1
|
Rubtsova VI, Chun Y, Kim J, Ramirez CB, Jung S, Choi W, Kelly ME, Lopez ML, Cassidy E, Rushing G, Aguiar DJ, Lau WL, Ahdoot RS, Smith M, Edinger AL, Lee SG, Jang C, Lee G. Circulating biomarkers of kidney angiomyolipoma and cysts in tuberous sclerosis complex patients. iScience 2024; 27:110265. [PMID: 39027368 PMCID: PMC11255849 DOI: 10.1016/j.isci.2024.110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/04/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Patients with tuberous sclerosis complex (TSC) develop multi-organ disease manifestations, with kidney angiomyolipomas (AML) and cysts being one of the most common and deadly. Early and regular AML/cyst detection and monitoring are vital to lower TSC patient morbidity and mortality. However, the current standard of care involves imaging-based methods that are not designed for rapid screening, posing challenges for early detection. To identify potential diagnostic screening biomarkers of AML/cysts, we performed global untargeted metabolomics in blood samples from 283 kidney AML/cyst-positive or -negative TSC patients using mass spectrometry. We identified 7 highly sensitive chemical features, including octanoic acid, that predict kidney AML/cysts in TSC patients. Patients with elevated octanoic acid have lower levels of very long-chain fatty acids (VLCFAs), suggesting that dysregulated peroxisome activity leads to overproduction of octanoic acid via VLCFA oxidation. These data highlight AML/cysts blood biomarkers for TSC patients and offers valuable metabolic insights into the disease.
Collapse
Affiliation(s)
- Varvara I. Rubtsova
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Yujin Chun
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Joohwan Kim
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Cuauhtemoc B. Ramirez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Wonsuk Choi
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Miranda E. Kelly
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Miranda L. Lopez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | | | | | | | - Wei Ling Lau
- Division of Nephrology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Rebecca S. Ahdoot
- Division of Nephrology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Moyra Smith
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Aimee L. Edinger
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sang-Guk Lee
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Cholsoon Jang
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 2024; 20:101-119. [PMID: 37857763 DOI: 10.1038/s41581-023-00775-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
3
|
Probst S, Fels J, Scharner B, Wolff NA, Roussa E, van Swelm RPL, Lee WK, Thévenod F. Role of hepcidin in oxidative stress and cell death of cultured mouse renal collecting duct cells: protection against iron and sensitization to cadmium. Arch Toxicol 2021; 95:2719-2735. [PMID: 34181029 PMCID: PMC8298330 DOI: 10.1007/s00204-021-03106-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/17/2021] [Indexed: 11/05/2022]
Abstract
The liver hormone hepcidin regulates systemic iron homeostasis. Hepcidin is also expressed by the kidney, but exclusively in distal nephron segments. Several studies suggest hepcidin protects against kidney damage involving Fe2+ overload. The nephrotoxic non-essential metal ion Cd2+ can displace Fe2+ from cellular biomolecules, causing oxidative stress and cell death. The role of hepcidin in Fe2+ and Cd2+ toxicity was assessed in mouse renal cortical [mCCD(cl.1)] and inner medullary [mIMCD3] collecting duct cell lines. Cells were exposed to equipotent Cd2+ (0.5-5 μmol/l) and/or Fe2+ (50-100 μmol/l) for 4-24 h. Hepcidin (Hamp1) was transiently silenced by RNAi or overexpressed by plasmid transfection. Hepcidin or catalase expression were evaluated by RT-PCR, qPCR, immunoblotting or immunofluorescence microscopy, and cell fate by MTT, apoptosis and necrosis assays. Reactive oxygen species (ROS) were detected using CellROX™ Green and catalase activity by fluorometry. Hepcidin upregulation protected against Fe2+-induced mIMCD3 cell death by increasing catalase activity and reducing ROS, but exacerbated Cd2+-induced catalase dysfunction, increasing ROS and cell death. Opposite effects were observed with Hamp1 siRNA. Similar to Hamp1 silencing, increased intracellular Fe2+ prevented Cd2+ damage, ROS formation and catalase disruption whereas chelation of intracellular Fe2+ with desferrioxamine augmented Cd2+ damage, corresponding to hepcidin upregulation. Comparable effects were observed in mCCD(cl.1) cells, indicating equivalent functions of renal hepcidin in different collecting duct segments. In conclusion, hepcidin likely binds Fe2+, but not Cd2+. Because Fe2+ and Cd2+ compete for functional binding sites in proteins, hepcidin affects their free metal ion pools and differentially impacts downstream processes and cell fate.
