1
|
Yu KM, Park SJ. Tick-borne viruses: Epidemiology, pathogenesis, and animal models. One Health 2024; 19:100903. [PMID: 39391267 PMCID: PMC11465198 DOI: 10.1016/j.onehlt.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Tick-borne viruses, capable of infecting animals and humans, are expanding geographically and increasing in prevalence, posing significant global public health threats. This review explores the current epidemiology of human pathogenic tick-borne viruses, emphasizing their diversity and the spectrum of symptomatic manifestations in humans, which range from mild to severe. We highlight how the infrequent and unpredictable nature of viral outbreaks complicates the precise identification and understanding of these viruses in human infections. Furthermore, we describe the utility of animal models that accurately mimic human clinical symptoms, facilitating the development of effective control strategies. Our comprehensive analysis provides crucial insights into disease progression and emphasizes the urgent need for continued research. This work aims to provide insight into knowledge gaps to mitigate the health burden of tick-borne infections and open an avenue for further study to enhance our understanding of these emerging infectious diseases.
Collapse
Affiliation(s)
- Kwang-Min Yu
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Su-Jin Park
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Illarionova V, Rogova A, Tuchynskaya K, Volok V, Rogova Y, Baryshnikova V, Turchenko Y, Litov A, Kalyanova A, Siniugina A, Ishmukhametov A, Karganova G. Inapparent Tick-Borne Orthoflavivirus Infection in Macaca fascicularis: A Model for Antiviral Drug and Vaccine Research. Vaccines (Basel) 2023; 11:1754. [PMID: 38140159 PMCID: PMC10747564 DOI: 10.3390/vaccines11121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) and Powassan virus (POWV) are neurotropic tick-borne orthoflaviviruses. They cause mostly asymptomatic infections in hosts, but severe forms with CNS involvement can occur. Studying the early stages of viral infections in humans is challenging, and appropriate animal models are essential for understanding the factors determining the disease severity and for developing emergency prophylaxis and treatment options. In this work, we assessed the model of the early stages of TBEV and POWV mono- and co-infections in Macaca fascicularis. Serological, biochemical, and virological parameters were investigated to describe the infection, including its impact on animal behavior. Viremia, neutralizing antibody dynamics, and viral load in organs were chosen as the main parameters distinguishing early-stage orthoflavivirus infection. Levels of IFNα, monocyte count, and cognitive test scores were proposed as additional informative indicators. An assessment of a tick-borne encephalitis vaccine using this model showed that it provided partial protection against POWV infection in Macaca fascicularis without signs of antibody-dependent enhancement of infection.
Collapse
Affiliation(s)
- Victoria Illarionova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1 bd. 3, Moscow 119991, Russia
| | - Anastasia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Ksenia Tuchynskaya
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Viktor Volok
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Research Institute for Systems Biology and Medicine (RISBM), Laboratory of Infectious Immunology, Moscow 117246, Russia
| | - Yulia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Victoria Baryshnikova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biochemistry, Moscow 108819, Russia; (V.B.); (Y.T.)
| | - Yuriy Turchenko
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biochemistry, Moscow 108819, Russia; (V.B.); (Y.T.)
