of PolybHb polymerized in either the low or high O2 affinity state. Our results showed that the Mw of the resulting PolybHbs increased with increasing G:Hb molar ratio. For low O2 affinity PolybHbs, increasing the G:Hb molar ratio reduced the O2 affinity and CO association rate constants in comparison to bovine hemoglobin (bHb). In contrast for high O2 affinity PolybHbs, increasing the G:Hb molar ratio led to increased O2 affinity and significantly increased the CO association rate constants compared to unmodified bHb and low O2 affinity PolybHbs. The methemoglobin level and NO dioxygenation rate constants were insensitive to the G:Hb molar ratio. However, all PolybHbs displayed higher viscosities compared to unmodified bHb and whole blood, which also increased with increasing G:Hb molar ratio. In contrast, the colloid osmotic pressure of PolybHbs decreased with increasing G:Hb molar ratio. To preliminarily evaluate the ability of low and high O2 affinity PolybHbs to potentially oxygenate tissues in vivo, an O2 transport model was used to simulate O2 transport in a hepatic hollow fiber (HF) bioreactor. It was observed that low O2 affinity PolybHbs oxygenated the bioreactor better than high O2 affinity PolybHbs. This result points to the suitability of low O2 affinity PolybHbs for use in tissue engineering and transfusion medicine. Taken together, our results show the quantitative effect of varying the oxygen saturation of bHb and G:Hb molar ratio on the biophysical properties of PolybHbs and their ability to oxygenate a hepatic HF bioreactor. We suggest that the information gained from this study can be used to guide the design of the next generation of hemoglobin-based oxygen carriers (HBOCs) for use in tissue engineering and transfusion medicine applications.
Collapse
Affiliation(s)
- Yipin Zhou
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
42
|
Skrzeszewska PJ, Jong LN, de Wolf FA, Cohen Stuart MA, van der Gucht J. Shape-memory effects in biopolymer networks with collagen-like transient nodes. Biomacromolecules 2011; 12:2285-92. [PMID: 21534622 DOI: 10.1021/bm2003626] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this article we study shape-memory behavior of hydrogels, formed by biodegradable and biocompatible recombinant telechelic polypeptides, with collagen-like end blocks and a random coil-like middle block. The programmed shape of these hydrogels was achieved by chemical cross-linking of lysine residues present in the random coil. This led to soft networks, which can be stretched up to 200% and "pinned" in a temporary shape by lowering the temperature and allowing the collagen-like end blocks to assemble into physical nodes. The deformed shape of the hydrogel can be maintained, at room temperature, for several days, or relaxed within a few minutes upon heating to 50 °C or higher. The presented hydrogels could return to their programmed shape even after several thermomechanical cycles, indicating that they remember the programmed shape. The kinetics of shape recovery at different temperatures was studied in more detail and analyzed using a mechanical model composed of two springs and a dashpot.
Collapse
|
43
|
Doll K, Schillinger D, Klee W. Der Glutaraldehyd-Test beim Rind - seine Brauchbarkeit für Diagnose und Prognose innerer Entzündungen. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1439-0442.1985.tb01978.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Manna U, Dhar J, Nayak R, Patil S. Multilayer single-component thin films and microcapsules via covalent bonded layer-by-layer self-assembly. Chem Commun (Camb) 2010; 46:2250-2. [DOI: 10.1039/b924240f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Li Y, Reddy N, Yang Y. A new crosslinked protein fiber from gliadin and the effect of crosslinking parameters on its mechanical properties and water stability. POLYM INT 2008. [DOI: 10.1002/pi.2461] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Liu L, Shao M, Dong X, Yu X, Liu Z, He Z, Wang Q. Homogeneous Immunoassay Based on Two-Photon Excitation Fluorescence Resonance Energy Transfer. Anal Chem 2008; 80:7735-41. [DOI: 10.1021/ac801106w] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lingzhi Liu
- College of Chemistry and Molecular Sciences, and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
| | - Mei Shao
- College of Chemistry and Molecular Sciences, and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaohu Dong
- College of Chemistry and Molecular Sciences, and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
| | - Xuefeng Yu
- College of Chemistry and Molecular Sciences, and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
| | - Zhike He
- College of Chemistry and Molecular Sciences, and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
| | - Ququan Wang
- College of Chemistry and Molecular Sciences, and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
47
|
Berchane NS, Andrews MJ, Kerr S, Slater NKH, Jebrail FF. On the mechanical properties of bovine serum albumin (BSA) adhesives. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1831-1838. [PMID: 18197367 DOI: 10.1007/s10856-007-3360-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 12/28/2007] [Indexed: 05/25/2023]
Abstract
Biological adhesives, natural and synthetic, are of current active interest. These adhesives offer significant advantages over traditional sealant techniques, in particular, they are easier to use, and can play an integral part in the healing mechanism of tissue. Thus, biological adhesives can play a major role in medical applications if they possess adequate mechanical behavior and stability over time. In this work, we report on the method of preparation of bovine serum albumin (BSA) into a biological adhesive. We present quantitative measurements that show the effect of BSA concentration and cross-linker content on the bonding strength of BSA adhesive to wood. A comparison is then made with synthetic poly(glycidyl methacrylate) (PGMA) adhesive, and a commercial cyanoacrylate glue, which was used as a control adhesive. In addition, BSA samples were prepared and characterized for their water content, tensile strength, and elasticity. We show that on dry surface, BSA adhesive exhibits a high bonding strength that is comparable with non-biological commercial cyanoacrylate glues, and synthetic PGMA adhesive. Tensile testing on wet wood showed a slight increase in the bonding strength of BSA adhesive, a considerable decrease in the bonding strength of cyanoacrylate glue, and negligible adhesion of PGMA. Tests performed on BSA samples demonstrate that initial BSA concentration and final water content have a significant effect on the stress-strain behavior of the samples.
