1
|
Jiang J, Zhan L, Jiang B, Pan J, Hong C, Chen Z, Yang L. Anticancer therapy-induced peripheral neuropathy in solid tumors: diagnosis, mechanisms, and treatment strategies. Cancer Lett 2025; 620:217679. [PMID: 40154913 DOI: 10.1016/j.canlet.2025.217679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Anticancer therapy-induced peripheral neuropathy (PN) is a common adverse event during the diagnosis and treatment of solid tumors. The drug class, cumulative dose, and individual susceptibility affect the incidence and severity of PN. Owing to the lack of specific biomarkers and imaging tests, the diagnostic criteria for PN remain unclear. Moreover, the available and effective clinical treatment strategies are very limited, and most of the current drugs focus on symptom management rather than fundamental reversal of the disease course. The morbidity mechanisms of PN are diverse, including direct neurotoxicity, mitochondrial dysfunction, and disruption of axonal transport. Here, we summarize the diagnosis, mechanisms, and neuroprotective strategies of PN and discuss potential intervention treatments.
Collapse
Affiliation(s)
- Jiahong Jiang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luying Zhan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Boyang Jiang
- The Clinical Medical College, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jingyi Pan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chaojin Hong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zheling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ye YT, Niu YL, Zhou ZY, Sun Y, Chang TF, Jing YT, Bai Q, Chu ZJ. Carbonic anhydrase inhibitor alleviates retinal barrier toxicity in paclitaxel-induced retinopathy and macular edema by inhibiting CAXIV. Int Ophthalmol 2024; 44:437. [PMID: 39578251 PMCID: PMC11584476 DOI: 10.1007/s10792-024-03362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
PURPOSE To investigate the mechanism of paclitaxel (PTX)-induced macular edema and the therapeutic effect of carbonic anhydrase inhibitors (CAI) on this condition. METHODS The effect of PTX on cell morphology was detected by immunofluorescence. Cell barrier was measured by measuring cell resistance across the epithelium. Western blotting analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to investigate the effects of PTX or PTX + CAI on the expression of carbonic anhydrase XIV (CAXIV), aquaporin 4 (AQP4) and inflammatory factors. After intraperitoneal injection of PTX in vivo, retinal electrophysiology (ERG) was used to evaluate the effects of drugs on visual electrophysiology. RESULTS PTX inhibited the proliferation of ARPE-19 and Müller cells, promoting their apoptosis, changing their morphology and cell cycle, reducing the transepithelial resistance of ARPE-19 cells and promoting the expression of inflammatory factors; This process was alleviated after temporary withdrawal. CAI inhibited the upregulation of inflammatory factors. Following treatment with PTX, the expression levels of AQP4 and CAXIV were higher than control group; nevertheless, the levels of ZO-1 and OCLN were lower than control group. In vivo, the ERG analysis showed that the light- and dark-adapted 3.0 ERG, and dark-adapted 3.0 oscillatory potentials decreased to different degrees following treatment with PTX. CONCLUSION PTX-induced macular edema is mainly due to Müller cell toxicity. The condition can be alleviated by regulating water channels and enhancing subretinal fluid absorption. Thus, CAI may provide a new therapeutic approach for PTX-induced macular edema.
Collapse
Affiliation(s)
- Ya-Ting Ye
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University (Xi'an First Hospital), Xi'an, 710002, China
| | - Ya-Li Niu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zi-Yi Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Sun
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Tian-Fang Chang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Tong Jing
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Bai
- The Hospital of 26, Base of PLA Strategic Support Force, Xi'an, China
| | - Zhao-Jie Chu
- College of Life Sciences, Northwest University, Xi'an, 710069, China.
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University (Xi'an First Hospital), Xi'an, 710002, China.
| |
Collapse
|
3
|
Kim Y, Je MA, Jeong M, Kwon H, Jang A, Kim J, Choi GE. Upregulation of NGF/TrkA-Related Proteins in Dorsal Root Ganglion of Paclitaxel-Induced Peripheral Neuropathy Animal Model. J Pain Res 2024; 17:3919-3932. [PMID: 39588524 PMCID: PMC11586490 DOI: 10.2147/jpr.s470671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Background Paclitaxel (PTX) can induce chemotherapy-induced peripheral neuropathy (CIPN) as a side effect. The aim of this study was to understand the neurochemical changes induced by NGF/TrkA signaling in PTX-induced neuropathic pain. Methods The PTX-induced CIPN mouse model was evaluated using nerve conduction velocity (NCV) and behavioral tests. Protein expression in mouse DRG was observed by Western blotting and immunohistochemistry. Nerve growth factor (NGF), IL-6, and IL-1β mRNA levels were determined using qRT-PCR by isolating total RNA from whole blood. Results PTX showed low amplitude and high latency values in NCV in mice, and induced cold allodynia and thermal hyperalgesia in behavioral assessment. Activating transcription factor 3 (ATF3) and MAPK pathway related proteins (ERK1/2), tropomyosin receptor kinase A (TrkA), calcitonin gene related peptide (CGRP) and transient receptor potential vanilloid 1 (TRPV1) were upregulated 7th and 14th days after 2 mg/kg and 10 mg/kg of PTX administration. Protein kinase C (PKC) was upregulated 7th days after 10 mg/kg PTX treatment and 14th days after 2 mg/kg and 10 mg/kg PTX administration. NGF, IL-6, and IL-1β fold change values also showed a time- and dose-dependent increase. Conclusion Taken together, our findings may improve our understanding of the nociceptive symptoms associated with PTX-induced neuropathic pain and lead to the development of new treatments for peripheral neuropathy.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Min-A Je
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Myeongguk Jeong
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Hyeokjin Kwon
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Aelee Jang
- Department of Nursing, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jungho Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Go-Eun Choi
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| |
Collapse
|
4
|
Berry D, Ene J, Nathani A, Singh M, Li Y, Zeng C. Effects of Physical Cues on Stem Cell-Derived Extracellular Vesicles toward Neuropathy Applications. Biomedicines 2024; 12:489. [PMID: 38540102 PMCID: PMC10968089 DOI: 10.3390/biomedicines12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 11/28/2024] Open
Abstract
The peripheral nervous system undergoes sufficient stress when affected by diabetic conditions, chemotherapeutic drugs, and personal injury. Consequently, peripheral neuropathy arises as the most common complication, leading to debilitating symptoms that significantly alter the quality and way of life. The resulting chronic pain requires a treatment approach that does not simply mask the accompanying symptoms but provides the necessary external environment and neurotrophic factors that will effectively facilitate nerve regeneration. Under normal conditions, the peripheral nervous system self-regenerates very slowly. The rate of progression is further hindered by the development of fibrosis and scar tissue formation, which does not allow sufficient neurite outgrowth to the target site. By incorporating scaffolding supplemented with secretome derived from human mesenchymal stem cells, it is hypothesized that neurotrophic factors and cellular signaling can facilitate the optimal microenvironment for nerve reinnervation. However, conventional methods of secretory vesicle production are low yield, thus requiring improved methods to enhance paracrine secretions. This report highlights the state-of-the-art methods of neuropathy treatment as well as methods to optimize the clinical application of stem cells and derived secretory vesicles for nerve regeneration.
Collapse
Affiliation(s)
- Danyale Berry
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| |
Collapse
|
5
|
Li J, Mahdavi B, Baghayeri M, Rivandi B, Lotfi M, Mahdi Zangeneh M, Zangeneh A, Tayebee R. A new formulation of Ni/Zn bi-metallic nanocomposite and evaluation of its applications for pollution removal, photocatalytic, electrochemical sensing, and anti-breast cancer. ENVIRONMENTAL RESEARCH 2023; 233:116462. [PMID: 37352956 DOI: 10.1016/j.envres.2023.116462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Nanocomposites have gained attention due to their variety of applications in different fields. In this research, we have reported a green synthesis of a bi-metallic nanocomposite of nickel and zinc using an aqueous extract of Citrus sinensis in the presence of chitosan (Ni/Zn@orange/chitosan). The nanocomposite was characterized using different techniques. We have examined various applications for Ni/Zn@orange/chitosan. The NPs were manufactured in spherical morphology with a particle range size of 17.34-90.51 nm. Ni/Zn@orange/chitosan showed an acceptable ability to remove dyes of Congo red and methyl orange from an aqueous solution after 80 min furthermore, it uptaking the drug mefenamic acid from a solution. Ni/Zn@orange/chitosan also exhibited great photocatalytic activity in synthesizing benzimidazole using benzyl alcohol and o-phenylenediamine. Ni/Zn@orange/chitosan was found as a potent electrochemical sensor to determine glucose. In the molecular and cellular section of the current research, the cells with composite nanoparticles were studied by MTT way about the anti-breast adenocarcinoma potentials malignant cell lines. The IC50 of composite nanoparticles were 320, 460, 328, 500, 325, 379, 350, and 396 μg/mL concering RBA, NMU, SK-BR-3, CAMA-1, MCF7, AU565, MDA-MB-468, and Hs 281.T breast adenocarcinoma cell lines, respectively. The results revealed the newly synthesized nanocomposite is a potent photocatalyst, dye pollution removal agent, and an acceptable new drug to treat breast cancer.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, China.
