1
|
Liu W, Huang T, Deng G, Mei X, Zhong S, Shen D, Zhang X, Jiang L, Zhao Q. Genetic and transcriptome analysis of the smb mutant in Bombyx mori. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101167. [PMID: 38113651 DOI: 10.1016/j.cbd.2023.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
More than 600 mutations have been discovered in the history of silkworm domestication. It is important to study the formation mechanism of these mutations to further understand the life and development process of silkworms and agricultural pest control. The silkworm mutant smb was isolated from silkworm strain NCV, and transcriptome analysis was performed on the silkworm mutant. 796 differentially expressed genes (DEGs) were detected at 48 h of the second instar stage with 669 genes significantly upregulated and 127 genes significantly downregulated. During the GO enrichment analysis, it was found that the enrichment of biological processes was mainly concentrated in proteolysis, carbohydrate metabolism, aminoglycan metabolism, organic substance metabolism, protein metabolism and so on. Based on the analysis of KEGG pathways, it revealed that the pathways enriched in lysosomes, AMPK signaling, fatty acid metabolism, PPAR signaling, galactose metabolism, and protein digestion and absorption were the most significant. Through these most significantly enriched GO terms and KEGG pathways, DEGs consistent with the phenotypic characteristics of the smb mutant were identified, including small body size, slow development, and successive death after the fourth instar. These results provided experimental evidence for the potential formation mechanism of smb mutants.
Collapse
Affiliation(s)
- Weibin Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - TianChen Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Gang Deng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Xinglin Mei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Shanshan Zhong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Xuelian Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Li Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| |
Collapse
|
2
|
Dong J, Chen Y, Xie Y, Cao M, Fu S, Wu J. The Identification of Viral Pathogens in a Physostegia virginiana Plant Using High-Throughput RNA Sequencing. Viruses 2023; 15:1972. [PMID: 37766378 PMCID: PMC10534606 DOI: 10.3390/v15091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Physostegia virginiana is an important ornamental and cut-flower plant in China. Its commonly used method of clonal propagation leads to virus accumulation in this plant. However, which viruses can infect the Physostegia virginiana plant remains to be illuminated. In this work, five viral pathogens in a Physostegia virginiana plant with virus-like symptoms of yellow, shriveled, and curled leaves were identified using RNA-seq, bioinformatics, and molecular biological techniques. These techniques allowed us to identify five viruses comprising one known alfalfa mosaic virus (AMV) and four novel viruses. The novel viruses include a virus belonging to the genus Fabavirus, temporarily named Physostegia virginiana crinkle-associated virus 1 (PVCaV1); two viruses belonging to the genus Caulimovirus, temporarily named Physostegia virginiana caulimovirus 1 and 2 (PVCV1 and PVCV2); and a virus belonging to the genus Fijivirus, temporarily named Physostegia virginiana fijivirus (PVFV). The genome sequences of PVCaV1, PVCV1, and PVCV2, and the partial genome sequence of PVFV were identified. Genome organizations and genetic evolutionary relationships of all four novel viruses were analyzed. PVCaV1 has a relatively close evolutionary relationship with five analyzed fabiviruses. PVCV1 and PVCV2 have separately a closest evolutionary relationship with lamium leaf distortion-associated virus (LLDAV) and figwort mosaic virus (FMV), and PVFV has a close evolutionary relationship with the five analyzed fijiviruses. Additionally, PVCaV1 can infect Nicotiana benthamiana plants via friction inoculation. The findings enrich our understanding of Physostegia virginiana viruses and contribute to the prevention and control of Physostegia virginiana viral diseases.
Collapse
Affiliation(s)
- Jinxi Dong
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yuanling Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yi Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Shuai Fu
- Research Center for Biological Computation, Zhejiang Lab, Hangzhou 311100, China
| | - Jianxiang Wu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
3
|
Kramer L, Sarkar A, Foderaro T, Markley AL, Lee J, Edstrom H, Sharma S, Gill E, Traylor MJ, Fox JM. Genetically Encoded Detection of Biosynthetic Protease Inhibitors. ACS Synth Biol 2023; 12:83-94. [PMID: 36574400 PMCID: PMC10072156 DOI: 10.1021/acssynbio.2c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteases are an important class of drug targets that continue to drive inhibitor discovery. These enzymes are prone to resistance mutations, yet their promise for treating viral diseases and other disorders continues to grow. This study develops a general approach for detecting microbially synthesized protease inhibitors and uses it to screen terpenoid pathways for inhibitory compounds. The detection scheme relies on a bacterial two-hybrid (B2H) system that links protease inactivation to the transcription of a swappable reporter gene. This system, which can accomodate multiple biochemical outputs (i.e., luminescence and antibiotic resistance), permitted the facile incorporation of four disease-relevant proteases. A B2H designed to detect the inactivation of the main protease of severe acute respiratory syndrome coronavirus 2 enabled the identification of a terpenoid inhibitor of modest potency. An analysis of multiple pathways that make this terpenoid, however, suggested that its production was necessary but not sufficient to confer a survival advantage in growth-coupled assays. This finding highlights an important challenge associated with the use of genetic selection to search for inhibitors─notably, the influence of pathway toxicity─and underlines the value of including multiple pathways with overlapping product profiles in pathway screens. This study provides a detailed experimental framework for using microbes to screen libraries of biosynthetic pathways for targeted protease inhibitors.
Collapse
Affiliation(s)
- Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Tom Foderaro
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Andrew L Markley
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Jessica Lee
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Hannah Edstrom
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Shajesh Sharma
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Eden Gill
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Matthew J Traylor
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| |
Collapse
|
4
|
Pillai VN, Ali LM, Prabhu SG, Krishnan A, Tariq S, Mustafa F, Rizvi TA. Expression, purification, and functional characterization of soluble recombinant full-length simian immunodeficiency virus (SIV) Pr55 Gag. Heliyon 2023; 9:e12892. [PMID: 36685375 PMCID: PMC9853374 DOI: 10.1016/j.heliyon.2023.e12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The simian immunodeficiency virus (SIV) precursor polypeptide Pr55Gag drives viral assembly and facilitates specific recognition and packaging of the SIV genomic RNA (gRNA) into viral particles. While several studies have tried to elucidate the role of SIV Pr55Gag by expressing its different components independently, studies using full-length SIV Pr55Gag have not been conducted, primarily due to the unavailability of purified and biologically active full-length SIV Pr55Gag. We successfully expressed soluble, full-length SIV Pr55Gag with His6-tag in bacteria and purified it using affinity and gel filtration chromatography. In the process, we identified within Gag, a second in-frame start codon downstream of a putative Shine-Dalgarno-like sequence resulting in an additional truncated form of Gag. Synonymously mutating this sequence allowed expression of full-length Gag in its native form. The purified Gag assembled into virus-like particles (VLPs) in vitro in the presence of nucleic acids, revealing its biological functionality. In vivo experiments also confirmed formation of functional VLPs, and quantitative reverse transcriptase PCR demonstrated efficient packaging of SIV gRNA by these VLPs. The methodology we employed ensured the availability of >95% pure, biologically active, full-length SIV Pr55Gag which should facilitate future studies to understand protein structure and RNA-protein interactions involved during SIV gRNA packaging.
Collapse
Affiliation(s)
- Vineeta N. Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suresha G. Prabhu
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anjana Krishnan
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Corresponding author. Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Corresponding author. Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
5
|
Stewart LR, Willman M, Marty D, Cole AE, Willie K. Critical residues for proteolysis activity of maize chlorotic dwarf virus (MCDV) 3C-like protease and comparison of activity of orthologous waikavirus proteases. Virology 2021; 567:57-64. [PMID: 34998226 DOI: 10.1016/j.virol.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Maize chlorotic dwarf virus (MCDV) encodes a 3C-like protease that cleaves the N-terminal polyprotein (R78) as previously demonstrated. Here, we examined amino acid residues required for catalytic activity of the protease, including those in the predicted catalytic triad, amino acid residues H2667, D2704, and C2798, as well as H2817 hypothesized to be important in substrate binding. These and other residues were targeted for mutagenesis and tested for proteolytic cleavage activity on the N-terminal 78 kDa MCDV-S polyprotein substrate to identify mutants that abolished catalytic activity. Mutations that altered the predicted catalytic triad residues and H2817 disrupted MCDV-S protease activity, as did mutagenesis of a conserved tyrosine residue, Y2774. The protease activity and R78 cleavage of orthologs from divergent MCDV isolates MCDV-Tn and MCDV-M1, and other waikavirus species including rice tungro spherical virus (RTSV) and bellflower vein chlorosis virus (BVCV) were also examined.