Collapse
Affiliation(s)
- Stephanie Probst
- Faculty of Health, Institute of Physiology, Pathophysiology and Toxicology and ZBAF (Centre for Biomedical Education and Research), School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany
| | - Johannes Fels
- Faculty of Health, Institute of Physiology, Pathophysiology and Toxicology and ZBAF (Centre for Biomedical Education and Research), School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany
| | - Bettina Scharner
- Faculty of Health, Institute of Physiology, Pathophysiology and Toxicology and ZBAF (Centre for Biomedical Education and Research), School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany
| | - Natascha A Wolff
- Faculty of Health, Institute of Physiology, Pathophysiology and Toxicology and ZBAF (Centre for Biomedical Education and Research), School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Albertstr. 17, 79104, Freiburg, Germany
| | - Rachel P L van Swelm
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Wing-Kee Lee
- Faculty of Health, Institute of Physiology, Pathophysiology and Toxicology and ZBAF (Centre for Biomedical Education and Research), School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany
- AG Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Frank Thévenod
- Faculty of Health, Institute of Physiology, Pathophysiology and Toxicology and ZBAF (Centre for Biomedical Education and Research), School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany.
| |
Collapse
|
4
|
Abstract
SIGNIFICANCE Peroxisomes are organelles present in most eukaryotic cells. The organs with the highest density of peroxisomes are the liver and kidneys. Peroxisomes possess more than fifty enzymes and fulfill a multitude of biological tasks. They actively participate in apoptosis, innate immunity, and inflammation. In recent years, a considerable amount of evidence has been collected to support the involvement of peroxisomes in the pathogenesis of kidney injury. RECENT ADVANCES The nature of the two most important peroxisomal tasks, beta-oxidation of fatty acids and hydrogen peroxide turnover, functionally relates peroxisomes to mitochondria. Further support for their communication and cooperation is furnished by the evidence that both organelles share the components of their division machinery. Until recently, the majority of studies on the molecular mechanisms of kidney injury focused primarily on mitochondria and neglected peroxisomes. CRITICAL ISSUES The aim of this concise review is to introduce the reader to the field of peroxisome biology and to provide an overview of the evidence about the contribution of peroxisomes to the development and progression of kidney injury. The topics of renal ischemia-reperfusion injury, endotoxin-induced kidney injury, diabetic nephropathy, and tubulointerstitial fibrosis, as well as the potential therapeutic implications of peroxisome activation, are addressed in this review. FUTURE DIRECTIONS Despite recent progress, further studies are needed to elucidate the molecular mechanisms induced by dysfunctional peroxisomes and the role of the dysregulated mitochondria-peroxisome axis in the pathogenesis of renal injury. Antioxid. Redox Signal. 25, 217-231.
Collapse
Affiliation(s)
- Radovan Vasko
- Department of Nephrology and Rheumatology, University Medical Center Göttingen , Göttingen, Germany
| |
Collapse
|
5
|
The biogenesis protein PEX14 is an optimal marker for the identification and localization of peroxisomes in different cell types, tissues, and species in morphological studies. Histochem Cell Biol 2013; 140:423-42. [DOI: 10.1007/s00418-013-1133-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 01/09/2023]
|
6
|
Enayetallah AE, French RA, Barber M, Grant DF. Cell-specific subcellular localization of soluble epoxide hydrolase in human tissues. J Histochem Cytochem 2005; 54:329-35. [PMID: 16314446 DOI: 10.1369/jhc.5a6808.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Soluble epoxide hydrolase (sEH) is a phase-I xenobiotic metabolizing enzyme having both an N-terminal phosphatase activity and a C-terminal epoxide hydrolase activity. Endogenous hydrolase substrates include arachidonic acid epoxides, which have been involved in regulating blood pressure and inflammation. The subcellular localization of sEH has been controversial. Earlier studies using mouse and rat liver suggested that sEH may be cytosolic and/or peroxisomal. In this study we applied immunofluorescence and confocal microscopy using markers for different subcellular compartments to evaluate sEH colocalization in an array of human tissues. Results showed that sEH is both cytosolic and peroxisomal in human hepatocytes and renal proximal tubules and exclusively cytosolic in other sEH-containing tissues such as pancreatic islet cells, intestinal epithelium, anterior pituitary cells, adrenal gland, endometrium, lymphoid follicles, prostate ductal epithelium, alveolar wall, and blood vessels. sEH was not exclusively peroxisomal in any of the tissues evaluated. Our data suggest that human sEH subcellular localization is tissue dependent, and that sEH may have tissue- or cell-type-specific functionality. To our knowledge, this is the first report showing the subcellular localization of sEH in a wide array of human tissues.