| | - Behnam Mahdavi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Behnaz Rivandi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Maryam Lotfi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mohammad Mahdi Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Akram Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Tayebee
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
6
|
Chin JJ, Wan Hitam WH, Chong MF, Lee SJ, Yew JM, Ngoo QZ. Evaluation of Retinal Nerve Fiber Layer and Macular Thickness Pre- and Post-Chemotherapy With Carboplatin and Paclitaxel in Patients With Endometrial and Ovarian Cancer. Cureus 2023; 15:e43943. [PMID: 37746413 PMCID: PMC10513924 DOI: 10.7759/cureus.43943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background Carboplatin and paclitaxel are two standard chemotherapeutic agents known to cause neurotoxicity. In this study, we aim to evaluate the toxicity of these agents by measuring the peripapillary retinal nerve fiber layer (RNFL) and macular thickness in patients with endometrial and ovarian cancers who are receiving them. Methods A one-year prospective cohort study involving 28 patients who were treated intravenously with carboplatin (200-400 mg/m2) and paclitaxel (175 mg/m2) three-weekly for six cycles was conducted. RNFL and macula thickness were measured using optical coherence tomography (OCT) before the commencement of chemotherapy, after the third cycle, and one month after the sixth cycle. The main outcome measurements were the average RNFL thickness and central subfield thickness of the macula. Results The mean age of the 28 participants was 54.68 years old (standard deviation [SD] 9.03). Eleven had endometrial cancer, while 17 had ovarian cancer. The mean of the average RNFL thickness during baseline pre-chemotherapy was 96.43 µm (SD 11.39). One month after cessation of treatment, the mean RNFL thickness increased to 101.57 µm (SD 13.54). Statistical analysis showed a significant increment in the mean RNFL thickness (p ≤ 0.001), from baseline to after three cycles, and baseline to one month after six cycles of chemotherapy, except the nasal quadrant. The increment of all macular quadrants was statistically significant (p < 0.05) except for central subfield thickness. Conclusion Systemic administration of carboplatin and paclitaxel affected both the peripapillary RNFL and macula thickness. This represents early evidence of subacute subclinical retinal toxicity. OCT can be used as a screening tool to assess peri-chemotherapeutic retinal alterations.
Collapse
Affiliation(s)
- Ju Juen Chin
- Ophthalmology and Visual Sciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
- Ophthalmology, Hospital Universiti Sains Malaysia, Kubang Kerian, MYS
- Ophthalmology, Hospital Raja Permaisuri Bainun, Ipoh, MYS
| | - Wan-Hazabbah Wan Hitam
- Ophthalmology and Visual Sciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Mei Fong Chong
- Ophthalmology, Hospital Raja Permaisuri Bainun, Ipoh, MYS
| | - Saw Joo Lee
- Gynae-Oncology, Hospital Raja Permaisuri Bainun, Ipoh, MYS
| | - Jing Mun Yew
- Biostatistics and Research Methodology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Qi Zhe Ngoo
- Ophthalmology and Visual Sciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| |
Collapse
|
7
|
Liu TT, Qiu CY, Hu WP. Metformin inhibits spontaneous excitatory postsynaptic currents in spinal dorsal cord neurons from paclitaxel-treated rats. Front Synaptic Neurosci 2023; 15:1191383. [PMID: 37216004 PMCID: PMC10195993 DOI: 10.3389/fnsyn.2023.1191383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Cancer patients treated with paclitaxel often develop chemotherapy-induced peripheral neuropathy, which has not been effectively treated with drugs. The anti-diabetic drug metformin is effective in the treatment of neuropathic pain. The aim of this study was to elucidate effect of metformin on paclitaxel-induced neuropathic pain and spinal synaptic transmission. Methods Electrophysiological experiments on rat spinal slices were performed in vitro and mechanical allodynia quantified in vitro. Results The present data demonstrated that intraperitoneal injection of paclitaxel produced mechanical allodynia and potentiated spinal synaptic transmission. Intrathecal injection of metformin significantly reversed the established mechanical allodynia induced by paclitaxel in rats. Either spinal or systemic administration of metformin significantly inhibited the increased frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in spinal dorsal horn neurons from paclitaxel-treated rats. We found that 1 h incubation of metformin also reduced the frequency rather than the amplitude of sEPSCs in the spinal slices from paclitaxel-treated rats. Discussion These results suggested that metformin was able to depress the potentiated spinal synaptic transmission, which may contribute to alleviating the paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Ting-Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Chun-Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wang-Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
- Department of Physiology, Hubei College of Chinese Medicine, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Suzuki I, Matsuda N, Han X, Noji S, Shibata M, Nagafuku N, Ishibashi Y. Large-Area Field Potential Imaging Having Single Neuron Resolution Using 236 880 Electrodes CMOS-MEA Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207732. [PMID: 37088859 PMCID: PMC10369302 DOI: 10.1002/advs.202207732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
The electrophysiological technology having a high spatiotemporal resolution at the single-cell level and noninvasive measurements of large areas provide insights on underlying neuronal function. Here, a complementary metal-oxide semiconductor (CMOS)-microelectrode array (MEA) is used that uses 236 880 electrodes each with an electrode size of 11.22 × 11.22 µm and 236 880 covering a wide area of 5.5 × 5.9 mm in presenting a detailed and single-cell-level neural activity analysis platform for brain slices, human iPS cell-derived cortical networks, peripheral neurons, and human brain organoids. Propagation pattern characteristics between brain regions changes the synaptic propagation into compounds based on single-cell time-series patterns, classification based on single DRG neuron firing patterns and compound responses, axonal conduction characteristics and changes to anticancer drugs, and network activities and transition to compounds in brain organoids are extracted. This detailed analysis of neural activity at the single-cell level using the CMOS-MEA provides a new understanding of the basic mechanisms of brain circuits in vitro and ex vivo, on human neurological diseases for drug discovery, and compound toxicity assessment.
Collapse
Affiliation(s)
- Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Naoki Matsuda
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Xiaobo Han
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Shuhei Noji
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Mikako Shibata
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Nami Nagafuku
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Yuto Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| |
Collapse
|
9
|
Satiamurthy R, Yaakob NS, Shah NM, Azmi N, Omar MS. Potential Roles of 5-HT 3 Receptor Antagonists in Reducing Chemotherapy-induced Peripheral Neuropathy (CIPN). Curr Mol Med 2023; 23:341-349. [PMID: 35549869 DOI: 10.2174/1566524022666220512122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
5-HT3 receptor antagonists corresponding to ondansetron, granisetron, tropisetron, and palonosetron are clinically accustomed to treating nausea and emesis in chemotherapy patients. However, current and previous studies reveal novel potentials of those ligands in other diseases involving the nervous system, such as addiction, pruritus, and neurological disorders, such as anxiety, psychosis, nociception, and cognitive function. This review gathers existing studies to support the role of 5-HT3 receptors in CIPN modulation. It has been reported that chemotherapy drugs increase the 5-HT content that binds with the 5-HT3 receptor, which later induces pain. As also shown in pre-clinical and clinical studies that various neuropathic pains could be blocked by the 5-HT3 receptor antagonists, we proposed that 5-HT3 receptor antagonists via 5- HT3 receptors may also inhibit neuropathic pain induced by chemotherapy. Our review suggests that future studies focus more on the 5-HT3 receptor antagonists and their modulation in CIPN to reduce the gap in the current pharmacotherapy for cancer-related pain.
