1
|
Chunduri NK, Barthel K, Storchova Z. Consequences of Chromosome Loss: Why Do Cells Need Each Chromosome Twice? Cells 2022; 11:1530. [PMID: 35563836 PMCID: PMC9101035 DOI: 10.3390/cells11091530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
Aneuploidy is a cellular state with an unbalanced chromosome number that deviates from the usual euploid status. During evolution, elaborate cellular mechanisms have evolved to maintain the correct chromosome content over generations. The rare errors often lead to cell death, cell cycle arrest, or impaired proliferation. At the same time, aneuploidy can provide a growth advantage under selective conditions in a stressful, frequently changing environment. This is likely why aneuploidy is commonly found in cancer cells, where it correlates with malignancy, drug resistance, and poor prognosis. To understand this "aneuploidy paradox", model systems have been established and analyzed to investigate the consequences of aneuploidy. Most of the evidence to date has been based on models with chromosomes gains, but chromosome losses and recurrent monosomies can also be found in cancer. We summarize the current models of chromosome loss and our understanding of its consequences, particularly in comparison to chromosome gains.
Collapse
Affiliation(s)
- Narendra Kumar Chunduri
- University Medical Center Groningen, European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Karen Barthel
- Department of molecular genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| | - Zuzana Storchova
- Department of molecular genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| |
Collapse
|
2
|
Eslami Rasekh M, Hernández Y, Drinan SD, Fuxman Bass J, Benson G. Genome-wide characterization of human minisatellite VNTRs: population-specific alleles and gene expression differences. Nucleic Acids Res 2021; 49:4308-4324. [PMID: 33849068 PMCID: PMC8096271 DOI: 10.1093/nar/gkab224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/06/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Variable Number Tandem Repeats (VNTRs) are tandem repeat (TR) loci that vary in copy number across a population. Using our program, VNTRseek, we analyzed human whole genome sequencing datasets from 2770 individuals in order to detect minisatellite VNTRs, i.e., those with pattern sizes ≥7 bp. We detected 35 638 VNTR loci and classified 5676 as commonly polymorphic (i.e. with non-reference alleles occurring in >5% of the population). Commonly polymorphic VNTR loci were found to be enriched in genomic regions with regulatory function, i.e. transcription start sites and enhancers. Investigation of the commonly polymorphic VNTRs in the context of population ancestry revealed that 1096 loci contained population-specific alleles and that those could be used to classify individuals into super-populations with near-perfect accuracy. Search for quantitative trait loci (eQTLs), among the VNTRs proximal to genes, indicated that in 187 genes expression differences correlated with VNTR genotype. We validated our predictions in several ways, including experimentally, through the identification of predicted alleles in long reads, and by comparisons showing consistency between sequencing platforms. This study is the most comprehensive analysis of minisatellite VNTRs in the human population to date.
Collapse
Affiliation(s)
| | - Yözen Hernández
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | | | - Juan I Fuxman Bass
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Gary Benson
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Computer Science, Boston University, Boston, MA 02215, USA
| |
Collapse
|
3
|
Whole genome analysis identifies the association of TP53 genomic deletions with lower survival in Stage III colorectal cancer. Sci Rep 2020; 10:5009. [PMID: 32193467 PMCID: PMC7081316 DOI: 10.1038/s41598-020-61643-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
DNA copy number aberrations (CNA) are frequently observed in colorectal cancers (CRC). There is an urgent need for CNA-based biomarkers in clinics,. n For Stage III CRC, if combined with imaging or pathologic evidence, these markers promise more precise care. We conducted this Stage III specific biomarker discovery with a cohort of 134 CRCs, and with a newly developed high-efficiency CNA profiling protocol. Specifically, we developed the profiling protocol for tumor-normal matched tissue samples based on low-coverage clinical whole-genome sequencing (WGS). We demonstrated the protocol’s accuracy and robustness by a systematic benchmark with microarray, high-coverage whole-exome and -genome approaches, where the low-coverage WGS-derived CNA segments were highly accordant (PCC >0.95) with those derived from microarray, and they were substantially less variable if compared to exome-derived segments. A lasso-based model and multivariate cox regression analysis identified a chromosome 17p loss, containing the TP53 tumor suppressor gene, that was significantly associated with reduced survival (P = 0.0139, HR = 1.688, 95% CI = [1.112–2.562]), which was validated by an independent cohort of 187 Stage III CRCs. In summary, this low-coverage WGS protocol has high sensitivity, high resolution and low cost and the identified 17p-loss is an effective poor prognosis marker for Stage III patients.
Collapse
|
4
|
Daniel SG, Russ AD, Guthridge KM, Raina AI, Estes PS, Parsons LM, Richardson HE, Schroeder JA, Zarnescu DC. miR-9a mediates the role of Lethal giant larvae as an epithelial growth inhibitor in Drosophila. Biol Open 2018; 7:bio.027391. [PMID: 29361610 PMCID: PMC5829493 DOI: 10.1242/bio.027391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drosophila lethal giant larvae (lgl) encodes a conserved tumor suppressor with established roles in cell polarity, asymmetric division, and proliferation control. Lgl's human orthologs, HUGL1 and HUGL2, are altered in human cancers, however, its mechanistic role as a tumor suppressor remains poorly understood. Based on a previously established connection between Lgl and Fragile X protein (FMRP), a miRNA-associated translational regulator, we hypothesized that Lgl may exert its role as a tumor suppressor by interacting with the miRNA pathway. Consistent with this model, we found that lgl is a dominant modifier of Argonaute1 overexpression in the eye neuroepithelium. Using microarray profiling we identified a core set of ten miRNAs that are altered throughout tumorigenesis in Drosophila lgl mutants. Among these are several miRNAs previously linked to human cancers including miR-9a, which we found to be downregulated in lgl neuroepithelial tissues. To determine whether miR-9a can act as an effector of Lgl in vivo, we overexpressed it in the context of lgl knock-down by RNAi and found it able to reduce the overgrowth phenotype caused by Lgl loss in epithelia. Furthermore, cross-comparisons between miRNA and mRNA profiling in lgl mutant tissues and human breast cancer cells identified thrombospondin (tsp) as a common factor altered in both fly and human breast cancer tumorigenesis models. Our work provides the first evidence of a functional connection between Lgl and the miRNA pathway, demonstrates that miR-9a mediates Lgl's role in restricting epithelial proliferation, and provides novel insights into pathways controlled by Lgl during tumor progression. Summary: Mir-9a overexpression can suppress the overgrowth phenotype caused by Lgl knock-down in epithelia. Gene profiling identifies pathways dysregulated in lgl mutants and shared features between flies and human cancer cells.
Collapse
Affiliation(s)
- Scott G Daniel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Atlantis D Russ
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Kathryn M Guthridge
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia
| | - Ammad I Raina
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Patricia S Estes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Linda M Parsons
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia.,Department of Genetics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3000, Australia.,Department of Biochemistry & Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Joyce A Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA .,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Clinical Implications of Rabphillin-3A-Like Gene Alterations in Breast Cancer. PLoS One 2015; 10:e0129216. [PMID: 26070152 PMCID: PMC4466565 DOI: 10.1371/journal.pone.0129216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/06/2015] [Indexed: 11/29/2022] Open
Abstract
For the rabphillin-3A-like (RPH3AL) gene, a putative tumor suppressor, the clinical significance of genetic alterations in breast cancers was evaluated. DNA and RNA were extracted from formalin-fixed, paraffin-embedded (FFPE) cancers and matching normal tissues. DNA samples were assessed for loss of heterozygosity (LOH) at the 17p13.3 locus of RPH3AL and the 17p13.1 locus of the tumor suppressor, TP53. RPH3AL was sequenced, and single nucleotide polymorphisms (SNPs) were genotyped. RNA samples were evaluated for expression of RPH3AL, and FFPE tissues were profiled for its phenotypic expression. Alterations in RPH3AL were correlated with clinicopathological features, LOH of TP53, and patient survival. Of 121 cancers, 80 had LOH at one of the RPH3AL locus. LOH of RHP3AL was associated with nodal metastasis, advanced stage, large tumor size, and poor survival. Although ~50% were positive for LOH at the RPH3AL and TP53 loci, 19 of 105 exhibited LOH only at the RPH3AL locus. Of these, 12 were non-Hispanic Caucasians (Whites), 15 had large tumors, and 12 were older (>50 years). Patients exhibiting LOH at both loci had shorter survival than those without LOH at these loci (log-rank, P = 0.014). LOH at the TP53 locus alone was not associated with survival. Analyses of RPH3AL identified missense point mutations in 19 of 125 cases, a SNP (C>A) in the 5’untranslated region at -25 (5’UTR-25) in 26 of 104, and a SNP (G>T) in the intronic region at 43 bp downstream to exon-6 (intron-6-43) in 79 of 118. Genotype C/A or A/A of the SNP at 5’UTR-25 and genotype T/T of a SNP at intron-6-43 were predominantly in Whites. Low levels of RNA and protein expression of RPH3AL were present in cancers relative to normal tissues. Thus, genetic alterations in RPH3AL are associated with aggressive behavior of breast cancers and with short survival of patients.
Collapse
|
6
|
Phillips J, Tihan T, Fuller G. Practical molecular pathology and histopathology of embryonal tumors. Surg Pathol Clin 2014; 8:73-88. [PMID: 25783823 DOI: 10.1016/j.path.2014.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There have been significant improvements in understanding of embryonal tumors of the central nervous system (CNS) in recent years. These advances are most likely to influence the diagnostic algorithms and methodology currently proposed by the World Health Organization (WHO) classification scheme. Molecular evidence suggests that the tumors presumed to be specific entities within the CNS/primitive neuroectodermal tumors spectrum are likely to be reclassified. All these developments compel reassessing current status and expectations from the upcoming WHO classification efforts. This review provides a synopsis of current developments and a practical algorithm for the work-up of these tumors in practice.
