1
|
Targeting PTPN22 does not enhance the efficacy of CAR T cells in solid tumours. Mol Cell Biol 2022; 42:e0044921. [PMID: 35041491 DOI: 10.1128/mcb.00449-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR) T cells has revolutionised the treatment of certain B cell malignancies, but has been in ineffective against solid tumours. Recent studies have highlighted the potential of targeting negative regulators of T cell signalling to enhance the efficacy and extend the utility of CAR T cells to solid tumours. Autoimmunity-linked protein tyrosine phosphatase N22 (PTPN22) has been proposed as a target for cancer immunotherapy. Here we have used CRISPR/Cas9 gene-editing to generate PTPN22-deficient (Ptpn22Δ/Δ) mice (C57BL/6) and assessed the impact of PTPN22 deficiency on the cytotoxicity and efficacy of CAR T cells in vitro and in vivo. As reported previously, PTPN22 deficiency was accompanied by the promotion of effector T cell responses ex vivo and the repression of syngeneic tumour growth in vivo. However, PTPN22-deficiency did not enhance the cytotoxic activity of murine CAR T cells targeting the extracellular domain of the human oncoprotein HER2 in vitro. Moreover, PTPN22-deficient α-HER2 CAR T cells or ovalbumin-specific OT-I CD8+ T cells adoptively transferred into mice bearing HER2+ mammary tumours or ovalbumin-expressing mammary or colorectal tumours respectively were no more effective than their wild type counterparts in suppressing tumour growth. The deletion of PTPN22 using CRISPR/Cas9 gene-editing also did not affect the cytotoxic activity of human CAR T cells targeting the Lewis Y antigen that is expressed by many human solid tumours. Therefore, PTPN22-deficiency does not enhance the anti-tumour activity of CAR T cells in solid organ malignancies.
Collapse
|
2
|
Wiede F, Lu K, Du X, Liang S, Hochheiser K, Dodd GT, Goh PK, Kearney C, Meyran D, Beavis PA, Henderson MA, Park SL, Waithman J, Zhang S, Zhang Z, Oliaro J, Gebhardt T, Darcy PK, Tiganis T. PTPN2 phosphatase deletion in T cells promotes anti-tumour immunity and CAR T-cell efficacy in solid tumours. EMBO J 2020; 39:e103637. [PMID: 31803974 PMCID: PMC6960448 DOI: 10.15252/embj.2019103637] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Although adoptive T-cell therapy has shown remarkable clinical efficacy in haematological malignancies, its success in combating solid tumours has been limited. Here, we report that PTPN2 deletion in T cells enhances cancer immunosurveillance and the efficacy of adoptively transferred tumour-specific T cells. T-cell-specific PTPN2 deficiency prevented tumours forming in aged mice heterozygous for the tumour suppressor p53. Adoptive transfer of PTPN2-deficient CD8+ T cells markedly repressed tumour formation in mice bearing mammary tumours. Moreover, PTPN2 deletion in T cells expressing a chimeric antigen receptor (CAR) specific for the oncoprotein HER-2 increased the activation of the Src family kinase LCK and cytokine-induced STAT-5 signalling, thereby enhancing both CAR T-cell activation and homing to CXCL9/10-expressing tumours to eradicate HER-2+ mammary tumours in vivo. Our findings define PTPN2 as a target for bolstering T-cell-mediated anti-tumour immunity and CAR T-cell therapy against solid tumours.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | - Kun‐Hui Lu
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | - Xin Du
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | - Shuwei Liang
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | - Katharina Hochheiser
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Department of Microbiology and ImmunologyThe University of MelbourneMelbourneVic.Australia
- Peter Doherty Institute for Infection and ImmunityMelbourneVic.Australia
| | - Garron T Dodd
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
| | - Pei K Goh
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | | | | | - Paul A Beavis
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | | | - Simone L Park
- Department of Microbiology and ImmunologyThe University of MelbourneMelbourneVic.Australia
- Peter Doherty Institute for Infection and ImmunityMelbourneVic.Australia
| | - Jason Waithman
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Sheng Zhang
- Department of Medicinal Chemistry and Molecular PharmacologyInstitute for Drug DiscoveryPurdue UniversityWest LafayetteINUSA
| | - Zhong‐Yin Zhang
- Department of Medicinal Chemistry and Molecular PharmacologyInstitute for Drug DiscoveryPurdue UniversityWest LafayetteINUSA
| | - Jane Oliaro
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | - Thomas Gebhardt
- Department of Microbiology and ImmunologyThe University of MelbourneMelbourneVic.Australia
- Peter Doherty Institute for Infection and ImmunityMelbourneVic.Australia