Collapse
Affiliation(s)
- Raajeswari Satiamurthy
- Centre for Drug and Herbal Development, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Syafinaz Yaakob
- Centre for Drug and Herbal Development, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noraida Mohamed Shah
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norazrina Azmi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Marhanis Salihah Omar
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
An Overview on Taxol Production Technology and Its Applications as Anticancer Agent. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Emerging roles of toll-like receptor 4 in chemotherapy-induced neurotoxicity. Neurotoxicology 2022; 93:112-127. [PMID: 36152729 DOI: 10.1016/j.neuro.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Chemotherapy-induced neurotoxicity is one of the most prevalent side effects in cancer patients and survivors. Cognitive decline and peripheral neuropathy are the most common chemotherapy-induced neurotoxic symptoms. These symptoms lead not only to the limiting of the dose of chemotherapy given to cancer patients, but also have an impact on the quality of life of cancer survivors. Although the exact mechanisms involved in chemotherapy-induced neurotoxicity are still unclear, neuroinflammation is widely regarded as being one of the major causes involved in chemotherapy-induced neurotoxicity. It is known that Toll-like receptor 4 (TLR4) plays a critical role in the inflammatory process, and it has been recently reported that it is associated with chemotherapy-induced neurotoxicity. In this review, we summarize and discuss all available evidence regarding the activation of the TLR4 signaling pathway in various models of chemotherapy-induced neurotoxicity. This review also emphasizes the evidence pertinent to TLR4 inhibition on chemotherapy-induced neurotoxicity in rodent studies. Understanding the role of the TLR4 signaling pathway behind chemotherapy-induced neurotoxicity is crucial for improving treatments and ensuring the long-term survival of cancer patients.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
12
|
Boopathi E, Birbe R, Shoyele SA, Den RB, Thangavel C. Bone Health Management in the Continuum of Prostate Cancer Disease. Cancers (Basel) 2022; 14:4305. [PMID: 36077840 PMCID: PMC9455007 DOI: 10.3390/cancers14174305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is the second-leading cause of cancer-related deaths in men. PCa cells require androgen receptor (AR) signaling for their growth and survival. Androgen deprivation therapy (ADT) is the preferred treatment for patients with locally advanced and metastatic PCa disease. Despite their initial response to androgen blockade, most patients eventually will develop metastatic castration-resistant prostate cancer (mCRPC). Bone metastases are common in men with mCRPC, occurring in 30% of patients within 2 years of castration resistance and in >90% of patients over the course of the disease. Patients with mCRPC-induced bone metastasis develop lesions throughout their skeleton; the 5-year survival rate for these patients is 47%. Bone-metastasis-induced early changes in the bone that proceed the osteoblastic response in the bone matrix are monitored and detected via modern magnetic resonance and PET/CT imaging technologies. Various treatment options, such as targeting osteolytic metastasis with bisphosphonates, prednisone, dexamethasone, denosumab, immunotherapy, external beam radiation therapy, radiopharmaceuticals, surgery, and pain medications are employed to treat prostate-cancer-induced bone metastasis and manage bone health. However, these diagnostics and treatment options are not very accurate nor efficient enough to treat bone metastases and manage bone health. In this review, we present the pathogenesis of PCa-induced bone metastasis, its deleterious impacts on vital organs, the impact of metastatic PCa on bone health, treatment interventions for bone metastasis and management of bone- and skeletal-related events, and possible current and future therapeutic options for bone management in the continuum of prostate cancer disease.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ruth Birbe
- Laboratory Medicine, Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Sunday A. Shoyele
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B. Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chellappagounder Thangavel
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Dermatology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Interdisciplinary Oncology, Department of Biochemistry & Molecular Biology, LSUHSC Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
14
|
Rizwanullah M, Ahmad MZ, Ghoneim MM, Alshehri S, Imam SS, Md S, Alhakamy NA, Jain K, Ahmad J. Receptor-Mediated Targeted Delivery of Surface-ModifiedNanomedicine in Breast Cancer: Recent Update and Challenges. Pharmaceutics 2021; 13:2039. [PMID: 34959321 PMCID: PMC8708551 DOI: 10.3390/pharmaceutics13122039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer therapeutic intervention continues to be ambiguous owing to the lack of strategies for targeted transport and receptor-mediated uptake of drugs by cancer cells. In addition to this, sporadic tumor microenvironment, prominent restrictions with conventional chemotherapy, and multidrug-resistant mechanisms of breast cancer cells possess a big challenge to even otherwise optimal and efficacious breast cancer treatment strategies. Surface-modified nanomedicines can expedite the cellular uptake and delivery of drug-loaded nanoparticulate constructs through binding with specific receptors overexpressed aberrantly on the tumor cell. The present review elucidates the interesting yet challenging concept of targeted delivery approaches by exploiting different types of nanoparticulate systems with multiple targeting ligands to target overexpressed receptors of breast cancer cells. The therapeutic efficacy of these novel approaches in preclinical models is also comprehensively discussed in this review. It is concluded from critical analysis of related literature that insight into the translational gap between laboratories and clinical settings would provide the possible future directions to plug the loopholes in the process of development of these receptor-targeted nanomedicines for the treatment of breast cancer.
Collapse
Affiliation(s)
- Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| |
Collapse
|
15
|
Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J, Cruz-Martins N, Klimek-Szczykutowicz M, Ekiert H, Choudhary MI, Ayatollahi SA, Tynybekov B, Kobarfard F, Muntean AC, Grozea I, Daştan SD, Butnariu M, Szopa A, Calina D. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3687700. [PMID: 34707776 PMCID: PMC8545549 DOI: 10.1155/2021/3687700] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Olugbenga Samuel Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra 94976, Slovakia
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Covilca Muntean
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioana Grozea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
16
|
Jernigan F, Branstrom A, Baird JD, Cao L, Dali M, Furia B, Kim MJ, O'Keefe K, Kong R, Laskin OL, Colacino JM, Pykett M, Mollin A, Sheedy J, Dumble M, Moon YC, Sheridan R, Mühlethaler T, Spiegel RJ, Prota AE, Steinmetz MO, Weetall M. Preclinical and Early Clinical Development of PTC596, a Novel Small-Molecule Tubulin-Binding Agent. Mol Cancer Ther 2021; 20:1846-1857. [PMID: 34315764 PMCID: PMC9398121 DOI: 10.1158/1535-7163.mct-20-0774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023]
Abstract
PTC596 is an investigational small-molecule tubulin-binding agent. Unlike other tubulin-binding agents, PTC596 is orally bioavailable and is not a P-glycoprotein substrate. So as to characterize PTC596 to position the molecule for optimal clinical development, the interactions of PTC596 with tubulin using crystallography, its spectrum of preclinical in vitro anticancer activity, and its pharmacokinetic-pharmacodynamic relationship were investigated for efficacy in multiple preclinical mouse models of leiomyosarcomas and glioblastoma. Using X-ray crystallography, it was determined that PTC596 binds to the colchicine site of tubulin with unique key interactions. PTC596 exhibited broad-spectrum anticancer activity. PTC596 showed efficacy as monotherapy and additive or synergistic efficacy in combinations in mouse models of leiomyosarcomas and glioblastoma. PTC596 demonstrated efficacy in an orthotopic model of glioblastoma under conditions where temozolomide was inactive. In a first-in-human phase I clinical trial in patients with cancer, PTC596 monotherapy drug exposures were compared with those predicted to be efficacious based on mouse models. PTC596 is currently being tested in combination with dacarbazine in a clinical trial in adults with leiomyosarcoma and in combination with radiation in a clinical trial in children with diffuse intrinsic pontine glioma.
Collapse
Affiliation(s)
| | | | - John D Baird
- PTC Therapeutics, Inc., South Plainfield, New Jersey
| | - Liangxian Cao
- PTC Therapeutics, Inc., South Plainfield, New Jersey
| | - Mandar Dali
- PTC Therapeutics, Inc., South Plainfield, New Jersey
| | - Bansri Furia
- PTC Therapeutics, Inc., South Plainfield, New Jersey
| | - Min Jung Kim
- PTC Therapeutics, Inc., South Plainfield, New Jersey
| | - Kylie O'Keefe
- PTC Therapeutics, Inc., South Plainfield, New Jersey
| | - Ronald Kong
- PTC Therapeutics, Inc., South Plainfield, New Jersey
| | | | | | - Mark Pykett
- PTC Therapeutics, Inc., South Plainfield, New Jersey
| | - Anna Mollin
- PTC Therapeutics, Inc., South Plainfield, New Jersey
| | | | | | | | | | | | | | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Michel O Steinmetz
- University of Basel, Biozentrum, Basel, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, New Jersey.
| |
Collapse
|
17
|
Ertilav K, Nazıroğlu M, Ataizi ZS, Yıldızhan K. Melatonin and Selenium Suppress Docetaxel-Induced TRPV1 Activation, Neuropathic Pain and Oxidative Neurotoxicity in Mice. Biol Trace Elem Res 2021; 199:1469-1487. [PMID: 32578137 DOI: 10.1007/s12011-020-02250-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Docetaxel (DT) has been reported to positive therapeutic actions in the treatment of glioblastoma, breast tumors, and prostate cancers. However, it can also induce peripheral neuropathic pain and neurotoxicity as adverse effects. Expression level of TRPV1 cation channel is high in dorsal root ganglion (DRG), and its activation via capsaicin and reactive oxygen species (ROS) mediates peripheral neuropathic pain in mice. As cancer is known to increase the levels of ROS, the protective roles of melatonin (MT) and selenium (Se) were evaluated on the TRPV1-mediated neurotoxicity and pain in the DT-treated mice. Mice and TRPV1 expressing SH-SY5Y cells were equally divided into control, MT, Se, DT, DT+MT, and DT+Se groups. In the results of pain tests in the mice, we observed a decrease in DT-mediated mechanical and heat neuropathic pain by MT and Se. The results of plate reader assay and laser confocal microscopy image analyses indicated a protective role of MT and Se on the DT-induced increase of mitochondrial ROS, cytosolic ROS, apoptosis, lipid peroxidation, intracellular free Zn2+, Ca2+, and caspase-3 and -9 levels in the DRG and SH-SY5Y cells. MT and Se modulated DT-induced decreases of total antioxidant status, reduced glutathione and glutathione peroxidase in the DRG. However, the effects of DT were not observed in the non-TRPV1 expressing SH-SY5Y cells. Hence, MT and Se mediated protective effects against DT-induced adverse peripheral oxidative neurotoxicity and peripheral pain. These effects may be attributed to potent antioxidant properties of MT and Se.
