1
|
Faa G, Ziranu P, Pretta A, Cau R, Coghe F, Cau F, Fraschini M, Castagnola M, Saba L, Scartozzi M. The impact of the fetal exposome as a predictor of cancer risk in childhood and adulthood. Aberrant epigenetic events occurring during gestation: May they trigger fetal programming of cancer risk later in life? Int J Gynaecol Obstet 2025. [PMID: 40391529 DOI: 10.1002/ijgo.70224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/21/2025]
Abstract
The rising incidence of cancer, particularly among children and young adults, has led to renewed interest in the early-life origins of the disease. The fetal programming hypothesis, originally proposed by Barker, posits that environmental disruptions during intrauterine development can induce long-lasting molecular and structural changes that increase susceptibility to diseases, including cancer, later in life. This narrative review examines how prenatal exposures, such as maternal malnutrition, alcohol use, exposure to toxins, obesity, and hormonal imbalances, may epigenetically reprogram the developing fetus, influencing cancer risk throughout the lifespan. We summarize mechanistic evidence from both epidemiologic studies and preclinical models, highlighting the roles of altered DNA methylation, growth factor signaling, and inflammation. While we emphasize fetal life as a critical window for cancer prevention, we also acknowledge alternative explanations for the rising cancer rates among younger populations, including improved diagnostics and lifestyle factors. Gaining an understanding of these early-life determinants of cancer may lead to new opportunities for targeted prevention strategies that begin before birth.
Collapse
Affiliation(s)
- Gavino Faa
- Department of Medical Sciences and Public Health, AOU Cagliari, University of Cagliari, Cagliari, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Unit of Radiology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Ferdinando Coghe
- Clinical-Microbiological Laboratory, AOU Cagliari, Cagliari, Italy
| | - Flaviana Cau
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Matteo Fraschini
- Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, Cagliari, Italy
| | - Massimo Castagnola
- Proteomics Laboratory, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Luca Saba
- Unit of Radiology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| |
Collapse
|
2
|
Mazzocca A, Ferraro G, Misciagna G. The systemic evolutionary theory of the origin of cancer (SETOC): an update. Mol Med 2025; 31:12. [PMID: 39806272 PMCID: PMC11730465 DOI: 10.1186/s10020-025-01069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
The Systemic Evolutionary Theory of the Origin of Cancer (SETOC) is a recently proposed theory founded on two primary principles: the cooperative and endosymbiotic process of cell evolution as described by Lynn Margulis, and the integration of complex systems operating in eukaryotic cells, which is a core concept in systems biology. The SETOC proposes that malignant transformation occurs when cells undergo a continuous adaptation process in response to long-term injuries, leading to tissue remodeling, chronic inflammation, fibrosis, and ultimately cancer. This process involves a maladaptive response, wherein the 'endosymbiotic contract' between the nuclear-cytoplasmic system (derived from the primordial archaeal cell) and the mitochondrial system (derived from the primordial α-proteobacterium) gradually breaks down. This ultimately leads to uncoordinated behaviors and functions in transformed cells. The decoupling of the two cellular subsystems causes transformed cells to acquire phenotypic characteristics analogous to those of unicellular organisms, as well as certain biological features of embryonic development that are normally suppressed. These adaptive changes enable cancer cells to survive in the harsh tumor microenvironment characterized by low oxygen concentrations, inadequate nutrients, increased catabolic waste, and increased acidity. De-endosymbiosis reprograms the sequential metabolic functions of glycolysis, the TCA cycle, and oxidative phosphorylation (OxPhos). This leads to increased lactate fermentation (Warburg effect), respiratory chain dysfunction, and TCA cycle reversal. Here, we present an updated version of the SETOC that incorporates the fundamental principles outlined by this theory and integrates the epistemological approach used to develop it.
Collapse
Affiliation(s)
- Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
- Association for Systems Science, Via S. Stefano, 42, I-75100, Matera, Italy.
| | - Giovanni Ferraro
- Association for Systems Science, Via S. Stefano, 42, I-75100, Matera, Italy
| | - Giovanni Misciagna
- Association for Systems Science, Via S. Stefano, 42, I-75100, Matera, Italy
| |
Collapse
|
3
|
Graham S, Dmitrieva M, Vendramini-Costa DB, Francescone R, Trujillo MA, Cukierman E, Wood LD. From precursor to cancer: decoding the intrinsic and extrinsic pathways of pancreatic intraepithelial neoplasia progression. Carcinogenesis 2024; 45:801-816. [PMID: 39514554 DOI: 10.1093/carcin/bgae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the progression of pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma through a dual lens of intrinsic molecular alterations and extrinsic microenvironmental influences. PanIN development begins with Kirsten rat sarcoma viral oncogene (KRAS) mutations driving PanIN initiation. Key additional mutations in cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein p53 (TP53), and mothers against decapentaplegic homolog 4 (SMAD4) disrupt cell cycle control and genomic stability, crucial for PanIN progression from low-grade to high-grade dysplasia. Additional molecular alterations in neoplastic cells, including epigenetic modifications and chromosomal alterations, can further contribute to neoplastic progression. In parallel with these alterations in neoplastic cells, the microenvironment, including fibroblast activation, extracellular matrix remodeling, and immune modulation, plays a pivotal role in PanIN initiation and progression. Crosstalk between neoplastic and stromal cells influences nutrient support and immune evasion, contributing to tumor development, growth, and survival. This review underscores the intricate interplay between cell-intrinsic molecular drivers and cell-extrinsic microenvironmental factors, shaping PanIN predisposition, initiation, and progression. Future research aims to unravel these interactions to develop targeted therapeutic strategies and early detection techniques, aiming to alleviate the severe impact of pancreatic cancer by addressing both genetic predispositions and environmental influences.
Collapse
Affiliation(s)
- Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Mariia Dmitrieva
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Debora Barbosa Vendramini-Costa
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Ralph Francescone
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
4
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Schaeberle CM, Bouffard VA, Sonnenschein C, Soto AM. Modeling Mammary Organogenesis from Biological First Principles: A Systems Biology Approach. Methods Mol Biol 2024; 2745:177-188. [PMID: 38060186 DOI: 10.1007/978-1-0716-3577-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Stromal-epithelial interactions mediate mammary gland development and the formation and progression of breast cancer. To study these interactions in vitro, 3D models are essential. We have successfully developed novel 3D in vitro models that allow the formation of mammary gland structures closely resembling those found in vivo and that respond to the hormonal cues that regulate mammary gland morphogenesis and function. Due to their simplicity when compared to in vivo studies, and to their accessibility to visualization in real time, these models are well suited to conceptual and mathematical modeling.
Collapse
Affiliation(s)
| | | | | | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
6
|
Tschodu D, Lippoldt J, Gottheil P, Wegscheider AS, Käs JA, Niendorf A. Re-evaluation of publicly available gene-expression databases using machine-learning yields a maximum prognostic power in breast cancer. Sci Rep 2023; 13:16402. [PMID: 37798300 PMCID: PMC10556090 DOI: 10.1038/s41598-023-41090-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Gene expression signatures refer to patterns of gene activities and are used to classify different types of cancer, determine prognosis, and guide treatment decisions. Advancements in high-throughput technology and machine learning have led to improvements to predict a patient's prognosis for different cancer phenotypes. However, computational methods for analyzing signatures have not been used to evaluate their prognostic power. Contention remains on the utility of gene expression signatures for prognosis. The prevalent approaches include random signatures, expert knowledge, and machine learning to construct an improved signature. We unify these approaches to evaluate their prognostic power. Re-evaluation of publicly available gene-expression data from 8 databases with 9 machine-learning models revealed previously unreported results. Gene-expression signatures are confirmed to be useful in predicting a patient's prognosis. Convergent evidence from [Formula: see text] 10,000 signatures implicates a maximum prognostic power. By calculating the concordance index, which measures how well patients with different prognoses can be discriminated, we show that a signature can correctly discriminate patients' prognoses no more than 80% of the time. Additionally, we show that more than 50% of the potentially available information is still missing at this value. We surmise that an accurate prognosis must incorporate molecular, clinical, histological, and other complementary factors.