| | - Phillip K Darcy
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| |
Collapse
|
3
|
Yong CSM, John LB, Devaud C, Prince MH, Johnstone RW, Trapani JA, Darcy PK, Kershaw MH. A role for multiple chimeric antigen receptor-expressing leukocytes in antigen-specific responses to cancer. Oncotarget 2018; 7:34582-98. [PMID: 27153556 PMCID: PMC5085178 DOI: 10.18632/oncotarget.9149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 12/18/2022] Open
Abstract
While adoptive immunotherapy using chimeric antigen receptor (CAR)-modified T cells can induce remission of some tumors, the role of other CAR-modified leukocytes is not well characterized. In this study, we characterize the function of leukocytes including natural killer (NK) cells, macrophages and CAR T cells from transgenic mice expressing a CAR under the control of the pan-hematopoietic promoter, vav, and determine the ability of these mice to respond to ERB expressing tumors. We demonstrate the anti-tumor functions of leukocytes, including antigen specific cytotoxicity and cytokine secretion. The adoptive transfer of CAR T cells provided a greater survival advantage in the E0771ERB tumor model than their wildtype (WT) counterparts. In addition, CAR NK cells and CAR T cells also mediated increased survival in the RMAERB tumor model. When challenged with Her2 expressing tumors, F38 mice were shown to mount an effective immune response, resulting in tumor rejection and long-term survival. This was shown to be predominantly dependent on both CD8+ T cells and NK cells. However, macrophages and CD4+ T cells were also shown to contribute to this response. Overall, this study highlights the use of the vav-CAR mouse model as a unique tool to determine the anti-tumor function of various immune subsets, either alone or when acting alongside CAR T cells in adoptive immunotherapy.
Collapse
Affiliation(s)
- Carmen S M Yong
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Liza B John
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Christel Devaud
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Institut de Recherche en Santé Digestive, Université de Toulouse, INPT, INRA, INSERM UMR1220, UPS, France
| | - Miles H Prince
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Phillip K Darcy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Prahran Victoria, Australia
| | - Michael H Kershaw
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Prahran Victoria, Australia
| |
Collapse
|
4
|
Beavis PA, Henderson MA, Giuffrida L, Mills JK, Sek K, Cross RS, Davenport AJ, John LB, Mardiana S, Slaney CY, Johnstone RW, Trapani JA, Stagg J, Loi S, Kats L, Gyorki D, Kershaw MH, Darcy PK. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J Clin Invest 2017; 127:929-941. [PMID: 28165340 DOI: 10.1172/jci89455] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have been highly successful in treating hematological malignancies, including acute and chronic lymphoblastic leukemia. However, treatment of solid tumors using CAR T cells has been largely unsuccessful to date, partly because of tumor-induced immunosuppressive mechanisms, including adenosine production. Previous studies have shown that adenosine generated by tumor cells potently inhibits endogenous antitumor T cell responses through activation of adenosine 2A receptors (A2ARs). Herein, we have observed that CAR activation resulted in increased A2AR expression and suppression of both murine and human CAR T cells. This was reversible using either A2AR antagonists or genetic targeting of A2AR using shRNA. In 2 syngeneic HER2+ self-antigen tumor models, we found that either genetic or pharmacological targeting of the A2AR profoundly increased CAR T cell efficacy, particularly when combined with PD-1 blockade. Mechanistically, this was associated with increased cytokine production of CD8+ CAR T cells and increased activation of both CD8+ and CD4+ CAR T cells. Given the known clinical relevance of the CD73/adenosine pathway in several solid tumor types, and the initiation of phase I trials for A2AR antagonists in oncology, this approach has high translational potential to enhance CAR T cell efficacy in several cancer types.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Female
- Humans
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/immunology
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
Collapse
|
5
|
Slaney CY, von Scheidt B, Davenport AJ, Beavis PA, Westwood JA, Mardiana S, Tscharke DC, Ellis S, Prince HM, Trapani JA, Johnstone RW, Smyth MJ, Teng MW, Ali A, Yu Z, Rosenberg SA, Restifo NP, Neeson P, Darcy PK, Kershaw MH. Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clin Cancer Res 2016; 23:2478-2490. [PMID: 27965307 DOI: 10.1158/1078-0432.ccr-16-1860] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 11/16/2022]