Collapse
Affiliation(s)
- Kemal Ertilav
- Departmant of Neurosurgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.
- Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture and Industry Ltd, Göller Bölgesi Teknokenti, Isparta, Turkey.
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Zeki Serdar Ataizi
- Departmant of Neurosurgery, Yunus Emre General State Hospital, Eskişehir, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
18
|
Ansari MA, Thiruvengadam M, Farooqui Z, Rajakumar G, Sajid Jamal QM, Alzohairy MA, Almatroudi A, Alomary MN, Chung IM, Al-Suhaimi EA. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer. Semin Cancer Biol 2021; 69:109-128. [PMID: 31891780 DOI: 10.1016/j.semcancer.2019.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Zeba Farooqui
- College of Pharmacy, University of Houston, Houston, TX, 77204, United States
| | - Govindaswamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al-Bukayriyah, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad N Alomary
- National Center of Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Ebtesam Abdullah Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia; Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
19
|
Li Y, Marri T, North RY, Rhodes HR, Uhelski ML, Tatsui CE, Rhines LD, Rao G, Corrales G, Abercrombie TJ, Johansson CA, Dougherty PM. Chemotherapy-induced peripheral neuropathy in a dish: dorsal root ganglion cells treated in vitro with paclitaxel show biochemical and physiological responses parallel to that seen in vivo. Pain 2021; 162:84-96. [PMID: 32694383 PMCID: PMC7744394 DOI: 10.1097/j.pain.0000000000002005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying chemotherapy-induced peripheral neuropathy have yet to be fully elucidated, but primary afferent neurons have emerged as an especially vulnerable initiating pathophysiological target. An important recent study has also shown that the initial toxicity produced by paclitaxel in patients was highly predictive of long-term outcome. In this study, we therefore focused on defining the mechanisms of acute toxicity produced by paclitaxel treatment on primary sensory neurons under in vitro conditions. In primary rat dorsal root ganglion (DRG) culture with paclitaxel, an increase of pERK and pp38 was observed at 2 hours, and this was accompanied by an increase in expression and release of C-C chemokine ligand 2 (CCL2). There was no change in pJNK. The increase in pERK was sustained at 48 hours of exposure when the expression of TLR4, MyD88, and IL-6 was also increased. IL-6 and CCL2 were colocalized to TLR4-positive cells, and all these responses were prevented by coincubation with a TLR4 antagonist (LPS-RS). Whole-cell patch-clamp recordings revealed that DRG neurons developed spontaneous depolarizing fluctuations (DSFs) in membrane potential and hyperexcitability to current injection but no ectopic action potential activity at 24 and 48 hours of paclitaxel incubation. However, CCL2 applied to cultured neurons not only induced DSFs but also evoked action potentials. Evidence of oxidative stress and mitotoxicity was observed at 48 hours of exposure. These results closely parallel the responses measured in the DRG with paclitaxel exposure in vivo and so indicate that acute toxicity of paclitaxel on the DRG can be modelled using an in vitro approach.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesia and Pain Medicine Research, the
University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Tejaswi Marri
- The University of Texas Health Science Center, Houston,
Texas 77030
| | - Robert Y. North
- Department of Neurosurgery, Baylor College of Medicine,
Houston, Texas, 77030
| | - Haley Raquel Rhodes
- Department of Psychology and Behavioral Neuroscience, St.
Edward’s University, Austin, TX 78704
| | - Megan L. Uhelski
- Department of Anesthesia and Pain Medicine Research, the
University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | | | - Laurence D. Rhines
- Neurosurgery, the University of Texas MD Anderson Cancer
Center, Houston, Texas 77030
| | - Ganesh Rao
- Neurosurgery, the University of Texas MD Anderson Cancer
Center, Houston, Texas 77030
| | - German Corrales
- Anesthesiology & Perioperative Medicine Research, the
University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | | | - Caj A. Johansson
- The University of Texas Health Science Center, Houston,
Texas 77030
| | - Patrick M. Dougherty
- Department of Anesthesia and Pain Medicine Research, the
University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
20
|
Sun X, Xu S, Yang Z, Zheng P, Zhu W. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: a patent review (2014-present). Expert Opin Ther Pat 2020; 31:223-238. [PMID: 33315482 DOI: 10.1080/13543776.2021.1860210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: EGFR is the receptor for epidermal growth factor (EGF) and belongs to the protein tyrosine kinase (PTK) receptor. It is closely related to the inhibition of tumor cell proliferation, invasion, and apoptosis. Overexpression or mutation activation of EGFR is involved in the development of many human malignancies, especially non-small cell lung cancer (NSCLC). At present, numerous small molecule tyrosine kinase inhibitors (TKIs) have been developed to target the ATP-binding region of EGFR, aiming to develop selective and effective inhibitors for the treatment of NSCLC against EGFR mutants.Areas covered: This review covers the latest progress in the patented EGFR inhibitors and the inhibition activity against NSCLC from 2014 to present.Expert opinion: EGFR is an important anti-tumor target, and small molecule inhibitors targeting EGFR have become important biologically active compounds for the treatment of cancer, especially against NSCLC. Among the recent patents available, great majority of them focus on selective inhibitors of EGFR mutants. Although great achievements have been made in the development of selective EGFR inhibitors, there is still an urgent need to discover new EGFR inhibitors which are safe, efficient, selective, and low-toxic to avoid the adverse pharmacokinetics caused by wild-type EGFR feature.
Collapse
Affiliation(s)
- Xin Sun
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Zunhua Yang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
21
|
Suo J, Wang M, Zhang P, Lu Y, Xu R, Zhang L, Qiu S, Zhang Q, Qian Y, Meng J, Zhu J. Siwei Jianbu decoction improves painful paclitaxel-induced peripheral neuropathy in mouse model by modulating the NF-κB and MAPK signaling pathways. Regen Med Res 2020; 8:2. [PMID: 33095154 PMCID: PMC7583579 DOI: 10.1051/rmr/200001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Paclitaxel, a commonly used chemotherapeutic agent, is usually associated with peripheral neuropathy. Paclitaxel induced peripheral neuropathy (PIPN) can be dose limiting and may have detrimental influence on patients' quality of life. However, the mechanism of PIPN remains unclear. Medicinal herbs and their formulas might offer neuronal protection with their multitarget and integrated benefits in chemotherapy-induced peripheral neuropathy (CIPN). Siwei Jianbu decoction (J12) is a classic formula of traditional Chinese medicine which can promote blood circulation and treat diabetic nephropathy in clinical with the symptoms of weakness and pain. Methods: The effects of J12 were treated in C57BL/6 mice before injected with Paclitaxel.Behaviour studies: Measurement of mechanical hyperalgesia, thermal nociception and cold allodynia. On the last day at the end of week 6, DRGs were obtained from mice for western blot and immunohistochemical analysis containing NF-κB, p-ERK1/2 and p-SAPK/JNK protein expression. Quantitative real-time polymerase chain reaction: mRNA expression of NF-κB, IL-1β and TNF-α was analyzed. Additionally, the blood samples collected from the eye socket of the mouse were prepared to examine the levels of NF-κB, TNF-α, IL-6 and IL-1β using ELISA assay kits. Results: Hypersensitivity tests and pathology analysis have demonstrated that J12 could improve paclitaxel-induced peripheral pain. J12 acts by inhibiting the activation of (C-Jun N-terminal kinases) JNK, (extracellular signal-regulated kinase) ERK1/2 phosphorylation in (Mitogen-activated protein kinases) MAPK signaling pathway and the nuclear factor-κB (NF-κB) in C57BL/6 mice model, J12 also inhibits the production of inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6. Conclusion: The present study showed that J12 ameliorates paclitaxel-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
- Jinshuai Suo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Man Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuting Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyan Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuyan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yangyan Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China - Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, USA
| |
Collapse
|
22
|
Neurotoxicity of antineoplastic drugs: Mechanisms, susceptibility, and neuroprotective strategies. Adv Med Sci 2020; 65:265-285. [PMID: 32361484 DOI: 10.1016/j.advms.2020.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
This review summarizes the adverse effects on the central and/or peripheral nervous systems that may occur in response to antineoplastic drugs. In particular, we describe the neurotoxic side effects of the most commonly used drugs, such as platinum compounds, doxorubicin, ifosfamide, 5-fluorouracil, vinca alkaloids, taxanes, methotrexate, bortezomib and thalidomide. Neurotoxicity may result from direct action of compounds on the nervous system or from metabolic alterations produced indirectly by these drugs, and either the central nervous system or the peripheral nervous system, or both, may be affected. The incidence and severity of neurotoxicity are principally related to the dose, to the duration of treatment, and to the dose intensity, though other factors, such as age, concurrent pathologies, and genetic predisposition may enhance the occurrence of side effects. To avoid or reduce the onset and severity of these neurotoxic effects, the use of neuroprotective compounds and/or strategies may be helpful, thereby enhancing the therapeutic effectiveness of antineoplastic drug.