Collapse
Affiliation(s)
- Lucy R Stewart
- USDA ARS Foreign Disease-Weed Science Research Unit, Frederick, MD, 21702, USA.
| | - Matthew Willman
- USDA ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | - DeeMarie Marty
- USDA ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | | | - Kristen Willie
- USDA ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| |
Collapse
|
6
|
Mann KS, Chisholm J, Sanfaçon H. Strawberry Mottle Virus (Family Secoviridae, Order Picornavirales) Encodes a Novel Glutamic Protease To Process the RNA2 Polyprotein at Two Cleavage Sites. J Virol 2019; 93:e01679-18. [PMID: 30541838 PMCID: PMC6384087 DOI: 10.1128/jvi.01679-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 01/29/2023] Open
Abstract
Strawberry mottle virus (SMoV) belongs to the family Secoviridae (order Picornavirales) and has a bipartite genome with each RNA encoding one polyprotein. All characterized secovirids encode a single protease related to the picornavirus 3C protease. The SMoV 3C-like protease was previously shown to cut the RNA2 polyprotein (P2) at a single site between the predicted movement protein and coat protein (CP) domains. However, the SMoV P2 polyprotein includes an extended C-terminal region with a coding capacity of up to 70 kDa downstream of the presumed CP domain, an unusual characteristic for this family. In this study, we identified a novel cleavage event at a P↓AFP sequence immediately downstream of the CP domain. Following deletion of the PAFP sequence, the polyprotein was processed at or near a related PKFP sequence 40 kDa further downstream, defining two protein domains in the C-terminal region of the P2 polyprotein. Both processing events were dependent on a novel protease domain located between the two cleavage sites. Mutagenesis of amino acids that are conserved among isolates of SMoV and of the related Black raspberry necrosis virus did not identify essential cysteine, serine, or histidine residues, suggesting that the RNA2-encoded SMoV protease is not related to serine or cysteine proteases of other picorna-like viruses. Rather, two highly conserved glutamic acid residues spaced by 82 residues were found to be strictly required for protease activity. We conclude that the processing of SMoV polyproteins requires two viral proteases, the RNA1-encoded 3C-like protease and a novel glutamic protease encoded by RNA2.IMPORTANCE Many viruses encode proteases to release mature proteins and intermediate polyproteins from viral polyproteins. Polyprotein processing allows regulation of the accumulation and activity of viral proteins. Many viral proteases also cleave host factors to facilitate virus infection. Thus, viral proteases are key virulence factors. To date, viruses with a positive-strand RNA genome are only known to encode cysteine or serine proteases, most of which are related to the cellular papain, trypsin, or chymotrypsin proteases. Here, we characterize the first glutamic protease encoded by a plant virus or by a positive-strand RNA virus. The novel glutamic protease is unique to a few members of the family Secoviridae, suggesting that it is a recent acquisition in the evolution of this family. The protease does not resemble known cellular proteases. Rather, it is predicted to share structural similarities with a family of fungal and bacterial glutamic proteases that adopt a lectin fold.
Collapse
Affiliation(s)
- Krin S Mann
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Joan Chisholm
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| |
Collapse
|
7
|
Mann KS, Sanfaçon H. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases. Viruses 2019; 11:v11010066. [PMID: 30650571 PMCID: PMC6357015 DOI: 10.3390/v11010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/13/2022] Open
Abstract
Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses.
Collapse
Affiliation(s)
- Krin S Mann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| |
Collapse
|
8
|
Mann KS, Walker M, Sanfaçon H. Identification of Cleavage Sites Recognized by the 3C-Like Cysteine Protease within the Two Polyproteins of Strawberry Mottle Virus. Front Microbiol 2017; 8:745. [PMID: 28496438 PMCID: PMC5407059 DOI: 10.3389/fmicb.2017.00745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023] Open
Abstract
Strawberry mottle virus (SMoV, family Secoviridae, order Picornavirales) is one of several viruses found in association with strawberry decline disease in Eastern Canada. The SMoV genome consists of two positive-sense single-stranded RNAs, each encoding one large polyprotein. The RNA1 polyprotein (P1) includes the domains for a putative helicase, a VPg, a 3C-like cysteine protease and an RNA-dependent RNA polymerase at its C-terminus, and one or two protein domains at its N-terminus. The RNA2 polyprotein (P2) is predicted to contain the domains for a movement protein (MP) and one or several coat proteins at its N-terminus, and one or more additional domains for proteins of unknown function at its C-terminus. The RNA1-encoded 3C-like protease is presumed to cleave the two polyproteins in cis (P1) and in trans (P2). Using in vitro processing assays, we systematically scanned the two polyproteins for cleavage sites recognized by this protease. We identified five cis-cleavage sites in P1, with cleavage between the putative helicase and VPg domains being the most efficient. The presence of six protein domains in the SMoV P1, including two upstream of the putative helicase domain, is a feature shared with nepoviruses but not with comoviruses. Results from trans-cleavage assays indicate that the RNA1-encoded 3C-like protease recognized a single cleavage site, which was between the predicted MP and coat protein domains in the P2 polyprotein. The cleavage site consensus sequence for the SMoV 3C-like protease is AxE (E or Q)/(G or S).
Collapse
Affiliation(s)
| | | | - Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, SummerlandBC, Canada
| |
Collapse
|
9
|
Ferriol I, Silva Junior D, Nigg J, Zamora-Macorra E, Falk B. Identification of the cleavage sites of the RNA2-encoded polyproteins for two members of the genus Torradovirus by N-terminal sequencing of the virion capsid proteins. Virology 2016; 498:109-115. [DOI: 10.1016/j.virol.2016.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 11/16/2022]
|
10
|
Rohozková J, Navrátil M. P1 peptidase--a mysterious protein of family Potyviridae. J Biosci 2011; 36:189-200. [PMID: 21451259 DOI: 10.1007/s12038-011-9020-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
The Potyviridae family, named after its type member, Potato virus Y (PVY), is the largest of the 65 plant virus groups and families currently recognized. The coding region for P1 peptidase is located at the very beginning of the viral genome of the family Potyviridae. Until recently P1 was thought of as serine peptidase with RNA-binding activity and with possible influence in cell-to-cell viral spreading. This N-terminal protein, among all of the potyviruses, is the most divergent protein: varying in length and in its amino acid sequence. Nevertheless, P1 peptidase in many ways is still a mysterious viral protein. In this review, we would like to offer a comprehensive overview, discussing the proteomic, biochemical and phylogenetic views of the P1 protein.
Collapse
Affiliation(s)
- Jana Rohozková
- Faculty of Science, Palacký University in Olomouc, Slechtitelů 11, 783 71, Olomouc-Holice, Czech Republic.
| | | |
Collapse
|
11
|
Nair S, Savithri H. Processing of SeMV polyproteins revisited. Virology 2010; 396:106-17. [DOI: 10.1016/j.virol.2009.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 09/01/2009] [Accepted: 09/19/2009] [Indexed: 11/29/2022]
|
12
|
Tzanetakis IE, Postman JD, Gergerich RC, Martin RR. A virus between families: nucleotide sequence and evolution of Strawberry latent ringspot virus. Virus Res 2006; 121:199-204. [PMID: 16837095 DOI: 10.1016/j.virusres.2006.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 05/31/2006] [Accepted: 06/02/2006] [Indexed: 12/01/2022]
Abstract
Several clones of golden ginger mint (Mentha x gracilis, 'Variegata') were found infected with Strawberry latent ringspot virus (SLRSV). The virus was purified and cloned and the complete nucleotide sequence of a mint isolate was obtained. RNA 1 consists of 7,496 nucleotides excluding the poly-A tail and encodes a polyprotein with signature enzymatic motifs found in other picorna-like plant viruses. RNA 2 consists of 3,842 nucleotides excluding the poly-A tail, encoding a polyprotein that is processed to a putative movement protein and the two coat proteins of the virus. A satellite RNA of 1,117 nucleotides was associated with this isolate encoding for a putative protein of 31 kDa. Phylogenetic analysis revealed that SLRSV shares characteristics with members of the Cheravirus, Fabavirus, Comovirus and Sadwavirus genera indicative of the uniqueness of SLRSV. The close relationship of SLRSV with these genera led to the examination of aphid and beetle transmission of the virus with, however, negative results.