Abstract
Purpose: While adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) can eliminate substantial burdens of some leukemias, the ultimate challenge remains the eradication of large solid tumors for most cancers. We aimed to develop an immunotherapy approach effective against large tumors in an immunocompetent, self-antigen preclinical mouse model.Experimental Design: In this study, we generated dual-specific T cells expressing both a CAR specific for Her2 and a TCR specific for the melanocyte protein (gp100). We used a regimen of adoptive cell transfer incorporating vaccination (ACTIV), with recombinant vaccinia virus expressing gp100, to treat a range of tumors including orthotopic breast tumors and large liver tumors.Results: ACTIV therapy induced durable complete remission of a variety of Her2+ tumors, some in excess of 150 mm2, in immunocompetent mice expressing Her2 in normal tissues, including the breast and brain. Vaccinia virus induced extensive proliferation of T cells, leading to massive infiltration of T cells into tumors. Durable tumor responses required the chemokine receptor CXCR3 and exogenous IL2, but were independent of IFNγ. Mice were resistant to tumor rechallenge, indicating immune memory involving epitope spreading. Evidence of limited neurologic toxicity was observed, associated with infiltration of cerebellum by T cells, but was only transient.Conclusions: This study supports a view that it is possible to design a highly effective combination immunotherapy for solid cancers, with acceptable transient toxicity, even when the target antigen is also expressed in vital tissues. Clin Cancer Res; 23(10); 2478-90. ©2016 AACR.
Collapse
Affiliation(s)
- Clare Y Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Bianca von Scheidt
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Alexander J Davenport
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer A Westwood
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Sherly Mardiana
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Sarah Ellis
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - H Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ricky W Johnstone
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michele W Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Aesha Ali
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Zhiya Yu
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Steven A Rosenberg
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Paul Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Clayton, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Clayton, Australia
| |
Collapse
|
6
|
Design of pH-sensitive polymer-modified liposomes for antigen delivery and their application in cancer immunotherapy. Polym J 2016. [DOI: 10.1038/pj.2016.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Embryonic Lethality in Homozygous Human Her-2 Transgenic Mice Due to Disruption of the Pds5b Gene. PLoS One 2015; 10:e0136817. [PMID: 26334628 PMCID: PMC4559457 DOI: 10.1371/journal.pone.0136817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 12/29/2022] Open
Abstract
The development of antigen-targeted therapeutics is dependent on the preferential expression of tumor-associated antigens (TAA) at targetable levels on the tumor. Tumor-associated antigens can be generated de novo or can arise from altered expression of normal basal proteins, such as the up-regulation of human epidermal growth factor receptor 2 (Her2/ErbB2). To properly assess the development of Her2 therapeutics in an immune tolerant model, we previously generated a transgenic mouse model in which expression of the human Her2 protein was present in both the brain and mammary tissue. This mouse model has facilitated the development of Her2 targeted therapies in a clinically relevant and suitable model. While heterozygous Her2+/- mice appear to develop in a similar manner to wild type mice (Her2-/-), it has proven difficult to generate homozygous Her2+/+ mice, potentially due to embryonic lethality. In this study, we performed whole genome sequencing to determine if the integration site of the Her2 transgene was responsible for this lethality. Indeed, we report that the Her2 transgene had integrated into the Pds5b (precocious dissociation of sisters) gene on chromosome 5, as a 162 copy concatemer. Furthermore, our findings demonstrate that Her2+/+ mice, similar to Pds5b-/- mice, are embryonic lethal and confirm the necessity for Pds5b in embryonic development. This study confirms the value of whole genome sequencing in determining the integration site of transgenes to gain insight into associated phenotypes.