Collapse
Affiliation(s)
- Ahmed E Enayetallah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | |
Collapse
|
7
|
Grabenbauer M, Fahimi HD, Baumgart E. Detection of peroxisomal proteins and their mRNAs in serial sections of fetal and newborn mouse organs. J Histochem Cytochem 2001; 49:155-64. [PMID: 11156684 DOI: 10.1177/002215540104900203] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We present a protocol for detection of peroxisomal proteins and their corresponding mRNAs on consecutive serial sections of fetal and newborn mouse tissues by immunohistochemistry (IHC) and nonradioactive in situ hybridization (ISH). The use of perfusion-fixation with depolymerized paraformaldehyde combined with paraffin embedding and digoxigenin-labeled cRNA probes provided a highly sensitive ISH protocol, which also permitted immunodetection with high optical resolution by light and/or fluorescence microscopy. Signal enhancement was achieved by the addition of polyvinyl alcohol (PVA) for ISH color development. For IHC, signal amplification was obtained by antigen retrieval combined with biotin-avidin-HRP and Nova Red as substrate or by the catalyzed reporter deposition of fluorescent tyramide. Using this protocol, we studied the developmental changes in localization of the peroxisomal marker enzymes catalase (CAT) and acyl-CoA oxidase 1 (AOX), the key regulatory enzyme of peroxisomal beta-oxidation, at the protein and mRNA levels in mice from embryonic Day 14.5 to birth (P0.5). The mRNA signals for CAT and AOX were detected in sections of complete fetuses, revealing organ- and cell-specific variations. Here we focus on the localization patterns in liver, intestine, and skin, which showed increasing mRNA amounts during development, with the strongest signals in newborns (P0.5). Immunolocalization of the corresponding proteins revealed, in close correlation with the mRNAs, a distinct punctate staining pattern corresponding to the distribution of peroxisomes. (J Histochem Cytochem 49:155-164, 2001)
Collapse
Affiliation(s)
- M Grabenbauer
- Department of Anatomy and Cell Biology, Division of Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
8
|
Fahimi HD, Reich D, Völkl A, Baumgart E. Contributions of the immunogold technique to investigation of the biology of peroxisomes. Histochem Cell Biol 1996; 106:105-14. [PMID: 8858370 DOI: 10.1007/bf02473205] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The immunogold labeling technique has been extremely useful in investigation of the structure and function of peroxisomes. In this report a few examples of the application of this technique with significant implications in the field are briefly reviewed. The problem of extra-peroxisomal catalase, the subject of long controversy between the biochemists and cytochemists, was settled with the immunogold technique, which unequivocally revealed the presence of that enzyme not only in the cytoplasm, but also in the euchromatin region of nucleus, in addition to peroxisomes. On the other hand, lactate dehydrogenase, a typical cytoplasmic protein, has also been shown recently to be present in peroxisomes and to be involved in the reoxidation of NADH produced by the peroxisomal beta-oxidation system. The immunogold technique has revealed several distinct compartments in the matrix of mammalian peroxisomes: urate oxidase in the crystalline cores, alpha-hydroxy acid oxidase B in the marginal plates and D-amino acid oxidase in a non-crystalline condensed region of matrix. The specific alterations of peroxisomal proteins are reflected in their immunolabeling density with gold particles. Quantitation of gold-label by automatic image analysis has revealed that the induction of lipid beta-oxidation enzyme proteins by diverse hypolipidemic drugs is initiated and more pronounced in the pericentral regions of the liver lobule. Finally, immunogold labeling with an antibody to 70 kDa peroxisomal membrane protein has identified a novel class of small peroxisomes that initially incorporate radioactive amino acids more efficiently than regular peroxisomes and thus may represent early stages in the biogenesis of peroxisomes.