Collapse
Affiliation(s)
- Dimitrij Tschodu
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany.
| | - Jürgen Lippoldt
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany
| | - Pablo Gottheil
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany
| | - Anne-Sophie Wegscheider
- Institute for Histology, Cytology and Molecular Diagnostics, MVZ Prof. Dr. med. A. Niendorf Pathologie Hamburg-West GmbH, 22767, Hamburg, Germany
| | - Josef A Käs
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany.
| | - Axel Niendorf
- Institute for Histology, Cytology and Molecular Diagnostics, MVZ Prof. Dr. med. A. Niendorf Pathologie Hamburg-West GmbH, 22767, Hamburg, Germany.
| |
Collapse
|
7
|
Pensotti A, Bertolaso M, Bizzarri M. Is Cancer Reversible? Rethinking Carcinogenesis Models-A New Epistemological Tool. Biomolecules 2023; 13:733. [PMID: 37238604 PMCID: PMC10216038 DOI: 10.3390/biom13050733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
A growing number of studies shows that it is possible to induce a phenotypic transformation of cancer cells from malignant to benign. This process is currently known as "tumor reversion". However, the concept of reversibility hardly fits the current cancer models, according to which gene mutations are considered the primary cause of cancer. Indeed, if gene mutations are causative carcinogenic factors, and if gene mutations are irreversible, how long should cancer be considered as an irreversible process? In fact, there is some evidence that intrinsic plasticity of cancerous cells may be therapeutically exploited to promote a phenotypic reprogramming, both in vitro and in vivo. Not only are studies on tumor reversion highlighting a new, exciting research approach, but they are also pushing science to look for new epistemological tools capable of better modeling cancer.
Collapse
Affiliation(s)
- Andrea Pensotti
- Research Unit of Philosophy of Science and Human Development, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
8
|
Evo-devo perspectives on cancer. Essays Biochem 2022; 66:797-815. [PMID: 36250956 DOI: 10.1042/ebc20220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
The integration of evolutionary and developmental approaches into the field of evolutionary developmental biology has opened new areas of inquiry- from understanding the evolution of development and its underlying genetic and molecular mechanisms to addressing the role of development in evolution. For the last several decades, the terms 'evolution' and 'development' have been increasingly linked to cancer, in many different frameworks and contexts. This mini-review, as part of a special issue on Evolutionary Developmental Biology, discusses the main areas in cancer research that have been addressed through the lenses of both evolutionary and developmental biology, though not always fully or explicitly integrated in an evo-devo framework. First, it briefly introduces the current views on carcinogenesis that invoke evolutionary and/or developmental perspectives. Then, it discusses the main mechanisms proposed to have specifically evolved to suppress cancer during the evolution of multicellularity. Lastly, it considers whether the evolution of multicellularity and development was shaped by the threat of cancer (a cancer-evo-devo perspective), and/or whether the evolution of developmental programs and life history traits can shape cancer resistance/risk in various lineages (an evo-devo-cancer perspective). A proper evolutionary developmental framework for cancer, both as a disease and in terms of its natural history (in the context of the evolution of multicellularity and development as well as life history traits), could bridge the currently disparate evolutionary and developmental perspectives and uncover aspects that will provide new insights for cancer prevention and treatment.
Collapse
|
9
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
10
|
Lugassy C, Kleinman HK, Cassoux N, Barnhill R. Hematogenous metastasis and tumor dormancy as concepts or dogma? The continuum of vessel co-option and angiotropic extravascular migratory metastasis as an alternative. Front Oncol 2022; 12:996411. [PMID: 36303828 PMCID: PMC9594150 DOI: 10.3389/fonc.2022.996411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022] Open
Abstract
It has been accepted for many years that tumor cells spread via the circulation to distant sites. The latency period between treatment and tumor recurrence has been attributed to dormant cells in distant organs that emerge and grow as metastatic tumors. These processes are accepted with an incomplete demonstration of their existence. Challenging such a well-established accepted paradigm is not easy as history as shown. An alternative or co-existing mechanism involving tumor cell migration along the outside of the vessels and co-option of the blood vessel has been studied for over 25 years and is presented. Several lines of data support this new mechanism of tumor spread and metastatic growth and is termed angiotropic extravascular migratory metastasis or EVMM. This slow migration along the outside of the vessel wall may explain the latency period between treatment and metastatic tumor growth. The reader is asked to be open to this possible new concept in how tumors spread and grow and the reason for this latency period. A full understanding of how tumors spread and grow is fundamental for the targeting of new therapeutics.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France
| | - Hynda K. Kleinman
- Laboratory of Cell Biology, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nathalie Cassoux
- University of Paris Réné Descartes Faculty (UFR) of Medicine, Paris, France
- Department of Ophthalmology, Institut Curie, Paris, France
| | - Raymond Barnhill
- Department of Translational Research, Institut Curie, Paris, France
- University of Paris Réné Descartes Faculty (UFR) of Medicine, Paris, France
| |
Collapse
|
11
|
Lin MH, Li CY, Cheng YY, Guo HR. Arsenic in Drinking Water and Incidences of Leukemia and Lymphoma: Implication for Its Dual Effects in Carcinogenicity. Front Public Health 2022; 10:863882. [PMID: 35570949 PMCID: PMC9099091 DOI: 10.3389/fpubh.2022.863882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/08/2022] [Indexed: 01/11/2023] Open
Abstract
Arsenic in drinking water has been recognized as carcinogenic to humans and can cause solid cancers of lung, urinary bladder, and skin. Positive associations have also been reported between arsenic ingestion and cancers of kidney, liver and prostate. Nevertheless, arsenic trioxide has been used successfully in the treatment of acute promyelocytic leukemia. Therefore, arsenic might play different roles in the carcinogenesis of solid cancers and hematologic malignancies. The relationship between arsenic in drinking water and the incidences of hematologic malignancies has not been fully investigated. We established a cohort of Taiwanese population and assorted 319 townships of Taiwan into two exposure categories using 0.05 mg/L as the cutoff. Then, we linked these data to the Taiwan Cancer Registry and computed standardized incidence ratios (SIRs) of lymphoma and leukemia by sex, exposure category and time period. The trend of changes in the SIRs over time was assessed, from 1981-1990 to 1991-2000 and then to 2001-2010. We found that in both lymphoma and leukemia, the higher exposure category was associated with lower SIRs in both men and women. In terms of time trends, the SIRs in both lymphoma and leukemia showed increasing trends in both sexes, while exposure to arsenic in drinking water decreased over time. The arsenic level in drinking water was negatively associated with the incidences of lymphoma and leukemia in both men and women. This study supports the dual effects of arsenic on carcinogenesis, with a potential protective effect against hematologic malignancies.
Collapse
Affiliation(s)
- Ming-Hsien Lin
- Division of Hematology and Oncology, Department of Internal Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan,Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Yun Cheng
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,*Correspondence: How-Ran Guo
| |
Collapse
|
12
|
Murdock MH, Hussey GS, Chang JT, Hill RC, Nascari DG, Rao AV, Hansen KC, Foley LM, Hitchens TK, Amankulor NM, Badylak SF. A liquid fraction of extracellular matrix inhibits glioma cell viability in vitro and in vivo. Oncotarget 2022; 13:426-438. [PMID: 35198102 PMCID: PMC8860176 DOI: 10.18632/oncotarget.28203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Suppressive effects of extracellular matrix (ECM) upon various cancers have been reported. Glioblastoma multiforme has poor prognosis and new therapies are desired. This work investigated the effects of a saline-soluble fraction of urinary bladder ECM (ECM-SF) upon glioma cells. Viability at 24 hours in 1, 5, or 10 mg/mL ECM-SF-spiked media was evaluated in primary glioma cells (0319, 1015, 1119), glioma cell lines (A172, T98G, U87MG, C6), and brain cell lines (HCN-2, HMC3). Viability universally decreased at 5 and 10 mg/mL with U87MG, HCN-2, and HCM3 being least sensitive. Apoptosis in 0319 and 1119 cells was confirmed via NucView 488. Bi-weekly intravenous injection of ECM-SF (120 mg/kg) for 10 weeks in Sprague-Dawley rats did not affect weight, temperature, complete blood count, or multi-organ histology (N = 5). Intratumoral injection of ECM-SF (10 uL of 30 mg/mL) at weeks 2-4 post C6 inoculation in Wistar rats increased median survival from 24.5 to 51 days (hazard ratio for death 0.22) and decreased average tumor volume at time of death from 349 mm3 to 90 mm3 over 10 weeks (N = 6). Mass spectrometry identified 2,562 protein species in ECM-SF, parent ECM, and originating tissue. These results demonstrate the suppressive effects of ECM on glioma and warrant further study.