Collapse
Affiliation(s)
- Joanna Phillips
- Neuropathology Division, Department of Pathology, UCSF School of Medicine, UCSF Medical Center, Room M551, 505 Parnassus Avenue, San Francisco, CA, USA.
| | - Tarik Tihan
- Neuropathology Division, Department of Pathology, UCSF School of Medicine, UCSF Medical Center, Room M551, 505 Parnassus Avenue, San Francisco, CA, USA
| | - Gregory Fuller
- Neuropathology Division, Department of Pathology, UCSF School of Medicine, UCSF Medical Center, Room M551, 505 Parnassus Avenue, San Francisco, CA, USA; University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Shih DJH, Northcott PA, Remke M, Korshunov A, Ramaswamy V, Kool M, Luu B, Yao Y, Wang X, Dubuc AM, Garzia L, Peacock J, Mack SC, Wu X, Rolider A, Morrissy AS, Cavalli FMG, Jones DTW, Zitterbart K, Faria CC, Schüller U, Kren L, Kumabe T, Tominaga T, Shin Ra Y, Garami M, Hauser P, Chan JA, Robinson S, Bognár L, Klekner A, Saad AG, Liau LM, Albrecht S, Fontebasso A, Cinalli G, De Antonellis P, Zollo M, Cooper MK, Thompson RC, Bailey S, Lindsey JC, Di Rocco C, Massimi L, Michiels EMC, Scherer SW, Phillips JJ, Gupta N, Fan X, Muraszko KM, Vibhakar R, Eberhart CG, Fouladi M, Lach B, Jung S, Wechsler-Reya RJ, Fèvre-Montange M, Jouvet A, Jabado N, Pollack IF, Weiss WA, Lee JY, Cho BK, Kim SK, Wang KC, Leonard JR, Rubin JB, de Torres C, Lavarino C, Mora J, Cho YJ, Tabori U, Olson JM, Gajjar A, Packer RJ, Rutkowski S, Pomeroy SL, French PJ, Kloosterhof NK, Kros JM, Van Meir EG, Clifford SC, Bourdeaut F, Delattre O, Doz FF, Hawkins CE, Malkin D, Grajkowska WA, Perek-Polnik M, Bouffet E, Rutka JT, Pfister SM, Taylor MD. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol 2014; 32:886-96. [PMID: 24493713 DOI: 10.1200/jco.2013.50.9539] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. PATIENTS AND METHODS Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. RESULTS Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. CONCLUSION Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials.
Collapse
Affiliation(s)
- David J H Shih
- David J.H. Shih, Marc Remke, Vijay Ramaswamy, Betty Luu, Yuan Yao, Xin Wang, Adrian M. Dubuc, Livia Garzia, John Peacock, Stephen C. Mack, Xiaochong Wu, Adi Rolider, A. Sorana Morrissy, Florence M.G. Cavalli, Claudia C. Faria, Stephen W. Scherer, Uri Tabori, Cynthia E. Hawkins, David Malkin, Eric Bouffet, James T. Rutka, and Michael D. Taylor, Hospital for Sick Children; David J.H. Shih, Marc Remke, Vijay Ramaswamy, Yuan Yao, Xin Wang, Adrian M. Dubuc, John Peacock, Stephen C. Mack, and Michael D. Taylor, University of Toronto, Toronto; Boleslaw Lach, McMaster University, Hamilton, Ontario; Jennifer A. Chan, University of Calgary, Calgary, Alberta; Steffen Albrecht, Adam Fontebasso, and Nada Jabado, McGill University, Montreal, Quebec, Canada; Paul A. Northcott, Andrey Korshunov, Marcel Kool, David T.W. Jones, and Stefan M. Pfister, German Cancer Research Center; Stefan M. Pfister, University Hospital Heidelberg, Heidelberg; Ulrich Schüller, Ludwig-Maximilians-University, Munich; Stefan Rutkowski, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Karel Zitterbart, Masaryk University School of Medicine; Karel Zitterbart and Leos Kren, University Hospital Brno, Brno, Czech Republic; Toshihiro Kumabe and Teiji Tominaga, Tohoku University Graduate School of Medicine, Sendai, Japan; Young Shin Ra, University of Ulsan, Asan Medical Center; Ji-Yeoun Lee, Byung-Kyu Cho, Seung-Ki Kim, and Kyu-Chang Wang, Seoul National University Children's Hospital, Seoul; Shin Jung, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Chonnam, South Korea; Peter Hauser and Miklós Garami, Semmelweis University, Budapest; László Bognár and Almos Klekner, University of Debrecen, Medical and Health Science Centre, Debrecen, Hungary; Shenandoah Robinson, Boston Children's Hospital; Scott L. Pomeroy, Harvard Medical School, Boston, MA; Ali G. Saad, University of Arkansas for Medical Sciences, Little
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Castro-Gamero AM, Borges KS, Lira RC, Andrade AF, Fedatto PF, Cruzeiro GAV, Silva RB, Fontes AM, Valera ET, Bobola M, Scrideli CA, Tone LG. Chromosomal heterogeneity and instability characterize pediatric medulloblastoma cell lines and affect neoplastic phenotype. Cytotechnology 2013; 65:871-85. [PMID: 23325114 DOI: 10.1007/s10616-012-9529-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/20/2012] [Indexed: 01/09/2023] Open
Abstract
Chromosomal heterogeneity is a hallmark of most tumors and it can drive critical events as growth advantages, survival advantages, progression and karyotypic evolution. Medulloblastoma (MB) is the most common malignant central nervous system tumor in children. This work attempted to investigate chromosomal heterogeneity and instability profiles of two MB pediatric cell lines and their relationship with cell phenotype. We performed GTG-banding and cytokinesis-block micronucleus cytome assays, as well as morphological characterization, cell population doubling time, colony-forming efficiency, and chemo-sensitivity assays in two pediatric MB cell lines (UW402 and UW473). Both MB cells showed a high chromosomal heterogeneity. UW473 cells showed ~2 fold higher both clonal- and non-clonal chromosomal alterations than UW402 cells. Besides, UW473 showed two clonal-groups well-differentiated by ploidy level (<2n> and <4n>) and also presented a significantly higher number of chromosomal instability biomarkers. These results were associated with high morphological heterogeneity and survival advantages for UW473 and proliferation advantages for UW402 cells. Moreover, UW473 was significantly more sensitive to methotrexate, temozolomide and cisplatin while UW402 cells were more sensitive to doxorubicin. These data suggest that distinct different degrees of karyotypic heterogeneity and instability may affect neoplasic phenotype of MB cells. These findings bring new insights into cell and tumor biology.
Collapse
|
9
|
Zalatimo O, Zoccoli CM, Patel A, Weston CL, Glantz M. Impact of genetic targets on primary brain tumor therapy: what's ready for prime time? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:267-89. [PMID: 23288644 DOI: 10.1007/978-1-4614-6176-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primary brain tumors constitute a substantial public health problem with 66,290 cases diagnosed in the US in 2012, and 13,700 deaths recorded. With discovery of genetic factors associated with specific brain tumor subtypes, the goal of therapy is changing from treating a class of tumors to developing individualized therapies catering to the molecular composition of the actual tumor. For oligodendrogliomas, the loss of 1p/19q due to an unbalanced translocation improves both survival and the response to therapy, and is thus both a prognostic and a predictive marker. Several additional genetic alterations such as EGFR amplification, MGMT methylation, PDGFR activation, and 9p and 10q loss, have improved our understanding of the characteristics of these tumors and may help guide therapy in the future. For astrocytic tumors, MGMT is associated with a better prognosis and an improved response to temozolomide, and for all glial tumors, mutations in the IDH1 gene are possibly the most potent of good prognostic markers. Three of these markers - 1p/19q deletions, MGMT methylation status, and mutations in the IDH1 gene - are so potent that a new brain tumor subtype, the "triple negative" glioma (1p/19q intact, MGMT unmethylated, IDH1 non-mutated) has entered common parlance. Newer markers, such as CD 133, require additional investigation to determine their prognostic and predictive utility. In medulloblastomas, markers of WNT activation, MYCC/MCYN amplification, and TrkC expression levels are reliable prognostic indicators, but do not yet drive specific treatment selection. Many other proposed markers, such as 17q gain, TP53 mutations, and hMOF protein expression show promise, but are not yet ready for prime time. In this chapter, we focus on the markers that have shown convincing prognostic, predictive, and diagnostic value, and discuss potential markers that are being currently being intensively investigated. We also discuss serum profiling of tumors in an effort to discover additional potential markers.
Collapse
Affiliation(s)
- O Zalatimo
- Department of Neurosurgery, Penn State College of Medicine, Hershey Medical Center, EC 1001, 30 Hope Drive, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
10
|
Takwi AAL, Li Y, Becker Buscaglia LE, Zhang J, Choudhury S, Park AK, Liu M, Young KH, Park WY, Martin RCG, Li Y. A statin-regulated microRNA represses human c-Myc expression and function. EMBO Mol Med 2012; 4:896-909. [PMID: 22887866 PMCID: PMC3491823 DOI: 10.1002/emmm.201101045] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 12/19/2022] Open
Abstract
c-Myc dysregulation is one of the most common abnormalities found in human cancer. MicroRNAs (miRNAs) are functionally intertwined with the c-Myc network as multiple miRNAs are regulated by c-Myc, while others directly suppress c-Myc expression. In this work, we identified miR-33b as a primate-specific negative regulator of c-Myc. The human miR-33b gene is located at 17p11.2, a genomic locus frequently lost in medulloblastomas, of which a subset displays c-Myc overproduction. Through a small-scale screening with drugs approved by the US Food and Drug Administration (FDA), we found that lovastatin upregulated miR-33b expression, reduced cell proliferation and impaired c-Myc expression and function in miR-33b-positive medulloblastoma cells. In addition, a low dose of lovastatin treatment at a level comparable to approved human oral use reduced tumour growth in mice orthotopically xenografted with cells carrying miR-33b, but not with cells lacking miR-33b. This work presents a highly promising therapeutic option, using drug repurposing and a miRNA as a biomarker, against cancers that overexpress c-Myc.