Collapse
|
8
|
Yuba E, Kanda Y, Yoshizaki Y, Teranishi R, Harada A, Sugiura K, Izawa T, Yamate J, Sakaguchi N, Koiwai K, Kono K. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy. Biomaterials 2015. [PMID: 26222284 DOI: 10.1016/j.biomaterials.2015.07.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Potentiation of pH-sensitive liposome-based antigen carriers with IFN-γ gene lipoplexes was attempted to achieve efficient induction of tumor-specific immunity. 3-Methylglutarylated poly(glycidol) (MGluPG)-modified liposomes and cationic liposomes were used, respectively, for the delivery of antigenic protein ovalbumin (OVA) and IFN-γ-encoding plasmid DNA (pDNA). The MGluPG-modified liposomes and the cationic liposome-pDNA complexes (lipoplexes) formed hybrid complexes via electrostatic interactions after their mixing in aqueous solutions. The hybrid complexes co-delivered OVA and IFN-γ-encoding pDNA into DC2.4 cells, a murine dendritic cell line, as was the case of MGluPG-modified liposomes for OVA or the lipoplexes for pDNA. Both the lipoplexes and the hybrid complexes transfected DC2.4 cells and induced IFN-γ protein production, but transfection activities of the hybrid complexes were lower than those of the parent lipoplexes. Subcutaneous administration of hybrid complexes to mice bearing E.G7-OVA tumor reduced tumor volumes, which might result from the induction of OVA-specific cytotoxic T lymphocytes (CTLs). However, the hybrid complex-induced antitumor effect was the same level of the MGluPG-modified liposome-mediated antitumor immunity. In contrast, an extremely strong antitumor immune response was derived when these liposomes and lipoplexes without complexation were injected subcutaneously at the same site of tumor-bearing mice. Immunohistochemical analysis of tumor sections revealed that immunization through the liposome-lipoplex combination promoted the infiltration of CTLs to tumors at an early stage of treatment compared with liposomes, resulting in strong therapeutic effects.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuhei Kanda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuta Yoshizaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ryoma Teranishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kikuya Sugiura
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Naoki Sakaguchi
- Terumo Corp., Ltd., Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Kazunori Koiwai
- Terumo Corp., Ltd., Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
9
|
Henderson MA, Yong CSM, Duong CPM, Davenport AJ, John LB, Devaud C, Neeson P, Westwood JA, Darcy PK, Kershaw MH. Chimeric antigen receptor-redirected T cells display multifunctional capacity and enhanced tumor-specific cytokine secretion upon secondary ligation of chimeric receptor. Immunotherapy 2013; 5:577-90. [DOI: 10.2217/imt.13.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: The aim of the current study was to fully elucidate the functions of T cells genetically modified with an erbB2-specific chimeric antigen receptor (CAR). Material & methods: In this study, key functional parameters of CAR T cells were examined following antigen-specific stimulation of the chimeric anti-erbB2 receptor. Results: Gene-modified T cells produced the cytokines IFN-γ, IL-2, IL-4, IL-10, TNF-α and IL-17, and the chemokine RANTES upon CAR ligation. A multifunctional capacity of these CAR T cells was also demonstrated, where 13.7% of cells were found to simultaneously express IFN-γ and CD107a, indicative of cytolytic granule release. In addition, the CAR T cells were able to respond to a greater degree on the second ligation of CAR, which has not been previously shown. IFN-γ secretion levels were significantly higher on second ligation than those secreted following initial ligation. CAR-expressing T cells were also demonstrated to lyze erbB2-expressing tumor cells in the absence of activity against bystander cells not expressing the erbB2 antigen, thereby demonstrating exquisite specificity. Conclusion: This study demonstrates the specificity of CAR gene-engineered T cells and their capacity to deliver a wide range of functions against tumor cells with an enhanced response capability after initial receptor engagement.