Collapse
Affiliation(s)
- Mark H. Murdock
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - George S. Hussey
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jordan T. Chang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - David G. Nascari
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aparna V. Rao
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Lesley M. Foley
- Animal Imaging Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - T. Kevin Hitchens
- Animal Imaging Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nduka M. Amankulor
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F. Badylak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Dhimolea E, de Matos Simoes R, Kansara D, Al'Khafaji A, Bouyssou J, Weng X, Sharma S, Raja J, Awate P, Shirasaki R, Tang H, Glassner BJ, Liu Z, Gao D, Bryan J, Bender S, Roth J, Scheffer M, Jeselsohn R, Gray NS, Georgakoudi I, Vazquez F, Tsherniak A, Chen Y, Welm A, Duy C, Melnick A, Bartholdy B, Brown M, Culhane AC, Mitsiades CS. An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence. Cancer Cell 2021; 39:240-256.e11. [PMID: 33417832 PMCID: PMC8670073 DOI: 10.1016/j.ccell.2020.12.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 01/23/2023]
Abstract
Treatment-persistent residual tumors impede curative cancer therapy. To understand this cancer cell state we generated models of treatment persistence that simulate the residual tumors. We observe that treatment-persistent tumor cells in organoids, xenografts, and cancer patients adopt a distinct and reversible transcriptional program resembling that of embryonic diapause, a dormant stage of suspended development triggered by stress and associated with suppressed Myc activity and overall biosynthesis. In cancer cells, depleting Myc or inhibiting Brd4, a Myc transcriptional co-activator, attenuates drug cytotoxicity through a dormant diapause-like adaptation with reduced apoptotic priming. Conversely, inducible Myc upregulation enhances acute chemotherapeutic activity. Maintaining residual cells in dormancy after chemotherapy by inhibiting Myc activity or interfering with the diapause-like adaptation by inhibiting cyclin-dependent kinase 9 represent potential therapeutic strategies against chemotherapy-persistent tumor cells. Our study demonstrates that cancer co-opts a mechanism similar to diapause with adaptive inactivation of Myc to persist during treatment.
Collapse
Affiliation(s)
- Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| | - Ricardo de Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Dhvanir Kansara
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | | | - Juliette Bouyssou
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiang Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA
| | - Shruti Sharma
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA
| | - Joseline Raja
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA
| | - Pallavi Awate
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA
| | - Ryosuke Shirasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Huihui Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Brian J Glassner
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jordan Bryan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jennifer Roth
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Scheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nathanael S Gray
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | | | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alana Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Cihangir Duy
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aedin C Culhane
- Department of Data Sciences, Dana-Farber Cancer Institute & Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
14
|
Miquel PA, Hwang SY. On biological individuation. Theory Biosci 2021; 141:203-211. [PMID: 33389691 DOI: 10.1007/s12064-020-00329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/06/2020] [Indexed: 11/26/2022]
Abstract
In this paper, we understand the emergence of life as a pure individuation process. Individuation already occurs in open thermodynamics systems near equilibrium. We understand such open systems, as already recursively characterized (R1) by the relation between their internal properties, and their boundary conditions. Second, global properties emerge in such physical systems. We interpret this change as the fact that their structure is the recursive result of their operations (R2). We propose a simulation of the emergence of life in Earth by a mapping (R) through which (R1R2) operators are applied to themselves, so that RN = (R1R2)N. We suggest that under specific thermodynamic (open systems out of equilibrium) and chemical conditions (autocatalysis, kinetic dynamic stability), this mapping can go up to a limit characterized by a fixed-point equation: [Formula: see text]. In this equation, ([Formula: see text]) symbolizes a regime of permanent resonance characterizing the biosphere, as open from inside, by the recursive differential relation between the biosphere and all its holobionts. As such the biosphere is closed on itself as a pure differential entity. ([Formula: see text]) symbolizes the regime of permanent change characterizing the emergence of evolution in the biosphere. As such the biosphere is closed on itself, by the principle of descent with modifications, and by the fact that every holobiont evolves in a niche, while evolving with it.
Collapse
Affiliation(s)
- Paul-Antoine Miquel
- Université de Toulouse 2, 5 Allée Antonio Machado, 31058, TOULOUSE, Cedex 9, France.
| | - Su-Young Hwang
- Department of Liberal Arts and Science, Hongik University, Sejong-Ro 2639, Jochiwon-eup, the New City of Sejong, South Korea
| |
Collapse
|
15
|
Hoel E, Levin M. Emergence of informative higher scales in biological systems: a computational toolkit for optimal prediction and control. Commun Integr Biol 2020; 13:108-118. [PMID: 33014263 PMCID: PMC7518458 DOI: 10.1080/19420889.2020.1802914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
The biological sciences span many spatial and temporal scales in attempts to understand the function and evolution of complex systems-level processes, such as embryogenesis. It is generally assumed that the most effective description of these processes is in terms of molecular interactions. However, recent developments in information theory and causal analysis now allow for the quantitative resolution of this question. In some cases, macro-scale models can minimize noise and increase the amount of information an experimenter or modeler has about "what does what." This result has numerous implications for evolution, pattern regulation, and biomedical strategies. Here, we provide an introduction to these quantitative techniques, and use them to show how informative macro-scales are common across biology. Our goal is to give biologists the tools to identify the maximally-informative scale at which to model, experiment on, predict, control, and understand complex biological systems.
Collapse
Affiliation(s)
- Erik Hoel
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
16
|
Foletti A, Fais S. Unexpected Discoveries Should Be Reconsidered in Science-A Look to the Past? Int J Mol Sci 2019; 20:ijms20163973. [PMID: 31443232 PMCID: PMC6720802 DOI: 10.3390/ijms20163973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
From the past, we know how much “serendipity” has played a pivotal role in scientific discoveries. The definition of serendipity implies the finding of one thing while looking for something else. The most known example of this is the discovery of penicillin. Fleming was studying “Staphylococcus influenzae” when one of his culture plates became contaminated and developed a mold that created a bacteria-free circle. Then he found within the mold, a substance that proved to be very active against the vast majority of bacteria infecting human beings. Serendipity had a key role in the discovery of a wide panel of psychotropic drugs as well, including aniline purple, lysergic acid diethylamide, meprobamate, chlorpromazine, and imipramine. Actually, many recent studies support a step back in current strategies that could lead to new discoveries in science. This change should seriously consider the idea that to further focus research project milestones that are already too focused could be a mistake. How can you observe something that others did not realize before you? Probably, one pivotal requirement is that you pay a high level of attention on what is occurring all around you. But this is not entirely enough, since, specifically talking about scientific discoveries, you should have your mind sufficiently unbiased from mainstream infrastructures, which normally make you extremely focused on a particular endpoint without paying attention to potential “unexpected discoveries”. Research in medicine should probably come back to the age of innocence and avoid the age of mainstream reports that do not contribute to real advances in the curing of human diseases. Max Planck said “Science progresses not because scientists change their minds, but rather because scientists attached to erroneous views die, and are replaced”, and Otto Warburg used the same words when he realized the lack of acceptance of his ideas. This editorial proposes a series of examples showing, in a practical way, how unfocused research may contribute to very important discoveries in science.
Collapse
Affiliation(s)
- Alberto Foletti
- Clinical Biophysics International Research Group, 6900 Lugano, Switzerland
- Institute of Translational Pharmacology, National Research Council-CNR, 00133 Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, 00133 Rome, Italy.
| |
Collapse
|
17
|
Dobrzyński L, Fornalski KW, Reszczyńska J, Janiak MK. Modeling Cell Reactions to Ionizing Radiation: From a Lesion to a Cancer. Dose Response 2019; 17:1559325819838434. [PMID: 31001068 PMCID: PMC6454661 DOI: 10.1177/1559325819838434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/15/2019] [Indexed: 01/19/2023] Open
Abstract
This article focuses on the analytic modeling of responses of cells in the body to ionizing radiation. The related mechanisms are consecutively taken into account and discussed. A model of the dose- and time-dependent adaptive response is considered for 2 exposure categories: acute and protracted. In case of the latter exposure, we demonstrate that the response plateaus are expected under the modelling assumptions made. The expected total number of cancer cells as a function of time turns out to be perfectly described by the Gompertz function. The transition from a collection of cancer cells into a tumor is discussed at length. Special emphasis is put on the fact that characterizing the growth of a tumor (ie, the increasing mass and volume), the use of differential equations cannot properly capture the key dynamics-formation of the tumor must exhibit properties of the phase transition, including self-organization and even self-organized criticality. As an example, a manageable percolation-type phase transition approach is used to address this problem. Nevertheless, general theory of tumor emergence is difficult to work out mathematically because experimental observations are limited to the relatively large tumors. Hence, determination of the conditions around the critical point is uncertain.