Collapse
Affiliation(s)
- H D Fahimi
- Department of Anatomy and Cell Biology (II), University of Heidelberg, Germany
| | | | | | | |
Collapse
|
9
|
Van den Munckhof RJ. In situ heterogeneity of peroxisomal oxidase activities: an update. THE HISTOCHEMICAL JOURNAL 1996; 28:401-29. [PMID: 8863047 DOI: 10.1007/bf02331433] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidases are a widespread group of enzymes. They are present in numerous organisms and organs and in various tissues, cells, and subcellular compartments, such as mitochondria. An important source of oxidases, which is investigated and discussed in this study, are the (micro)peroxisomes. Oxidases share the ability to reduce molecular oxygen during oxidation of their substrate, yielding an oxidized product and hydrogen peroxide. Besides the hydrogen peroxide-catabolizing enzyme catalase, peroxisomes contain one or more hydrogen peroxide-generating oxidases, which participate in different metabolic pathways. During the last four decades, various methods have been developed and elaborated for the histochemical localization of the activities of these oxidases. These methods are based either on the reduction of soluble electron acceptors by oxidase activity or on the capture of hydrogen peroxide. Both methods yield a coloured and/or electron dense precipitate. The most reliable technique in peroxisomal oxidase histochemistry is the cerium salt capture method. This method is based on the direct capture of hydrogen peroxide by cerium ions to form a fine crystalline, insoluble, electron dense reaction product, cerium perhydroxide, which can be visualized for light microscopy with diaminobenzidine. With the use of this technique, it became clear that oxidase activities not only vary between different organisms, organs, and tissues, but that heterogeneity also exists between different cells and within cells, i.e. between individual peroxisomes. A literature review, and recent studies performed in our laboratory, show that peroxisomes are highly differentiated organelles with respect to the presence of active enzymes. This study gives an overview of the in situ distribution and heterogeneity of peroxisomal enzyme activities as detected by histochemical assays of the activities of catalase, and the peroxisomal oxidases D-amino acid oxidase, L-alpha-hydroxy acid oxidase, polyamine oxidase and uric acid oxidase.
Collapse
Affiliation(s)
- R J Van den Munckhof
- University of Amsterdam, Department of Cell Biology and Histology, The Netherlands
| |
Collapse
|
10
|
Imamura A, Kamei A, Suzuki Y, Kondo N, Orii T, Takashima S. Immunohistochemistry for a bifunctional protein in patients with peroxisomal disorders. Pediatr Neurol 1995; 12:341-5. [PMID: 7546007 DOI: 10.1016/0887-8994(95)00053-i] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Immunohistochemical studies using antisera against bifunctional protein, a beta-oxidation enzyme, were performed on liver, kidney, and brain tissue specimens from patients with peroxisomal disorders and from controls to investigate the distribution and development of peroxisomes. Bifunctional protein-positive granules were not found in patients with Zellweger syndrome or neonatal adrenoleukodystrophy, whereas positive immunoreactivity was observed from 8 and 6 weeks gestation in the liver and kidney, respectively, and in the brain, from 23-25 weeks in the brainstem neurons and from 12-14 weeks in the white matter glia, in controls. Bifunctional protein immunoreactivity then increased with gestation in the brain. These results suggest that bifunctional protein immunohistochemistry is useful for the detection of peroxisomes, which are closely related to neuronal maturation and gliogenesis in premyelination in human brain development.