Collapse
Affiliation(s)
- Melissa A Henderson
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Carmen SM Yong
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Connie PM Duong
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alexander J Davenport
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liza B John
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christel Devaud
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul Neeson
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jennifer A Westwood
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Phillip K Darcy
- Department of Immunology, Monash University, Prahran Victoria 3181, Australia
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael H Kershaw
- Department of Immunology, Monash University, Prahran Victoria 3181, Australia
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Duong CPM, Westwood JA, Yong CSM, Murphy A, Devaud C, John LB, Darcy PK, Kershaw MH. Engineering T cell function using chimeric antigen receptors identified using a DNA library approach. PLoS One 2013; 8:e63037. [PMID: 23667569 PMCID: PMC3646939 DOI: 10.1371/journal.pone.0063037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/28/2013] [Indexed: 12/13/2022] Open
Abstract
Genetic engineering of cellular function holds much promise for the treatment of a variety of diseases including gene deficiencies and cancer. However, engineering the full complement of cellular functions can be a daunting genetic exercise since many molecular triggers need to be activated to achieve complete function. In the case of T cells, genes encoding chimeric antigen receptors (CARs) covalently linking antibodies to cytoplasmic signaling domains can trigger some, but not all, cellular functions against cancer cells. To date, relatively few CAR formats have been investigated using a candidate molecule approach, in which rationally chosen molecules were trialed one by one. Therefore, to expedite this arduous process we developed an innovative screening method to screen many thousands of CAR formats to identify genes able to enhance the anticancer ability of T cells. We used a directional in-frame library of randomly assembled signaling domains in a CAR specific for the tumor associated antigen erbB2. Several new and original CARs were identified, one of which had an enhanced ability to lyse cancer cells and inhibit tumor growth in mice. This study highlights novel technology that could be used to screen a variety of molecules for their capacity to induce diverse functions in cells.
Collapse
Affiliation(s)
- Connie P. M. Duong
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer A. Westwood
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Carmen S. M. Yong
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Amanda Murphy
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Christel Devaud
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Liza B. John
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Phillip K. Darcy
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Immunology, Monash University, Prahran, Victoria, Australia
| | - Michael H. Kershaw
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Immunology, Monash University, Prahran, Victoria, Australia
- * E-mail:
| |
Collapse
|
11
|
Gene therapy in interventional pulmonology: Interferon gene delivery with focus on thoracic malignancies. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13665-011-0008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Weiss JM, Shivakumar R, Feller S, Li LH, Hanson A, Fogler WE, Fratantoni JC, Liu LN. Rapid, in vivo, evaluation of antiangiogenic and antineoplastic gene products by nonviral transfection of tumor cells. Cancer Gene Ther 2004; 11:346-53. [PMID: 15031722 DOI: 10.1038/sj.cgt.7700686] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using a nonviral, electroporation-based gene transfection approach, we demonstrate the efficient and consistent transfection of two poorly immunogenic tumor cell lines: B16F10 melanoma and renal carcinoma (RENCA). Three genes, IL-12, angiostatin (AS), and an endostatin:angiostatin fusion protein (ES:AS) were subcloned into a DNA plasmid containing EBNA1-OriP, which was then transfected into B16F10 and RENCA cells. Significant levels of protein were secreted into the culture supernatants of transfected cells in vitro. Transfected tumor cells were injected subcutaneously into mice. All the three transgenes were capable of significantly delaying and reducing the formation of primary B16F10 and RENCA tumors, as well as B16F10 lung metastases. By day 11 post-injection, all control mice that received either mock-transfected or empty vector DNA-transfected B16F10 tumor cells had developed large primary tumors. In contrast, mice that received IL-12-transfected B16F10 cells did not develop appreciable tumors until day 17, and these were significantly smaller than controls. Similar results were observed for the RENCA model, in which only one of the IL-12 mice had developed tumors out to day 31. Expression of AS or ES:AS also significantly delayed and reduced primary tumors. Overall, ES:AS was more effective than AS alone. Furthermore, 25% of the AS mice and 33% of the ES:AS mice remained tumor-free at day 17, by which point all control mice had significant tumors. Mouse survival rates also correlated with the extent of tumor burden. Importantly, no lung metastases were detected in the lungs of mice that had received either AS or ES:AS-transfected B16F10 tumor cells and significantly fewer metastases were found in the IL-12 group. The consistency of our transfection results highlight the feasibility of directly electroporating tumor cells as a means to screen, identify, and validate in vivo potentially novel antiangiogenic and/or antineoplastic genes.
Collapse
MESH Headings
- Angiostatins/biosynthesis
- Angiostatins/genetics
- Animals
- Carcinoma, Renal Cell/blood supply
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Division/genetics
- Cell Line, Tumor
- Cloning, Molecular
- Electroporation
- Endostatins/biosynthesis
- Endostatins/genetics
- Epstein-Barr Virus Nuclear Antigens/biosynthesis
- Epstein-Barr Virus Nuclear Antigens/genetics
- Gene Expression Regulation, Neoplastic
- Genetic Therapy
- Genetic Vectors
- Interleukin-12/biosynthesis
- Interleukin-12/genetics
- Kidney Neoplasms/blood supply
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Lung Neoplasms/secondary
- Male
- Melanoma/blood supply
- Melanoma/genetics
- Melanoma/metabolism
- Melanoma/pathology
- Mice
- Mice, Inbred BALB C
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Transfection
- Viruses/genetics
Collapse
Affiliation(s)
- Jonathan M Weiss
- MaxCyte, Inc., 9640 Medical Center Drive, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ferrantini M, Belardelli F. Gene therapy of cancer with interferon: lessons from tumor models and perspectives for clinical applications. Semin Cancer Biol 2000; 10:145-57. [PMID: 10936064 DOI: 10.1006/scbi.2000.0333] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytokine gene transfer is a current approach in studies of gene therapy of cancer IFNs represent valuable cytokines for these studies, since they exert multiple biological effects, including anti-tumor activities. Early studies have been focused on IFN-gamma. Recently, several reports have shown that the transfer of type I IFN (especially IFN-alpha) genes represents a powerful approach for inducing tumor suppression. Recent studies have underscored new IFN-induced activities on immune cells. This knowledge adds a further rationale for the use of IFN-alpha in strategies of gene therapy of cancer and can be exploited for the design of more selective and effective anticancer treatments.