Collapse
|
23
|
Abstract
BACKGROUND Breast cancer-related lymphedema affects 700,000 breast cancer survivors in the United States. Although taxane-based chemotherapy regimens are commonly used in the treatment of breast cancer, the impact of taxanes on the lymphatic system remains poorly understood. This study aims to examine the influence of taxane-based chemotherapy on lymphatic function in breast cancer patients. METHODS A retrospective review of a prospectively-maintained database was performed. Consecutive patients with node positive breast cancer who underwent preoperative indocyanine green (ICG) lymphangiograms were identified. Information including patient demographics, baseline measurements, cancer characteristics, and treatment information were retrieved. Preoperative ICG lymphangiography videos were analyzed and lymphatic contractility was quantified for each subject. Multiple regions of interest were selected on each lymphatic channel and signal intensity was recorded for 3 minutes to generate contractility curves. Each lymphatic contraction was identified using a novel, systematic, and algorithmic approach. RESULTS Twenty-nine consecutive patients with unilateral node-positive breast cancer were included for analysis. Average patient age was 54.5 (13) years and mean BMI was 26.8 kg/m (4). The mean lymphatic contractility of patients who received taxane-based neoadjuvant chemotherapy was 0.7 contractions/minute (c/m) (n = 19) compared to 1.1 c/m in those who received no neoadjuvant therapy (n = 10), (P = 0.11). In subgroup analysis, patients who reported taxane induced neuropathy demonstrated significantly lower lymphatic contractility values than those who were asymptomatic or did not receive any chemotherapy (P = 0.018). CONCLUSIONS In this study, we used a novel method for quantifying and evaluating lymphatic contractility rates in routine ICG lymphangiograms. Diminished lymphatic contractility was noted in patients who received taxane-based neoadjuvant chemotherapy compared with those who did not. Taxane-based neoadjuvant chemotherapy may adversely affect the lymphatic system in the breast cancer population. A larger patient cohort with longer follow-up time is needed to validate this finding and evaluate any potential association with breast cancer-related lymphedema development.
Collapse
|
24
|
Inhibition of kinesin motor protein KIFC1 by AZ82 induces multipolar mitosis and apoptosis in prostate cancer cell. Gene 2020; 760:144989. [PMID: 32717307 DOI: 10.1016/j.gene.2020.144989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/28/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Kinesin 14 family member KIFC1 is a mitotic kinesin which contains a C-terminal motor domain and plays a vital role for clustering the amplified centrosomes. Overexpression of KIFC1 in prostate cancer (PCa) cells showed resistance to docetaxel (DTX). The present study revealed that small KIFC1 inhibitor AZ82 suppresed the transcription and translation of KIFC1 significantly in PCa cells. AZ82 inhibited the KIFC1 expression both in the cytoplasm and nucleus of PCa cells. Inhibition of KIFC1 by AZ82 caused multipolar mitosis in PCa cells via de-clustering the amplified centrosomes and decreased the rate of cancer cell growth and proliferation. Moreover, depletion of KIFC1 reduced cells entering the cell cycle and caused PCa cells death through apoptosis by increasing the expression of Bax and Cytochrome C. Thereby, KIFC1 silencing and inhibition decreased the PCa cells survival by inducing multipolar mitosis as well as apoptosis, suggesting inhibition of KIFC1 using AZ82 might be a strategy to treat PCa by controlling the cancer cell proliferation.
Collapse
|
25
|
Paclitaxel Induces Upregulation of Transient Receptor Potential Vanilloid 1 Expression in the Rat Spinal Cord. Int J Mol Sci 2020; 21:ijms21124341. [PMID: 32570786 PMCID: PMC7352737 DOI: 10.3390/ijms21124341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Painful peripheral neuropathy is a common adverse effect of paclitaxel (PTX) treatment. To analyze the contribution of transient receptor potential vanilloid 1 (TRPV1) in the development of PTX-induced mechanical allodynia/hyperalgesia and thermal hyperalgesia, TRPV1 expression in the rat spinal cord was analyzed after intraperitoneal administration of 2 and 4 mg/kg PTX. PTX treatment increased the expression of TRPV1 protein in the spinal cord. Immunohistochemistry showed that PTX (4 mg/kg) treatment increased TRPV1 protein expression in the superficial layers of the spinal dorsal horn 14 days after treatment. Behavioral assessment using the paw withdrawal response showed that PTX-induced mechanical allodynia/hyperalgesia and thermal hyperalgesia after 14 days was significantly inhibited by oral or intrathecal administration of the TRPV1 antagonist AMG9810. We found that intrathecal administration of small interfering RNA (siRNA) to knock down TRPV1 protein expression in the spinal cord significantly decreased PTX-induced mechanical allodynia/hyperalgesia and thermal hyperalgesia. Together, these results demonstrate that TRPV1 receptor expression in spinal cord contributes, at least in part, to the development of PTX-induced painful peripheral neuropathy. TRPV1 receptor antagonists may be useful in the prevention and treatment of PTX-induced peripheral neuropathic pain.
Collapse
|
26
|
Connolly P, Garcia-Carpio I, Villunger A. Cell-Cycle Cross Talk with Caspases and Their Substrates. Cold Spring Harb Perspect Biol 2020; 12:a036475. [PMID: 31727679 PMCID: PMC7263087 DOI: 10.1101/cshperspect.a036475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Caspases play central roles in mediating both cell death and inflammation. It has more recently become evident that caspases also drive other biological processes. Most prominently, caspases have been shown to be involved in differentiation. Several stem and progenitor cell types rely on caspases to initiate and execute their differentiation processes. These range from neural and glial cells, to skeletal myoblasts and osteoblasts, and several cell types of the hematopoietic system. Beyond differentiation, caspases have also been shown to play roles in other "noncanonical" processes, including cell proliferation, arrest, and senescence, thereby contributing to the mechanisms that regulate tissue homeostasis at multiple levels. Remarkably, caspases directly influence the course of the cell cycle in both a positive and negative manner. Caspases both cleave elements of the cell-cycle machinery and are themselves substrates of cell-cycle kinases. Here we aim to summarize the breadth of interactions between caspases and cell-cycle regulators. We also highlight recent developments in this area.
Collapse
Affiliation(s)
- Patrick Connolly
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Irmina Garcia-Carpio
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
27
|
Lu Y, Zhang P, Zhang Q, Yang C, Qian Y, Suo J, Tao X, Zhu J. Duloxetine Attenuates Paclitaxel-Induced Peripheral Nerve Injury by Inhibiting p53-Related Pathways. J Pharmacol Exp Ther 2020; 373:453-462. [PMID: 32238452 DOI: 10.1124/jpet.120.265082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/18/2020] [Indexed: 03/08/2025] Open
Abstract
Paclitaxel (PTX) is an antineoplastic drug extracted from the Taxus species, and peripheral neuropathy is a common side effect. Paclitaxel-induced peripheral neuropathy (PIPN) seriously affects patient quality of life. Currently, the mechanism of PIPN is still unknown, and few treatments are recognized clinically. Duloxetine is recommended as the only potential treatment of chemotherapy-induced peripheral neuropathy (CIPN) by the American Society of Clinical Oncology. However, this guidance lacks a theoretical basis and experimental evidence. Our study suggested that duloxetine could improve PIPN and provide neuroprotection. We explored the potential mechanisms of duloxetine on PIPN. As a result, duloxetine acts by inhibiting poly ADP-ribose polymerase cleavage (PARP) and tumor suppressor gene p53 activation and regulating apoptosis regulator the Bcl2 family to reverse PTX-induced oxidative stress and apoptosis. Taken together, the present study shows that using duloxetine to attenuate PTX-induced peripheral nerve injury and peripheral pain may provide new clinical therapeutic targets for CIPN. SIGNIFICANCE STATEMENT: This study reported that duloxetine significantly alleviates neuropathic pain induced by paclitaxel and is related to poly ADP-ribose polymerase (PARP), tumor suppressor gene p53, and apoptosis regulator the Bcl2 family. Our findings thus not only provide important guidance to support duloxetine to become the first standard chemotherapy-induced peripheral neuropathy (CIPN) drug but also will find potential new targets and positive control for new CIPN drug development.