Collapse
Affiliation(s)
- L. Dobrzyński
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk,
Poland
| | - K. W. Fornalski
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk,
Poland
- Ex-Polon Laboratory, Łazy, Poland
| | - J. Reszczyńska
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk,
Poland
| | - M. K. Janiak
- Department of Radiobiology and Radiation Protection, Military
Institute of Hygiene and Epidemiology (WIHE), Warszawa, Poland
| |
Collapse
|
18
|
Cofre J, Saalfeld K, Abdelhay E. Cancer as an Embryological Phenomenon and Its Developmental Pathways: A Hypothesis regarding the Contribution of the Noncanonical Wnt Pathway. ScientificWorldJournal 2019; 2019:4714781. [PMID: 30940992 PMCID: PMC6421044 DOI: 10.1155/2019/4714781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/18/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
For gastrulation to occur in human embryos, a mechanism that simultaneously regulates many different processes, such as cell differentiation, proliferation, migration, and invasion, is required to consistently and effectively create a human being during embryonic morphogenesis. The striking similarities in the processes of cancer and gastrulation have prompted speculation regarding the developmental pathways involved in their regulation. One of the fundamental requirements for the developmental pathways in gastrulation and cancer is the ability to respond to environmental stimuli, and it has been proposed that the Kaiso and noncanonical Wnt pathways participate in the mechanisms regulating these developmental pathways. In particular, these pathways might also explain the notable differences in invasive capacity between cancers of endodermal and mesodermal origins and cancers of ectodermal origin. Nevertheless, the available information indicates that cancer is an abnormal state of adult human cells in which developmental pathways are reactivated in inappropriate temporal and spatial contexts.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Universidade Federal de Santa Catarina, Sala 313b, 88040-900 Florianópolis, SC, Brazil
| | - Kay Saalfeld
- Laboratório de Filogenia Animal, Universidade Federal de Santa Catarina, Brazil
| | - Eliana Abdelhay
- Divisão de Laboratórios do CEMO, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Abstract
Life starts with a zygote, which is formed by the fusion of a haploid sperm and egg. The formation of a blastomere by cleavage division (nuclear division without an increase in cell size) is the first step in embryogenesis, after the formation of the zygote. Blastomeres are responsible for reprogramming the parental genome as a new embryonic genome for generation of the pluripotent stem cells which then differentiate by Waddington's epigenetic landscape to create a new life. Multiple authors over the past 150 years have proposed that tumors arises from development gone awry at a point within Waddington's landscape. Recent discoveries showing that differentiated somatic cells can be reprogrammed into induced pluripotent stem cells, and that somatic cell nuclear transfer can be used to successfully clone animals, have fundamentally reshaped our understanding of tumor development and origin. Differentiated somatic cells are plastic and can be induced to dedifferentiate into pluripotent stem cells. Here, I review the evidence that suggests somatic cells may have a previously overlooked endogenous embryonic program that can be activated to dedifferentiate somatic cells into stem cells of various potencies for tumor initiation. Polyploid giant cancer cells (PGCCs) have long been observed in cancer and were thought originally to be nondividing. Contrary to this belief, recent findings show that stress-induced PGCCs divide by endoreplication, which may recapitulate the pattern of cleavage-like division in blastomeres and lead to dedifferentiation of somatic cells by a programmed process known as "the giant cell cycle", which comprise four distinct but overlapping phases: initiation, self-renewal, termination and stability. Depending on the intensity and type of stress, different levels of dedifferentiation result in the formation of tumors of different grades of malignancy. Based on these results, I propose a unified dualistic model to demonstrate the origin of human tumors. The tenet of this model includes four points, as follows. 1. Tumors originate from a stem cell at a specific developmental hierarchy, which can be achieved by dualistic origin: dedifferentiation of the zygote formed by two haploid gametes (sexual reproduction) via the blastomere during normal development, or transformation from damaged or aged mature somatic cells via a blastomere-like embryonic program (asexual reproduction). 2. Initiation of the tumor begins with a stem cell that has uncoupled the differentiation from the proliferation program which results in stem cell maturation arrest. 3. The developmental hierarchy at which stem cells arrest determines the degree of malignancy: the more primitive the level at which stem cells arrest, the greater the likelihood of the tumor being malignant. 4. Environmental factors and intrinsic genetic or epigenetic alterations represent the risk factors or stressors that facilitate stem cell arrest and somatic cell dedifferentiation. However, they, per se, are not the driving force of tumorigenesis. Thus, the birth of a tumor can be viewed as a triad that originates from a stem cell via dedifferentiation through a blastomere or blastomere-like program, which then differentiates along Waddington's landscape, and arrests at a developmental hierarchy. Blocking the PGCC-mediated dedifferentiation process and inducing their differentiation may represent a novel alternative approach to eliminate the tumor occurrence and therapeutic resistance.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4095, United States.
| |
Collapse
|
20
|
Environmental Carcinogenesis and Transgenerational Transmission of Carcinogenic Risk: From Genetics to Epigenetics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081791. [PMID: 30127322 PMCID: PMC6121489 DOI: 10.3390/ijerph15081791] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
The dominant pathogenic model, somatic mutation theory (SMT), considers carcinogenesis as a ‘genetic accident’ due to the accumulation of ‘stochastic’ DNA mutations. This model was proposed and accepted by the scientific community when cancer mainly affected the elderly, but it does not explain the epidemiological observation of the continuous increase in cancer incidence among children and young adults. Somatic mutation theory has been proposed for a revision based on the emerging experimental evidence, as it does not fully address some issues that have proven to be crucial for carcinogenesis, namely: the inflammatory context of cancer; the key role played by the stroma, microenvironment, endothelial cells, activated macrophages, and surrounding tissues; and the distorted developmental course followed by the neoplastic tissue. Furthermore, SMT is often not able to consider either the existence of specific mutations resulting in a well-defined cancer type, or a clear relationship between mutations and tumor progression. Moreover, it does not explain the mechanism of action of the non-mutagenic and environmental carcinogens. In the last decade, cancer research has highlighted the prominent role of an altered regulation of gene expression, suggesting that cancer should be considered as a result of a polyclonal epigenetic disruption of stem/progenitor cells, mediated by tumour-inducing genes. The maternal and fetal exposure to a wide range of chemicals and environmental contaminants is raising the attention of the scientific community. Indeed, the most powerful procarcinogenic mechanisms of endocrine disruptors and other pollutants is linked to their potential to interfere epigenetically with the embryo-fetal programming of tissues and organs, altering the regulation of the genes involved in the cell cycle, cell proliferation, apoptosis, and other key signaling pathways. The embryo-fetal exposure to environmental, stressful, and proinflammatory triggers (first hit), seems to act as a ‘disease primer’, making fetal cells and tissues more susceptible to the subsequent environmental exposures (second hit), triggering the carcinogenic pathways. Furthermore, even at the molecular level, in carcinogenesis, ‘epigenetics precedes genetics’ as global DNA hypomethylation, and the hypermethylation of tumor suppressor genes are common both in cancerous and in precancerous cells, and generally precede mutations. These epigenetic models may better explain the increase of cancer and chronic/degenerative diseases in the last decades and could be useful to adopt appropriate primary prevention measures, essentially based on the reduction of maternal-fetal and child exposure to several procarcinogenic agents and factors dispersed in the environment and in the food-chains, as recently suggested by the World Health Organization.
Collapse
|
21
|
Palumbo A, Da Costa NM, Esposito F, De Martino M, D'Angelo D, de Sousa VPL, Martins I, Nasciutti LE, Fusco A, Ribeiro Pinto LF. HMGA2 overexpression plays a critical role in the progression of esophageal squamous carcinoma. Oncotarget 2017; 7:25872-84. [PMID: 27027341 PMCID: PMC5041951 DOI: 10.18632/oncotarget.8288] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
Esophageal Squamous Cell Carcinoma (ESCC) is the most common esophageal tumor worldwide. However, there is still a lack of deeper knowledge about biological alterations involved in ESCC development. High Mobility Group A (HMGA) protein family has been related with poor outcome and malignant cell transformation in several tumor types. In this way, the aim of this study was to analyze the expression of HMGA1 and HMGA2 expression in ESCC and their role in crucial cellular features. We evaluated HMGA1 and HMGA2 mRNA expression in 52 paired ESCC and normal surrounding tissue samples by qRT-PCR. Here, we show that HMGA2, but not HMGA1, is overexpressed in ESCC samples. This result was further confirmed by the immunohistochemical analysis. Indeed, accordingly to mRNA expression data, HMGA2, but not HMGA1, was overexpressed in approximately 90% of ESCC samples, while it was barely expressed in the respective control. Conversely, HMGA1, but not HMGA2, was overexpressed in esophageal adenocarcinoma samples. Interestingly, HMGA2 abrogation attenuated the malignant phenotype of two ESCC cell lines, suggesting that HMGA2 overexpression is involved in ESCC progression.