| | - Alexander Litov
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Anna Kalyanova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Alexandra Siniugina
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia;
| | - Aydar Ishmukhametov
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia;
| | - Galina Karganova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| |
Collapse
|
3
|
Scroggs SLP, Offerdahl DK, Stewart PE, Shaia C, Griffin AJ, Bloom ME. Of Murines and Humans: Modeling Persistent Powassan Disease in C57BL/6 Mice. mBio 2023; 14:e0360622. [PMID: 36809119 PMCID: PMC10128018 DOI: 10.1128/mbio.03606-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 02/23/2023] Open
Abstract
Powassan infection is caused by two closely related, tick-transmitted viruses of the genus Flavivirus (family Flaviviridae): Powassan virus lineage I (POWV) and lineage II (known as deer tick virus [DTV]). Infection is typically asymptomatic or mild but can progress to neuroinvasive disease. Approximately 10% of neuroinvasive cases are fatal, and half of the survivors experience long-term neurological sequelae. Understanding how these viruses cause long-term symptoms as well as the possible role of viral persistence is important for developing therapies. We intraperitoneally inoculated 6-week-old C57BL/6 mice (50% female) with 103 focus-forming units (FFU) DTV and assayed for infectious virus, viral RNA, and inflammation during acute infection and 21, 56, and 84 days postinfection (dpi). Although most mice (86%) were viremic 3 dpi, only 21% of the mice were symptomatic and 83% recovered. Infectious virus was detected only in the brains of mice sampled during the acute infection. Viral RNA was detected in the brain until 84 dpi, but the magnitude decreased over time. Meningitis and encephalitis were visible in acute mice and from mice sampled at 21 dpi. Inflammation was observed until 56 dpi in the brain and 84 dpi in the spinal cord, albeit at low levels. These results suggest that the long-term neurological symptoms associated with Powassan disease are likely caused by lingering viral RNA and chronic inflammation in the central nervous system rather than by a persistent, active viral infection. The C57BL/6 model of persistent Powassan mimics illness in humans and can be used to study the mechanisms of chronic disease. IMPORTANCE Half of Powassan infection survivors experience long-term, mild to severe neurological symptoms. The progression from acute to chronic Powassan disease is not well understood, severely limiting treatment and prevention options. Infection of C57BL/6 mice with DTV mimics clinical disease in humans, and the mice exhibit CNS inflammation and viral RNA persistence until at least 86 dpi, while infectious virus is undetectable after 12 dpi. These findings suggest that the long-term neurological symptoms of chronic Powassan disease are in part due the persistence of viral RNA and the corresponding long-term inflammation of the brain and spinal cord. Our work demonstrates that C57BL/6 mice can be used to study the pathogenesis of chronic Powassan disease.
Collapse
Affiliation(s)
- Stacey L. P. Scroggs
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Arthropod-Borne Animal Disease Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas, USA
| | - Danielle K. Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Philip E. Stewart
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Amanda J. Griffin
- Office of the Chief, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Marshall E. Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
4
|
Stone ET, Pinto AK. T Cells in Tick-Borne Flavivirus Encephalitis: A Review of Current Paradigms in Protection and Disease Pathology. Viruses 2023; 15:958. [PMID: 37112938 PMCID: PMC10146733 DOI: 10.3390/v15040958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The family Flaviviridae is comprised of a diverse group of arthropod-borne viruses that are the etiological agents of globally relevant diseases in humans. Among these, infection with several of these flaviviruses-including West Nile virus (WNV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Powassan virus (POWV)-can result in neuroinvasive disease presenting as meningitis or encephalitis. Factors contributing to the development and resolution of tick-borne flavivirus (TBEV, POWV) infection and neuropathology remain unclear, though many recently undertaken studies have described the virus-host interactions underlying encephalitic disease. With access to neural tissues despite the selectively permeable blood-brain barrier, T cells have emerged as one notable contributor to neuroinflammation. The goal of this review is to summarize the recent advances in tick-borne flavivirus immunology-particularly with respect to T cells-as it pertains to the development of encephalitis. We found that although T cell responses are rarely evaluated in a clinical setting, they are integral in conjunction with antibody responses to restricting the entry of TBFV into the CNS. The extent and means by which they can drive immune pathology, however, merits further study. Understanding the role of the T cell compartment in tick-borne flavivirus encephalitis is instrumental for improving vaccine safety and efficacy, and has implications for treatments and interventions for human disease.
Collapse
Affiliation(s)
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| |
Collapse
|
5
|
Yang X, Gao GF, Liu WJ. Powassan virus: A tick borne flavivirus infecting humans. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
6
|
Salivary gland extract from the deer tick, Ixodes scapularis, facilitates neuroinvasion by Powassan virus in BALB/c mice. Sci Rep 2021; 11:20873. [PMID: 34686683 PMCID: PMC8536725 DOI: 10.1038/s41598-021-00021-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
Powassan virus (POWV) is a neuroinvasive flavivirus transmitted to mammals by the bite of ixodid ticks. In this study, we sought to investigate the impact of tick salivary gland extract (SGE) on POWV neuroinvasion. BALB/c mice were footpad inoculated with either a high dose or a low dose of POWV, with and without Ixodes scapularis salivary gland extract. Brain and spinal cord were extracted daily, and immunohistochemical techniques were used for temporal tracking of POWV antigen. The temporal pattern of POWV staining showed a caudal to rostral spread of POWV in the brains of mice from both high dose infection groups. For the high dose infection groups, the presence of tick SGE did not influence the spread of POWV in the brain. Mice infected with the low dose of virus alone did not present POWV staining in the brain; however, in the presence of SGE, low dose infected mice presented scattered foci of POWV-infected cells throughout the brain. This study shows that tick SGE facilitates POWV neuroinvasion when mice are infected with the lower dose of POWV. We also found two patterns of central nervous system invasion that were directly influenced by the dose of POWV administered.