Collapse
Affiliation(s)
- Yuting Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Peng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Qiuyan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Chao Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Yangyan Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Jinshuai Suo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Xinxia Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| |
Collapse
|
28
|
Prša P, Karademir B, Biçim G, Mahmoud H, Dahan I, Yalçın AS, Mahajna J, Milisav I. The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochem Pharmacol 2020; 173:113551. [PMID: 31185225 DOI: 10.1016/j.bcp.2019.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
|
29
|
Costa‐Pereira JT, Serrão P, Martins I, Tavares I. Serotoninergic pain modulation from the rostral ventromedial medulla (RVM) in chemotherapy‐induced neuropathy: The role of spinal 5‐HT3 receptors. Eur J Neurosci 2019; 51:1756-1769. [DOI: 10.1111/ejn.14614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 01/31/2023]
Affiliation(s)
- José Tiago Costa‐Pereira
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| | - Paula Serrão
- Department of Biomedicine Unit of Pharmacology and Therapeutics Faculty of Medicine University of Porto Porto Portugal
- MedInUP ‐ Center for Drug Discovery and Innovative Medicines University of Porto Porto Portugal
| | - Isabel Martins
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| | - Isaura Tavares
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| |
Collapse
|
30
|
Electroacupuncture Alleviates Paclitaxel-Induced Peripheral Neuropathic Pain in Rats via Suppressing TLR4 Signaling and TRPV1 Upregulation in Sensory Neurons. Int J Mol Sci 2019; 20:ijms20235917. [PMID: 31775332 PMCID: PMC6929119 DOI: 10.3390/ijms20235917] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Paclitaxel-induced peripheral neuropathy is a common adverse effect during paclitaxel treatment resulting in sensory abnormalities and neuropathic pain during chemotherapy and in cancer survivors. Conventional therapies are usually ineffective and possess adverse effects. Here, we examined the effects of electroacupuncture (EA) on a rat model of paclitaxel-induced neuropathic pain and related mechanisms. EA robustly and persistently alleviated paclitaxel-induced pain hypersensitivities. Mechanistically, TLR4 (Toll-Like Receptor 4) and downstream signaling MyD88 (Myeloid Differentiation Primary Response 88) and TRPV1 (Transient Receptor Potential Vallinoid 1) were upregulated in dorsal root ganglion (DRGs) of paclitaxel-treated rats, whereas EA reduced their overexpression. Ca2+ imaging further indicated that TRPV1 channel activity was enhanced in DRG neurons of paclitaxel-treated rats whereas EA suppressed the enhanced TRPV1 channel activity. Pharmacological blocking of TRPV1 mimics the analgesic effects of EA on the pain hypersensitivities, whereas capsaicin reversed EA’s effect. Spinal astrocytes and microglia were activated in paclitaxel-treated rats, whereas EA reduced the activation. These results demonstrated that EA alleviates paclitaxel-induced peripheral neuropathic pain via mechanisms possibly involving suppressing TLR4 signaling and TRPV1 upregulation in DRG neurons, which further result in reduced spinal glia activation. Our work supports EA as a potential alternative therapy for paclitaxel-induced neuropathic pain.
Collapse
|
31
|
Toma W, Kyte SL, Bagdas D, Jackson A, Meade JA, Rahman F, Chen ZJ, Del Fabbro E, Cantwell L, Kulkarni A, Thakur GA, Papke RL, Bigbee JW, Gewirtz DA, Damaj MI. The α7 nicotinic receptor silent agonist R-47 prevents and reverses paclitaxel-induced peripheral neuropathy in mice without tolerance or altering nicotine reward and withdrawal. Exp Neurol 2019; 320:113010. [PMID: 31299179 DOI: 10.1016/j.expneurol.2019.113010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/05/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Various antitumor drugs, including paclitaxel, frequently cause chemotherapy-induced peripheral neuropathy (CIPN) that can be sustained even after therapy has been completed. The current work was designed to evaluate R-47, an α7 nAChR silent agonist, in our mouse model of CIPN. R-47 was administered to male C57BL/6J mice prior to and during paclitaxel treatment. Additionally, we tested if R-47 would alter nicotine's reward and withdrawal effects. The H460 and A549 non-small cell lung cancer (NSCLC) cell lines were exposed to R-47 for 24-72 h, and tumor-bearing NSG mice received R-47 prior to and during paclitaxel treatment. R-47 prevents and reverses paclitaxel-induced mechanical hypersensitivity in mice in an α7 nAChR-dependent manner. No tolerance develops following repeated administration of R-47, and the drug lacks intrinsic rewarding effects. Additionally, R-47 neither changes the rewarding effect of nicotine in the Conditioned Place Preference test nor enhances mecamylamine-precipitated withdrawal. Furthermore, R-47 prevents paclitaxel-mediated loss of intraepidermal nerve fibers and morphological alterations of microglia in the spinal cord. Moreover, R-47 does not increase NSCLC cell viability, colony formation, or proliferation, and does not interfere with paclitaxel-induced growth arrest, DNA fragmentation, or apoptosis. Most importantly, R-47 does not increase the growth of A549 tumors or interfere with the antitumor activity of paclitaxel in tumor-bearing mice. These studies suggest that R-47 could be a viable and efficacious approach for the prevention and treatment of CIPN that would not interfere with the antitumor activity of paclitaxel or promote lung tumor growth.
Collapse
Affiliation(s)
- Wisam Toma
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America.
| | - S Lauren Kyte
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, United States of America
| | - Deniz Bagdas
- Department of Psychiatry, Yale University School of Medicine, Yale Tobacco Center of Regulatory Science, New Haven, CT, United States of America
| | - Asti Jackson
- Department of Psychiatry, Yale University School of Medicine, Yale Tobacco Center of Regulatory Science, New Haven, CT, United States of America
| | - Julie A Meade
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Faria Rahman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Zhi-Jian Chen
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Egidio Del Fabbro
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States of America; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States of America
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States of America
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States of America
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - John W Bigbee
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
32
|
Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy. Pain 2019; 159:884-893. [PMID: 29369966 DOI: 10.1097/j.pain.0000000000001160] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of cancer treatment that significantly compromises quality of life of cancer patients and survivors. Identification of targets for pharmacological intervention to prevent or reverse CIPN is needed. We investigated exchange protein regulated by cAMP (Epac) as a potential target. Epacs are cAMP-binding proteins known to play a pivotal role in mechanical allodynia induced by nerve injury and inflammation. We demonstrate that global Epac1-knockout (Epac1-/-) male and female mice are protected against paclitaxel-induced mechanical allodynia. In addition, spinal cord astrocyte activation and intraepidermal nerve fiber (IENF) loss are significantly reduced in Epac1-/- mice as compared to wild-type mice. Moreover, Epac1-/- mice do not develop the paclitaxel-induced deficits in mitochondrial bioenergetics in the sciatic nerve that are a hallmark of CIPN. Notably, mice with cell-specific deletion of Epac1 in Nav1.8-positive neurons (N-Epac1-/-) also show reduced paclitaxel-induced mechanical allodynia, astrocyte activation, and IENF loss, indicating that CIPN develops downstream of Epac1 activation in nociceptors. The Epac-inhibitor ESI-09 reversed established paclitaxel-induced mechanical allodynia in wild-type mice even when dosing started 10 days after completion of paclitaxel treatment. In addition, oral administration of ESI-09 suppressed spinal cord astrocyte activation in the spinal cord and protected against IENF loss. Ex vivo, ESI-09 blocked paclitaxel-induced abnormal spontaneous discharges in dorsal root ganglion neurons. Collectively, these findings implicate Epac1 in nociceptors as a novel target for treatment of CIPN. This is clinically relevant because ESI-09 has the potential to reverse a debilitating and long-lasting side effect of cancer treatment.
Collapse
|
33
|
Oveissi V, Ram M, Bahramsoltani R, Ebrahimi F, Rahimi R, Naseri R, Belwal T, Devkota HP, Abbasabadi Z, Farzaei MH. Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: therapeutic targets and clinical perspective. Daru 2019; 27:389-406. [PMID: 30852764 PMCID: PMC6593128 DOI: 10.1007/s40199-019-00255-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chemotherapy, as one of the main approaches of cancer treatment, is accompanied with several adverse effects, including chemotherapy-induced peripheral neuropathy (CIPN). Since current methods to control the condition are not completely effective, new treatment options should be introduced. Medicinal plants can be suitable candidates to be assessed regarding their effects in CIPN. Current paper reviews the available preclinical and clinical studies on the efficacy of herbal medicines in CIPN. METHODS Electronic databases including PubMed, Scopus, and Cochrane library were searched with the keywords "neuropathy" in the title/abstract and "plant", "extract", or "herb" in the whole text. Data were collected from inception until April 2018. RESULTS Plants such as chamomile (Matricaria chamomilla L.), sage (Salvia officinalis L.), cinnamon (Cinnamomum cassia (L.) D. Don), and sweet flag (Acorus calamus L.) as well as phytochemicals like matrine, curcumin, and thioctic acid have demonstrated beneficial effects in animal models of CIPN via prevention of axonal degeneration, decrease in total calcium level, improvement of endogenous antioxidant defense mechanisms such as superoxide dismutase and reduced glutathione, and regulation of neural cell apoptosis, nuclear factor-ĸB, cyclooxygenase-2, and nitric oxide signaling. Also, five clinical trials have evaluated the effect of herbal products in patients with CIPN. CONCLUSIONS There are currently limited clinical evidence on medicinal plants for CIPN which shows the necessity of future mechanistic studies, as well as well-designed clinical trial for further confirmation of the safety and efficacy of herbal medicines in CIPN. Graphical abstract Schematic mechanisms of medicinal plants to prevent chemotherapy-induced neuropathy: NO: nitric oxide, TNF: tumor necrosis factor, PG: prostaglandin, NF-ĸB: nuclear factor kappa B, LPO: lipid peroxidation, ROS: reactive oxygen species, COX: cyclooxygenase, IL: interleukin, ERK: extracellular signal-related kinase, X: inhibition, ↓: induction.