Collapse
Affiliation(s)
- Antonio Palumbo
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil.,Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde - Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | | | - Francesco Esposito
- Istituto di Endocrinologia e Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Daniela D'Angelo
- Istituto di Endocrinologia e Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | | | - Ivanir Martins
- Divisão de Patologia, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde - Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Alfredo Fusco
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil.,Istituto di Endocrinologia e Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
22
|
Brock A, Huang S. Precision Oncology: Between Vaguely Right and Precisely Wrong. Cancer Res 2017; 77:6473-6479. [PMID: 29162615 DOI: 10.1158/0008-5472.can-17-0448] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/28/2017] [Accepted: 09/25/2017] [Indexed: 11/16/2022]
Abstract
Precision Oncology seeks to identify and target the mutation that drives a tumor. Despite its straightforward rationale, concerns about its effectiveness are mounting. What is the biological explanation for the "imprecision?" First, Precision Oncology relies on indiscriminate sequencing of genomes in biopsies that barely represent the heterogeneous mix of tumor cells. Second, findings that defy the orthodoxy of oncogenic "driver mutations" are now accumulating: the ubiquitous presence of oncogenic mutations in silent premalignancies or the dynamic switching without mutations between various cell phenotypes that promote progression. Most troublesome is the observation that cancer cells that survive treatment still will have suffered cytotoxic stress and thereby enter a stem cell-like state, the seeds for recurrence. The benefit of "precision targeting" of mutations is inherently limited by this counterproductive effect. These findings confirm that there is no precise linear causal relationship between tumor genotype and phenotype, a reminder of logician Carveth Read's caution that being vaguely right may be preferable to being precisely wrong. An open-minded embrace of the latest inconvenient findings indicating nongenetic and "imprecise" phenotype dynamics of tumors as summarized in this review will be paramount if Precision Oncology is ultimately to lead to clinical benefits. Cancer Res; 77(23); 6473-9. ©2017 AACR.
Collapse
Affiliation(s)
- Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas.
| | - Sui Huang
- Institute for Systems Biology, Seattle, Washington.
| |
Collapse
|
23
|
Sigston EAW, Williams BRG. An Emergence Framework of Carcinogenesis. Front Oncol 2017; 7:198. [PMID: 28959682 PMCID: PMC5603758 DOI: 10.3389/fonc.2017.00198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/17/2017] [Indexed: 11/13/2022] Open
Abstract
Experimental paradigms provide the framework for the understanding of cancer, and drive research and treatment, but are rarely considered by clinicians. The somatic mutation theory (SMT), in which cancer is considered a genetic disease, has been the predominant traditional model of cancer for over 50 years. More recently, alternative theories have been proposed, such as tissue organization field theory (TOFT), evolutionary models, and inflammatory models. Key concepts within the various models have led to them being difficult to reconcile. Progressively, it has been recognized that biological systems cannot be fully explained by the physicochemical properties of their constituent parts. There is an increasing call for a 'systems' approach. Incorporating the concepts of 'emergence', 'systems', 'thermodynamics', and 'chaos', a single integrated framework for carcinogenesis has been developed, enabling existing theories to become compatible as alternative mechanisms, facilitating the integration of bioinformatics and providing a structure in which translational research can flow from both 'benchtop to bedside' and 'bedside to benchtop'. In this review, a basic understanding of the key concepts of 'emergence', 'systems', 'system levels', 'complexity', 'thermodynamics', 'entropy', 'chaos', and 'fractals' is provided. Non-linear mathematical equations are included where possible to demonstrate compatibility with bioinformatics. Twelve principles that define the 'emergence framework of carcinogenesis' are developed, with principles 1-10 encapsulating the key concepts upon which the framework is built and their application to carcinogenesis. Principle 11 relates the framework to cancer progression. Principle 12 relates to the application of the framework to translational research. The 'emergence framework of carcinogenesis' collates current paradigms, concepts, and evidence around carcinogenesis into a single framework that incorporates previously incompatible viewpoints and ideas. Any researcher, scientist, or clinician involved in research, treatment, or prevention of cancer can employ this framework.
Collapse
Affiliation(s)
- Elizabeth A W Sigston
- Department of Otorhinolaryngology, Head & Neck Surgery, Monash Health, Melbourne, VIC, Australia.,Department of Surgery, Monash Medical Centre, Monash University, Melbourne, VIC, Australia.,Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Bryan R G Williams
- Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Cofre J, Abdelhay E. Cancer Is to Embryology as Mutation Is to Genetics: Hypothesis of the Cancer as Embryological Phenomenon. ScientificWorldJournal 2017; 2017:3578090. [PMID: 28553657 PMCID: PMC5434308 DOI: 10.1155/2017/3578090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/20/2017] [Indexed: 01/20/2023] Open
Abstract
Despite numerous advances in cell biology, genetics, and developmental biology, cancer origin has been attributed to genetic mechanisms primarily involving mutations. Embryologists have expressed timidly cancer embryological origin with little success in leveraging the discussion that cancer could involve a set of conventional cellular processes used to build the embryo during morphogenesis. Thus, this "cancer process" allows the harmonious and coherent construction of the embryo structural base, and its implementation as the embryonic process involves joint regulation of differentiation, proliferation, cell invasion, and migration, enabling the human being recreation of every generation. On the other hand, "cancer disease" is the representation of an abnormal state of the cell that might happen in the stem cells of an adult person, in which the mechanism for joint gene regulating of differentiation, proliferation, cell invasion, and migration could be reactivated in an entirely inappropriate context.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Universidade Federal de Santa Catarina, Sala 313b, 88040-900 Florianópolis, SC, Brazil
| | - Eliana Abdelhay
- Divisão de Laboratórios do CEMO, Instituto Nacional do Câncer, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
Rosslenbroich B. Properties of Life: Toward a Coherent Understanding of the Organism. Acta Biotheor 2016; 64:277-307. [PMID: 27485949 DOI: 10.1007/s10441-016-9284-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 07/22/2016] [Indexed: 12/18/2022]
Abstract
The question of specific properties of life compared to nonliving things accompanied biology throughout its history. At times this question generated major controversies with largely diverging opinions. Basically, mechanistic thinkers, who tried to understand organismic functions in terms of nonliving machines, were opposed by those who tried to describe specific properties or even special forces being active within living entities. As this question included the human body, these controversies always have been of special relevance to our self-image and also touched practical issues of medicine. During the second half of the twentieth century, it seemed to be resolved that organisms are explainable basically as physicochemical machines. Especially from the perspective of molecular biology, it seemed to be clear that organisms need to be explained solely by the chemical functions of their component parts, although some resistance to this view never ceased. This research program has been working quite successfully, so that science today knows a lot about the physiological and chemical processes within organisms. However, again new doubts arise questioning whether the mere continuation of this analytical approach will finally generate a fundamental understanding of living entities. At the beginning of the twenty-first century the quest for a new synthesis actually comes from analytical empiricists themselves. The hypothesis of the present paper is that empirical research has been developed far enough today, that it reveals by itself the materials and the prerequisites to understand more of the specific properties of life. Without recourse to mysterious forces, it is possible to generate answers to this age-old question, just using recent, empirically generated knowledge. This view does not contradict the results of reductionistic research, but rather grants them meaning within the context of organismic systems and also may increase their practical usefulness. Although several of these properties have been discussed before, different authors usually concentrated on a single one or some of them. The paper describes ten specific properties of living entities as they can be deduced from contemporary science. The aim is to demonstrate that the results of empirical research show both the necessity as well as the possibility of the development of a new conception of life to build a coherent understanding of organismic functions.
Collapse
|
26
|
Montévil M, Speroni L, Sonnenschein C, Soto AM. Modeling mammary organogenesis from biological first principles: Cells and their physical constraints. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:58-69. [PMID: 27544910 DOI: 10.1016/j.pbiomolbio.2016.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
In multicellular organisms, relations among parts and between parts and the whole are contextual and interdependent. These organisms and their cells are ontogenetically linked: an organism starts as a cell that divides producing non-identical cells, which organize in tri-dimensional patterns. These association patterns and cells types change as tissues and organs are formed. This contextuality and circularity makes it difficult to establish detailed cause and effect relationships. Here we propose an approach to overcome these intrinsic difficulties by combining the use of two models; 1) an experimental one that employs 3D culture technology to obtain the structures of the mammary gland, namely, ducts and acini, and 2) a mathematical model based on biological principles. The typical approach for mathematical modeling in biology is to apply mathematical tools and concepts developed originally in physics or computer sciences. Instead, we propose to construct a mathematical model based on proper biological principles. Specifically, we use principles identified as fundamental for the elaboration of a theory of organisms, namely i) the default state of cell proliferation with variation and motility and ii) the principle of organization by closure of constraints. This model has a biological component, the cells, and a physical component, a matrix which contains collagen fibers. Cells display agency and move and proliferate unless constrained; they exert mechanical forces that i) act on collagen fibers and ii) on other cells. As fibers organize, they constrain the cells on their ability to move and to proliferate. The model exhibits a circularity that can be interpreted in terms of closure of constraints. Implementing the mathematical model shows that constraints to the default state are sufficient to explain ductal and acinar formation, and points to a target of future research, namely, to inhibitors of cell proliferation and motility generated by the epithelial cells. The success of this model suggests a step-wise approach whereby additional constraints imposed by the tissue and the organism could be examined in silico and rigorously tested by in vitro and in vivo experiments, in accordance with the organicist perspective we embrace.