Collapse
Affiliation(s)
- M Ferrantini
- Laboratory of Virology, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
14
|
Whitmore M, Li S, Huang L. LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther 1999; 6:1867-75. [PMID: 10602382 DOI: 10.1038/sj.gt.3301026] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our laboratory has recently developed a lipopolyplex consisting of DOTAP:cholesterol liposomes, protamine sulfate, and plasmid DNA (LPD) that provides improved systemic gene delivery compared with lipoplex following tail vein injection in mice. Because endothelial cells are the primary cells transfected in the lung, it was hypothesized that LPD might be an effective vector for gene therapy of pulmonary metastases. This hypothesis was examined by testing the efficacy of cytokine (IL-12) and tumor suppressor (p53) strategies for treatment of an experimental model of pulmonary metastasis in C57Bl/6 mice. Surprisingly, all LPD complexes including those containing an 'empty' plasmid provided a potent (>50% inhibition) and dose-dependent antitumor effect, compared with dextrose-treated controls. In addition, i.v. injections of LPD containing 'empty' plasmid also inhibited tumor growth in a subcutaneous model of C3 fibrosarcomma. The antitumor effect correlated well with a strong and rapid proinflammatory cytokine (TNF-alpha, IL-12 and IFN-gamma) response. Naked plasmid DNA did not elicit a cytokine response and the response required assembly of DNA into a lipoplex or the LPD lipopolyplex. Except for the heart, elevated levels of cytokine were observed in all organs (lung, liver, kidney and spleen) where LPD is known to have gene transfer activity. Methylation of immune-stimulatory CpG motifs in the plasmid component of LPD inhibited the proinflammatory cytokine response as well as the antitumor effect of LPD in both tumor systems. This suggests that i. v. administration of LPD elicits a systemic proinflammatory cytokine response that mediates the antitumor activity of the lipopolyplex. In addition, the antitumor activity was not observed in SCID mice suggesting a possible role for B or T lymphocytes in the antitumor response initiated by LPD. This represents the first demonstration that an intravenously administered cationic liposome-based nonviral vector can promote a systemic, Th1-like innate immune response. The immune adjuvant properties of LPD might prove to be suitable for delivering tumor-specific antigens in the context of DNA vaccination.
Collapse
Affiliation(s)
- M Whitmore
- Laboratory of Drug Targeting, Department of Pharmacology, University of Pittsburgh School of Medicine, W1351 Biomedical Sciences Tower, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
15
|
Abstract
Transduction of a cytokine gene into neoplastic cells elicits a strong inflammatory host reaction that impairs tumor growth, and a long-lasting immune memory is established following their rejection. These findings have aroused great enthusiasm and expectations. Despite their enhanced immunogenicity, however, the immune reaction provoked by repeated injections of these engineered cells can do little more than inhibit the growth of initial tumors and metastases and is only minimally effective against established forms. Better therapeutic activity is thus being sought by combining such cells with tumor cells engineered with other genes.
Collapse
Affiliation(s)
- P Nanni
- Institute of Cancer Research, University of Bologna, Italy
| | | | | |
Collapse
|
16
|
Wang G, Chopra RK, Royal RE, Yang JC, Rosenberg SA, Hwu P. A T cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fc-gamma chain chimeric receptor gene recognizing a human ovarian cancer antigen. Nat Med 1998; 4:168-72. [PMID: 9461189 DOI: 10.1038/nm0298-168] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to treat common cancers with immunotherapy, chimeric receptors have been developed that combine the tumor specificity of antibodies with T-cell effector functions. Previously, we demonstrated that T cells transduced with a chimeric receptor gene against human ovarian cancer were able to recognize ovarian cancer cells in vitro and in vivo. We now report that recipients of bone marrow cells transduced with these genes exhibited significant antitumor activity in vivo. Moreover, in vivo depletion of T cells in reconstituted mice did not affect antitumor activity, suggesting that other immune cells expressing the chimeric receptor gene may play an important role in tumor rejection.