Collapse
|
7
|
Corrin T, Greig J, Harding S, Young I, Mascarenhas M, Waddell LA. Powassan virus, a scoping review of the global evidence. Zoonoses Public Health 2018; 65:595-624. [PMID: 29911344 DOI: 10.1111/zph.12485] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/19/2018] [Accepted: 05/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Powassan virus (POWV), a flavivirus discovered in 1958, causes sporadic but severe cases of encephalitis in humans. Since 2007, the number of human Powassan cases diagnosed each year in the USA has steadily increased. This is in agreement with predictions that Powassan cases may increase in North America as a result of increased exposure to infected ticks. However, the increase may also reflect improved diagnostics and reporting among other factors. METHODS A scoping review was prioritized to identify and characterize the global literature on POWV. Following an a priori developed protocol, a comprehensive search strategy was implemented. Two reviewers screened titles and abstracts for relevant research and the identified full papers were used to characterize the POWV literature using a predetermined data characterization tool. RESULTS One hundred and seventy-eight articles were included. The majority of the studies were conducted in North America (88.2%) between 1958 and 2017. Both genotypes of POWV (Powassan lineage 1 and Deer Tick virus) were isolated or studied in vitro, in vectors, nonhuman hosts and human populations. To date, POWV has been reported in 147 humans in North America. The virus has also been isolated from five tick species, and several animals have tested positive for exposure to the virus. The relevant articles identified in this review cover the following eight topics: epidemiology (123 studies), pathogenesis (66), surveillance (33), virus characterization (22), POWV transmission (8), diagnostic test accuracy (8), treatment (4) and mitigation strategies (3). CONCLUSION The literature on POWV is relatively small compared with other vector-borne diseases, likely because POWV has not been prioritized due to the small number of severe sporadic human cases. With the projected impact of climate change on tick populations, increases in the number of human cases are expected. It is recommended that future research efforts focus on closing some of the important knowledge gaps identified in this scoping review.
Collapse
Affiliation(s)
- Tricia Corrin
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Judy Greig
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Shannon Harding
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Ian Young
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada
| | - Mariola Mascarenhas
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Lisa A Waddell
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| |
Collapse
|
8
|
Doughty CT, Yawetz S, Lyons J. Emerging Causes of Arbovirus Encephalitis in North America: Powassan, Chikungunya, and Zika Viruses. Curr Neurol Neurosci Rep 2017; 17:12. [PMID: 28229397 DOI: 10.1007/s11910-017-0724-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arboviruses are arthropod-borne viruses transmitted by the bite of mosquitoes, ticks, or other arthropods. Arboviruses are a common and an increasing cause of human illness in North America. Powassan virus, Chikungunya virus, and Zika virus are arboviruses that have all recently emerged as increasing causes of neurologic illness. Powassan virus almost exclusively causes encephalitis, but cases are rare, sporadic, and restricted to portions of North America and Russia. Chikungunya virus has spread widely across the world, causing millions of infections. Encephalitis is a rare manifestation of illness but is more common and severe in neonates and older adults. Zika virus has recently spread through much of the Americas and has been associated mostly with microcephaly and other congenital neurologic complications. Encephalitis occurring in infected adults has also been recently reported. This review will discuss the neuropathogenesis of these viruses, their transmission and geographic distribution, the spectrum of their neurologic manifestations, and the appropriate method of diagnosis.