Collapse
Affiliation(s)
- Maël Montévil
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France; Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST) - UMR 8590, 13, rue du Four, 75006 Paris, France.
| | - Lucia Speroni
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Carlos Sonnenschein
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, École Normale Supérieure, Paris, France; Institut d'Etudes Avancées de Nantes, France.
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, République des Savoirs, CNRS USR3608, Collège de France et École Normale Supérieure, Paris, France.
| |
Collapse
|
27
|
Theoretical principles for biology: Variation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:36-50. [PMID: 27530930 DOI: 10.1016/j.pbiomolbio.2016.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022]
Abstract
Darwin introduced the concept that random variation generates new living forms. In this paper, we elaborate on Darwin's notion of random variation to propose that biological variation should be given the status of a fundamental theoretical principle in biology. We state that biological objects such as organisms are specific objects. Specific objects are special in that they are qualitatively different from each other. They can undergo unpredictable qualitative changes, some of which are not defined before they happen. We express the principle of variation in terms of symmetry changes, where symmetries underlie the theoretical determination of the object. We contrast the biological situation with the physical situation, where objects are generic (that is, different objects can be assumed to be identical) and evolve in well-defined state spaces. We derive several implications of the principle of variation, in particular, biological objects show randomness, historicity and contextuality. We elaborate on the articulation between this principle and the two other principles proposed in this special issue: the principle of default state and the principle of organization.
Collapse
|
28
|
Theoretical principles for biology: Organization. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:24-35. [PMID: 27521451 DOI: 10.1016/j.pbiomolbio.2016.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/20/2016] [Accepted: 07/29/2016] [Indexed: 01/21/2023]
Abstract
In the search of a theory of biological organisms, we propose to adopt organization as a theoretical principle. Organization constitutes an overarching hypothesis that frames the intelligibility of biological objects, by characterizing their relevant aspects. After a succinct historical survey on the understanding of organization in the organicist tradition, we offer a specific characterization in terms of closure of constraints. We then discuss some implications of the adoption of organization as a principle and, in particular, we focus on how it fosters an original approach to biological stability, as well as and its interplay with variation.
Collapse
|
29
|
Mazzocca A, Ferraro G, Misciagna G, Carr BI. A systemic evolutionary approach to cancer: Hepatocarcinogenesis as a paradigm. Med Hypotheses 2016; 93:132-7. [PMID: 27372872 DOI: 10.1016/j.mehy.2016.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/21/2016] [Indexed: 12/20/2022]
Abstract
The systemic evolutionary theory of cancer pathogenesis posits that cancer is generated by the de-emergence of the eukaryotic cell system and by the re-emergence of its archaea (genetic material and cytoplasm) and prokaryotic (mitochondria) subsystems with an uncoordinated behavior. This decreased coordination can be caused by a change in the organization of the eukaryote environment (mainly chronic inflammation), damage to mitochondrial DNA and/or to its membrane composition by many agents (e.g. viruses, chemicals, hydrogenated fatty acids in foods) or damage to nuclear DNA that controls mitochondrial energy production or metabolic pathways, including glycolysis. Here, we postulate that the two subsystems (the evolutionarily inherited archaea and the prokaryote) in a eukaryotic differentiated cell are well integrated, and produce the amount of clean energy that is constantly required to maintain the differentiated status. Conversely, when protracted injuries impair cell or tissue organization, the amount of energy necessary to maintain cell differentiation can be restricted, and this may cause gradual de-differentiation of the eukaryotic cell over time. In cirrhotic liver, for example, this process can be favored by reduced oxygen availability to the organ due to an altered vasculature and the fibrotic barrier caused by the disease. Thus, hepatocarcinogenesis is an ideal example to support our hypothesis. When cancer arises, the pre-eukaryote subsystems become predominant, as shown by the metabolic alterations of cancer cells (anaerobic glycolysis and glutamine utilization), and by their capacity for proliferation and invasion, resembling the primitive symbiotic components of the eukaryotic cell.
Collapse
Affiliation(s)
- Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Giovanni Ferraro
- Interuniversity Department of Physics, Polytechnic of Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Giovanni Misciagna
- Scientific and Ethical Committee, University Hospital Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Brian I Carr
- Izmir Biomedicine and Genome Center, Dokuz Eylul University, 35340 Balcova, Izmir, Turkey
| |
Collapse
|
30
|
SMT or TOFT? How the two main theories of carcinogenesis are made (artificially) incompatible. Acta Biotheor 2015; 63:257-67. [PMID: 25851566 DOI: 10.1007/s10441-015-9252-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/31/2015] [Indexed: 01/01/2023]
Abstract
The building of a global model of carcinogenesis is one of modern biology's greatest challenges. The traditional somatic mutation theory (SMT) is now supplemented by a new approach, called the Tissue Organization Field Theory (TOFT). According to TOFT, the original source of cancer is loss of tissue organization rather than genetic mutations. In this paper, we study the argumentative strategy used by the advocates of TOFT to impose their view. In particular, we criticize their claim of incompatibility used to justify the necessity to definitively reject SMT. First, we note that since it is difficult to build a non-ambiguous experimental demonstration of the superiority of TOFT, its partisans add epistemological and metaphysical arguments to the debate. This argumentative strategy allows them to defend the necessity of a paradigm shift, with TOFT superseding SMT. To do so, they introduce a notion of incompatibility, which they actually use as the Kuhnian notion of incommensurability. To justify this so-called incompatibility between the two theories of cancer, they move the debate to a metaphysical ground by assimilating the controversy to a fundamental opposition between reductionism and organicism. We show here that this argumentative strategy is specious, because it does not demonstrate clearly that TOFT is an organicist theory. Since it shares with SMT its vocabulary, its ontology and its methodology, it appears that a claim of incompatibility based on this metaphysical plan is not fully justified in the present state of the debate. We conclude that it is more cogent to argue that the two theories are compatible, both biologically and metaphysically. We propose to consider that TOFT and SMT describe two distinct and compatible causal pathways to carcinogenesis. This view is coherent with the existence of integrative approaches, and suggests that they have a higher epistemic value than the two theories taken separately.
Collapse
|
31
|
Chernet BT, Levin M. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget 2015; 5:3287-306. [PMID: 24830454 PMCID: PMC4102810 DOI: 10.18632/oncotarget.1935] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The microenvironment is increasingly recognized as a crucial aspect of cancer. In contrast and complement to the field's focus on biochemical factors and extracellular matrix, we characterize a novel aspect of host:tumor interaction - endogenous bioelectric signals among non-excitable somatic cells. Extending prior work focused on the bioelectric state of cancer cells themselves, we show for the first time that the resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS to drive formation of tumor-like structures that exhibited overproliferation, increased nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression of hyperpolarizing ion channels at distant sites within the tadpole significantly reduced the incidence of these tumors. The suppression of tumorigenesis could also be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a treatment modality not requiring gene therapy. Using a dominant negative approach, we implicate HDAC1 as the mechanism by which resting potential changes affect downstream cell behaviors. Based on published data on the voltage-mediated changes of butyrate flux through the SLC5A8 transporter, we present a model linking resting potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic data suggest that the relevant butyrate is generated by a native bacterial species, identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling.
Collapse
Affiliation(s)
- Brook T Chernet
- Center for Regenerative and Developmental Biology and Department of Biology Tufts University 200 Boston Avenue,Suite 4600 Medford, MA 02155 U.S.A
| | | |
Collapse
|
32
|
|
33
|
Oddone E, Modonesi C, Gatta G. Occupational exposures and colorectal cancers: A quantitative overview of epidemiological evidence. World J Gastroenterol 2014; 20:12431-12444. [PMID: 25253943 PMCID: PMC4168076 DOI: 10.3748/wjg.v20.i35.12431] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/21/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
A traditional belief widespread across the biomedical community was that dietary habits and genetic predisposition were the basic factors causing colorectal cancer. In more recent times, however, a growing evidence has shown that other determinants can be very important in increasing (or reducing) incidence of this malignancy. The hypothesis that environmental and occupational risk factors are associated with colorectal cancer is gaining ground, and high risks of colorectal cancer have been reported among workers in some industrial branches. The aim of this study was to investigate the epidemiologic relationship between colorectal cancer and occupational exposures to several industrial activities, by means of a scientific literature review and meta-analysis. This work pointed out increased risks of colorectal cancer for labourers occupied in industries with a wide use of chemical compounds, such as leather (RR = 1.70, 95%CI: 1.24-2.34), basic metals (RR = 1.32, 95%CI: 1.07-1.65), plastic and rubber manufacturing (RR = 1.30, 95%CI: 0.98-1.71 and RR = 1.27, 95%CI: 0.92-1.76, respectively), besides workers in the sector of repair and installation of machinery exposed to asbestos (RR = 1.40, 95%CI: 1.07-1.84). Based on our results, the estimated crude excess risk fraction attributable to occupational exposure ranged from about 11% to about 15%. However, homogeneous pattern of association between colorectal cancer and industrial branches did not emerge from this review.