Collapse
Affiliation(s)
- Ioannis E Tzanetakis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis OR 97331, USA.
| | | | | | | |
Collapse
|
13
|
Smits SL, Snijder EJ, de Groot RJ. Characterization of a torovirus main proteinase. J Virol 2006; 80:4157-67. [PMID: 16571831 PMCID: PMC1440467 DOI: 10.1128/jvi.80.8.4157-4167.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 02/02/2006] [Indexed: 11/20/2022] Open
Abstract
Viruses of the order Nidovirales encode huge replicase polyproteins. These are processed primarily by the chymotrypsin-like main proteinases (M(pro)s). So far, M(pro)s have been studied only for corona-, arteri-, and roniviruses. Here, we report the characterization of the M(pro) of toroviruses, the fourth main Nidovirus branch. Comparative sequence analysis of polyprotein 1a of equine torovirus (EToV) strain Berne, identified a serine proteinase domain, flanked by hydrophobic regions. Heterologous expression of this domain resulted in autoprocessing at flanking cleavage sites. N-terminal sequence analysis of cleavage products tentatively identified FxxQ downward arrow(S, A) as the substrate consensus sequence. EToV M(pro) combines several traits of its closest relatives. It has a predicted three-domain structure, with two catalytic beta-barrel domains and an additional C-terminal domain of unknown function. With respect to substrate specificity, the EToV M(pro) resembles its coronavirus homologue in its preference for P1-Gln, but its substrate-binding subsite, S1, more closely resembles that of arteri- and ronivirus M(pro)s, which prefer P1-Glu. Surprisingly, in contrast to the M(pro)s of corona- and roniviruses, but like that of arterivirus, the torovirus M(pro) uses serine instead of cysteine as its principal nucleophile. Under the premise that the M(pro)s of corona- and toroviruses are more closely related to each other than to those of arteri- and roniviruses, the transition from serine- to cysteine-based proteolytic catalysis (or vice versa) must have happened more than once in the course of nidovirus evolution. In this respect, it is of interest that a mutant EToV M(pro) with a Ser165-->Cys substitution retained partial enzymatic activity.
Collapse
Affiliation(s)
- Saskia L Smits
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | |
Collapse
|
14
|
Gayathri P, Satheshkumar P, Prasad K, Nair S, Savithri H, Murthy M. Crystal structure of the serine protease domain of Sesbania mosaic virus polyprotein and mutational analysis of residues forming the S1-binding pocket. Virology 2005; 346:440-51. [PMID: 16356524 PMCID: PMC7111806 DOI: 10.1016/j.virol.2005.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/28/2005] [Accepted: 11/07/2005] [Indexed: 11/24/2022]
Abstract
Sesbania mosaic virus (SeMV) polyprotein is processed by its N-terminal serine protease domain. The crystal structure of the protease domain was determined to a resolution of 2.4 A using multiple isomorphous replacement and anomalous scattering. The SeMV protease domain exhibited the characteristic trypsin fold and was found to be closer to cellular serine proteases than to other viral proteases. The residues of the S1-binding pocket, H298, T279 and N308 were mutated to alanine in the DeltaN70-Protease-VPg polyprotein, and the cis-cleavage activity was examined. The H298A and T279A mutants were inactive, while the N308A mutant was partially active, suggesting that the interactions of H298 and T279 with P1-glutamate are crucial for the E-T/S cleavage. A region of exposed aromatic amino acids, probably essential for interaction with VPg, was identified on the protease domain, and this interaction could play a major role in modulating the function of the protease.
Collapse
Affiliation(s)
- P. Gayathri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - P.S. Satheshkumar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - K. Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Smita Nair
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - H.S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - M.R.N. Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
- Corresponding author. Fax: +91 80 23600535.
| |
Collapse
|
15
|
Meijers R, Blagova EV, Levdikov VM, Rudenskaya GN, Chestukhina GG, Akimkina TV, Kostrov SV, Lamzin VS, Kuranova IP. The Crystal Structure of Glutamyl Endopeptidase from Bacillus intermedius Reveals a Structural Link between Zymogen Activation and Charge Compensation. Biochemistry 2004; 43:2784-91. [PMID: 15005613 DOI: 10.1021/bi035354s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular glutamyl endopeptidase from Bacillus intermedius (BIEP) is a chymotrypsin-like serine protease which cleaves the peptide bond on the carboxyl side of glutamic acid. Its three-dimensional structure was determined for C222(1) and C2 crystal forms of BIEP to 1.5 and 1.75 A resolution, respectively. The topology of BIEP diverges from the most common chymotrypsin architecture, because one of the domains consists of a beta-sandwich consisting of two antiparallel beta-sheets and two helices. In the C2 crystals, a 2-methyl-2,4-pentanediol (MPD) molecule was found in the substrate binding site, mimicking a glutamic acid. This enabled the identification of the residues involved in the substrate recognition. The presence of the MPD molecule causes a change in the active site; the interaction between two catalytic residues (His47 and Ser171) is disrupted. The N-terminal end of the enzyme is involved in the formation of the substrate binding pocket. This indicates a direct relation between zymogen activation and substrate charge compensation.
Collapse
Affiliation(s)
- Rob Meijers
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Satheshkumar PS, Lokesh GL, Savithri HS. Polyprotein processing: cis and trans proteolytic activities of Sesbania mosaic virus serine protease. Virology 2004; 318:429-38. [PMID: 14972568 DOI: 10.1016/j.virol.2003.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 09/22/2003] [Accepted: 09/23/2003] [Indexed: 11/16/2022]
Abstract
Sesbania mosaic virus (SeMV) polyprotein was shown to undergo proteolytic processing when expressed in E. coli. Mutational analysis of the proposed catalytic triad residues (H181, D216, and S284) present in the N-terminal serine protease domain of the polyprotein showed that the protease was indeed responsible for this processing. Analysis of the cleavage site mutants confirmed the cleavage between protease-viral protein genome linked (VPg) and VPg-RNA-dependent RNA polymerase (RdRP) at E(325)-T(326) and E(402)-T(403) sites, respectively. An additional suboptimal cleavage at E(498)-S(499) site was also identified which resulted in the further processing of RdRP to 10- and 52-kDa proteins. Thus, the protease has both E-T and E-S specificities. The polyprotein has a domain arrangement of protease-VPg-p10-RdRP, which is cleaved by the protease. The purified serine protease was also active in trans and cleaved the polyprotein at the same specific sites. These results demonstrate that the serine protease domain is responsible for the processing of SeMV polyprotein both in cis and in trans.
Collapse
Affiliation(s)
- P S Satheshkumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | | | |
Collapse
|
17
|
Thompson JR, Leone G, Lindner JL, Jelkmann W, Schoen CD. Characterization and complete nucleotide sequence of Strawberry mottle virus: a tentative member of a new family of bipartite plant picorna-like viruses. J Gen Virol 2002; 83:229-239. [PMID: 11752720 DOI: 10.1099/0022-1317-83-1-229] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An isolate of Strawberry mottle virus (SMoV) was transferred from Fragaria vesca to Nicotiana occidentalis and Chenopodium quinoa by mechanical inoculation. Electron micrographs of infected tissues showed the presence of isometric particles of approximately 28 nm in diameter. SMoV-associated tubular structures were also conspicuous, particularly in the plasmodesmata of C. quinoa. DsRNA extraction of SMoV-infected N. occidentalis yielded two bands of 6.3 and 7.8 kbp which were cloned and sequenced. Gaps in the sequence, including the 5' and 3' ends, were filled using RT-PCR and RACE. The genome of SMoV was found to consist of RNA1 and RNA2 of 7036 and 5619 nt, respectively, excluding a poly(A) tail. Each RNA encodes one polyprotein and has a 3' non-coding region of approximately 1150 nt. The polyprotein of RNA1 contains regions with identities to helicase, viral genome-linked protein, protease and polymerase (RdRp), and shares its closest similarity with RNA1 of the tentative nepovirus Satsuma dwarf virus (SDV). The polyprotein of RNA2 displayed some similarity to the large coat protein domain of SDV and related viruses. Phylogenetic analysis of the RdRp region showed that SMoV falls into a separate group containing SDV, Apple latent spherical virus, Naval orange infectious mottling virus and Rice tungro spherical virus. Given the size of RNA2 and the presence of a long 3' non-coding region, SMoV is more typical of a nepovirus, although atypically for a nepovirus it is aphid transmissible. We propose that SMoV is a tentative member of an SDV-like lineage of picorna-like viruses.