Collapse
Affiliation(s)
- A Imamura
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Lehmann T, Völkl A, Fahimi HD. The importance of tissue fixation for light microscopic immunohistochemical localization of peroxisomal proteins: the superiority of Carnoy's fixative over Baker's formalin and Bouin's solution. Histochem Cell Biol 1995; 103:187-95. [PMID: 7553132 DOI: 10.1007/bf01454023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have compared the effects of fixation with three commonly used fixatives upon preservation of the antigenicity of six peroxisomal proteins in rat liver using both immunohistochemical staining and Western blotting of fixed tissue extracts. The immunoreactivity of all six peroxisomal proteins was well preserved and peroxisomes were clearly identified in material fixed in Carnoy's fixative. Moreover, the corresponding proteins stained well in Western blots prepared from extracts of Carnoy-fixed material. The intensity of the immunohistochemical staining was reduced at different rates for individual peroxisomal proteins after fixation in Baker's formalin, but peroxisomes were still well visualized with antibodies to catalase and some beta-oxidation enzymes. No evidence of immunohistochemical staining for any peroxisomal antigens was obtained after fixation in Bouin's fluid. For detection of the antibody binding sites in Carnoy's fixed material, the avidin-biotin-peroxidase complex (ABC) with aminoethyl carbazole as chromogen was found to be superior to the methods of peroxidase-antiperoxidase/diaminobenzidine and protein A-gold with silver intensification. Using Carnoy-fixative and the ABC-method, we demonstrate light microscopic immunohistochemical localization of peroxisomal antigens in several rat tissues as well as in human post-mortem liver.
Collapse
Affiliation(s)
- T Lehmann
- Institute for Anatomy and Cell Biology (II), University of Heidelberg, Germany
| | | | | |
Collapse
|
12
|
Espeel M, Van Limbergen G. Immunocytochemical localization of peroxisomal proteins in human liver and kidney. J Inherit Metab Dis 1995; 18 Suppl 1:135-54. [PMID: 9053548 DOI: 10.1007/bf00711436] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The sample preparation and immunocytochemical methods for investigating the presence and subcellular localization of peroxisomal proteins (catalase, the three beta-oxidation enzymes, alanine : glyoxylate aminotransferase and a peroxisomal membrane protein) in human liver biopsies are described. We present a protocol for immunolabelling on ultrathin and semithin sections from the same tissue block, with protein A-colloidal gold as a reporter system. For this purpose, the tissue is embedded in Unicryl, a hydrophilic acrylic resin that is cured by ultraviolet illumination at 2 degrees C. The limitations and possibilities of the methods are discussed together with methodological problems. Cryostat sections of prefixed material should be used for the visualization by light microscopy of cytoplasmic catalase. It is emphasized that immunolabelling for catalase in formalin-fixed archival liver samples and in liver autopsy tissue (in the latter also for the peroxisomal beta-oxidation enzymes) permits visualization of peroxisomes; this can be helpful in diagnosing an index case retrospectively.
Collapse
Affiliation(s)
- M Espeel
- Department of Anatomy, Embryology and Histology, University of Gent, Beligium
| | | |
Collapse
|
13
|
Abstract
The morphological and morphometric characteristics of peroxisomes in normal human liver and the peroxisomal alterations in the liver of patients with acquired or congenital non-peroxisomal diseases are reviewed. Secondary peroxisomal changes are observed in steatosis, hepatitis and cirrhosis induced by various agents (viruses, alcohol, drugs, etc.), in cholestasis, in hepatomas, in extra-hepatic cancer with or without liver metastasis, in extrahepatic inflammatory processes, in metabolic disorders affecting metabolism of carbohydrates, lipids and lipoproteins, glycoproteins, amino acids, bilirubin or copper, and in altered thyroid hormone levels. They are recognized as a proliferation of peroxisomes (increased in number and to a lesser extent in surface density and volume density) often accompanied by a minor reduction in size (at most to 68% of the mean diameter in control livers) but very rarely by an increase in mean peroxisomal diameter, and as proliferation-related changes in shape (tails, gastruloid cisternae, funnel-like constrictions, elongation, protrusions) in at least a few of the peroxisomes. These secondary alterations of the peroxisomes are clearly distinguishable from the primary changes in peroxisomes observed in the liver of patients with congenital peroxisomal disorders.