Collapse
Affiliation(s)
- Apana A L Takwi
- Department of Biochemistry and Molecular Biology, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Yan Li
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Lindsey E Becker Buscaglia
- Department of Biochemistry and Molecular Biology, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Jingwen Zhang
- Department of Medicine, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Saibyasachi Choudhury
- Department of Biochemistry and Molecular Biology, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Ae Kyung Park
- Department of Pharmacy, Sunchon National University College of PharmacySunchon, Korea
| | - Mofang Liu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Woong-Yang Park
- Department of Biomedical Sciences, Seoul National University, College of MedicineSeoul, Korea
| | - Robert C G Martin
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Yong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, University of LouisvilleLouisville, KY, USA
| |
Collapse
|
11
|
Multiple CDK/CYCLIND genes are amplified in medulloblastoma and supratentorial primitive neuroectodermal brain tumor. Cancer Genet 2012; 205:220-31. [PMID: 22682621 DOI: 10.1016/j.cancergen.2012.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/24/2012] [Accepted: 03/08/2012] [Indexed: 02/07/2023]
Abstract
Embryonal brain tumors, which include medulloblastoma and the more aggressive supratentorial primitive neuroectodermal tumor (sPNET), comprise one of the largest group of malignant pediatric brain tumors. We observed in high resolution array comparative genomic hybridization and polymerase chain reaction analyses that several different components of the CDK/CYCLIND/pRB regulatory complex, including the CDK4/6 and CCND1/2 loci, are targets of gene amplification in medulloblastoma and sPNET. CDK6 and CCND1 gene amplification were respectively most common and robust, and overall CDK/CYCLIND gene amplification was more commonly observed in sPNET (25%) than medulloblastoma (1-5%). CDK6 overexpression enhanced in vitro and in vivo oncogenicity and endogenous CDK6 or CCND1 knockdown decreased pRB phosphorylation and impaired cell cycle progression in both medulloblastoma and sPNET cell lines. Although animal models implicate the pRB tumor suppressor pathway in medulloblastoma and sPNET, mutations of RB1 or the related INK4 tumor suppressor loci are rare in primary human tumors. Our data suggest that CDK/CYCLIND gene amplification may represent important mechanisms for functional inactivation of pRB in medulloblastoma and sPNET.
Collapse
|
12
|
Künkele A, De Preter K, Heukamp L, Thor T, Pajtler KW, Hartmann W, Mittelbronn M, Grotzer MA, Deubzer HE, Speleman F, Schramm A, Eggert A, Schulte JH. Pharmacological activation of the p53 pathway by nutlin-3 exerts anti-tumoral effects in medulloblastomas. Neuro Oncol 2012; 14:859-69. [PMID: 22591662 DOI: 10.1093/neuonc/nos115] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Medulloblastomas account for 20% of pediatric brain tumors. With an overall survival of 40%-70%, their treatment is still a challenge. The majority of medulloblastomas lack p53 mutations, but even in cancers retaining wild-type p53, the tumor surveillance function of p53 is inhibited by the oncoprotein MDM2. Deregulation of the MDM2/p53 balance leads to malignant transformation. Here, we analyzed MDM2 mRNA and protein expression in primary medulloblastomas and normal cerebellum and assessed the mutational status of p53 and MDM2 expression in 6 medulloblastoma cell lines. MDM2 expression was elevated in medulloblastomas, compared with cerebellum. Four of 6 medulloblastoma cell lines expressed wild-type p53 and high levels of MDM2. The tumor-promoting p53-MDM2 interaction can be inhibited by the small molecule, nutlin-3, restoring p53 function. Targeting the p53-MDM2 axis using nutlin-3 significantly reduced cell viability and induced either cell cycle arrest or apoptosis and expression of the p53 target gene p21 in these 4 cell lines. In contrast, DAOY and UW-228 cells harboring TP53 mutations were almost unaffected by nutlin-3 treatment. MDM2 knockdown in medulloblastoma cells by siRNA mimicked nutlin-3 treatment, whereas expression of dominant negative p53 abrogated nutlin-3 effects. Oral nutlin-3 treatment of mice with established medulloblastoma xenografts inhibited tumor growth and significantly increased survival. Thus, nutlin-3 reduced medulloblastoma cell viability in vitro and in vivo by re-activating p53 function. We suggest that inhibition of the MDM2-p53 interaction with nutlin-3 is a promising therapeutic option for medulloblastomas with functional p53 that should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Annette Künkele
- University Children’s Hospital Essen, Pediatric Oncology, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Buss MC, Read TA, Schniederjan MJ, Gandhi K, Castellino RC. HDM2 promotes WIP1-mediated medulloblastoma growth. Neuro Oncol 2012; 14:440-58. [PMID: 22379189 DOI: 10.1093/neuonc/nos001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Medulloblastoma is the most common malignant childhood brain tumor. The protein phosphatase and oncogene WIP1 is over-expressed or amplified in a significant number of primary human medulloblastomas and cell lines. In the present study, we examine an important mechanism by which WIP1 promotes medulloblastoma growth using in vitro and in vivo models. Human cell lines and intracerebellar xenografted animal models were used to study the role of WIP1 and the major TP53 regulator, HDM2, in medulloblastoma growth. Stable expression of WIP1 enhances growth of TP53 wild-type medulloblastoma cells, compared with cells with stable expression of an empty-vector or mutant WIP1. In an animal model, WIP1 enhances proliferation and reduces the survival of immunodeficient mice bearing intracerebellar xenografted human medulloblastoma cells. Cells with increased WIP1 expression also exhibit increased expression of HDM2. HDM2 knockdown or treatment with the HDM2 inhibitor Nutlin-3a, the active enantomer of Nutlin-3, specifically inhibits the growth of medulloblastoma cells with increased WIP1 expression. Nutlin-3a does not affect growth of medulloblastoma cells with stable expression of an empty vector or of mutant WIP1. Knockdown of WIP1 or treatment with the WIP1 inhibitor CCT007093 results in increased phosphorylation of known WIP1 targets, reduced HDM2 expression, and reduced growth specifically in WIP1 wild-type and high-expressing medulloblastoma cells. Combined WIP1 and HDM2 inhibition is more effective than WIP1 inhibition alone in blocking growth of WIP1 high-expressing medulloblastoma cells. Our preclinical study supports a role for therapies that target WIP1 and HDM2 in the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Meghan C Buss
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
14
|
FISH and chips: the recipe for improved prognostication and outcomes for children with medulloblastoma. Cancer Genet 2012; 204:577-88. [PMID: 22200083 DOI: 10.1016/j.cancergen.2011.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 11/20/2022]
Abstract
Rapidly evolving genomic technologies have permitted progressively detailed studies of medulloblastoma biology in recent years. These data have increased our understanding of the molecular pathogenesis of medulloblastoma, identified prognostic markers, and suggested future avenues for targeted therapy. Although current randomized trials are still stratified based largely on clinical variables, the use of molecular markers is approaching routine use in the clinic. In particular, integrated genomics has uncovered that medulloblastoma comprises four distinct molecular and clinical variants: WNT, sonic hedgehog (SHH), group 3, and group 4. Children with WNT medulloblastoma have improved survival, whereas those with group 3 medulloblastoma have a dismal prognosis. Additionally, integrated genomics has shown that adult medulloblastoma is molecularly and clinically distinct from the childhood variants. Prognostic and predictive markers identified by genomics should drive changes in stratification of treatment protocols for medulloblastoma patients on clinical trials once they can be demonstrated to be reliable, reproducible, and practical. Cases with excellent prognoses (WNT cases) should be considered for therapy de-escalation, whereas those with bleak prognoses (group 3 cases) should be prioritized for experimental therapy. In this review, we will summarize the genomic data published over the past decade and attempt to interpret its prognostic significance, relevance to the clinic, and use in upcoming clinical trials.
Collapse
|
15
|
Miwa T, Oi S, Nonaka Y, Tamogami R, Sasaki H, Yoshinari S, Ida H. Aggressive large cell medulloblastoma extending to the extracranial region in brain-dead state. Childs Nerv Syst 2011; 27:1341-6. [PMID: 21533576 DOI: 10.1007/s00381-011-1450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The authors describe the case of a 29-month-old boy who presented with acute non-communicating hydrocephalus caused by a small tumor in the fourth ventricle. He became brain-dead immediately and remained stable in that condition. MATERIALS AND METHODS Six months later, despite being in a brain-dead state, a rapid direct tumor extension from the intracranial to extracranial region was observed, and chemoradiotherapy was performed following tumor biopsy. The histopathological diagnosis was large cell medulloblastoma. Although treatment was initially effective, the tumor again aggressively invaded the cervical muscles via the spinal canal. Comparative genomic hybridization (metaphase) analysis revealed a pattern of aberrations predictive of a poor prognosis (+1q, ?17p, +17q, and probable amplification of c-myc gene), and he eventually died 11 months after onset. RESULTS Direct invasion of medulloblastoma from the intracranial to extracranial region is extremely rare, and, to our knowledge, this is the first report of medulloblastoma exhibiting rapid extension to the extracranial region in brain-dead state. CONCLUSIONS For patients with medulloblastomas, careful observation is needed even in brain-dead state. The etiology of this rare condition as well as the genetic characteristics responsible for aggressive tumor behavior are discussed.
Collapse
Affiliation(s)
- Tomoru Miwa
- Division of Pediatric Neurosurgery, Jikei University Hospital, Women's and Children's Medical Center, Minato-ku, Tokyo, 105-8461, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Embryonal brain tumors are a heterogeneous group of neoplasms united by the presence of poorly differentiated stem-like cells. Molecular details are increasingly being used to separate them into biologically and clinically meaningful groups. For medulloblastoma, integrated mRNA expression profiling and DNA analysis by a number of research groups defines 4-6 distinctive molecular variants. A subset with prominent Wnt activity is associated with good clinical outcomes and classic histology. Medulloblastomas showing a Hedgehog gene expression signature are frequently of the desmoplastic/nodular subtype. Interestingly, Hedgehog activity is found in tumors arising either in infants or older teenagers and adults. The association of clinically aggressive medulloblastoma with MYC expression, large cell/anaplastic change and high levels of photoreceptor differentiation transcripts has also been noted in several studies. Immunohistochemical analysis of just one or two genes per molecular medulloblastoma variant may be sufficient for accurate classification, and this would be of great practical utility if validated. Advances have also been made in the classification of central nervous system (CNS) Primitive Neuroectodermal Tumors (PNET), as several groups have identified an amplicon at chromosome 19q13.41-42, which appears to define a unique PNET subtype associated with prominent true rosettes, young age and very poor outcomes.