Collapse
Affiliation(s)
- Christopher T Doughty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Division of Neurological Infections and Inflammatory Diseases, Department of Neurology, Brigham and Women's Hospital, 45 Francis Street, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Sigal Yawetz
- Harvard Medical School, Boston, MA, USA.,Division of Infectious Disease, Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer Lyons
- Division of Neurological Infections and Inflammatory Diseases, Department of Neurology, Brigham and Women's Hospital, 45 Francis Street, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Hermance ME, Thangamani S. Powassan Virus: An Emerging Arbovirus of Public Health Concern in North America. Vector Borne Zoonotic Dis 2017; 17:453-462. [PMID: 28498740 PMCID: PMC5512300 DOI: 10.1089/vbz.2017.2110] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Powassan virus (POWV, Flaviviridae) is the only North American member of the tick-borne encephalitis serogroup of flaviviruses. It is transmitted to small- and medium-sized mammals by Ixodes scapularis, Ixodes cookei, and several other Ixodes tick species. Humans become infected with POWV during spillover transmission from the natural transmission cycles. In humans, POWV is the causative agent of a severe neuroinvasive illness with 50% of survivors displaying long-term neurological sequelae. POWV was recognized as a human pathogen in 1958 when a young boy died of severe encephalitis in Powassan, Ontario, and POWV was isolated from the brain autopsy of this case. Two distinct genetic lineages of POWV are now recognized: POWV (lineage I) and deer tick virus (lineage II). Since the index case in 1958, over 100 human cases of POWV have been reported, with an apparent rise in disease incidence in the past 16 years. This recent increase in cases may represent a true emergence of POWV in regions where the tick vector species are prevalent, or it could represent an increase in POWV surveillance and diagnosis. In the past 5 years, both basic and applied research for POWV disease has intensified, including phylogenetic studies, field surveillance, case studies, and animal model development. This review provides an overview of POWV, including the epidemiology, transmission, clinical disease, and diagnosis of POWV infection. Recent research developments and future priorities with regard to the disease are emphasized.
Collapse
Affiliation(s)
- Meghan E Hermance
- 1 Department of Pathology, University of Texas Medical Branch , Galveston, Texas
| | - Saravanan Thangamani
- 1 Department of Pathology, University of Texas Medical Branch , Galveston, Texas.,2 Institute for Human Infections and Immunity, University of Texas Medical Branch , Galveston, Texas.,3 Center for Tropical Diseases, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
10
|
Santos RI, Hermance ME, Gelman BB, Thangamani S. Spinal Cord Ventral Horns and Lymphoid Organ Involvement in Powassan Virus Infection in a Mouse Model. Viruses 2016; 8:E220. [PMID: 27529273 PMCID: PMC4997582 DOI: 10.3390/v8080220] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022] Open
Abstract
Powassan virus (POWV) belongs to the family Flaviviridae and is a member of the tick-borne encephalitis serogroup. Transmission of POWV from infected ticks to humans has been documented in the USA, Canada, and Russia, causing fatal encephalitis in 10% of human cases and significant neurological sequelae in survivors. We used C57BL/6 mice to investigate POWV infection and pathogenesis. After footpad inoculation, infected animals exhibited rapid disease progression and 100% mortality. Immunohistochemistry and immunofluorescence revealed a very strong neuronal tropism of POWV infection. The central nervous system infection appeared as a meningoencephalitis with perivascular mononuclear infiltration and microglial activation in the brain, and a poliomyelitis-like syndrome with high level of POWV antigen at the ventral horn of the spinal cord. Pathological studies also revealed substantial infection of splenic macrophages by POWV, which suggests that the spleen plays a more important role in pathogenesis than previously realized. This report provides a detailed description of the neuroanatomical distribution of the lesions produced by POWV infection in C57BL/6 mice.
Collapse
Affiliation(s)
- Rodrigo I Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Meghan E Hermance
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
11
|
Salimi H, Cain MD, Klein RS. Encephalitic Arboviruses: Emergence, Clinical Presentation, and Neuropathogenesis. Neurotherapeutics 2016; 13:514-34. [PMID: 27220616 PMCID: PMC4965410 DOI: 10.1007/s13311-016-0443-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arboviruses are arthropod-borne viruses that exhibit worldwide distribution, contributing to systemic and neurologic infections in a variety of geographical locations. Arboviruses are transmitted to vertebral hosts during blood feedings by mosquitoes, ticks, biting flies, mites, and nits. While the majority of arboviral infections do not lead to neuroinvasive forms of disease, they are among the most severe infectious risks to the health of the human central nervous system. The neurologic diseases caused by arboviruses include meningitis, encephalitis, myelitis, encephalomyelitis, neuritis, and myositis in which virus- and immune-mediated injury may lead to severe, persisting neurologic deficits or death. Here we will review the major families of emerging arboviruses that cause neurologic infections, their neuropathogenesis and host neuroimmunologic responses, and current strategies for treatment and prevention of neurologic infections they cause.