Collapse
Affiliation(s)
- D De Craemer
- Menselijke Anatomie & Embryologie, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
14
|
Imamura A, Kamei A, Suzuki Y, Orii T, Takashima S. Developmental immunohistochemistry of bifunctional protein in human brain. Brain Res 1994; 640:236-9. [PMID: 8004450 DOI: 10.1016/0006-8993(94)91878-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Immunohistochemical studies of a peroxisomal enzyme, bifunctional protein, were performed on human brains (occipital cortex, cerebellum, pons) from fetus to young adult. Bifunctional protein-positive neurons appeared at 23-25 weeks of gestation in the facial nuclei of pons, at 27-28 weeks in the occipital cortex and Purkinje cells of vermis, and at 36-38 weeks in the Purkinje cells of the cerebellar hemisphere and pontine nuclei. They then increased in number with gestational age. However, bifunctional protein-positive glia appeared early in the occipital deep white matter at 17-20 weeks of gestation, their appearance shifting from the deep to the superficial white matter with increasing age. These results suggest that bifunctional protein is closely related to neuronal maturation and gliogenesis of premyelination in the human brain during development as other peroxisomal enzymes.
Collapse
Affiliation(s)
- A Imamura
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
15
|
Houdou S, Takashima S, Suzuki Y. Immunohistochemical expression of peroxisomal enzymes in developing human brain. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1993; 19:235-48. [PMID: 8397584 DOI: 10.1007/bf03160002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The immunohistochemistry of peroxisomes was examined in human brains from fetal to adult ages using antibodies against catalase (CAT), acyl-CoA oxidase (AOX), and 3-ketoacyl-CoA thiolase (PT) on conventional formalin-fixed paraffin-embedded sections. Positive staining neurons first appeared in the basal ganglia, thalamus, and cerebellum at 27-28 wk of gestation, and in the frontal cortex at 35-36 wk of gestation. They increased in number with gestational age and the intensity of immunostaining increased with enlargement of perikaryonal size. Positively staining glial cells first appeared in the deep white matter at 31-32 wk of gestation, their appearance showing a shift from the deep to the superficial white matter with increasing age. This developmental change in the peroxisomal immunoreactivities in glial cells corresponds with that in myelination glia. Therefore, the results suggest that peroxisomes are closely related to neuronal growth and myelinogenesis in the developing human brain. Also, our results as to myelinogenesis may explain one pathogenetic factor of dysmyelination in peroxisomal disorders.
Collapse
Affiliation(s)
- S Houdou
- Division of Mental Retardation and Birth Defect Research, National Institute of Neurological Science, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Kamei A, Houdou S, Takashima S, Suzuki Y, Becker LE, Armstrong DL. Peroxisomal disorders in children: immunohistochemistry and neuropathology. J Pediatr 1993; 122:573-9. [PMID: 8463903 DOI: 10.1016/s0022-3476(05)83538-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immunohistochemical studies with antisera against four peroxisomal enzymes, catalase and beta-oxidation enzymes (acyl-coenzyme A oxidase, bifunctional protein, and 3-ketoacyl-CoA thiolase), were performed on brain, liver, and kidney specimens from patients with peroxisomal disorders, as well as specimens from three control subjects, by using conventional paraffin-embedded autopsy material. The patients included eight with Zellweger syndrome and one with neonatal adrenoleukodystrophy. In the liver and kidney specimens from all patients, except one with Zellweger syndrome, diffuse immunostaining with all antisera in the cytoplasm of hepatocytes and renal tubular epithelium suggested an absence of peroxisomes but the presence of peroxisomal enzymes. Examination of brain specimens indicated a weak or negative reaction of neurons in the cerebral cortex and a weak reaction of glial cells in the white matter, which suggested maturational delay compared with control subjects. The delayed immunoreactive pattern of peroxisomal enzymes in Zellweger syndrome and neonatal adrenoleukodystrophy may be related to the significant neuropathologic features of polymicrogyria and dysmyelinogenesis. One patient with Zellweger syndrome had a unique finding of a positive granular catalase reaction and a negative reaction with antisera to 3-ketoacyl-coenzyme A thiolase, which suggested a diagnosis of pseudo-Zellweger syndrome. This study validates the application of these immunohistochemical methods to the study of peroxisomal enzymes. Use of these methods improves the accuracy of diagnosis of peroxisomal disorders.