Collapse
Affiliation(s)
- Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Md 21205, USA.
| |
Collapse
|
17
|
Coco S, Valdora F, Bonassi S, Scaruffi P, Stigliani S, Oberthuer A, Berthold F, Andolfo I, Servidei T, Riccardi R, Basso E, Iolascon A, Tonini GP. Chromosome 9q and 16q loss identified by genome-wide pooled-analysis are associated with tumor aggressiveness in patients with classic medulloblastoma. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:273-80. [PMID: 21348762 DOI: 10.1089/omi.2010.0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Medulloblastoma (MB) is one of the most aggressive pediatric brain tumor. We report genome-wide pooled-analysis of classic MB variant of patients over 3 years of age at diagnosis. We combined array comparative genomic hybridization (aCGH) results from experimental analysis (31 cases) with two public databases (55 cases) in a final evaluation of 86 MBs. The most common chromosome structural aberrations were gains of 17q (45.3%), 1q (22.1%), and losses of 8p (15.1%), 10q (19.8%), 17p (37.2%), and 16q (16.3%). Isochromome (17q) was observed in 29.1% MBs. A significant association between poor patients survival and losses of 9q (p < 0.0023), 10q (p < 0.012), and 16q (p < 0.036) was observed. Univariate analysis showed association of 9q loss (p < 0.008) and 16q loss (p = 0.05) with adverse overall survival (OS). Chromosome 6 monosomy was a protective event although statistically borderline (p = 0.066). After adjusting for confounding factors, a poor OS was found for patients whose tumor has 9q loss [hazard ratio (HR) = 3.97; p < 0.006) or 16q loss (HR = 2.41; p = 0.038). Our results highlight the importance of genomic studies in different MB histological variants and indicate a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Simona Coco
- Translational Oncopathology, National Cancer Research Institute (IST), Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
McCabe MG, Bäcklund LM, Leong HS, Ichimura K, Collins VP. Chromosome 17 alterations identify good-risk and poor-risk tumors independently of clinical factors in medulloblastoma. Neuro Oncol 2011; 13:376-83. [PMID: 21292688 PMCID: PMC3064691 DOI: 10.1093/neuonc/noq192] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Current risk stratification schemas for medulloblastoma, based on combinations of clinical variables and histotype, fail to accurately identify particularly good- and poor-risk tumors. Attempts have been made to improve discriminatory power by combining clinical variables with cytogenetic data. We report here a pooled analysis of all previous reports of chromosomal copy number related to survival data in medulloblastoma. We collated data from previous reports that explicitly quoted survival data and chromosomal copy number in medulloblastoma. We analyzed the relative prognostic significance of currently used clinical risk stratifiers and the chromosomal aberrations previously reported to correlate with survival. In the pooled dataset metastatic disease, incomplete tumor resection and severe anaplasia were associated with poor outcome, while young age at presentation was not prognostically significant. Of the chromosomal variables studied, isolated 17p loss and gain of 1q correlated with poor survival. Gain of 17q without associated loss of 17p showed a trend to improved outcome. The most commonly reported alteration, isodicentric chromosome 17, was not prognostically significant. Sequential multivariate models identified isolated 17p loss, isolated 17q gain, and 1q gain as independent prognostic factors. In a historical dataset, we have identified isolated 17p loss as a marker of poor outcome and 17q gain as a novel putative marker of good prognosis. Biological markers of poor-risk and good-risk tumors will be critical in stratifying treatment in future trials. Our findings should be prospectively validated independently in future clinical studies.
Collapse
Affiliation(s)
- Martin G McCabe
- Manchester Academic Health Science Centre, School of Cancer and Enabling Sciences, University of Manchester, The Christie NHS Foundation Trust, Withington, Manchester M20 4BX, UK.
| | | | | | | | | |
Collapse
|
19
|
Pfaff E, Remke M, Sturm D, Benner A, Witt H, Milde T, von Bueren AO, Wittmann A, Schöttler A, Jorch N, Graf N, Kulozik AE, Witt O, Scheurlen W, von Deimling A, Rutkowski S, Taylor MD, Tabori U, Lichter P, Korshunov A, Pfister SM. TP53 Mutation Is Frequently Associated With CTNNB1 Mutation or MYCN Amplification and Is Compatible With Long-Term Survival in Medulloblastoma. J Clin Oncol 2010; 28:5188-96. [DOI: 10.1200/jco.2010.31.1670] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose The role of TP53 mutations in the tumorigenesis of sporadic medulloblastoma (MB) and the value of TP53 mutation status as a prognostic marker are not yet definitely elucidated. A recent report identified TP53 mutations in MB as an adverse prognostic marker. Hence, the current study was conducted to validate the prognostic role of TP53 mutation in MB and to understand its contribution to tumorigenesis. Methods A comprehensive genetic analysis of 310 MB samples was performed by screening for TP53 mutations and further relating the TP53 mutation status to p53 immunostaining, cytogenetic aberrations, and clinical variables. Results Mutation analysis of TP53 revealed mutations in 21 (6.8%) of 310 samples. Germline TP53 mutations were found in two patients with a history suggestive of a hereditary cancer syndrome. TP53 mutation status was not associated with unfavorable prognosis (P = .63) and was not linked to 17p allelic loss but was over-represented in the prognostically favorable WNT subgroup of MB as defined by CTNNB1 mutation (seven of 35 TP53-mutated tumors v 14 of 271 TP53 wild-type tumors; P = .005) and in tumors carrying high-level MYCN amplification (seven of 21 TP53-mutated tumors v 14 of 282 TP53 wild-type tumors; P = .001). Conclusion The contradictory results in the recent literature concerning the prognostic value of TP53 mutation might be explained by different frequencies of WNT MBs, different frequencies of patients with Li-Fraumeni syndrome, and different cumulative doses of alkylating drugs applied in these studies.
Collapse
Affiliation(s)
- Elke Pfaff
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marc Remke
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dominik Sturm
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Axel Benner
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hendrik Witt
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Till Milde
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - André O. von Bueren
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrea Wittmann
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anna Schöttler
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Norbert Jorch
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Norbert Graf
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andreas E. Kulozik
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olaf Witt
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wolfram Scheurlen
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andreas von Deimling
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stefan Rutkowski
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D. Taylor
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Lichter
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrey Korshunov
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stefan M. Pfister
- From the German Cancer Research Center; University Hospital Heidelberg; University of Heidelberg, Heidelberg; University Medical Center Hamburg-Eppendorf, Hamburg; Krankenanstalten Gilead, Bielefeld; University of Saarland, Homburg; Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany; and the Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Brandes AA, Franceschi E, Tosoni A, Reni M, Gatta G, Vecht C, Kortmann RD. Adult neuroectodermal tumors of posterior fossa (medulloblastoma) and of supratentorial sites (stPNET). Crit Rev Oncol Hematol 2009; 71:165-79. [PMID: 19303318 DOI: 10.1016/j.critrevonc.2009.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/28/2009] [Accepted: 02/13/2009] [Indexed: 11/26/2022] Open
Abstract
Medulloblastoma and supratentorial primitive neuroectodermal tumors are rare diseases in adults. Due to this rarity, few prospective clinical trials have been conducted on medulloblastoma in adults, investigations being based exclusively on retrospective studies; the populations considered in literature are small, and the different treatments given span decades, during which diagnostic procedures, neurosurgical skills and radiotherapy techniques have changed. Unlike pediatric patients, adult medulloblastoma patients have been treated according to risk-adapted therapeutic strategies in only a few series and despite risk-tailored treatments, 20-30% of patients experience recurrence. Although patients could respond to second line treatments, the prognosis of relapsed patients remains dismal. An important challenge for the future will be the biological characterization of medulloblastoma, with the identification of specific genetic patterns of patients with a better or a worse prognosis.
Collapse
Affiliation(s)
- Alba A Brandes
- Department of Medical Oncology, Azienda USL-Bellaria-Maggiore Hospital Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, Wittmann A, Devens F, Gerber NU, Joos S, Kulozik A, Reifenberger G, Rutkowski S, Wiestler OD, Radlwimmer B, Scheurlen W, Lichter P, Korshunov A. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 2009; 27:1627-36. [PMID: 19255330 DOI: 10.1200/jco.2008.17.9432] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Medulloblastoma is the most common malignant brain tumor in children. Current treatment decisions are based on clinical variables. Novel tumor-derived biomarkers may improve the risk stratification of medulloblastoma patients. PATIENTS AND METHODS A model for the molecular risk stratification was proposed from an array-based comparative genomic hybridization (array-CGH) screen (n = 80). Fluorescence in situ hybridization (FISH) analyses for chromosome arms 6q, 17p, and 17q and the MYC and MYCN loci were performed in an independent validation set (n = 260). Copy number aberrations were correlated with clinical, histologic, and survival data. RESULTS Gain of 6q and 17q and genomic amplification of MYC or MYCN were each associated with poor outcome in the array-CGH study (n = 80). In contrast, all patients with 6q-deleted tumors survived. Given these findings, the following hierarchical molecular staging system was defined: (1) MYC/MYCN amplification, (2) 6q gain, (3) 17q gain, (4) 6q and 17q balanced, and (5) 6q deletion. The prognostic value of this staging system was investigated by FISH analysis (n = 260). The addition of molecular markers to clinical risk factors resulted in the identification of a large proportion of patients (72 of 260 patients; 30%) at high risk for relapse and death who would be considered standard risk by application of clinical variables alone. CONCLUSION Genomic aberrations in medulloblastoma are powerful independent markers of disease progression and survival. By adding genomic markers to established clinical and histologic variables, outcome prediction can be substantially improved. Because the analyses can be conducted on routine paraffin-embedded material, it will be especially feasible to use this novel molecular staging system in large multicenter clinical trials.