Collapse
Affiliation(s)
- N S Berchane
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | | | | | | | | |
Collapse
|
48
|
Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004; 37:790-6, 798-802. [PMID: 15560135 DOI: 10.2144/04375rv01] [Citation(s) in RCA: 1115] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glutaraldehyde possesses unique characteristics that render it one of the most effective protein crosslinking reagents. It can be present in at least 13 different forms depending on solution conditions such as pH, concentration, temperature, etc. Substantial literature is found concerning the use of glutaraldehyde for protein immobilization, yet there is no agreement about the main reactive species that participates in the crosslinking process because monomeric and polymeric forms are in equilibrium. Glutaraldehyde may react with proteins by several means such as aldol condensation or Michael-type addition, and we show here 8 different reactions for various aqueous forms of this reagent. As a result of these discrepancies and the unique characteristics of each enzyme, crosslinking procedures using glutaraldehyde are largely developed through empirical observation. The choice of the enzyme-glutaraldehyde ratio, as well as their final concentration, is critical because insolubilization of the enzyme must result in minimal distortion of its structure in order to retain catalytic activity. The purpose of this paper is to give an overview of glutaraldehyde as a crosslinking reagent by describing its structure and chemical properties in aqueous solution in an attempt to explain its high reactivity toward proteins, particularly as applied to the production of insoluble enzymes.
Collapse
|
49
|
Azadi S, Klink KJ, Meade BJ. Divergent immunological responses following glutaraldehyde exposure. Toxicol Appl Pharmacol 2004; 197:1-8. [PMID: 15126069 DOI: 10.1016/j.taap.2004.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 01/14/2004] [Indexed: 11/25/2022]
Abstract
Although Glutaraldehyde (Glut) has been demonstrated to be a moderate contact sensitizer, numerous cases of occupational asthma related to Glut exposure have been reported. The purpose of these studies was to examine the dose-response relationship between Glut exposure and the development of T cell-mediated vs. IgE- mediated responses. Initial evaluation of the sensitization potential was conducted using the local lymph node assay (LLNA) at concentrations ranging from 0.75% to 2.5%. A concentration-dependent increase in lymphocyte proliferation was observed with EC3 values of 0.072% and 0.089% in CBA and BALB/c mice, respectively. The mouse ear swelling test (MEST) was used to evaluate the potential for Glut to elicit IgE (1/2 h post challenge) and contact hypersensitivity (24 and 48 h post challenge) responses. An immediate response was observed in animals induced and challenged with 2.5% Glut, whereas animals induced with 0.1% or 0.75% and challenged with 2.5% exhibited a delayed response 48 h post challenge. IgE-inducing potential was evaluated by phenotypic analysis of draining lymph node cells and measurement of total serum IgE levels. Only the 2.5% exposed group demonstrated a significant increase (P < 0.01) in the percentage of IgE(+)B220(+) cells and serum IgE. Following 3 days of dermal exposure, a significant increase in IL-4 mRNA in the draining lymph nodes was observed only in the 2.5% exposed group. These results indicate that the development of an immediate vs. a delayed hypersensitivity response following dermal exposure to Glut is at least in part mediated by the exposure concentration.
Collapse
Affiliation(s)
- Shahla Azadi
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
50
|
Chambon M, Archimbaud C, Bailly JL, Gourgand JM, Charbonné F, Peigue-Lafeuille H. Virucidal efficacy of glutaraldehyde against enteroviruses is related to the location of lysine residues in exposed structures of the VP1 capsid protein. Appl Environ Microbiol 2004; 70:1717-22. [PMID: 15006797 PMCID: PMC368296 DOI: 10.1128/aem.70.3.1717-1722.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutaraldehyde (GTA) is a potent virucidal disinfectant whose exact mode of action against enteroviruses is not understood. Earlier reports showed that GTA reacts preferentially with the VP1 capsid protein of echovirus 25 and poliovirus 1 and that GTA has affinity for exposed lysine residues on proteins. To investigate further the inactivation of enteroviruses by GTA, seven strains were selected on the basis of differences in their overall number and the positions of lysine residues in the amino acid sequences of the VP1 polypeptide. Inactivation kinetics experiments were performed with 0.10% GTA. The viruses grouped into three clusters and exhibited significantly different levels of sensitivity to GTA. The results were analyzed in the light of current knowledge of the three-dimensional structure of enteroviruses and the viral life cycle. The differences observed in sensitivity to GTA were related to the number of lysine residues and their locations in the VP1 protein. The overall findings suggest that the BC and DE loops, which cluster at the fivefold axis of symmetry and are the most exposed on the outer surface of the virions, are primary reactive sites for GTA.
Collapse
Affiliation(s)
- Martine Chambon
- Laboratoire de Virologie, Faculté de Médecine, 63001 Clermont-Ferrand Cédex, France.
| | | | | | | | | | | |
Collapse
|