Collapse
Affiliation(s)
- J R Thompson
- Biologische Bundesanstalt, Institut für Pflanzenschutz im Obstbau, Schwabenheimer Straße 101, D-69221 Dossenheim, Germany1
| | - G Leone
- Plant Research International, PO Box 16, 6700 AA Wageningen, Netherlands2
| | - J L Lindner
- Plant Research International, PO Box 16, 6700 AA Wageningen, Netherlands2
| | - W Jelkmann
- Biologische Bundesanstalt, Institut für Pflanzenschutz im Obstbau, Schwabenheimer Straße 101, D-69221 Dossenheim, Germany1
| | - C D Schoen
- Plant Research International, PO Box 16, 6700 AA Wageningen, Netherlands2
| |
Collapse
|
18
|
Affiliation(s)
- G A de Zoeten
- Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
19
|
Héricourt F, Blanc S, Redeker V, Jupin I. Evidence for phosphorylation and ubiquitinylation of the turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed in a baculovirus-insect cell system. Biochem J 2000; 349:417-25. [PMID: 10880340 PMCID: PMC1221164 DOI: 10.1042/0264-6021:3490417] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All RNA viruses known to date encode an RNA-dependent RNA polymerase (RdRp) that is required for replication of the viral genome. We have expressed and purified the turnip yellow mosaic virus (TYMV) RdRp in insect cells using a recombinant baculovirus, either in its native form, or fused to an hexa-histidine tag. Phosphorylation of the protein was demonstrated by labelling experiments in vivo, as well as phosphatase treatment of the purified protein in vitro. Phospho amino acid analysis and immunoblotting experiments identified serine and threonine residues as being the subject of phosphorylation. Peptide mass mapping using MS analysis of a protein digest revealed that phosphorylation sites are localized within a putative PEST sequence [a sequence rich in proline (P), glutamic acid (E), serine (S) and threonine (T) residues] in the N-terminal region of the protein. Using monoclonal antibodies specific for ubiquitin conjugates, we were able to demonstrate that the TYMV RdRp is conjugated to ubiquitin molecules when expressed in insect cells. These observations suggest that the TYMV RdRp may be processed selectively by the ubiquitin/proteasome degradation system upon phosphorylation of the PEST sequence.
Collapse
Affiliation(s)
- F Héricourt
- Laboratoire de Virologie Moléculaire, Institut Jacques Monod, UMR 7592, CNRS-Universités Paris 6-Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
20
|
Skaf JS, Schultz MH, Hirata H, de Zoeten GA. Mutational evidence that the VPg is involved in the replication and not the movement of Pea enation mosaic virus-1. J Gen Virol 2000; 81:1103-9. [PMID: 10725438 DOI: 10.1099/0022-1317-81-4-1103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pea enation mosaic disease is caused by an obligatory association between the enamovirus Pea enation mosaic virus-1 (PEMV-1) and the umbravirus Pea enation mosaic virus-2 (PEMV-2). Encapsidated RNAs 1 and 2 are covalently linked to a 3138 Da VPg encoded by the RNA of PEMV-1. To determine the role of the VPg in the pathogenicity of PEMV (PEMV-1+PEMV-2), the infectivity of clones with mutations in key amino acids in the VPg was evaluated in protoplasts and in plants. Using quantitative, real-time RT-PCR, we concluded that the inability of certain mutants to infect plants was due to their replicative (and not their movement) incompetence. Mutant clones that produced delayed and less severe infections accumulated 10- to 100-fold less RNA-1 compared to WT-RNA-1 both in plants and in protoplasts. The RNAs of clones that produced WT-like infections accumulated to levels similar to those of WT-PEMV. Also, we demonstrate that the severity of symptoms produced by WT-PEMV is proportional to the amount of RNA-1 that accumulates in infected plants and seems to be independent of the amount of RNA-2. A dual role for the VPg in the pathogenicity of PEMV is proposed.
Collapse
Affiliation(s)
- J S Skaf
- Department of Botany and Plant Pathology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
21
|
Li C, Yoshikawa N, Takahashi T, Ito T, Yoshida K, Koganezawa H. Nucleotide sequence and genome organization of apple latent spherical virus: a new virus classified into the family Comoviridae. J Gen Virol 2000; 81:541-7. [PMID: 10644854 DOI: 10.1099/0022-1317-81-2-541] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A virus with isometric virus particles (ca. 25 nm) was isolated from an apple tree and named Apple latent spherical virus (ALSV). Virus particles purified from infected Chenopodium quinoa formed two bands with densities of 1.41 and 1.43 g/cm(3) in CsCl equilibrium density-gradient centrifugation, indicating that the virus is composed of two components. The virus had two ssRNA species (RNA1 and RNA2) and three capsid proteins (Vp25, Vp24 and Vp20). The complete nucleotide sequences of RNA1 and RNA2 were determined to be 6815 nt and 3384 nt excluding the 3' poly(A) tail, respectively. RNA1 contains two partially overlapping ORFs encoding polypeptides of molecular mass 23 kDa ('23K'; ORF1) and 235 kDa ('235K'; ORF2); RNA2 has a single ORF encoding a polypeptide of 108 kDa ('108K'). The 235K protein has, in order, consensus motifs of the protease cofactor, the NTP-binding helicase, the cysteine protease and the RNA polymerase, in good agreement with the gene arrangement of viruses in the COMOVIRIDAE: The 108K protein contains an LPL movement protein (MP) motif near the N terminus. Direct sequencing of the N-terminal amino acids of the three capsid proteins showed that Vp25, Vp20 and Vp24 are located in this order in the C-terminal region of the 108K protein. The cleavage sites of the 108K polyprotein were Q/G (MP/Vp25 and Vp25/Vp20) and E/G (Vp20/Vp24). Phylogenetic analysis of the ALSV RNA polymerase domain showed that ALSV falls into a cluster different from the nepo-, como- and fabavirus lineages.
Collapse
Affiliation(s)
- C Li
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The complete nucleotide sequence of peach rosette mosaic nepovirus (PRMV) RNA1 has been determined. A grapevine isolate of PRMV from Michigan was propagated and purified and cDNA clones representing 99. 5% of the RNA1 were constructed. The cDNA and direct RNA sequence analysis revealed a RNA species of 8004 nucleotides, excluding a 3' polyadenylated tail. The 5'- and 3'-untranslated regions were 52 and 1474 nucleotides, respectively. Computer analysis of the PRMV RNA1 nucleotide sequence unveiled a single long open reading frame of 6477 nucleotides, which is capable of encoding a 240 kDa polyprotein. Analysis of the predicted amino acid sequence of RNA1 revealed amino acid motifs characteristic of a replicase, proteinase, NTP-binding protein and a proteinase cofactor. The order and identity of these putative proteins are consistent with other nepoviruses. Analysis of PRMV RNA1 further distinguishes the taxonomic subdivisions within the nepovirus group, confirms the subgroup three status of PRMV and lays the groundwork for a replicase-mediated resistance strategy.
Collapse
Affiliation(s)
- A H Lammers
- Agritope, Inc., 16160 SW Upper Boone's Ferry Road, Portland 97224, OR, USA
| | | | | |
Collapse
|
23
|
Proteinases Involved in Plant Virus Genome Expression. PROTEASES OF INFECTIOUS AGENTS 1999. [PMCID: PMC7271178 DOI: 10.1016/b978-012420510-9/50037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter discusses the proteinases involved in plant virus genome expression. The chapter focuses on virus-encoded proteinases. It gives an overall view of the use of proteolytic processing by different plant virus groups for the expression of their genomes. It also discusses that the development of full-length cDNA clones from which infectious transcripts can be produced either in vitro or in vivo, has facilitated the functional analysis of the plant virus proteinases. In spite of the high specificity of the viral proteinases, cellular substrates for animal virus proteinases have been described in this chapter. The activity of the viral proteinases can interfere with important cellular processes to favor virus replication. The recent use of proteinase inhibitors in AIDS therapy has emphasized the convenience of virus-encoded proteinases as targets of antiviral action. A mutant protein able to inhibit the activity of the TEV proteinase by manipulation of the α2-macroglobulin bait region was designed by Van Rompaey.
Collapse
|
24
|
Revill PA, Davidson AD, Wright PJ. Mushroom bacilliform virus RNA: the initiation of translation at the 5' end of the genome and identification of the VPg. Virology 1998; 249:231-7. [PMID: 9791015 DOI: 10.1006/viro.1998.9345] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mushroom bacilliform virus (MBV) is often found in cultivated mushrooms (Agaricus bisporus) with La France disease. MBV has a 4-kb ssRNA genome of positive-sense encoding four major open reading frames (ORFs). The arrangement of ORFs at the 5' end of the genome and the deduced amino-acid sequences of two of the putative gene products (protease and RNA-dependent RNA polymerase) show remarkable similarity to some plant viruses, particularly subgroup II luteoviruses. We show that this similarity extends to the translation strategy at the 5' end of the genome, the presence of a genome-linked protein (VPg), and the location of the VPg downstream of the protease motifs in the polypeptide encoded by ORF2.