Collapse
Affiliation(s)
- Hamid Salimi
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Cain
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Offerdahl DK, Dorward DW, Hansen BT, Bloom ME. A three-dimensional comparison of tick-borne flavivirus infection in mammalian and tick cell lines. PLoS One 2012; 7:e47912. [PMID: 23112871 PMCID: PMC3480448 DOI: 10.1371/journal.pone.0047912] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/18/2012] [Indexed: 01/06/2023] Open
Abstract
Tick-borne flaviviruses (TBFV) are sustained in nature through cycling between mammalian and tick hosts. In this study, we used African green monkey kidney cells (Vero) and Ixodes scapularis tick cells (ISE6) to compare virus-induced changes in mammalian and arthropod cells. Using confocal microscopy, transmission electron microscopy (TEM), and electron tomography (ET), we examined viral protein distribution and the ultrastructural changes that occur during TBFV infection. Within host cells, flaviviruses cause complex rearrangement of cellular membranes for the purpose of virus replication. Virus infection was accompanied by a marked expansion in endoplasmic reticulum (ER) staining and markers for TBFV replication were localized mainly to the ER in both cell lines. TEM of Vero cells showed membrane-bound vesicles enclosed in a network of dilated, anastomosing ER cisternae. Virions were seen within the ER and were sometimes in paracrystalline arrays. Tubular structures or elongated vesicles were occasionally noted. In acutely and persistently infected ISE6 cells, membrane proliferation and vesicles were also noted; however, the extent of membrane expansion and the abundance of vesicles were lower and no viral particles were observed. Tubular profiles were far more prevalent in persistently infected ISE6 cells than in acutely infected cells. By ET, tubular profiles, in persistently infected tick cells, had a cross-sectional diameter of 60–100 nm, reached up to 800 nm in length, were closed at the ends, and were often arranged in fascicle-like bundles, shrouded with ER membrane. Our experiments provide analysis of viral protein localization within the context of both mammalian and arthropod cell lines as well as both acute and persistent arthropod cell infection. Additionally, we show for the first time 3D flavivirus infection in a vector cell line and the first ET of persistent flavivirus infection.
Collapse
Affiliation(s)
- Danielle K. Offerdahl
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - David W. Dorward
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Bryan T. Hansen
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Marshall E. Bloom
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
13
|
Ebel GD. Update on Powassan virus: emergence of a North American tick-borne flavivirus. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:95-110. [PMID: 19961325 DOI: 10.1146/annurev-ento-112408-085446] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Powassan virus (POW) (Flaviviridae: Flavivirus) is the cause of rare but severe neuroinvasive disease in North America and Russia. The virus is transmitted among small- and medium-sized mammals by ixodid ticks. Human infections occur via spillover from the main transmission cycle(s). Since the late 1990s, the incidence of human disease seems to be increasing. In addition, POW constitutes a genetically diverse group of virus genotypes, including Deer tick virus, that are maintained in distinct enzootic transmission cycles. This review highlights recent research into POW, focusing on virus genetics and ecology and human disease. Important directions for future research are also discussed.
Collapse
Affiliation(s)
- Gregory D Ebel
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
14
|
Abstract
Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents—bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease.
Collapse
Affiliation(s)
- Murray B Gardner
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
15
|
Holbrook MR, Gowen BB. Animal models of highly pathogenic RNA viral infections: encephalitis viruses. Antiviral Res 2007; 78:69-78. [PMID: 18031836 DOI: 10.1016/j.antiviral.2007.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/09/2007] [Accepted: 10/11/2007] [Indexed: 12/11/2022]
Abstract
The highly pathogenic RNA viruses that cause encephalitis include a significant number of emerging or re-emerging viruses that are also considered potential bioweapons. Many of these viruses, including members of the family Flaviviridae, the genus Alphavirus in the family Togaviridae, and the genus Henipavirus in the family Paramyxoviridae, circulate widely in their endemic areas, where they are transmitted by mosquitoes or ticks. They use a variety of vertebrate hosts, ranging from birds to bats, in their natural life cycle. As was discovered in the United States, the introduction of a mosquito-borne encephalitis virus such as West Nile virus can cause significant health and societal concerns. There are no effective therapeutics for treating diseases caused by any of these viruses and there is limited, if any, vaccine availability for most. In this review we provide a brief summary of the current status of animal models used to study highly pathogenic encephalitic RNA viruses for the development of antiviral therapeutics and vaccines.