Collapse
Affiliation(s)
- Vahideh Oveissi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahboobe Ram
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Ebrahimi
- Pharmacy Students' Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tarun Belwal
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263643, India
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health life science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
| | - Zahra Abbasabadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
34
|
Suicide Gene Therapy By Amphiphilic Copolymer Nanocarrier for Spinal Cord Tumor. NANOMATERIALS 2019; 9:nano9040573. [PMID: 30965667 PMCID: PMC6523721 DOI: 10.3390/nano9040573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/30/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord tumors (SCT) are uncommon neoplasms characterized by irregular growth of tissue inside the spinal cord that can result in non-mechanical back pain. Current treatments for SCT include surgery, radiation therapy, and chemotherapy, but these conventional therapies have many limitations. Suicide gene therapy using plasmid encoding herpes simplex virus-thymidine kinase (pHSV-TK) and ganciclovir (GCV) has been an alternative approach to overcome the limitations of current therapies. However, there is a need to develop a carrier that can deliver both pHSV-TK and GCV for improving therapeutic efficacy. Our group developed a cationic, amphiphilic copolymer, poly (lactide-co-glycolide) -graft-polyethylenimine (PgP), and demonstrated its efficacy as a drug and gene carrier in both cell culture studies and animal models. In this study, we evaluated PgP as a gene carrier and demonstrate that PgP can efficiently deliver reporter genes, pGFP in rat glioma (C6) cells in vitro, and pβ-gal in a rat T5 SCT model in vivo. We also show that PgP/pHSV-TK with GCV treatment showed significantly higher anticancer activity in C6 cells compared to PgP/pHSV-TK without GCV treatment. Finally, we demonstrate that PgP/pHSV-TK with GCV treatment increases the suicide effect and apoptosis of tumor cells and reduces tumor size in a rat T5 SCT model.
Collapse
|
35
|
Alphalipoic Acid Prevents Oxidative Stress and Peripheral Neuropathy in Nab-Paclitaxel-Treated Rats through the Nrf2 Signalling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3142732. [PMID: 30881589 PMCID: PMC6387730 DOI: 10.1155/2019/3142732] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 01/13/2023]
Abstract
Peripheral neuropathy is the major dose-limiting side effect of paclitaxel (PTX), affecting both the quality of life and the survival of cancer patients. Nab-paclitaxel (nab-PTX) was developed to provide additional clinical benefits and overcome the safety drawbacks of solvent-based PTX. However, the prevalence of peripheral neuropathy induced by nab-PTX was reported higher than that induced by solvent-based PTX. Upon investigation, oxidative stress plays a major role in the toxicity of nab-PTX. In order to assess if the antioxidant alphalipoic acid (α-LA) could prevent the nab-PTX-induced peripheral neuropathy, Sprague-Dawley (SD) rats were treated with three doses of α-LA (15, 30, and 60 mg/kg in normal saline, i.p., q.d. (days 1-30)) and/or nab-PTX (7.4 mg/kg in normal saline, i.v., q.w. (days 8, 15, and 22)). Body weight and peripheral neuropathy were measured and assessed regularly during the study. The assessment of peripheral neuropathy was performed by the von Frey and acetone tests. A tumor xenograft model of pancreatic cancer was used to assess the impact of α-LA on the antitumor effect of nab-PTX. Results showed that α-LA significantly ameliorated the peripheral neuropathy induced by nab-PTX (p < 0.05) without promoting tumor growth or reducing the chemotherapeutic effect of nab-PTX in a tumor xenograft model. Moreover, α-LA might significantly reverse the superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) levels altered by nab-PTX in the serum and the spinal cord of rats. Furthermore, α-LA could reverse the mRNA and protein expressions of Nrf2 (nuclear factor erythroid 2-related factor 2) and three Nrf2-responsive genes (HO-1, γ-GCLC, and NQO1) altered by nab-PTX in the dorsal root ganglion (DRG) of rats. In conclusion, our study suggests that α-LA could prevent oxidative stress and peripheral neuropathy in nab-PTX-treated rats through the Nrf2 signalling pathway without diminishing chemotherapeutic effect.
Collapse
|
36
|
Anoushirvani AA, Poorsaadat L, Aghabozorgi R, Kasravi M. Comparison of the Effects of Omega 3 and Vitamin E on Palcitaxel-Induced Peripheral Neuropathy. Open Access Maced J Med Sci 2018; 6:1857-1861. [PMID: 30455762 PMCID: PMC6236056 DOI: 10.3889/oamjms.2018.333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Paclitaxel-induced peripheral neuropathy is the most important side effect limiting the use of this medication. AIM This study aimed to compare the effects of omega-3 and vitamin E on the incidence of peripheral neuropathy in patients receiving Taxol. METHODS In this clinical trial, 63 patients who were a candidate for receiving taxol, were enrolled based on inclusion and exclusion criteria. In group O, patients received 640 mg omega-3 three times a day, and group E, received 300 mg vitamin E two times a day. Patients took the supplements up to three months after the onset of Taxol. Group P received placebo for a similar period. All patients referred to a neurologist for electrophysiological evaluation before the onset of chemotherapy and at months 1 and 3. The presence of neuropathy and its progression was recorded by the neurologist. RESULTS Neurological examination in this study indicated that 6 patients (28.6%) in Group O, 7 patients (33.3%) in group E, and 15 patients (71.4%) in placebo group started peripheral neuropathy. There was a significant difference between intervention groups and the placebo group (p = 0.0001) and no significant difference between intervention groups (p = 0.751). CONCLUSION Our data suggested that vitamin E and omega-3 may significantly reduce the incidence of Paclitaxel-induced peripheral neuropathy. Routine administration of such supplements that have no special side effect for patients under chemotherapy may greatly enhance their quality of life.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Hematology and Medical Oncology, Arak University of Medical Sciences, Arak, Iran
| | - Laila Poorsaadat
- Department of Neurology, Arak University of Medical Sciences, Arak, Iran
| | - Reza Aghabozorgi
- Department of Hematology and Medical Oncology, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Kasravi
- Department of Internal Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
37
|
Chen X, Ling X, Zhao L, Xiong F, Hollett G, Kang Y, Barrett A, Wu J. Biomimetic Shells Endow Sub-50 nm Nanoparticles with Ultrahigh Paclitaxel Payloads for Specific and Robust Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33976-33985. [PMID: 30203956 DOI: 10.1021/acsami.8b11571] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Poor loading capacity and nonspecific tumor accumulation of current drug delivery system remain the critical challenges that prevent nanomedicine from maximizing therapeutic efficacy in cancer treatment. Herein, poly(ester amide) polymers composed of cationic and hydrophobic segments were formulated with a paclitaxel/human serum albumin (PTX/HSA) complex, as well as free PTX, to construct a core-shell nanoparticle (NP) platform with the interior simultaneously reserving PTX and PTX/HSA complex, while the exterior absorbing the PTX/HSA complex. Following systematic screening, the optimized NPs, namely, APP1i@e NPs, exhibited small particle size (43.95 nm), maximal PTX loading (42.23%), excellent dynamic stability (at least 1 week), and acid-triggered release. In vitro results showed that after being trafficked through caveolae-mediated endocytosis, APP1i@e NPs successfully escaped from endo-/lysosomes and then rapidly released cargos in the acidic cytosol, which continued to enhance cytotoxicity by mitochondrial control of apoptosis and suppression of microtubule dynamics. Longer circulation time and superior targeting efficiency post-intravenous injection confirmed that surface PEGylation imparted APP1i@e NPs with the ability to control their pharmacokinetics and biodistribution. The biomimetic shell design with HSA, which enlarged PTX stock and improved biosafety, made APP1i@e NPs more suitable for in vivo applications. Furthermore, in vivo safety and efficacy demonstrated that APP1i@e NPs effectively inhibited the growth of ovarian xenograft tumors, whereas significantly avoiding toxic issues associated with PTX. APP1i@e NPs with surface PEG coating and biomimetic HSA design, therefore, may provide a remarkable improvement in the therapeutic index of taxanes used in the clinic.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | - Xiang Ling
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | - Lili Zhao
- Digestive Endoscopy Center , Jiangsu Province Hospital, the First Affiliated Hospital with Nanjing Medical University , Nanjing , Jiangsu 210029 , China
| | - Fei Xiong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | - Geoffrey Hollett
- Materials Science and Engineering Program , University of California , San Diego , California 92093 , United States
| | - Yang Kang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | - Austin Barrett
- Center for Nanomedicine and Department of Anesthesiology , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| |
Collapse
|
38
|
Zumbar CT, Usubalieva A, King PD, Li X, Mifsud CS, Dalton HM, Sak M, Urio S, Bryant WM, McElroy JP, Farmer G, Lehman NL. The CNS penetrating taxane TPI 287 and the AURKA inhibitor alisertib induce synergistic apoptosis in glioblastoma cells. J Neurooncol 2018; 137:481-492. [PMID: 29396807 DOI: 10.1007/s11060-018-2755-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/07/2018] [Indexed: 11/28/2022]
Abstract
Glioblastoma is a highly malignant disease in critical need of expanded treatment options. The AURKA inhibitor alisertib exhibits antiproliferative activity against glioblastoma in vitro and in vivo. Unlike current clinically used taxane drugs, the novel taxane TPI 287 penetrates the CNS. We tested for interactions between three selective AURKA inhibitors and TPI 287 against standard U87 and U1242 cells and primary glioblastoma neurospheres using colony formation assays. Bliss and Chou-Talalay analyses were utilized to statistically test for synergism. Morphological analysis, flow cytometry and annexin V binding were employed to examine cell cycle and apoptotic effects of these drug combinations. TPI 287 not only potentiated the cytotoxicity of the AURKA inhibitors alisertib, MLN8054 and TC-A2317, but was often potently synergistic. Morphologic and biochemical analysis of the combined effects of alisertib and TPI 287 consistently revealed synergistic induction of apoptosis. While each agent alone induces a mitotic block, slippage occurs allowing some tumor cells to avoid apoptosis. Combination treatment greatly attenuated mitotic slippage, committing the majority of cells to apoptosis. Alisertib and TPI 287 demonstrate significant synergism against glioblastoma cells largely attributable to a synergistic effect in inducing apoptosis. These results provide compelling rationale for clinical testing of alisertib and/or other AURKA inhibitors for potential combination use with TPI 287 against glioblastoma and other CNS neoplasms.