Collapse
Affiliation(s)
- Stefan Pfister
- Division of Molecular Genetics and Biostatistics and Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
McCabe MG, Ichimura K, Pearson DM, Liu L, Clifford SC, Ellison DW, Collins VP. Novel mechanisms of gene disruption at the medulloblastoma isodicentric 17p11 breakpoint. Genes Chromosomes Cancer 2009; 48:121-31. [DOI: 10.1002/gcc.20625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Takei H, Nguyen Y, Mehta V, Chintagumpala M, Dauser RC, Adesina AM. Low-level copy gain versus amplification of myc oncogenes in medulloblastoma: utility in predicting prognosis and survival. Laboratory investigation. J Neurosurg Pediatr 2009; 3:61-5. [PMID: 19119907 DOI: 10.3171/2008.10.peds08105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Medulloblastoma (MB) is a malignant embryonal tumor of the cerebellum. Amplification of c-myc or N-myc is infrequently identified and, when present, is often associated with the large cell/anaplastic (LC/A) phenotype. The frequency of low-level copy gain of myc oncogenes and its relationship to prognosis of MB has not been explored. METHODS Archival cases of MB were histologically reviewed and classified into 3 major subtypes: classic, nodular, and LC/A. Using quantitative real-time polymerase chain reaction (PCR), the authors analyzed 58 cases with a pure histological subtype for the copy number (CN) of myc (c-myc and N-myc) oncogenes. Cases with > 5-fold CN were further analyzed using the fluorescent in situ hybridization (FISH) assay. Kaplan-Meier survival analysis was performed. RESULTS A > 5-fold myc CN was noted in 5 (20.8%) of 24 LC/A, 1 (5.3%) of 19 classic, and 2 (13.3%) of 15 nodular subtypes. In a significant number of tumors (14 [56%] of 24 LC/A, 13 [68%] of 19 classic, and 10 [67%] of 15 nodular MBs) the CN was > 2-fold but < 5-fold. High-level amplification, defined as > 10-fold CN, was only seen in the LC/A subtype (5 cases), although moderate amplification (> 5-fold but < 10-fold) could be detected in other histological subtypes. Fluorescence in situ hybridization readily detected most cases corresponding to tumors with > 5-fold amplicon CN by quantitative real-time PCR, and could detect all 5 cases with > 10-fold CN by quantitative real-time PCR. The group of patients with > 5-fold myc amplicon CN showed significantly shorter survival than those with < 5-fold CN (p = 0.045), independent of histological subtype. CONCLUSIONS Since FISH could easily detect most cases in the moderate-to-high myc gene amplification (> 5-fold CN) group, the FISH assay has utility in detecting subsets of MB with poorer prognosis.
Collapse
Affiliation(s)
- Hidehiro Takei
- Department of Pathology, The Methodist Hospital, Texas Children's Cancer Center and Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Entz-Werle N, Carli ED, Ducassou S, Legrain M, Grill J, Dufour C. Medulloblastoma: what is the role of molecular genetics? Expert Rev Anticancer Ther 2008; 8:1169-81. [PMID: 18588461 DOI: 10.1586/14737140.8.7.1169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among pediatric malignancies, medulloblastoma (MB) is one of the most common malignant tumors of the CNS. In the past few years, thanks to a multidisciplinary approach including surgery, chemo- and radiation therapy, survival has significantly improved. Despite that, a third of patients still have a low chance of being cured and long-term survivors experience severe treatment-related sequelae. MBs are usually classified according to a clinical risk stratification, based on histological features, age at diagnosis, extent of tumor resection and presence or absence of metastases. However, these clinical variables have recently been reported to be poor for defining risk-related disease. Retrospective studies have identified histological or biological factors that have distinct roles in prognosis. As several pathways have been discovered to be involved in MB pathogenesis, they should be taken into account to more accurately stratify patients and their treatment and to develop innovative therapies.
Collapse
Affiliation(s)
- Natacha Entz-Werle
- Service de Pédiatrie, U 682 Inserm CHRU Hautepierre, Avenue Molière - 67098 Strasbourg Cedex France.
| | | | | | | | | | | |
Collapse
|
25
|
Briggs KJ, Corcoran-Schwartz IM, Zhang W, Harcke T, Devereux WL, Baylin SB, Eberhart CG, Watkins DN. Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma. Genes Dev 2008; 22:770-85. [PMID: 18347096 DOI: 10.1101/gad.1640908] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Medulloblastoma is an embryonal tumor thought to arise from the granule cell precursors (GCPs) of the cerebellum. PATCHED (PTCH), an inhibitor of Hedgehog signaling, is the best-characterized tumor suppressor in medulloblastoma. However, <20% of medulloblastomas have mutations in PTCH. In the search for other tumor suppressors, interest has focused on the deletion events at the 17p13.3 locus, the most common genetic defect in medulloblastoma. This chromosomal region contains HYPERMETHYLATED IN CANCER 1 (HIC1), a transcriptional repressor that is a frequent target of epigenetic gene silencing in medulloblastoma. Here we use a mouse model of Ptch1 heterozygosity to reveal a critical tumor suppressor function for Hic1 in medulloblastoma. When compared with Ptch1 heterozygous mutants, compound Ptch1/Hic1 heterozygotes display a fourfold increased incidence of medulloblastoma. We show that Hic1 is a direct transcriptional repressor of Atonal Homolog 1 (Atoh1), a proneural transcription factor essential for cerebellar development, and show that ATOH1 expression is required for human medulloblastoma cell growth in vitro. Given that Atoh1 is also a putative target of Hh signaling, we conclude that the Hic1 and Ptch1 tumor suppressors cooperate to silence Atoh1 expression during a critical phase in GCP differentiation in which malignant transformation may lead to medulloblastoma.
Collapse
Affiliation(s)
- Kimberly J Briggs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gilbertson RJ, Ellison DW. The origins of medulloblastoma subtypes. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:341-65. [PMID: 18039127 DOI: 10.1146/annurev.pathmechdis.3.121806.151518] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Childhood tumors containing cells that are morphologically and functionally similar to normal progenitor cells provide fertile ground for investigating the links between development and cancer. In this respect, integrated studies of normal cerebellar development and the medulloblastoma, a malignant embryonal tumor of the cerebellum, have proven especially fruitful. Emerging evidence indicates that the different precursor cell populations that form the cerebellum and the cell signaling pathways that regulate its development likely represent distinct compartments from which the various subtypes of medulloblastoma arise. Definitive characterization of each medulloblastoma subtype will undoubtedly improve treatment of this disease and provide important insights to the origins of cancer.
Collapse
Affiliation(s)
- Richard J Gilbertson
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
27
|
Jozwiak J, Grajkowska W, Wlodarski P. Pathogenesis of medulloblastoma and current treatment outlook. Med Res Rev 2008; 27:869-90. [PMID: 17089411 DOI: 10.1002/med.20088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Medulloblastoma is the most common malignant tumor of the cerebellum in children, with a tendency to metastasize via CSF pathway. Survival rate varies depending on several factors, but is rather favorable, with radiotherapy as the treatment of choice. Irradiation of the craniospinal axis results, however, in severe neuropsychological and psychosocial impairments pertaining to memory, attention, motor functioning, language, and visuospatial abilities. Precise mechanisms underlying the formation of medulloblastoma are still unclear, but implication of at least three signaling molecules is postulated: insulin-like growth factor-I, WNT, and Sonic hedgehog. Thanks to increasing knowledge on the cellular mechanisms contributing to tumor formation, it is possible to propose new therapies that could replace radiotherapy or allow decreasing irradiation doses. The current review presents recent developments in medulloblastoma pathophysiology research and proposed inhibitors that could constitute good candidates for further pharmacological research.
Collapse
Affiliation(s)
- Jaroslaw Jozwiak
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| | | | | |
Collapse
|
28
|
|
29
|
Functional and molecular interactions between the HGF/c-Met pathway and c-Myc in large-cell medulloblastoma. J Transl Med 2008; 88:98-111. [PMID: 18059365 DOI: 10.1038/labinvest.3700702] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The growth factor hepatocyte growth factor (HGF), also known as scatter factor, and its tyrosine kinase receptor c-Met play important roles in medulloblastoma malignancy. The transcription factor c-Myc is another contributor to the malignancy of these most common pediatric brain tumors. In the present study, we observed strong morphological similarities between medulloblastoma xenografts overexpressing HGF and medulloblastoma xenografts overexpressing c-Myc. We therefore hypothesized a biologically significant link between HGF/c-Met and c-Myc in medulloblastoma malignancy and studied the molecular and functional interactions between them. We found that HGF induces c-Myc mRNA and protein in established and primary medulloblastoma cells. HGF regulated c-Myc levels via transcriptional and post-transcriptional mechanisms as evidenced by HGF induction of c-Myc promoter activity and induction of c-Myc protein levels in the setting of inhibited transcription and translation. We also found that HGF induces cell cycle progression, cell proliferation, apoptosis and increase in cell size in a c-Myc-dependent manner. Activation of MAPK and PI3K, inhibition of GSK-3beta and translocation of beta-catenin to the nucleus as well as Tcf/Lef transcriptional activity were involved in mediating c-Myc induction by HGF. Induction of Cdk2 kinase activity was involved in mediating the cell cycle progression effects, and downregulation of Bcl-XL was involved in mediating the proapoptotic effects of HGF downstream of c-Myc. All molecules that mediated the effects of HGF on c-Myc expression, cell proliferation and apoptosis were expressed in human large-cell medulloblastoma tissues. We therefore established for the first time a functional cooperation between HGF/c-Met and c-Myc in human medulloblastoma and elucidated the molecular mechanisms of this cooperation. The findings provide a potential explanation for the high frequency of c-Myc overexpression in medulloblastoma and suggest a cooperative role for c-Met and c-Myc in large-cell anaplastic medulloblastoma formation.
Collapse
|
30
|
Katkoori VR, Jia X, Chatla C, Kumar S, Ponnazhagan S, Callens T, Messiaen L, Grizzle WE, Manne U. Clinical significance of a novel single nucleotide polymorphism in the 5' untranslated region of the Rabphillin-3A-Like gene in colorectal adenocarcinoma. FRONT BIOSCI-LANDMRK 2008; 13:1050-61. [PMID: 17981610 DOI: 10.2741/2742] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recently identified human ortholog of the Rabphillin-3A-Like (RPH3AL) gene, located at the 17p13.3 locus, has been assessed for its mutational status and clinical significance in colorectal adenocarcinoma (CRC). Prospectively collected 95 frozen CRCs and their matching benign colonic epithelial tissues were evaluated for mutations and mRNA expression. Since, we observed a higher incidence of a single nucleotide polymorphism (SNP) at the -25 position in the 5'untranslated region (5'UTR-25) of RPH3AL, we performed the genotyping analysis of this SNP in a retrospective CRC cohort (n=134) to assess their clinical importance. Univariate and multivariate outcome analyses were performed. The cDNA analysis has detected point mutations in 6 CRCs, coding region SNPs in 14 CRCs, and non-coding region SNPs in 38 CRCs. Combined analyses of both cohorts has demonstrated that the incidence of SNP at 5'UTR-25 was 41% (95 of 229), and its A/A genotype (9%, 20 of 229) was observed exclusively in non-Hispanic Caucasians, and 19 of these cases were diagnosed with nodal metastasis. Patients who exhibited homozygous for A or C alleles had a significantly decreased levels of mRNA expression, increased risk of CRC recurrence and mortality. Therefore, these findings have significant clinical implications in assessing the aggressiveness of CRC.