Collapse
|
34
|
Abstract
For almost a century, the somatic mutation theory (SMT) has been the prevalent theory to explain carcinogenesis. The SMT posits that the accumulation of mutations in the genome of a single normal cell is responsible for the transformation of such cell into a neoplasm. Implicitly, this theory claims that the default state of cells in metazoan is quiescence and that cancer is a cell-based, genetic and molecular disease. From lessons learned while performing our own research on control of cell proliferation and while adopting an organicist perspective, in 1999, we proposed a competing theory, the tissue organization field theory (TOFT). In contraposition to the SMT, (1) the TOFT posits that cancer is a tissue-based disease whereby carcinogens (directly) and mutations in the germ-line (indirectly) may alter normal interactions between the stroma and their adjacent epithelium. And (2) the TOFT explicitly acknowledges that the default state of all cells is proliferation and motility, a premise that is relevant to and compatible with evolutionary theory. Theoretical arguments and experimental evidence are presented to compare the merits of the original SMT and its variants and those of the TOFT in organizing principles, construct objectivity, and ultimately explain carcinogenesis.
Collapse
Affiliation(s)
- Carlos Sonnenschein
- Department of anatomy and cellular biology, Tufts University School of Medicine, Boston, États-Unis
| | - Ana M Soto
- Department of anatomy and cellular biology, Tufts University School of Medicine, Boston, États-Unis - chaire Blaise Pascal 2013-2014, Centre Cavaillès, ENS, Paris, France
| |
Collapse
|
35
|
Exploring the ligand-protein networks in traditional chinese medicine: current databases, methods and applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 827:227-57. [PMID: 25387968 PMCID: PMC7120483 DOI: 10.1007/978-94-017-9245-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While the concept of "single component-single target" in drug discovery seems to have come to an end, "Multi-component-multi-target" is considered to be another promising way out in this field. The Traditional Chinese Medicine (TCM), which has thousands of years' clinical application among China and other Asian countries, is the pioneer of the "Multi-component-multi-target" and network pharmacology. Hundreds of different components in a TCM prescription can cure the diseases or relieve the patients by modulating the network of potential therapeutic targets. Although there is no doubt of the efficacy, it is difficult to elucidate convincing underlying mechanism of TCM due to its complex composition and unclear pharmacology. Without thorough investigation of its potential targets and side effects, TCM is not able to generate large-scale medicinal benefits, especially in the days when scientific reductionism and quantification are dominant. The use of ligand-protein networks has been gaining significant value in the history of drug discovery while its application in TCM is still in its early stage. This article firstly surveys TCM databases for virtual screening that have been greatly expanded in size and data diversity in recent years. On that basis, different screening methods and strategies for identifying active ingredients and targets of TCM are outlined based on the amount of network information available, both on sides of ligand bioactivity and the protein structures. Furthermore, applications of successful in silico target identification attempts are discussed in details along with experiments in exploring the ligand-protein networks of TCM. Finally, it will be concluded that the prospective application of ligand-protein networks can be used not only to predict protein targets of a small molecule, but also to explore the mode of action of TCM.
Collapse
|
36
|
Ciurea ME, Georgescu AM, Purcaru SO, Artene SA, Emami GH, Boldeanu MV, Tache DE, Dricu A. Cancer stem cells: biological functions and therapeutically targeting. Int J Mol Sci 2014; 15:8169-85. [PMID: 24821540 PMCID: PMC4057726 DOI: 10.3390/ijms15058169] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/20/2014] [Accepted: 04/24/2014] [Indexed: 12/18/2022] Open
Abstract
Almost all tumors are composed of a heterogeneous cell population, making them difficult to treat. A small cancer stem cell population with a low proliferation rate and a high tumorigenic potential is thought to be responsible for cancer development, metastasis and resistance to therapy. Stem cells were reported to be involved in both normal development and carcinogenesis, some molecular mechanisms being common in both processes. No less controversial, stem cells are considered to be important in treatment of malignant diseases both as targets and drug carriers. The efforts to understand the role of different signalling in cancer stem cells requires in depth knowledge about the mechanisms that control their self-renewal, differentiation and malignant potential. The aim of this paper is to discuss insights into cancer stem cells historical background and to provide a brief review of the new therapeutic strategies for targeting cancer stem cells.
Collapse
Affiliation(s)
- Marius Eugen Ciurea
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Ada Maria Georgescu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Stefana Oana Purcaru
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Stefan-Alexandru Artene
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Ghazaleh Hooshyar Emami
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Mihai Virgil Boldeanu
- Stem Cell Bank Unit, Medico Science SRL, Str. Brazda lui Novac nr. 1B, Craiova 200690, Romania.
| | - Daniela Elise Tache
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Anica Dricu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| |
Collapse
|
37
|
Lobo D, Solano M, Bubenik GA, Levin M. A linear-encoding model explains the variability of the target morphology in regeneration. J R Soc Interface 2014; 11:20130918. [PMID: 24402915 PMCID: PMC3899861 DOI: 10.1098/rsif.2013.0918] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022] Open
Abstract
A fundamental assumption of today's molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This 'inverse problem' is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Daniel Lobo
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Mauricio Solano
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - George A. Bubenik
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Michael Levin
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
38
|
|
39
|
Rosenfeld S. Are the somatic mutation and tissue organization field theories of carcinogenesis incompatible? Cancer Inform 2013; 12:221-9. [PMID: 24324325 PMCID: PMC3855256 DOI: 10.4137/cin.s13013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Two drastically different approaches to understanding the forces driving carcinogenesis have crystallized through years of research. These are the somatic mutation theory (SMT) and the tissue organization field theory (TOFT). The essence of SMT is that cancer is derived from a single somatic cell that has successively accumulated multiple DNA mutations, and that those mutations occur on genes which control cell proliferation and cell cycle. Thus, according to SMT, neoplastic lesions are the results of DNA-level events. Conversely, according to TOFT, carcinogenesis is primarily a problem of tissue organization: carcinogenic agents destroy the normal tissue architecture thus disrupting cell-to-cell signaling and compromising genomic integrity. Hence, in TOFT the DNA mutations are the effect, and not the cause, of the tissue-level events. Cardinal importance of successful resolution of the TOFT versus SMT controversy dwells in the fact that, according to SMT, cancer is a unidirectional and mostly irreversible disease; whereas, according to TOFT, it is curable and reversible. In this paper, our goal is to outline a plausible scenario in which TOFT and SMT can be reconciled using the framework and concepts of the self-organized criticality (SOC), the principle proven to be extremely fruitful in a wide range of disciplines pertaining to natural phenomena, to biological communities, to large-scale social developments, to technological networks, and to many other subjects of research.
Collapse
Affiliation(s)
- Simon Rosenfeld
- National Cancer Institute, Division of Cancer Prevention, Rockville, Maryland, USA
| |
Collapse
|
40
|
Plutynski A. Cancer and the goals of integration. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2013; 44:466-76. [PMID: 23582848 DOI: 10.1016/j.shpsc.2013.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cancer is not one, but many diseases, and each is a product of a variety of causes acting (and interacting) at distinct temporal and spatial scales, or "levels" in the biological hierarchy. In part because of this diversity of cancer types and causes, there has been a diversity of models, hypotheses, and explanations of carcinogenesis. However, there is one model of carcinogenesis that seems to have survived the diversification of cancer types: the multi-stage model of carcinogenesis. This paper examines the history of the multistage theory, and uses the theory as a case study in the limits and goals of unification as a theoretical virtue, comparing and contrasting it with "integrative" research.