Collapse
Affiliation(s)
- P A Revill
- Department of Microbiology, Monash University, Wellington Rd., Clayton, Victoria, 3168, Australia.
| | | | | |
Collapse
|
25
|
Stocks CE, Lobigs M. Signal peptidase cleavage at the flavivirus C-prM junction: dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM. J Virol 1998; 72:2141-9. [PMID: 9499070 PMCID: PMC109509 DOI: 10.1128/jvi.72.3.2141-2149.1998] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Signal peptidase cleavage at the C-prM junction in the flavivirus structural polyprotein is inefficient in the absence of the cytoplasmic viral protease, which catalyzes cleavage at the COOH terminus of the C protein. The signal peptidase cleavage occurs efficiently in circumstances where the C protein is deleted or if the viral protease complex is present. In this study, we used cDNA of Murray Valley encephalitis virus (MVE) to examine features of the structural polyprotein which allow this regulation of a luminal cleavage by a cytoplasmic protease. We found that the inefficiency of signal peptidase cleavage in the absence of the viral protease is not attributable solely to features of the C protein. Inhibition of cleavage still occurred when charged residues in C were mutated to uncharged residues or when an unrelated protein sequence (that of ubiquitin) was substituted for C. Also, fusion of the C protein did not inhibit processing of an alternative adjacent signal sequence. The cleavage region of the flavivirus prM translocation signal is unusually hydrophobic, and we established that altering this characteristic by making three point mutations near the signal peptidase cleavage site in MVE prM dramatically increased the extent of cleavage without requiring removal of the C protein. In addition, we demonstrated that luminal sequences downstream from the signal peptidase cleavage site contributed to the inefficiency of cleavage.
Collapse
Affiliation(s)
- C E Stocks
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT
| | | |
Collapse
|
26
|
Yalamanchili P, Banerjee R, Dasgupta A. Poliovirus-encoded protease 2APro cleaves the TATA-binding protein but does not inhibit host cell RNA polymerase II transcription in vitro. J Virol 1997; 71:6881-6. [PMID: 9261414 PMCID: PMC191970 DOI: 10.1128/jvi.71.9.6881-6886.1997] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transient expression of the poliovirus-encoded protease 2APro in eukaryotic cells results in inhibition of both cellular transcription and translation. The inhibition of transcription observed in cells expressing 2APro could be due to a primary effect or secondary effect caused by inhibition of translation. Because transcriptional activity of the TATA-binding protein (TBP) is drastically reduced in poliovirus-infected cells, we determined if 2APro is able to cleave TBP in vitro. We demonstrate here that 2APro directly cleaves the single tyrosine-glycine bond at position 34 of TBP. This cleavage is also seen in poliovirus-infected HeLa cells. Surprisingly, despite TBP cleavage 2APro was unable to inhibit RNA polymerase II transcription in vitro. Under similar conditions, however, 2APro inhibited translation of a capped cellular mRNA in vitro. Thus, cleavage of TBP at position 34 does not alter its transcriptional activity in vitro. These results suggest that inhibition of host cell RNA polymerase II transcription seen in cells transiently transfected with 2APro is due to host cell translational shutoff.
Collapse
Affiliation(s)
- P Yalamanchili
- Department of Microbiology and Immunology, UCLA School of Medicine 90095-1747, USA
| | | | | |
Collapse
|
27
|
Liu B, Clarke IN, Lambden PR. Polyprotein processing in Southampton virus: identification of 3C-like protease cleavage sites by in vitro mutagenesis. J Virol 1996; 70:2605-10. [PMID: 8642693 PMCID: PMC190109 DOI: 10.1128/jvi.70.4.2605-2610.1996] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A genomic clone of the small, round-structured virus Southampton virus (SV) was constructed from a set of overlapping PCR amplicons. Sequence analysis confirmed the absence of mutations and accurate ligation of the PCR products. The SV cDNA was cloned into a vector for in vitro production of RNA and subsequent translation by rabbit reticulocyte lysate. Two polypeptides corresponding to the N-terminal and C-terminal regions of the viral polyprotein were expressed in Escherichia coli and used to produce murine antisera for detection of translation products. Three major translation products of 113, 48, and 41 kDa were identified in a coupled transcription-translation system. The large 113-kDa protein reacted with antisera raised against the C-terminal region of the polyprotein and represents a precursor of the viral RNA polymerase. The 48-kDa protein detected in vitro reacted specifically with antisera raised against the polyprotein N terminus, showing that translation was initiated in SV at the three tandem in-frame AUG codons at the 5' end of the genome. A series of nested 3' deletions of the large open reading frame encoding the viral polyprotein was used to define the translation initiation site and genomic location of the viral protease. The results are consistent with a model in which translation of the viral genome is initiated at one of the three in-frame AUG codons starting at nucleotide position 5 and in which active viral protease is produced following translation of a region located between NheI (nucleotide 3052) and SphI (nucleotide 4056), resulting in rapid cleavage of a large precursor protein. Abolition of the viral 3C-like protease activity by site-directed mutagenesis of the putative active-site cysteine (Cys-1238) resulted in production of a large protein of approximately 200 kDa which reacted with both N-terminal and C-terminal antisera. Two potential polyprotein cleavage sites containing the preferred picornaviral QG recognition site were identified on either side of the putative 2C-like helicase region of the polyprotein. Proteolysis at these positions would give rise to products with relative molecular masses identical to those of the products detected in the rabbit reticulocyte system. Site-directed mutagenesis was used to introduce a single base change which resulted in the substitution of glutamine residues with proline residues at amino acids 399 and 762. These mutations completely abolished cleavage of the polyprotein at these positions and gave rise to alternative products with molecular masses which matched the predicted sizes for a single cleavage at either Q-399 or Q-762. These data indicate that the small, round-structured virus Southampton virus produces a 3C-like protease which has two primary cleavage sites at positions 399 and 762. Proteolytic cleavage at these positions releases the putative viral 2C-like helicase.
Collapse
Affiliation(s)
- B Liu
- Molecular Microbiology Group, University Medical School, Southampton General Hospital, Southampton, United Kingdom
| | | | | |
Collapse
|
28
|
Wirblich C, Sibilia M, Boniotti MB, Rossi C, Thiel HJ, Meyers G. 3C-like protease of rabbit hemorrhagic disease virus: identification of cleavage sites in the ORF1 polyprotein and analysis of cleavage specificity. J Virol 1995; 69:7159-68. [PMID: 7474137 PMCID: PMC189637 DOI: 10.1128/jvi.69.11.7159-7168.1995] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Rabbit hemorrhagic disease virus, a positive-stranded RNA virus of the family Caliciviridae, encodes a trypsin-like cysteine protease as part of a large polyprotein. Upon expression in Escherichia coli, the protease releases itself from larger precursors by proteolytic cleavages at its N and C termini. Both cleavage sites were determined by N-terminal sequence analysis of the cleavage products. Cleavage at the N terminus of the protease occurred with high efficiency at an EG dipeptide at positions 1108 and 1109. Cleavage at the C terminus of the protease occurred with low efficiency at an ET dipeptide at positions 1251 and 1252. To study the cleavage specificity of the protease, amino acid substitutions were introduced at the P2, P1, and P1' positions at the cleavage site at the N-terminal boundary of the protease. This analysis showed that the amino acid at the P1 position is the most important determinant for substrate recognition. Only glutamic acid, glutamine, and aspartic acid were tolerated at this position. At the P1' position, glycine, serine, and alanine were the preferred substrates of the protease, but a number of amino acids with larger side chains were also tolerated. Substitutions at the P2 position had only little effect on the cleavage efficiency. Cell-free expression of the C-terminal half of the ORF1 polyprotein showed that the protease catalyzes cleavage at the junction of the RNA polymerase and the capsid protein. An EG dipeptide at positions 1767 and 1768 was identified as the putative cleavage site. Our data show that rabbit hemorrhagic disease virus encodes a trypsin-like cysteine protease that is similar to 3C proteases with regard to function and specificity but is more similar to 2A proteases with regard to size.
Collapse
Affiliation(s)
- C Wirblich
- Federal Research Centre for Virus Diseases of Animals, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Kervinen J, Törmäkangas K, Runeberg-Roos P, Guruprasad K, Blundell T, Teeri TH. Structure and possible function of aspartic proteinases in barley and other plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 362:241-54. [PMID: 8540324 DOI: 10.1007/978-1-4615-1871-6_28] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J Kervinen
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The alphaviruses are a genus of 26 enveloped viruses that cause disease in humans and domestic animals. Mosquitoes or other hematophagous arthropods serve as vectors for these viruses. The complete sequences of the +/- 11.7-kb plus-strand RNA genomes of eight alphaviruses have been determined, and partial sequences are known for several others; this has made possible evolutionary comparisons between different alphaviruses as well as comparisons of this group of viruses with other animal and plant viruses. Full-length cDNA clones from which infectious RNA can be recovered have been constructed for four alphaviruses; these clones have facilitated many molecular genetic studies as well as the development of these viruses as expression vectors. From these and studies involving biochemical approaches, many details of the replication cycle of the alphaviruses are known. The interactions of the viruses with host cells and host organisms have been exclusively studied, and the molecular basis of virulence and recovery from viral infection have been addressed in a large number of recent papers. The structure of the viruses has been determined to about 2.5 nm, making them the best-characterized enveloped virus to date. Because of the wealth of data that has appeared, these viruses represent a well-characterized system that tell us much about the evolution of RNA viruses, their replication, and their interactions with their hosts. This review summarizes our current knowledge of this group of viruses.