Collapse
Affiliation(s)
- Venkat R Katkoori
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-7331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lo KC, Ma C, Bundy BN, Pomeroy SL, Eberhart CG, Cowell JK. Gain of 1q Is a Potential Univariate Negative Prognostic Marker for Survival in Medulloblastoma. Clin Cancer Res 2007; 13:7022-8. [DOI: 10.1158/1078-0432.ccr-07-1420] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Castellino RC, De Bortoli M, Lu X, Moon SH, Nguyen TA, Shepard MA, Rao PH, Donehower LA, Kim JYH. Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D. J Neurooncol 2007; 86:245-56. [PMID: 17932621 PMCID: PMC2174521 DOI: 10.1007/s11060-007-9470-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 08/20/2007] [Indexed: 01/07/2023]
Abstract
Medulloblastoma is the most common malignant brain tumor of childhood. Despite numerous advances, clinical challenges range from recurrent and progressive disease to long-term toxicities in survivors. The lack of more effective, less toxic therapies results from our limited understanding of medulloblastoma growth. Although TP53 is the most commonly altered gene in cancers, it is rarely mutated in medulloblastoma. Accumulating evidence, however, indicates that TP53 pathways are disrupted in medulloblastoma. Wild-typep53-induced phosphatase 1 (WIP1 or PPM1D) encodes a negative regulator of p53. WIP1 amplification (17q22-q23) and its overexpression have been reported in diverse cancer types. We examined primary medulloblastoma specimens and cell lines, and detected WIP1 copy gain and amplification prevalent among but not exclusively in the tumors with 17q gain and isochromosome 17q (i17q), which are among the most common cytogenetic lesions in medulloblastoma. WIP1 RNA levels were significantly higher in the tumors with 17q gain or i17q. Immunoblots confirmed significant WIP1 protein in primary tumors, generally higher in those with 17q gain or i17q. Under basal growth conditions and in response to the chemotherapeutic agent, etoposide, WIP1 antagonized p53-mediated apoptosis in medulloblastoma cell lines. These results indicate that medulloblastoma express significant levels of WIP1 that modulate genotoxic responsiveness by negatively regulating p53.
Collapse
Affiliation(s)
- Robert C Castellino
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, 6621 Fannin Street, MC 3-3320, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Polkinghorn WR, Tarbell NJ. Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. ACTA ACUST UNITED AC 2007; 4:295-304. [PMID: 17464337 DOI: 10.1038/ncponc0794] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 12/22/2006] [Indexed: 11/08/2022]
Abstract
Medulloblastoma is the most common brain malignancy in children and tremendous advances have recently been made in understanding the pathogenesis of this tumor. The Hedgehog and Wingless signaling pathways are implicated in medulloblastoma development, and both pathways were discovered as a result of analyses of genetic syndromes associated with the tumor. Over the past 80 years, considerable progress has been made in the treatment of what was once a fatal disease. The first survival reports followed the introduction of craniospinal irradiation, and yet the success of this modality, which continues to be a central component of treatment regimens for patients older than 3 years, comes at a significant cost. The present challenge in medulloblastoma treatment is to improve upon existing survival rates and to minimize the side effects of treatment. The current tools of clinical risk assessment fail to adequately identify patients older than 3 years who require less radiation and those who require more radiation. Significant effort has been made to improve clinical risk stratification and titration of treatment by analyzing properties of the tumor cells themselves for prognostic significance. These efforts include identifying histopathologic, cytogenetic, and molecular features that may correlate with prognosis.
Collapse
|
34
|
Lo KC, Rossi MR, Eberhart CG, Cowell JK. Genome wide copy number abnormalities in pediatric medulloblastomas as assessed by array comparative genome hybridization. Brain Pathol 2007; 17:282-96. [PMID: 17465989 PMCID: PMC8095649 DOI: 10.1111/j.1750-3639.2007.00072.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Array-based comparative genomic hybridization was used to characterize 22 medulloblastomas in order to precisely define genetic alterations in these malignant childhood brain tumors. The 17p(-)/17q(+) copy number abnormality (CNA), consistent with the formation of isochromosome 17q, was the most common event (8/22). Amplifications in this series included MYCL, MYCN and MYC previously implicated in medulloblastoma pathogenesis, as well as novel amplicons on chromosomes 2, 4, 11 and 12. Losses involving chromosomes 1, 2, 8, 10, 11, 16 and 19 and gains of chromosomes 4, 7, 8, 9 and 18 were seen in greater than 20% of tumors in this series. A homozygous deletion in 11p15 defines the minimal region of loss on this chromosome arm. In order to map the minimal regions involved in losses, gains and amplifications, we combined aCGH data from this series with that of two others obtained using the same RPCI BAC arrays. As a result of this combined analysis of 72 samples, we have defined specific regions on chromosomes 1, 8p, 10q, 11p and 16q which are frequently involved in CNAs in medulloblastomas. Using high density oligonucleotide expression arrays, candidate genes were identified within these consistently involved regions in a subset of the tumors.
Collapse
Affiliation(s)
- Ken C. Lo
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, N.Y
| | - Michael R. Rossi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, N.Y
| | | | - John K. Cowell
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, N.Y
| |
Collapse
|
35
|
Anti-proliferative activity of the quassinoid NBT-272 in childhood medulloblastoma cells. BMC Cancer 2007; 7:19. [PMID: 17254356 PMCID: PMC1794252 DOI: 10.1186/1471-2407-7-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 01/25/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to correlate with anaplasia and unfavorable prognosis. In neuroblastoma--an embryonal tumor with biological similarities to MB--the quassinoid NBT-272 has been demonstrated to inhibit cellular proliferation and to down-regulate c-MYC protein expression. METHODS To study MB cell responses to NBT-272 and their dependence on the level of c-MYC expression, DAOY (wild-type, empty vector transfected or c-MYC transfected), D341 (c-MYC amplification) and D425 (c-MYC amplification) human MB cells were used. The cells were treated with different concentrations of NBT-272 and the impact on cell proliferation, apoptosis and c-MYC expression was analyzed. RESULTS NBT-272 treatment resulted in a dose-dependent inhibition of cellular proliferation (IC50 in the range of 1.7-9.6 ng/ml) and in a dose-dependent increase in apoptotic cell death in all human MB cell lines tested. Treatment with NBT-272 resulted in up to 90% down-regulation of c-MYC protein, as demonstrated by Western blot analysis, and in a significant inhibition of c-MYC binding activity. Anti-proliferative effects were slightly more prominent in D341 and D425 human MB cells with c-MYC amplification and slightly more pronounced in c-MYC over-expressing DAOY cells compared to DAOY wild-type cells. Moreover, treatment of synchronized cells by NBT-272 induced a marked cell arrest at the G1/S boundary. CONCLUSION In human MB cells, NBT-272 treatment inhibits cellular proliferation at nanomolar concentrations, blocks cell cycle progression, induces apoptosis, and down-regulates the expression of the oncogene c-MYC. Thus, NBT-272 may represent a novel drug candidate to inhibit proliferation of human MB cells in vivo.
Collapse
|
36
|
De Bortoli M, Castellino RC, Lu XY, Deyo J, Sturla LM, Adesina AM, Perlaky L, Pomeroy SL, Lau CC, Man TK, Rao PH, Kim JYH. Medulloblastoma outcome is adversely associated with overexpression of EEF1D, RPL30, and RPS20 on the long arm of chromosome 8. BMC Cancer 2006; 6:223. [PMID: 16968546 PMCID: PMC1578584 DOI: 10.1186/1471-2407-6-223] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 09/12/2006] [Indexed: 11/23/2022] Open
Abstract
Background Medulloblastoma is the most common malignant brain tumor of childhood. Improvements in clinical outcome require a better understanding of the genetic alterations to identify clinically significant biological factors and to stratify patients accordingly. In the present study, we applied cytogenetic characterization to guide the identification of biologically significant genes from gene expression microarray profiles of medulloblastoma. Methods We analyzed 71 primary medulloblastomas for chromosomal copy number aberrations (CNAs) using comparative genomic hybridization (CGH). Among 64 tumors that we previously analyzed by gene expression microarrays, 27 were included in our CGH series. We analyzed clinical outcome with respect to CNAs and microarray results. We filtered microarray data using specific CNAs to detect differentially expressed candidate genes associated with survival. Results The most frequent lesions detected in our series involved chromosome 17; loss of 16q, 10q, or 8p; and gain of 7q or 2p. Recurrent amplifications at 2p23-p24, 2q14, 7q34, and 12p13 were also observed. Gain of 8q is associated with worse overall survival (p = 0.0141), which is not entirely attributable to MYC amplification or overexpression. By applying CGH results to gene expression analysis of medulloblastoma, we identified three 8q-mapped genes that are associated with overall survival in the larger group of 64 patients (p < 0.05): eukaryotic translation elongation factor 1D (EEF1D), ribosomal protein L30 (RPL30), and ribosomal protein S20 (RPS20). Conclusion The complementary use of CGH and expression profiles can facilitate the identification of clinically significant candidate genes involved in medulloblastoma growth. We demonstrate that gain of 8q and expression levels of three 8q-mapped candidate genes (EEF1D, RPL30, RPS20) are associated with adverse outcome in medulloblastoma.