Collapse
Affiliation(s)
- Anya Plutynski
- University of Utah, Department of Philosophy, 215 S. Central Campus Dr., 402 CTIHB, Salt Lake City, UT 84112, United States.
| |
Collapse
|
41
|
Exploring the ligand-protein networks in traditional chinese medicine: current databases, methods, and applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:806072. [PMID: 23818932 PMCID: PMC3684027 DOI: 10.1155/2013/806072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
Abstract
The traditional Chinese medicine (TCM), which has thousands of years of clinical application among China and other Asian countries, is the pioneer of the “multicomponent-multitarget” and network pharmacology. Although there is no doubt of the efficacy, it is difficult to elucidate convincing underlying mechanism of TCM due to its complex composition and unclear pharmacology. The use of ligand-protein networks has been gaining significant value in the history of drug discovery while its application in TCM is still in its early stage. This paper firstly surveys TCM databases for virtual screening that have been greatly expanded in size and data diversity in recent years. On that basis, different screening methods and strategies for identifying active ingredients and targets of TCM are outlined based on the amount of network information available, both on sides of ligand bioactivity and the protein structures. Furthermore, applications of successful in silico target identification attempts are discussed in detail along with experiments in exploring the ligand-protein networks of TCM. Finally, it will be concluded that the prospective application of ligand-protein networks can be used not only to predict protein targets of a small molecule, but also to explore the mode of action of TCM.
Collapse
|
42
|
Bizzarri M, Palombo A, Cucina A. Theoretical aspects of Systems Biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:33-43. [PMID: 23562476 DOI: 10.1016/j.pbiomolbio.2013.03.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 12/20/2022]
Abstract
The natural world consists of hierarchical levels of complexity that range from subatomic particles and molecules to ecosystems and beyond. This implies that, in order to explain the features and behavior of a whole system, a theory might be required that would operate at the corresponding hierarchical level, i.e. where self-organization processes take place. In the past, biological research has focused on questions that could be answered by a reductionist program of genetics. The organism (and its development) was considered an epiphenomenona of its genes. However, a profound rethinking of the biological paradigm is now underway and it is likely that such a process will lead to a conceptual revolution emerging from the ashes of reductionism. This revolution implies the search for general principles on which a cogent theory of biology might rely. Because much of the logic of living systems is located at higher levels, it is imperative to focus on them. Indeed, both evolution and physiology work on these levels. Thus, by no means Systems Biology could be considered a 'simple' 'gradual' extension of Molecular Biology.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Systems Biology Group Lab, Sapienza University of Rome, via Scarpa 14-16, 00161 Rome, Italy.
| | | | | |
Collapse
|
43
|
Soto AM, Sonnenschein C. Paradoxes in Carcinogenesis: There Is Light at the End of That Tunnel! ACTA ACUST UNITED AC 2013; 1:154-156. [PMID: 24587978 DOI: 10.1089/dst.2013.0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The exchange of opinions motivated by Dr. Baker's article "Paradoxes in carcinogenesis should spur new avenues of research: An historical perspective" illustrates the reasons why the field of cancer research is stuck in a dead end. This paralysis presents a rich opportunity for philosophers, historians and sociologists of science to decipher the whys of this impasse. On the strictly biological front, we suggest to reinstate in cancer research the time proven practice so productive in the physical sciences of discarding wrong hypotheses and theories. We share the suggestion by Dr. Baker to stop trying to unify the two main theories of carcinogenesis, i.e., the Somatic Mutation Theory (SMT) and the Tissue Organization Field Theory (TOFT) because they are incompatible. Dr. Baker suggests breaching the impasse by investing in paradox-driven research. We discuss the barriers to the implementation of this novel strategy, and the significant impact that this strategy will have on knowledge at large and its application for the prevention and cure of cancer.
Collapse
Affiliation(s)
- Ana M Soto
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Carlos Sonnenschein
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
44
|
Soto AM, Sonnenschein C. Is systems biology a promising approach to resolve controversies in cancer research? Cancer Cell Int 2012; 12:12. [PMID: 22449120 PMCID: PMC3349511 DOI: 10.1186/1475-2867-12-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/26/2012] [Indexed: 01/12/2023] Open
Abstract
At the beginning of the 21st century cancer research has reached an impasse similar to that experienced in developmental biology in the first decades of the 20th century when conflicting results and interpretations co-existed for a long time until these differences were resolved and contradictions were eliminated. In cancer research, instead of this healthy "weeding-out" process, there have been attempts to reach a premature synthesis, while no hypothesis is being rejected. Systems Biology could help cancer research to overcome this stalemate by resolving contradictions and identifying spurious data. First, in silico experiments should allow cancer researchers to be bold and a priori reject sets of data and hypotheses in order to gain a deeper understanding of how each dataset and each hypothesis contributes to the overall picture. In turn, this process should generate novel hypotheses and rules, which could be explored using these in silico approaches. These activities are significantly less costly and much faster than "wet-experiments". Consequently, Systems Biology could be advantageously used both as a heuristic tool to guide "wet-experiments" and to refine hypotheses and test predictions.
Collapse
Affiliation(s)
- Ana M Soto
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Ave,, Boston, MA 02111, USA.
| | | |
Collapse
|
45
|
Devès M, Bourrat F. Transcriptional mechanisms of developmental cell cycle arrest: problems and models. Semin Cell Dev Biol 2012; 23:290-7. [PMID: 22464972 DOI: 10.1016/j.semcdb.2012.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/02/2012] [Accepted: 03/01/2012] [Indexed: 12/30/2022]
Abstract
Metazoans begin their life as a single cell. Then, this cell enters a more or less protracted period of active cell proliferation, which can be considered as the default cellular state. A crucial event, the developmental cell cycle exit, occurs thereafter. This phenomenon allows for differentiation to happen and regulates the final size of organs and organisms. Its control is still poorly understood. Herein, we review some transcriptional mechanisms of cell cycle exit in animals, and propose to use cellular conveyor belts as model systems for its study. We finally point to evidence that suggests that the mechanisms of developmental cell cycle arrest may have to be maintained in adult tissues.
Collapse
|
46
|
Plankar M, Jerman I, Krašovec R. On the origin of cancer: Can we ignore coherence? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:380-90. [DOI: 10.1016/j.pbiomolbio.2011.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/09/2011] [Indexed: 01/06/2023]
|
47
|
Bizzarri M, Giuliani A, Cucina A, D'Anselmi F, Soto AM, Sonnenschein C. Fractal analysis in a systems biology approach to cancer. Semin Cancer Biol 2011; 21:175-82. [PMID: 21514387 PMCID: PMC3148285 DOI: 10.1016/j.semcancer.2011.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 04/07/2011] [Indexed: 12/22/2022]
Abstract
Cancer is a highly complex disease due to the disruption of tissue architecture. Thus, tissues, and not individual cells, are the proper level of observation for the study of carcinogenesis. This paradigm shift from a reductionist approach to a systems biology approach is long overdue. Indeed, cell phenotypes are emergent modes arising through collective non-linear interactions among different cellular and microenvironmental components, generally described by "phase space diagrams", where stable states (attractors) are embedded into a landscape model. Within this framework, cell states and cell transitions are generally conceived as mainly specified by gene-regulatory networks. However, the system's dynamics is not reducible to the integrated functioning of the genome-proteome network alone; the epithelia-stroma interacting system must be taken into consideration in order to give a more comprehensive picture. Given that cell shape represents the spatial geometric configuration acquired as a result of the integrated set of cellular and environmental cues, we posit that fractal-shape parameters represent "omics" descriptors of the epithelium-stroma system. Within this framework, function appears to follow form, and not the other way around.
Collapse
|
48
|
|
49
|
Huang S. On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin Cancer Biol 2011; 21:183-99. [PMID: 21640825 DOI: 10.1016/j.semcancer.2011.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/02/2011] [Accepted: 05/09/2011] [Indexed: 01/07/2023]
Abstract
The cracks in the paradigm of oncogenic mutations and somatic evolution as driving force of tumorigenesis, lucidly exposed by the dynamic heterogeneity of "cancer stem cells" or the diffuse results of cancer genome sequencing projects, indicate the need for a more encompassing theory of cancer that reaches beyond the current proximate explanations based on individual genetic pathways. One such integrative concept, derived from first principles of the dynamics of gene regulatory networks, is that cancerous cell states are attractor states, just like normal cell types are. Here we extend the concept of cancer attractors to illuminate a more profound property of cancer initiation: its inherent inevitability in the light of metazoan evolution. Using Waddington's Epigenetic Landscape as a conceptual aid, for which we present a mathematical and evolutionary foundation, we propose that cancer is intrinsically linked to ontogenesis and phylogenesis. This explanatory rather than enumerating review uses a formal argumentation structure that is atypical in modern experimental biology but may hopefully offer a new coherent perspective to reconcile many conflicts between new findings and the old thinking in the categories of linear oncogenic pathways.
Collapse
Affiliation(s)
- Sui Huang
- Institute for Biocomplexity and Informatics, University of Calgary, Alberta, Canada.
| |
Collapse
|
50
|
|