Collapse
Affiliation(s)
- J H Strauss
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
31
|
Affiliation(s)
- J J Birktoft
- Roche Research Center, Hoffmann-La Roche Inc., Nutley, New Jersey 07110
| | | |
Collapse
|
32
|
Dougherty WG, Semler BL. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev 1993; 57:781-822. [PMID: 8302216 PMCID: PMC372939 DOI: 10.1128/mr.57.4.781-822.1993] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many viruses express their genome, or part of their genome, initially as a polyprotein precursor that undergoes proteolytic processing. Molecular genetic analyses of viral gene expression have revealed that many of these processing events are mediated by virus-encoded proteinases. Biochemical activity studies and structural analyses of these viral enzymes reveal that they have remarkable similarities to cellular proteinases. However, the viral proteinases have evolved unique features that permit them to function in a cellular environment. In this article, the current status of plant and animal virus proteinases is described along with their role in the viral replication cycle. The reactions catalyzed by viral proteinases are not simple enzyme-substrate interactions; rather, the processing steps are highly regulated, are coordinated with other viral processes, and frequently involve the participation of other factors.
Collapse
Affiliation(s)
- W G Dougherty
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| | | |
Collapse
|
33
|
Nienaber VL, Breddam K, Birktoft JJ. A glutamic acid specific serine protease utilizes a novel histidine triad in substrate binding. Biochemistry 1993; 32:11469-75. [PMID: 8105890 DOI: 10.1021/bi00094a001] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proteases specific for cleavage after acidic residues have been implicated in several disease states, including epidermolysis, inflammation, and viral processing. A serine protease with specificity toward glutamic acid substrates (Glu-SGP) has been crystallized in the presence of a tetrapeptide ligand and its structure determined and refined to an R-factor of 17% at 2.0-A resolution. This structure provides an initial description of the design of proteolytic specificity for negatively charged residues. While the overall fold of Glu-SGP closely resembles that observed in the pancreatic-type serine proteases, stabilization of the negatively charged substrate when bound to this protein appears to involve a more extensive part of the protease than previously observed. The substrate carboxylate is bound to a histidine side chain, His213, which provides the primary electrostatic compensation of the negative charge on the substrate, and to two serine hydroxyls, Ser192 and Ser216. Glu-SGP displays maximum activity at pH 8.3, and assuming normal pKa's, the glutamate side chain and His213 will be negatively charged and neutral, respectively, at this pH. In order for His213 to carry a positive charge at the optimal pH, its pKa will have to be raised by at least two units. An alternative mechanism for substrate charge compensation is suggested that involves a novel histidine triad, His213, His199, and His228, not observed in any other serine protease. The C-terminal alpha-helix, ubiquitous to all pancreatic-type proteases, is directly linked to this histidine triad and may also play a role in substrate stabilization.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V L Nienaber
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
34
|
Manninen I, Schulman AH. BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). PLANT MOLECULAR BIOLOGY 1993; 22:829-846. [PMID: 7689350 DOI: 10.1007/bf00027369] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Retroviruses and retrotransposons make up the broad class of retroelements replicating and transposing via reverse transcriptase. Retroelements have recently been found to be ubiquitous in the plants. We report here the isolation, sequence and analysis of a retroelement from barley (Hordeum vulgare L.) with all the features of a copia-like retrotransposon. This is named BARE-1 (for BArley RetroElement 1), the first such element described for barley. BARE-1 is 12,088 bp, with long terminal repeats (LTRs) of 1829 bp containing perfect 6 bp inverted repeats at their ends and flanked by 4 bp direct repeats in the host DNA. Between the long terminal repeats is an internal domain with a derived amino acid sequence of 1285 residues, bearing homology to the gag, pro, int and rt domains of retroviruses and both plant and non-plant copia-like retrotransposons. Cultivated barley contains about 5000 elements in the genome similar to the BARE-1 putative gag domain, but ten-fold more hybridizing to rt or LTR probes. The particular BARE-1 element reported here appears to be inactive, as the putative protein-coding domain is interrupted by four stop codons and a frameshift. In addition, the 3' LTR is 4% divergent from the 5' LTR and contains a 3135 bp insertion. Nevertheless, we have recently detected transcripts hybridizing to BARE-1 on northern blots, presumably from active copies. Analysis of BARE-1 expression and function in barley is currently underway.
Collapse
Affiliation(s)
- I Manninen
- Institute of Biotechnology, University of Helsinki, Finland
| | | |
Collapse
|
35
|
Abstract
The three major vaccinia virus (VV) virion proteins (4a, 4b, and 25K) are proteolytically matured from larger precursors (P4a, P4b, and P25K) during virus assembly. Within the precursors, Ala-Gly-X motifs have been noted at the putative processing sites, with cleavage apparently taking place between the Gly and X residues. To identify the sequence and/or structural parameters which are required to define an efficient cleavage site, a trans-processing assay system has been developed by tagging the carboxy terminus of the P25K polypeptide (precursor of 25K) with an octapeptide FLAG epitope, which can be specifically recognized by a monoclonal antibody. By using transient expression assays with cells coinfected with VV, the proteolytic processing of the chimeric gene product (P25K:FLAG) was monitored by immunoblotting procedures. The relationship between the P25K:FLAG precursor and the 25K:FLAG cleavage product was established by pulse-chase experiments. The in vivo cleavage of P25K:FLAG was inhibited by the drug rifampin, implying that the reaction was utilizing the same pathway as authentic VV core proteins. Moreover, the 25K:FLAG protein was found in association with mature virions in accord with the notion that cleavage occurs concomitantly with virion assembly. Site-directed mutagenesis of the Ala-Gly-Ala motif at residues 31 to 33 of the P25K:FLAG precursor to Ile-Asp-Ile blocked production of the 25K:FLAG product. The efficiency of 25K:FLAG production (33.71%) is, however, approximately only half of the production of 25K (63.98%) within VV-infected cells transfected with pL4R:FLAG. One explanation for the lower efficiency of 25K:FLAG production was suggested by the observation in the immunofluorescent-staining experiment that 25K:FLAG-related proteins were not specifically localized to the virus assembly factories (virosomes) within VV-infected cells, although virosome localization was prominent for P25K-related polypeptides. Since VV core protein proteolytic processing is believed to take place during virion maturation, only the P25K:FLAG which was assembled into immature virions could undergo proteolytic maturation. Furthermore during these experiments, a potential cleavage intermediate (25K') of P25K was identified. Amino acid residues 17 to 19 (Ala-Gly-Ser) of the P25K precursor were implicated as the intermediate cleavage site, since no 25K':FLAG product was produced from a mutant precursor in which the sequence was altered to Ile-Asp-Ile. Taken together, these results provide biochemical and genetic evidence to support the hypothesis that the Ala-Gly-X cleavage motif plays a critical role in VV virion protein proteolytic maturation.
Collapse
Affiliation(s)
- P Lee
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| | | |
Collapse
|
36
|
Zhang S, Jones MC, Barker P, Davies JW, Hull R. Molecular cloning and sequencing of coat protein-encoding cDNA of rice tungro spherical virus--a plant picornavirus. Virus Genes 1993; 7:121-32. [PMID: 8367940 DOI: 10.1007/bf01702392] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rice tungro spherical virus (RTSV) was shown to have three coat protein (CP) species by high resolution NaDodSO4-PAGE and Western blot analyses. The sequence of a coat protein-expressing cDNA clone that was identified and selected from a RTSV cDNA library showed that the insert was composed of 2823 bp with only one large open reading frame (ORF) coding for 941 amino acids. The positions of the three coat proteins were located in the putative polyprotein by N-terminal microsequencing and were shown to start at amino acids 287, 495, and 698 for CP-1, CP-2, and CP-3, respectively. The coat proteins are expressed as a polyprotein at the 5' region of the viral RNA genome, and all are cleaved at glutamine carboxy termini, presumably by picornavirus 3C-type of protease(s). Sequence comparisons of coat proteins revealed that there are high amino acid homologies between CP-2 of RTSV and VP3s of encephalomyocarditis virus (EMCV) and Theiler's murine encephalomyelitis virus (TMEV). These results indicate that RTSV is a plant picornavirus.