Collapse
Affiliation(s)
- Massimiliano De Bortoli
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Robert C Castellino
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xin-Yan Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey Deyo
- St Jude Children's Research Hospital, Baton Rouge Affiliate, Baton Rouge, LA, USA
| | - Lisa Marie Sturla
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Laszlo Perlaky
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Scott L Pomeroy
- Program in Neuroscience, Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ching C Lau
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tsz-Kwong Man
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pulivarthi H Rao
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John YH Kim
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
37
|
Min HS, Lee YJ, Park K, Cho BK, Park SH. Medulloblastoma: histopathologic and molecular markers of anaplasia and biologic behavior. Acta Neuropathol 2006; 112:13-20. [PMID: 16691420 DOI: 10.1007/s00401-006-0073-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 12/31/2022]
Abstract
Large cell/anaplastic (LC/A) medulloblastoma (MB) is a recently recognized variant of medulloblastoma known to be associated with an advanced stage and a poor prognosis. Although Eberhart et al. suggested histopathologic grading of medulloblastoma in 2002, no consensus has been reached in terms of determining the criteria of an LC/A variant, and its biological behavior continues to be the subject of debate. We retrospectively analyzed 74 cases (range 0.25-15 years) of MB clinicopathologically using the criteria established by Eberhart et al. The LC/A variant was identified in 16 cases (22% of MB cases), five of which showed a poor outcome. Most LC/A variant cases revealed synaptophysin immunoexpression (75%), but no epidermal growth factor receptor (EGFR) expression. Expression of synaptophysin, NeuN, GFAP, p53, c-erbB2, and EGFR did not differ in LC/A and non-LC/A variants. Seven of the 74 cases of medulloblastoma showed erbB2 amplification by FISH, four of which were LC/A variants. N-myc amplification was observed in only one LC/A variant, but no c-myc amplification was found. In patients younger than 10 years, the LC/A variant showed a significantly poorer outcome than the non-LC/A variant (P = 0.02), while no difference was found in older patients. Multivariate analysis revealed only metastasis on MRI and p53 expression, but not anaplasia as unfavorable prognostic factors. Our study suggests that prognostic implications of anaplasia in medulloblastoma are uncertain, and that the reproducibility of the histopathologic criteria of the LC/A variant should be reassessed before they can be applied in practical use.
Collapse
Affiliation(s)
- Hye Sook Min
- Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Korea
| | | | | | | | | |
Collapse
|
38
|
Eberhart CG, Kratz JE, Schuster A, Goldthwaite P, Cohen KJ, Perlman EJ, Burger PC. Comparative genomic hybridization detects an increased number of chromosomal alterations in large cell/anaplastic medulloblastomas. Brain Pathol 2006; 12:36-44. [PMID: 11770900 PMCID: PMC8095918 DOI: 10.1111/j.1750-3639.2002.tb00420.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We correlate chromosomal changes in medulloblastomas with histologic subtype, reporting the analysis of 33 medulloblastoma specimens by comparative genomic hybridization, and a subset by fluorescence in situ hybridization. Of the 33 tumors, 5 were desmoplastic/nodular, 10 were histologically classic, and 18 were large cell/anaplastic. Chromosomal gains and losses were more common in anaplastic medulloblastomas than in non-anaplastic ones. We identified 4 medulloblastomas with c-myc amplification and 5 medulloblastomas with N-myc amplification; all 9 were of the large cell/anaplastic subtype. Additional regions with high level gains included 2q14-22, 3p23, 5p14-pter, 8q24, 9p22-23, 10p12-pter, 12q24, 12p11-12, 17p11-12, and Xp11. The majority of these high level gains occurred in anaplastic cases. We also found loss of chromosome 17p in 7 large cell/anaplastic cases but no nonanaplastic medulloblastomas. Finally, we detected a significantly increased overall number of chromosomal alterations in large cell/anaplastic medulloblastomas (6.8/case) compared to non-anaplastic ones (3.3/case). These findings support an association between myc oncogene amplification, 17p loss, and large cell/anaplastic histology.
Collapse
Affiliation(s)
- Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The variable clinical outcomes of medulloblastoma patients have prompted a search for markers with which to tailor therapies to individuals. In this review, we discuss clinical, histological and molecular features that can be used in such treatment customization, focusing on how histopathological grading can impact both patient care and research on the molecular basis of CNS embryonal tumors. Medulloblastomas span a histological spectrum ending in overtly malignant large cell/anaplastic lesions characterized by increased nuclear size, marked cytological anaplasia, and increased mitotic and apoptotic rates. These "high-grade" lesions make up approximately one quarter of medulloblastomas, and recur and metastasize more frequently than tumors lacking anaplasia. We believe anaplastic change represents a type of malignant progression common to many medulloblastoma subtypes and to other CNS embryonal lesions as well. Correlation of these histological changes with the accumulation of genetic events suggests a model for the histological and molecular progression of medulloblastoma.
Collapse
Affiliation(s)
- Charles G Eberhart
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA.
| | | |
Collapse
|
40
|
Rossi MR, Conroy J, McQuaid D, Nowak NJ, Rutka JT, Cowell JK. Array CGH analysis of pediatric medulloblastomas. Genes Chromosomes Cancer 2006; 45:290-303. [PMID: 16320246 DOI: 10.1002/gcc.20292] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Brain tumors are the second most common childhood cancer. We used high-resolution array comparative genomic hybridization (aCGH) to analyze losses and gains of genetic material from 24 medulloblastomas. The bacterial artificial chromosome clones were ordered on the array, allowing for an average resolution of approximately 420 kilobases. The advantage of this high resolution is that the breakpoints associated with subregional chromosome copy number aberrations can be accurately defined, which in turn allows candidate genes within these regions to be readily defined. In this analysis, we confirmed the frequent involvement of loss of 17p and gain of 17q, although we have now established the position of the breakpoint that consistently lies in the chr17:18318880-19046234 region of the chromosome. Other frequent losses were seen on 8p, 10q, 16q, and 20p, and frequent gains were seen on 2p, 4p, 7, and 19. In addition, the fine-resolution mapping provided by aCGH made it possible to define small chromosome deletions in 1q23.3-q24.2, 2q13.12-q13.2, 6q25-qter, 8p23.1, 10q25.1, and 12q13.12-q13.2. Overall, amplification events were rare, the most common involving MYC (16%), on 8q, although isolated events were seen in 10p11 and 3q.
Collapse
Affiliation(s)
- Michael R Rossi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
41
|
Hui ABY, Takano H, Lo KW, Kuo WL, Lam CNY, Tong CYK, Chang Q, Gray JW, Ng HK. Identification of a novel homozygous deletion region at 6q23.1 in medulloblastomas using high-resolution array comparative genomic hybridization analysis. Clin Cancer Res 2005; 11:4707-16. [PMID: 16000565 DOI: 10.1158/1078-0432.ccr-05-0128] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study is to comprehensively characterize genome copy number aberrations in medulloblastomas using high-resolution array comparative genomic hybridization. EXPERIMENTAL DESIGN High-density genomic arrays containing 1,803 BAC clones were used to define recurrent chromosomal regions of gains or losses throughout the whole genome of medulloblastoma. A series of 3 medulloblastoma cell lines and 16 primary tumors were investigated. RESULTS The detected consistent chromosomal aberrations included gains of 1q21.3-q23.1 (36.8%), 1q32.1 (47.4%), 2p23.1-p25.3 (52.6%), 7 (57.9%), 9q34.13-q34.3 (47.4%), 17p11.2-q25.3 (89.5%), and 20q13.31-q13.33 (42.1%), as well as losses of 3q26.1 (57.9%), 4q31.23-q32.3 (42.1%), 6q23.1-25.3 (57.9%), 8p22-23.3 (79%), 10q24.32-26.2 (57.9%), and 16q23.2-q24.3 (63.2%). One of the most notable aberrations was a homozygous deletion on chromosome 6q23 in the cell line DAOY, and single copy loss on 30.3% primary tumors. Further analyses defined a 0.887 Mbp minimal region of homozygous deletion at 6q23.1 flanked by markers SHGC-14149 (6q22.33) and SHGC-110551 (6q23.1). Quantitative reverse transcription-PCR analysis showed complete loss of expression of two genes located at 6q23.1, AK091351 (hypothetical protein FLJ34032) and KIAA1913, in the cell line DAOY. mRNA levels of these genes was reduced in cell lines D283 and D384, and in 50% and 70% of primary tumors, respectively. CONCLUSION Current array comparative genomic hybridization analysis generates a comprehensive pattern of chromosomal aberrations in medulloblastomas. This information will lead to a better understanding of medulloblastoma tumorigenesis. The delineated regions of gains or losses will indicate locations of medulloblastoma-associated genes. A 0.887 Mbp homozygous deletion region was newly identified at 6q23.1. Frequent detection of reduced expression of AK091351 and KIAA1913 genes implicates them as suppressors of medulloblastoma tumorigenesis.
Collapse
Affiliation(s)
- Angela B Y Hui
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong SAR, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bayani J, Pandita A, Squire JA. Molecular cytogenetic analysis in the study of brain tumors: findings and applications. Neurosurg Focus 2005; 19:E1. [PMID: 16398459 DOI: 10.3171/foc.2005.19.5.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Classic cytogenetics has evolved from black and white to technicolor images of chromosomes as a result of advances in fluorescence in situ hybridization (FISH) techniques, and is now called molecular cytogenetics. Improvements in the quality and diversity of probes suitable for FISH, coupled with advances in computerized image analysis, now permit the genome or tissue of interest to be analyzed in detail on a glass slide. It is evident that the growing list of options for cytogenetic analysis has improved the understanding of chromosomal changes in disease initiation, progression, and response to treatment. The contributions of classic and molecular cytogenetics to the study of brain tumors have provided scientists and clinicians alike with new avenues for investigation. In this review the authors summarize the contributions of molecular cytogenetics to the study of brain tumors, encompassing the findings of classic cytogenetics, interphase- and metaphase-based FISH studies, spectral karyotyping, and metaphase- and array-based comparative genomic hybridization. In addition, this review also details the role of molecular cytogenetic techniques in other aspects of understanding the pathogenesis of brain tumors, including xenograft, cancer stem cell, and telomere length studies.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Ontario, Canada.
| | | | | |
Collapse
|
43
|
Abstract
Central nervous system (CNS) neoplasms can be diagnostically challenging, due to remarkably wide ranges in histologic appearance, biologic behavior, and therapeutic approach. Nevertheless, accurate diagnosis is the critical first step in providing optimal patient care. As with other oncology-based specialties, there is a rapidly expanding interest and enthusiasm for identifying and utilizing new biomarkers to enhance the day-to-day practice of surgical neuropathology. In this regard, the field is primed by recent advances in basic research, elucidating the molecular mechanisms of tumorigenesis and progression in the most common adult and pediatric brain tumors. Thus far, few have made the transition into routine clinical practice, the most notable example being 1p and 19q testing in oligodendroglial tumors. However, the field is rapidly evolving and many other biomarkers are likely to emerge as useful ancillary diagnostic, prognostic, or therapeutic aids. The goal of this article is to highlight the most common genetic alterations currently implicated in CNS tumors, focusing most on those that are either already in common use in ancillary molecular diagnostics testing or are likely to become so in the near future.