Collapse
Affiliation(s)
- Michael R Holbrook
- Department of Pathology, 301 University Boulevard, University of Texas Medical Branch, Galveston, TX 77555-0609, United States.
| | | |
Collapse
|
16
|
Süss J, Gelpi E, Klaus C, Bagon A, Liebler-Tenorio EM, Budka H, Stark B, Müller W, Hotzel H. Tickborne encephalitis in naturally exposed monkey (Macaca sylvanus). Emerg Infect Dis 2007; 13:905-7. [PMID: 17553233 PMCID: PMC2792843 DOI: 10.3201/eid1306.061173] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We describe tickborne encephalitis (TBE) in a monkey (Macaca sylvanus) after natural exposure in an area at risk for TBE. TBE virus was present in the brain and could be identified as closely related to the European subtype, strain Neudoerfl.
Collapse
Affiliation(s)
- Jochen Süss
- Friedrich-Loeffler-Institute, Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Tick-borne encephalitis (TBE), one of the most dangerous neuroinfections in Europe and Asia, is caused by tick-borne encephalitis virus (TBEV) and currently involves approximately 11,000 human cases annually, mostly in Russia. This chapter describes the main problems associated with the epidemiology, ecology, pathogenesis, and control of this disease. We have attempted to review the factors that influence the incidence and distribution of TBE, and to discuss possible reasons for the different clinical manifestations including most commonly observed asymptomatic infections, fever forms, acute encephalitis, and the less frequently registered biphasic milk fever and chronic encephalitis. Epidemiologic data concerning the other tick-borne flaviviruses, namely Louping ill virus, Langat virus, and Powassan virus that also produce encephalitis on a smaller scale, are also presented. Here we describe the history and current epidemiological role of Omsk hemorrhagic fever virus and Kyasanur forest disease virus, two viruses that are genetically closely related to TBEV, but produce hemorrhagic fever instead of encephalitis, and provide possible explanations for these differences. The other viruses in the tick-borne flavivirus group are also included despite the fact that they do not play an essential epidemiologic role in humans. This chapter contains a brief history of vaccination against TBE including the trials with live attenuated vaccine and reviews the modern trends in development of vaccine virus strains.
Collapse
Affiliation(s)
- T S Gritsun
- CEH Institute of Virology and Environmental Microbiology, Oxford, OX1 3SR, United Kingdom
| | | | | |
Collapse
|
18
|
Abstract
Tick-borne encephalitis (TBE) is one of the most dangerous human infections occurring in Europe and many parts of Asia. The etiological agent Tick-borne encephalitis virus (TBEV), is a member of the virus genus Flavivirus, of the family Flaviviridae. TBEV is believed to cause at least 11,000 human cases of encephalitis in Russia and about 3000 cases in the rest of Europe annually. Related viruses within the same group, Louping ill virus (LIV), Langat virus (LGTV) and Powassan virus (POWV), also cause human encephalitis but rarely on an epidemic scale. Three other viruses within the same group, Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV) and Alkhurma virus (ALKV), are closely related to the TBEV complex viruses and tend to cause fatal hemorrhagic fevers rather than encephalitis. This review describes the clinical manifestations associated with TBEV infections, the main molecular-biological properties of these viruses, and the different factors that define the incidence and severity of disease. The role of ticks and their local hosts in the emergence of new virus variants with different pathogenic characteristics is also discussed. This review also contains a brief history of vaccination against TBE including trials with live attenuated vaccine and modern tendencies in developing of vaccine virus strains.
Collapse
MESH Headings
- Animals
- Bioterrorism/prevention & control
- Encephalitis Viruses, Tick-Borne/classification
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/epidemiology
- Encephalitis, Tick-Borne/history
- Encephalitis, Tick-Borne/prevention & control
- Encephalitis, Tick-Borne/virology
- History, 20th Century
- Humans
- Vaccination/history
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/history
- Viral Vaccines/administration & dosage
- Viral Vaccines/history
Collapse
Affiliation(s)
- T S Gritsun
- CEH Institute of Virology and Environmental Microbiology, Mansfield Road, Oxford OX1 3SR, UK
| | | | | |
Collapse
|