Collapse
Affiliation(s)
- A Kamei
- Division of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Houdou S, Kuruta H, Hasegawa M, Konomi H, Takashima S, Suzuki Y, Hashimoto T. Developmental immunohistochemistry of catalase in the human brain. Brain Res 1991; 556:267-70. [PMID: 1933360 DOI: 10.1016/0006-8993(91)90314-l] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The immunohistochemical studies on a peroxisomal enzyme, catalase, were done on brains from human fetuses to adults. The catalase-positive neurons appeared in the basal ganglia, thalamus and cerebellum at 27-28 weeks of gestation, and in the frontal cortex at 35 weeks. They then increased in number with gestational age. The extent of immunopositive staining increased with enlargement of perikaryonal size. However, the extent gradually decreased with postnatal age. On the other hand, catalase-positive glia appeared in the deep white matter at 31-32 weeks of gestation, their appearance shifting from the deep to the superficial white matter with increasing age. These results suggest that peroxisomes are closely related to neuronal growth and myelinogenesis in the human brain during development.
Collapse
Affiliation(s)
- S Houdou
- Division of Mental Retardation and Birth Defect Research, National Institute of Neurological Science, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Espeel M, Roels F, Van Maldergem L, De Craemer D, Dacremont G, Wanders RJ, Hashimoto T. Peroxisomal localization of the immunoreactive beta-oxidation enzymes in a neonate with a beta-oxidation defect. Pathological observations in liver, adrenal cortex and kidney. VIRCHOWS ARCHIV. A, PATHOLOGICAL ANATOMY AND HISTOPATHOLOGY 1991; 419:301-8. [PMID: 1949612 DOI: 10.1007/bf01606521] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A boy born to healthy, unrelated parents, presented at birth with hypotonia and seizures. Very long chain fatty acids in the plasma were strongly elevated; bile acid intermediates and plasmalogen biosynthesis were normal. Acyl-CoA oxidase activity was normal. The patient died at the age of 3 months. The cerebellum and medulla oblongata showed neuronal migration defects. The specific biochemical basis for the impaired peroxisomal beta-oxidation has not been found. The three immunoreactive peroxisomal beta-oxidation enzymes and catalase were localized in the hepatocellular peroxisomes. Aberrant features of the peroxisomes included: a subpopulation of organelles larger than 1 micron, an amorphous nucleoid in many organelles, and invaginations of the peroxisomal membrane into the matrix. Peroxisomes in the proximal renal tubules also contained the three immunoreactive beta-oxidation enzymes. Regularly spaced trilamellar inclusions were seen in hepatic macrophages; they were much more abundant in adrenocortical macrophages. The inclusions were birefringent and resistant to acetone extraction. Distinct hepatic fibrosis had developed over a period of 2.5 months. We speculate that the impaired beta-oxidation is due to a defect at the level of the peroxisomal carnitine octanoyl or -acetyl transferase, responsible for the export of beta-oxidation products.
Collapse
Affiliation(s)
- M Espeel
- Department of Human Anatomy and Embryology, Free University of Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Espeel M, Jauniaux E, Hashimoto T, Roels F. Immunocytochemical localization of peroxisomal beta-oxidation enzymes in human fetal liver. Prenat Diagn 1990; 10:349-57. [PMID: 2217076 DOI: 10.1002/pd.1970100602] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the majority of congenital peroxisomal disorders, beta-oxidation of very long chain fatty acids is deficient. We have investigated the appearance and localization of the three peroxisomal beta-oxidation enzymes in normal fetal liver (fertilization age between 5 and 18 weeks) with protein A-gold immunocytochemistry and silver enhancement for light microscopic visualization. With specificity-tested polyclonal antibodies, acyl-CoA-oxidase, bifunctional enzyme, and 3-oxoacyl-CoA thiolase were localized in the peroxisomes of the parenchymal cells, which appear as brown or black granules. In the youngest specimen, no immunopositive reaction was obtained. A weak reaction with anti-thiolase was obtained at the age of 6-7 weeks. At a fertilization age of 8 weeks, peroxisomes could be distinctly visualized after immunostaining for all three enzymes. From a staining series with anti-thiolase on simultaneously treated slides, it appears that the amount of antigen per peroxisome and the organelle size increase between the seventh and eighteenth weeks. These data should enable a more specific diagnosis in fetal liver biopsies from pregnancies at risk and after termination of pregnancy.