Collapse
Affiliation(s)
- S Zhang
- Department of Virus Research, John Innes Institute, John Innes Centre, Norwich, UK
| | | | | | | | | |
Collapse
|
37
|
Nuss DL. Biological control of chestnut blight: an example of virus-mediated attenuation of fungal pathogenesis. Microbiol Rev 1992; 56:561-76. [PMID: 1480109 PMCID: PMC372888 DOI: 10.1128/mr.56.4.561-576.1992] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Environmental concerns have focused attention on natural forms of disease control as potentially safe and effective alternatives to chemical pesticides. This has led to increased efforts to develop control strategies that rely on natural predators and parasites or that involve genetically engineered microbial pest control agents. This review deals with a natural form of biological control in which the virulence of a fungal pathogen is attenuated by an endogenous viral RNA genetic element: the phenomenon of transmissible hypovirulence in the chestnut blight fungus, Cryphonectria parasitica. Recent progress in the molecular characterization of a hypovirulence-associated viral RNA has provided an emerging view of the genetic organization and basic expression strategy of this class of genetic elements. Several lines of evidence now suggest that specific hypovirulence-associated virus-encoded gene products selectively modulate the expression of subsets of fungal genes and the activity of specific regulatory pathways. The construction of an infectious cDNA clone of a hypovirulence-associated viral RNA represents a major advancement that provides exciting new opportunities for examining the molecular basis of transmissible hypovirulence and for engineering hypovirulent strains for improved biocontrol. These developments have significantly improved the prospects of using this system to identify molecular determinants of virulence and elucidate signal transduction pathways involved in pathogenic responses. In addition, novel approaches are now available for extending the application of transmissible hypovirulence for management of chestnut blight and possibly other fungal diseases.
Collapse
Affiliation(s)
- D L Nuss
- Department of Molecular Oncology & Virology, Roche Research Center, Nutley, New Jersey 07110
| |
Collapse
|
38
|
Dasmahapatra B, DiDomenico B, Dwyer S, Ma J, Sadowski I, Schwartz J. A genetic system for studying the activity of a proteolytic enzyme. Proc Natl Acad Sci U S A 1992; 89:4159-62. [PMID: 1570342 PMCID: PMC525652 DOI: 10.1073/pnas.89.9.4159] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We describe a genetic system for monitoring the activity of a specific proteolytic enzyme by taking advantage of the properties of the yeast transcriptional activator GAL4. The GAL4 protein contains two separable and functionally essential domains: the amino-terminal DNA binding domain and the carboxyl-terminal transcriptional activating domain. We constructed two hybrid proteins by inserting between the DNA binding domain and the activation domain of GAL4 either (i) a self-cleaving protease (3C protease of a picornavirus, coxsackievirus B3) or (ii) a mutant form of the protease that is unable to cleave. We show that, although the hybrid protein containing the mutant protease activates transcription of GAL1-lacZ reporter gene, the hybrid protein bearing the wild-type protease is proteolytically cleaved and fails to activate transcription. Our approach to monitor the proteolytic activity could be used to develop simple genetic systems to study other proteases.
Collapse
Affiliation(s)
- B Dasmahapatra
- Antiviral Chemotherapy, Schering-Plough Research Institute, Bloomfield, NJ 07003
| | | | | | | | | | | |
Collapse
|
39
|
Salminen A, Wahlberg JM, Lobigs M, Liljeström P, Garoff H. Membrane fusion process of Semliki Forest virus. II: Cleavage-dependent reorganization of the spike protein complex controls virus entry. J Biophys Biochem Cytol 1992; 116:349-57. [PMID: 1730759 PMCID: PMC2289290 DOI: 10.1083/jcb.116.2.349] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The envelope of the Semliki Forest virus (SFV) contains two transmembrane proteins, E2 and E1, in a heterodimeric complex. The E2 subunit is initially synthesized as a precursor protein p62, which is proteolytically processed to the mature E2 form before virus budding at the plasma membrane. The p62 (E2) protein mediates binding of the heterodimer to the nucleocapsid during virus budding, whereas E1 carries the entry functions of the virus, that is, cell binding and low pH-mediated membrane fusion activity. We have investigated the significance of the cleavage event for the maturation and entry of the virus. To express SFV with an uncleaved p62 phenotype, BHK-21 cells were transfected by electroporation with infectious viral RNA transcribed from a full-length SFV cDNA clone in which the p62 cleavage site had been changed. The uncleaved p62E1 heterodimer was found to be used for the formation of virus particles with an efficiency comparable to the wild type E2E1 form. However, in contrast to the wild type virus, the mutant virus was virtually noninfectious. Noninfectivity resulted from impaired uptake into cells, as well as from the inability of the virus to promote membrane fusion in the mildly acidic conditions of the endosome. This inability could be reversed by mild trypsin treatment, which converted the viral p62E1 form into the mature E2E1 form, or by treating the virus with a pH 4.5 wash, which in contrast to the more mild pH conditions of endosomes, effectively disrupted the p62E1 subunit association. We conclude that the p62 cleavage is not needed for virus budding, but regulates entry functions of the E1 subunit by controlling the heterodimer stability in acidic conditions.
Collapse
Affiliation(s)
- A Salminen
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
40
|
Verchot J, Koonin EV, Carrington JC. The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology 1991; 185:527-35. [PMID: 1962435 DOI: 10.1016/0042-6822(91)90522-d] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The polyprotein encoded by plant potyviruses is proteolytically processed to at least eight mature products by viral-encoded proteinases. While the proteinases that catalyze processing at most of the cleavage sites have been identified, the enzyme responsible for cleavage between the 35-kDa protein and helper component-proteinase (HC-Pro), near the N-terminus of the viral polyprotein, has not been mapped or characterized previously. Polyproteins containing the 35-kDa protein and HC-Pro were synthesized in the wheat germ system using defined RNA transcripts and were demonstrated to undergo proteolysis to generate products that resemble fully processed proteins. The C-terminal half of the 35-kDa protein was found to be required for proteolysis, whereas most of the HC-Pro sequence was dispensable. Amino acid substitutions affecting three positions, each of which are conserved in the 35-kDa protein encoded by five potyviruses, were shown to inhibit protein processing. These data suggest that the 35-kDa protein functions as a proteinase to cleave at its C-terminus. A model that accounts for all proteolytic processing events in the potyviral polyprotein is presented.
Collapse
Affiliation(s)
- J Verchot
- Department of Biology, Texas A&M University, College Station 77843
| | | | | |
Collapse
|
41
|
Margis R, Viry M, Pinck M, Pinck L. Cloning and in vitro characterization of the grapevine fanleaf virus proteinase cistron. Virology 1991; 185:779-87. [PMID: 1962449 DOI: 10.1016/0042-6822(91)90549-q] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The region of the genomic RNA-1 from grapevine fanleaf virus isolate F13 (GFLV-F13), containing the proteinase cistron and flanking sequences (nucleotides 3894 to 4789) of the GFLV polyprotein, was modified by PCR mutagenesis to create a start codon and cloned in a transcription vector. The transcripts from the resulting clone (pVP7) produced, upon translation in rabbit reticulocyte lysate, a 37.8-kDa protein which was subsequently cleaved to a stable 28-kDa product. Autocleavage was maximal at pH 7.0-8.5 and at 30 degrees. Inhibition of the activity was greater than 80% when translation was performed in the wheat germ system. In rabbit reticulocyte lysate, inhibition was also obtained with PMSF, EDTA, E-64, Ca+2, Zn+2, and Co+2. The pVP7 translation product acts in cis, in the case of its autocleavage, or in trans in the processing of the viral 122-kDa polyprotein from GFLV RNA-2 into a 66-kDa protein and the 56-kDa coat protein. The carboxy extremity of the complete pVP7 translation product, encoded by nucleotides 4633 to 4789 of RNA-1, was not required for the proteinase activity, at least in trans.