Collapse
Affiliation(s)
- G Wang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Street D, Kaufmann AM, Vaughan A, Fisher SG, Hunter M, Schreckenberger C, Potkul RK, Gissmann L, Qiao L. Interferon-gamma enhances susceptibility of cervical cancer cells to lysis by tumor-specific cytotoxic T cells. Gynecol Oncol 1997; 65:265-72. [PMID: 9159336 DOI: 10.1006/gyno.1997.4667] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recently we have demonstrated that tumor-specific cytotoxic T lymphocytes (CTLs) can be activated by cervical carcinoma cells expressing the costimulatory molecule CD80, which may be used as a therapeutic vaccine for patients with cervical cancer. For activated CTLs to be effective, appropriate amounts of MHC class I expression are required on target tumor cells. In this study, we found that some cervical carcinoma cells expressed only low levels of MHC class I and adhesion molecules such as CD54. We further demonstrated that tumor cells (CaSki and SiHa) expressing low levels of MHC class I were more resistant to lysis by specific CTLs than tumor cells (HeLa) expressing high levels of MHC class I. Treatment of CaSki or SiHa cells with interferon-gamma resulted in an increased expression of MHC class I, MHC class II, and CD54. Expression of CD58 and CD80 was not up-regulated or induced. Treatment of the tumor cells with interferon-gamma significantly enhanced the lysis of the tumor cells by specific CTLs which had been activated by the respective CD80-expressing tumor cells. The enhancement of cytolysis could be blocked by monoclonal antibodies to MHC class I and CD54, but not by that to MHC class II. Furthermore, we found that interferon-gamma induced apoptosis in cervical carcinoma cells but not in tumor-specific CTLs.
Collapse
Affiliation(s)
- D Street
- Department of Obstetrics and Gynecology, Stritch School of Medicine, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- G Dranoff
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
19
|
Tepper RI, Mulé JJ. Experimental and clinical studies of cytokine gene-modified tumor cells. Hum Gene Ther 1994; 5:153-64. [PMID: 8186297 DOI: 10.1089/hum.1994.5.2-153] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytokines are key modulators of host immune and inflammatory responses. The expression of cytokine genes by tumor cells as a result of gene transfer has emerged as a novel strategy to augment in vivo host reactivity to various cancers. This review summarizes the knowledge obtained from experimental systems using this strategy and provides information on the current clinical trials employing this approach. In murine model systems, immunization with tumors expressing certain cytokines [e.g., tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), interleukin-7 (IL-7), and granulocyte-macrophage colony stimulating (GM-CSF)] has demonstrated their ability to promote the generation of tumor-specific cytotoxic T lymphocytes by various mechanisms; in some cases, significant regressions of established microscopic tumor deposits result. Non T cell mechanisms of tumor killing, such as granulocytic inflammatory responses, may also be elicited by the localized elaboration of certain cytokines [e.g., IL-4, granulocyte colony-stimulating factor (G-CSF)]. The potency of antitumor immune potentiation by cytokines, however, remains to be established by further animal studies and emerging clinical trials. The genetic modification of tumors for the expression of immunostimulatory gene products holds promise as a new approach for active immunotherapy of cancer and for the isolation of effector cell populations for use in adoptive immunotherapy protocols.
Collapse
Affiliation(s)
- R I Tepper
- Laboratory of Tumor Biology, Massachusetts General Hospital Cancer Center, Charlestown 02129
| | | |
Collapse
|
20
|
Restifo NP, Minev BR, Taggarse AS, McFarland BJ, Wang M, Irvine KR. Enhancing the recognition of tumour associated antigens. Folia Biol (Praha) 1994; 40:74-88. [PMID: 7958066 PMCID: PMC2763578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Activated CD8+ T cells (TCD8+) can directly recognize malignant cells because processed fragments of tumour associated antigens (TAA), 8-10 amino acids in length and complexed with MHC class I molecules, are displayed on tumour cell surfaces. Tumour cells have been genetically modified in a variety of ways in efforts to enhance the immune recognition of TAA. An alternative strategy is the expression of TAA in recombinant or synthetic form. This has been made possible by the recent cloning of TAA recognized by TCD8+. In this communication we review recent work in our own laboratory on the expression of TAA as synthetic peptide, by "naked" plasmid DNA injected intramuscularly or transdermally, and by recombinant viruses including vaccinia (rVV), fowlpox (rFV) and adenovirus (rAd). The expression of TAA in recombinant and synthetic forms allows increased control over the quantity, location, and kinetics of TAA presentation and can result in powerful, specific, anti-tumour immune responses.
Collapse
Affiliation(s)
- N P Restifo
- Surgery Branch, Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|