Collapse
Affiliation(s)
- Christine E Fuller
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, and Division of Neuropathology, Washington University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|
44
|
Sarkar C, Deb P, Sharma MC. Recent advances in embryonal tumours of the central nervous system. Childs Nerv Syst 2005; 21:272-93. [PMID: 15682321 DOI: 10.1007/s00381-004-1066-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Embryonal tumours of the central nervous system (CNS) are the commonest malignant paediatric brain tumours. This group includes medulloblastomas, supratentorial primitive neuroectodermal tumours, atypical teratoid/rhabdoid tumours, ependymoblastomas, and medulloepitheliomas. Earlier, all these tumours were grouped under a broad category of primitive neuroectodermal tumours (PNETs). However, the current WHO classification (2000) separates them into individual types based on significant progress in the understanding of their distinctive clinical, pathological, molecular genetic, histogenetic, and behavioural characteristics. Furthermore, advances in histopathology and molecular genetics have shown great promise for refining risk assessment in these tumours, especially medulloblastomas, thus providing a more accurate basis for tailoring therapies to individual patients. Correlation of histological changes with genetic events has also led to a new model of medulloblastoma tumorigenesis. REVIEW This review presents an updated comparative profile of these tumours, highlighting the clinical and biological relevance of the recent advances.
Collapse
Affiliation(s)
- Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi.
| | | | | |
Collapse
|
45
|
Lamont JM, McManamy CS, Pearson AD, Clifford SC, Ellison DW. Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res 2005; 10:5482-93. [PMID: 15328187 DOI: 10.1158/1078-0432.ccr-03-0721] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined the utility of stratifying children with medulloblastomas by a combination of refined histopathological classification and molecular cytogenetic evaluation. Detailed histopathological classification of tumors from a cohort of patients (n = 87) composed mainly of children entered into the International Society of Pediatric Oncology (SIOP)/United Kingdom Children's Cancer Study Group PNET3 trial (n = 65), included identification of the large cell/anaplastic phenotype. Fluorescence in situ hybridization was used to detect chromosome 17 abnormalities, losses of 9q22 and 10q24, and amplification of the MYCC and MYCN oncogenes. The large cell/anaplastic phenotype, which was present in 20% of medulloblastomas, emerged as an independent prognostic indicator. Loss of 17p13.3 (38% of medulloblastomas) was found across all of the histopathological variants, whereas MYCC/MYCN amplification (6%/8% of medulloblastomas) was significantly associated with the large cell/anaplastic phenotype. Both of these genetic abnormalities emerged as prognostic indicators. Loss of 9q22 was associated with the nodular/desmoplastic medulloblastoma variant, whereas loss of 10q24 was found in all of the variants. Together with metastatic tumor at presentation, the large cell/anaplastic phenotype, 17p13.3 loss, or high-frequency MYC amplification defined a high-risk group of children whose outcome was significantly (P = 0.0002) poorer than a low-risk group without these tumor characteristics. Combined evaluation of novel histopathological features and molecular cytogenetic abnormalities promises to allow stratification of patients with medulloblastoma, such that those likely to be cured will be spared the side effects of maximal therapy, which can be targeted at those with aggressive disease.
Collapse
Affiliation(s)
- Jayne M Lamont
- Northern Institute for Cancer Research, University of Newcastle, Newcastle-upon-Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Rickert CH. Prognosis-Related Molecular Markers in Pediatric Central Nervous System Tumors. J Neuropathol Exp Neurol 2004; 63:1211-24. [PMID: 15624758 DOI: 10.1093/jnen/63.12.1211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the wake of recent progress in understanding the genetic pathways involved in the development of brain tumors, a major goal is to correlate molecular data with clinical outcome, survival, and response to treatment modalities. This is of particular importance among the pediatric population. Reliable prognostic factors could potentially permit a tailoring of therapy in that only patients with the most aggressive tumors would receive the most intense treatments. A survey of publications about prognosis-related molecular features among pediatric brain tumors revealed 74 series, of which 46 presented statistically significant outcome-associated parameters as defined by a p value <0.05. Most investigations revealing significant prognosis-related features were performed on medulloblastomas (34 publications), followed by astrocytic tumors (6 publications) and ependymomas (5 publications). Promising approaches and molecular markers include gene expression profiles, DNA ploidy, loss of heterozygosity and chromosomal aberrations as detected by CGH and FISH (1q, 17p, 17q), as well as oncogenes/ tumor suppressor genes and their proteins (TP53, PTEN, c-erbB2, N-myc, c-myc), growth factor and hormonal receptors (PDGFRA, VEGF, EGFR, HER2, HER4, ErbB-2, hTERT, TrkC), cell cycle genes (p27) and cell adhesion molecules, as well as factors potentially related to therapeutic resistance (multi-drug resistance, DNA topoisomerase IIalpha, metallothionein, P-glycoprotein, tenascin). This review discusses the predictive potential of molecular markers for clinical outcome and their influence on therapeutic decision-making among children with brain tumors.
Collapse
Affiliation(s)
- Christian H Rickert
- Institute of Neuropathology, Department of Pediatric Hematology and Oncology, Münster University Hospital, Germany.
| |
Collapse
|
47
|
Ray A, Ho M, Ma J, Parkes RK, Mainprize TG, Ueda S, McLaughlin J, Bouffet E, Rutka JT, Hawkins CE. A Clinicobiological Model Predicting Survival in Medulloblastoma. Clin Cancer Res 2004; 10:7613-20. [PMID: 15569993 DOI: 10.1158/1078-0432.ccr-04-0499] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to determine the relative contributions of biological and clinical predictors of survival in patients with medulloblastoma (MB). EXPERIMENTAL DESIGN Clinical presentation and survival information were obtained for 119 patients who had undergone surgery for MB at the Hospital for Sick Children (Toronto, Ontario, Canada) between 1985 and 2001. A tissue microarray was constructed from the tumor samples. The arrays were assayed for immunohistochemical expression of MYC, p53, platelet-derived growth factor receptor-alpha, ErbB2, MIB-1, and TrkC and for apoptosis (terminal deoxynucleotidyl transferase-mediated nick end labeling). Both univariable and multivariable analyses were conducted to characterize the association between survival and both clinical and biological markers. For the strongest predictors of survival, a weighted predictive score was calculated based on their hazard ratios (HRs). The sum of these scores was then used to give an overall prediction of survival using a nomogram. RESULTS The four strongest predictors of survival in the final multivariable model were the presence of metastatic disease at presentation (HR, 2.02; P=0.01) and p53 (HR, 2.29; P=0.02), TrkC (HR, 0.65; P=0.14), and ErbB2 (HR, 1.51; P=0.21) immunopositivity. A linear prognostic index was derived, with coefficients equal to the logarithm of these HRs. The 5-year survival rate for patients at the 10th, 50th, and 90th percentiles of the score distribution was 80.0%, 71.0%, and 35.7%, respectively, with radiation therapy and 70.5%, 58.5%, and 20.0%, respectively, without radiation therapy. CONCLUSIONS In this study, we demonstrate an approach to combining both clinical and biological markers to quantify risk in MB patients. This provides further prognostic information than can be obtained when either clinical factors or biological markers are studied separately and establishes a framework for comparing prognostic markers in future clinical studies.
Collapse
Affiliation(s)
- Amit Ray
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brandes AA, Paris MK. Review of the prognostic factors in medulloblastoma of children and adults. Crit Rev Oncol Hematol 2004; 50:121-8. [PMID: 15157661 DOI: 10.1016/j.critrevonc.2003.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2003] [Indexed: 11/29/2022] Open
Abstract
Medulloblastoma (MB) is rare in adults, accounting for 1% of all primary tumours of the central nervous system (CNS). Based on the assumption that the disease pattern in adults is similar to that in children, adults with medulloblastoma are treated using paediatric protocols. Thanks to progress made in recent years, long-term survival is now possible, with overall ranging from 50 to 60% at 5 years and 40 to 50% at 10 years. However, effective therapy may have devastating long-term side effects, including neuro-psychic and neuro-endocrine sequelae and cognitive dysfunction, especially in young adults. Great interest has been expressed in new biological and molecular prognostic factors, which, combined with clinical variables, may allow a more satisfactory stratification of patients.
Collapse
Affiliation(s)
- Alba A Brandes
- Medical Oncology Department, University Hospital, Via Gattamelata 64, 35100 Padova, Italy.
| | | |
Collapse
|
49
|
Eberhart CG, Cohen KJ, Tihan T, Goldthwaite PT, Burger PC. Medulloblastomas with systemic metastases: evaluation of tumor histopathology and clinical behavior in 23 patients. J Pediatr Hematol Oncol 2003; 25:198-203. [PMID: 12621237 DOI: 10.1097/00043426-200303000-00004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To review the clinical behavior and histopathologic features of medulloblastomas that metastasize outside the central nervous systems (CNS). PATIENTS AND METHODS The authors studied 23 cases of medulloblastomas that metastasized outside the CNS. The patients included 15 males and 8 females, ages 1 to 40 years at initial diagnosis (median 8.5). Five of the patients were over 20 years of age at diagnosis. The histologic grade of anaplasia was determined for each case. RESULTS Extra-CNS metastases were identified at initial presentation in four individuals and up to 11 years later in the remaining cases. Metastatic sites included bone/bone marrow (21 cases), soft tissue/lymph nodes (3 cases), and lung (1 case). In seven cases, multiple extra-CNS metastatic sites were documented. Of the patients with available clinical follow-up after metastasis, 10 died of their disease 1 to 39 months after detection of extra-CNS metastases (median 9 months), while 5 are alive 16 to 120 months after extra-CNS metastasis (median 45 months). Moderate or severe anaplasia was detected in 8 of 20 intracranial specimens (40%) and in 4 of 6 extra-CNS metastases (66%); these frequencies are higher than observed in medulloblastomas overall. Tissue from both the initial resection and subsequent recurrence or metastasis was available in six cases. The anaplasia grade was higher upon recurrence or metastasis in four of these six, consistent with tumor progression. CONCLUSIONS Metastasis of medulloblastomas outside the CNS can occur after long periods of clinical remission and is associated with anaplasia in some cases. Medulloblastomas can show histologic progression on recurrence or metastasis.
Collapse
Affiliation(s)
- Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Arnold C Paulino
- Department of Radiation Oncology, Emory University, and the Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|