Collapse
Affiliation(s)
- R Margis
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
42
|
de Groot RJ, Rümenapf T, Kuhn RJ, Strauss EG, Strauss JH. Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proc Natl Acad Sci U S A 1991; 88:8967-71. [PMID: 1924357 PMCID: PMC52632 DOI: 10.1073/pnas.88.20.8967] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Upon infection of animal cells by Sindbis virus, four nonstructural (ns) proteins, termed nsP1-4 in order from 5' to 3' in the genome, are produced by posttranslational cleavage of a polyprotein. nsP4 is believed to function as the viral RNA polymerase and is short-lived in infected cells. We show here that nsP4 produced in reticulocyte lysates is degraded by the N-end rule pathway, one ubiquitin-dependent proteolytic pathway. When the N-terminal residue of nsP4 is changed by mutagenesis, the metabolic stabilities of the mutant nsP4s follow the N-end rule, in that the half-life of nsP4 bearing different N-terminal residues decreases in the order Met greater than Ala greater than Tyr greater than or equal to Phe greater than Agr. Addition of dipeptides Tyr-Ala, Trp-Ala, or Phe-Ala to the translation mixture inhibits degradation of Tyr-nsP4 and Phe-nsP4, but not of Arg-nsP4. Conversely, dipeptides His-Ala, Arg-Ala, and Lys-Ala inhibit the degradation of Arg-nsP4 but not of Tyr-nsP4 or Phe-nsP4. We found that there is no lysine in the first 43 residues of nsP4 that is required for its degradation, indicating that a more distal lysine functions as the ubiquitin acceptor. Strict control of nsP4 concentration appears to be an important aspect of the virus life cycle, since the concentration of nsP4 in infected cells is regulated at three levels: translation of nsP4 requires read-through of an opal termination codon such that it is underproduced; differential processing by the virus-encoded proteinase results in temporal regulation of nsP4; and nsP4 itself is a short-lived protein degraded by the ubiquitin-dependent N-end rule pathway.
Collapse
Affiliation(s)
- R J de Groot
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | | | | | |
Collapse
|
43
|
Dessens JT, Lomonossoff GP. Mutational analysis of the putative catalytic triad of the cowpea mosaic virus 24K protease. Virology 1991; 184:738-46. [PMID: 1887592 DOI: 10.1016/0042-6822(91)90444-g] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To investigate the mechanism of action of the cowpea mosaic virus (CPMV) 24K protease, a full-length cDNA clone of bottom component (B) RNA has been constructed from which RNA can be transcribed in vitro using T7 RNA polymerase. Translation of the resulting RNA in rabbit reticulocyte lysate leads to the synthesis of a 200 kDa product (the 200K protein) which cleaves itself in a manner identical to that of the product translated from B RNA isolated from virions. Site-directed mutagenesis of the full-length clone was used to examine the effects of altering individual amino acids in the 24K protease on its activity. The results obtained are consistent with the prediction that the 24K protease is structurally similar to the trypsin-like family of serine proteases and suggest that His40, Glu76, and Cys166 comprise the active site. Substitution of Cys166 by a serine residue results in an enzyme with reduced catalytic activity.
Collapse
Affiliation(s)
- J T Dessens
- Department of Virus Research, John Innes Institute, Norwich, United Kingdom
| | | |
Collapse
|
44
|
Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. Essential residues and cleavage site requirements for p48 autoproteolysis. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55013-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Wiskerchen M, Belzer SK, Collett MS. Pestivirus gene expression: the first protein product of the bovine viral diarrhea virus large open reading frame, p20, possesses proteolytic activity. J Virol 1991; 65:4508-14. [PMID: 1649345 PMCID: PMC248895 DOI: 10.1128/jvi.65.8.4508-4514.1991] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The positive-strand RNA genome of pestiviruses contains a single large open reading frame (ORF) extending its entire length and is capable of encoding 450 kDa of protein. Studies have been undertaken with the purpose of elucidating the specific mechanisms involved in the biogenesis of the complete complement of pestivirus proteins. Here, we report on gene expression at the 5' end of the genome of the prototype pestivirus, bovine viral diarrhea virus (BVDV). We demonstrate, using both a cell-free transcription-translation system and a mammalian-cell transient-expression system, that the first protein product of the large ORF of BVDV, the p20 protein, possesses a specific proteolytic activity. The p20 proteinase activity acts to release the p20 protein from the nascent polyprotein. The p20 proteinase activity is not, however, required for downstream glycoprotein processing, indicating translocation of the pestivirus glycoprotein precursor is affected by an internal signal sequence.
Collapse
|
46
|
Vanslyke JK, Whitehead SS, Wilson EM, Hruby DE. The multistep proteolytic maturation pathway utilized by vaccinia virus P4a protein: a degenerate conserved cleavage motif within core proteins. Virology 1991; 183:467-78. [PMID: 1853556 DOI: 10.1016/0042-6822(91)90976-i] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The most abundant vaccinia virus (VV) core protein found within the virion is protein 4a, which represents approximately 14% of the particle's dry weight. The 4a protein is synthesized as a 102.5-kDa precursor, which is proteolytically processed to a 62-kDa product concomitant with virion assembly. To identify the pathway by which P4a is converted into 4a, immunological reagents which are specific for subregions of the P4a precursor were developed and used in concert with peptide mapping and protein sequencing procedures. The results obtained suggest that the 891 amino acid P4a precursor is cleaved at two locations, between residues 614 and 615 and 697 and 698. Both the large amino-terminal 4a protein (residues 1-614) and the carboxy-terminal-derived 23-kDa protein (residues 698-891) become major virion constituents. The location and fate of the small internal peptide (residues 615-697) is not known. Interestingly, an analysis of the predicted amino acid sequences at the sites of cleavage within the P4a precursor indicated the presence of an Ala-Gly decreases Thr motif flanking the 697-698 site and an Ala-Gly decreases Ser motif flanking the 614-615 site. Since both of these signals are quite similar to the Ala-Gly decreases Ala signal previously identified as the cleavage point within the VV P4b and P25K core protein precursors (VanSlyke et al., 1991.J. Gen. Virol. 72, 411-416), this suggests that processing of all three core protein precursors may be coordinately linked and/or catalyzed by the same proteinase during viral assembly.
Collapse
Affiliation(s)
- J K Vanslyke
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| | | | | | | |
Collapse
|
47
|
Pinck M, Reinbolt J, Loudes AM, Le Ret M, Pinck L. Primary structure and location of the genome-linked protein (VPg) of grapevine fanleaf nepovirus. FEBS Lett 1991; 284:117-9. [PMID: 2060618 DOI: 10.1016/0014-5793(91)80775-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The genome linked protein VPg covalently linked to the RNAs of grapevine fanleaf nepovirus has been sequenced. The VPg (Mr = 2931) composed of 24 residues is linked by its N-terminal Ser beta-OH group to the viral RNAs. The VPg mapped from residues 1218 to 1241 of the 253K polyprotein encoded by GFLV RNA1.
Collapse
Affiliation(s)
- M Pinck
- Institut de Biologie Moléculaire des Plantes du C.N.R.S., Strasbourg, France
| | | | | | | | | |
Collapse
|
48
|
Kean KM, Teterina NL, Marc D, Girard M. Analysis of putative active site residues of the poliovirus 3C protease. Virology 1991; 181:609-19. [PMID: 1849679 DOI: 10.1016/0042-6822(91)90894-h] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It was recently suggested that the picornavirus 3C proteases are homologous to the chymotrypsin-like serine proteases. The two structural models proposed differ in one of the postulated active site residues, Glu/Asp71 or Asp85. We changed Glu71 of the poliovirus type 1 protease to Asp or Gln and Asp85 to Glu by oligonucleotide-directed site-specific mutagenesis of an infectious cDNA, and attempted to recover virus after transfection. Both Glu71 changes were lethal for the virus and proteolytic activity was abolished in vitro with the exception of the primary cleavage event at the P2/P3 junction. In contrast, the Asp85----Glu virus was viable. This mutant was temperature-sensitive for growth at 39 degrees and exhibited a minute plaque phenotype at permissive temperature. This defect correlated with low levels of viral-specific RNA and protein syntheses and slow virus growth. Proteolytic processing at the COOH-terminus of 3C was impaired, reducing the production of mature 3C and the viral replicase 3D. In addition, 3C-mediated cleavage events within the P2 region of the polyprotein seemed to occur rather inefficiently. 3C-specific processing within P1 and elsewhere within P3 was unaffected. We suggest that Asp85 does not form part of the active site of 3C, but could be important for the specific recognition of cleavage sites within P2.
Collapse
Affiliation(s)
- K M Kean
- Unité de Virologie Moléculaire (CNRS UA 545), Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
49
|
Arnholdt AC, Scharfstein J. Immunogenicity of Trypanosoma cruzi cysteine proteinase. RESEARCH IN IMMUNOLOGY 1991; 142:146-51. [PMID: 1714087 DOI: 10.1016/0923-2494(91)90027-g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A C Arnholdt
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
50
|
Lomonossoff GP, Johnson JE. The synthesis and structure of comovirus capsids. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1991; 55:107-37. [PMID: 1871315 DOI: 10.1016/0079-6107(91)90003-b] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- G P Lomonossoff
- Department of Virus Research, John Innes Institute, John Innes Centre for Plant Science Research, Norwich, U.K
| | | |
Collapse
|