Collapse
Affiliation(s)
- M Espeel
- Free University Brussels, Laboratory of Human Anatomy, Belgium
| | | | | | | |
Collapse
|
21
|
De Craemer D, Espeel M, Langendries M, Schutgens RB, Hashimoto T, Roels F. Post-mortem visualization of peroxisomes in rat and in human liver. THE HISTOCHEMICAL JOURNAL 1990; 22:36-44. [PMID: 1690188 DOI: 10.1007/bf01962877] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper describes spontaneous post-mortem changes of peroxisomal staining in normal liver and kidney of rats and in human autopsy liver. At room temperature, regional staining loss is observed at 18 h after death in rat kidney, at 24 h in human liver and at 48 h in rat liver. Preservation at 4 degrees C delays this phenomenon. In human liver, the peroxisomal volume density is decreased at both temperatures at 48 h. After freezing of fresh tissue in dry ice, peroxisomal staining is decreased homogeneously. Under the electron microscope, peroxisomal alterations suggest a loss of catalase activity. These changes do not necessarily preclude the study of peroxisomal features since, even after 48 h at room temperature, peroxisomes are still well stained in the less affected regions. Catalase and three beta-oxidation enzymes, namely acyl-CoA oxidase, bifunctional protein (with enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase) and 3-oxoacyl-CoA thiolase, could be visualized immunocytochemically in human autopsy livers up to 48 h after death. However, the study of certain peroxisomal features such a catalase activity and peroxisomal distribution, may be hampered as the post-mortem period is prolonged.
Collapse
Affiliation(s)
- D De Craemer
- Department of Human Anatomy, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Espeel M, Hashimoto T, De Craemer D, Roels F. Immunocytochemical detection of peroxisomal beta-oxidation enzymes in cryostat and paraffin sections of human post mortem liver. THE HISTOCHEMICAL JOURNAL 1990; 22:57-62. [PMID: 1690189 DOI: 10.1007/bf01962880] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The immunocytochemical visualization of the peroxisomal beta-oxidation enzymes was investigated in three human post mortem liver samples. Acyl-CoA oxidase, bifunctional protein and 3-oxoacyl-CoA thiolase remained immunocytochemically detectable 30, 55 and 72 h after death. Peroxisomes in the parenchymal cells were clearly visualized for light microscopy (paraffin and cryostat sections), using protein A-gold in combination with silver enhancement. In two samples catalase activity became very weak, but catalase antigenicity was well preserved. The findings prove the diagnostic value of post mortem samples, even after extreme conditions of tissue conservation. The technique of immunocytochemical staining for the peroxisomal beta-oxidation enzymes on unmounted cryostat sections has not been reported previously. This method allows a quick diagnosis of biopsies from patients suspected of peroxisomal disorders.
Collapse
Affiliation(s)
- M Espeel
- Department of Human Anatomy, Vrije Universiteit Brussel, Belgium
| | | | | | | |
Collapse
|
23
|
Strange RC, Hiley C, Roberts C, Jones PW, Bell J, Hume R. Studies on copper-zinc superoxide dismutase expression in developing human liver and kidney. FREE RADICAL RESEARCH COMMUNICATIONS 1989; 7:105-12. [PMID: 2806956 DOI: 10.3109/10715768909087930] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CuZn superoxide dismutase levels were found to be high in developing human kidney and liver compared to some other tissues including lung. In kidney, the enzyme was expressed in proximal and distal tubules, loop of Henle and collecting tubules and after 35 weeks of gestation it appeared to be distributed basally in proximal cells and luminally in distal cells. Glomerular structures were generally negative. CuZn superoxide dismutase was widely expressed in developing liver, with hepatocytes and bile duct epithelium demonstrating positivity. The low level of expression of CuZn superoxide dismutase in the glomerulus compared with the tubules was not expected since intrinsic glomerular cells demonstrate greater production of reactive oxygen species in response to some stimuli than do tubular cells. Expression of this enzyme may be determined by the need to generate hydrogen peroxide.
Collapse
Affiliation(s)
- R C Strange
- Department of Postgraduate Medicine, University of Keele, North Staffordshire Hospital Centre, Stoke-on-Trent, UK
| | | | | | | | | | | |
Collapse
|