Collapse
Affiliation(s)
- Cory T Zumbar
- Department of Pathology and Laboratory Medicine, University of Louisville, 505 S Hancock St, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, Louisville, KY, 40202, USA
| | - Aisulu Usubalieva
- Department of Pathology, Ohio State University, Columbus, OH, 43210, USA
| | - Paul D King
- Department of Pathology, Ohio State University, Columbus, OH, 43210, USA
| | - Xiaohui Li
- Department of Pathology, Ohio State University, Columbus, OH, 43210, USA
| | - Caroline S Mifsud
- Department of Pathology, Ohio State University, Columbus, OH, 43210, USA
| | - Hailey M Dalton
- Department of Pathology, Ohio State University, Columbus, OH, 43210, USA
| | - Muge Sak
- Department of Pathology and Laboratory Medicine, University of Louisville, 505 S Hancock St, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, Louisville, KY, 40202, USA
| | - Sara Urio
- Department of Pathology, Ohio State University, Columbus, OH, 43210, USA
| | - William M Bryant
- Department of Pathology, Ohio State University, Columbus, OH, 43210, USA
| | - Joseph P McElroy
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, 43210, USA
| | | | - Norman L Lehman
- Department of Pathology and Laboratory Medicine, University of Louisville, 505 S Hancock St, Louisville, KY, 40202, USA. .,James Graham Brown Cancer Center, Louisville, KY, 40202, USA. .,Department of Pathology, Ohio State University, Columbus, OH, 43210, USA. .,Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
39
|
DRG Voltage-Gated Sodium Channel 1.7 Is Upregulated in Paclitaxel-Induced Neuropathy in Rats and in Humans with Neuropathic Pain. J Neurosci 2017; 38:1124-1136. [PMID: 29255002 DOI: 10.1523/jneurosci.0899-17.2017] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/10/2017] [Accepted: 12/08/2017] [Indexed: 11/21/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse effect experienced by cancer patients receiving treatment with paclitaxel. The voltage-gated sodium channel 1.7 (Nav1.7) plays an important role in multiple preclinical models of neuropathic pain and in inherited human pain phenotypes, and its gene expression is increased in dorsal root ganglia (DRGs) of paclitaxel-treated rats. Hence, the potential of change in the expression and function of Nav1.7 protein in DRGs from male rats with paclitaxel-related CIPN and from male and female humans with cancer-related neuropathic pain was tested here. Double immunofluorescence in CIPN rats showed that Nav1.7 was upregulated in small DRG neuron somata, especially those also expressing calcitonin gene-related peptide (CGRP), and in central processes of these cells in the superficial spinal dorsal horn. Whole-cell patch-clamp recordings in rat DRG neurons revealed that paclitaxel induced an enhancement of ProTx II (a selective Nav1.7 channel blocker)-sensitive sodium currents. Bath-applied ProTx II suppressed spontaneous action potentials in DRG neurons occurring in rats with CIPN, while intrathecal injection of ProTx II significantly attenuated behavioral signs of CIPN. Complementarily, DRG neurons isolated from segments where patients had a history of neuropathic pain also showed electrophysiological and immunofluorescence results indicating an increased expression of Nav1.7 associated with spontaneous activity. Nav1.7 was also colocalized in human cells expressing transient receptor potential vanilloid 1 and CGRP. Furthermore, ProTx II decreased firing frequency in human DRGs with spontaneous action potentials. This study suggests that Nav1.7 may provide a potential new target for the treatment of neuropathic pain, including chemotherapy (paclitaxel)-induced neuropathic pain.SIGNIFICANCE STATEMENT This work demonstrates that the expression and function of the voltage-gated sodium channel Nav1.7 are increased in a preclinical model of chemotherapy-induced peripheral neuropathy (CIPN), the most common treatment-limiting side effect of all the most common anticancer therapies. This is key as gain-of-function mutations in human Nav1.7 recapitulate both the distribution and pain percept as shown by CIPN patients. This work also shows that Nav1.7 is increased in human DRG neurons only in dermatomes where patients are experiencing acquired neuropathic pain symptoms. This work therefore has major translational impact, indicating an important novel therapeutic avenue for neuropathic pain as a class.
Collapse
|
40
|
Kim ST, Kyung EJ, Suh JS, Lee HS, Lee JH, Chae SI, Park ES, Chung YH, Bae J, Lee TJ, Lee WM, Sohn UD, Jeong JH. Phosphatidylcholine attenuated docetaxel-induced peripheral neurotoxicity in rats. Drug Chem Toxicol 2017; 41:476-485. [PMID: 29210293 DOI: 10.1080/01480545.2017.1390580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Docetaxel is a taxane chemotherapeutic agent used in the treatment of breast cancer, prostate cancer and gastric cancer, but several side effects such as peripheral neurotoxicity could occur. The present study was designed to investigate the therapeutic potential of phosphatidylcholine (PC) on docetaxel-induced peripheral neurotoxicity. Rats were randomly divided into three groups and treated for 4 weeks. Behavioral tests were conducted to measure the effects of PC on docetaxel-induced decreases in mechanical & thermal nociceptive threshold. Biochemical tests were conducted to measure the level of oxidative stress on sciatic nerve. Histopathological and immunohistochemical experiments were also conducted to assess neuronal damage and glial activation. PC treatment significantly attenuated docetaxel-induced changes in mechanical & thermal nociceptive response latencies. PC decreased oxidative stress in sciatic nerve by increasing antioxidant levels (glutathione, glutathione peroxidase and superoxide dismutase activity). In immunohistochemical evaluation, PC treatment ameliorated docetaxel-induced neuronal damage and microglial activation in the sciatic nerve and spinal cord. Thus, PC showed protective effects against docetaxel-induced peripheral neurotoxicity. These effects may be attributed to its antioxidant properties and modulation of microglia.
Collapse
Affiliation(s)
- Sung Tae Kim
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Eun Jung Kyung
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Jung Sook Suh
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Ho Sung Lee
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Jun Ho Lee
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Soo In Chae
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Eon Sub Park
- b Department of Pathology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Yoon Hee Chung
- d Department of Anatomy, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Jinhyung Bae
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Tae Jin Lee
- b Department of Pathology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Won Mo Lee
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Uy Dong Sohn
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Ji Hoon Jeong
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| |
Collapse
|
41
|
Bleloch JS, Ballim RD, Kimani S, Parkes J, Panieri E, Willmer T, Prince S. Managing sarcoma: where have we come from and where are we going? Ther Adv Med Oncol 2017; 9:637-659. [PMID: 28974986 PMCID: PMC5613860 DOI: 10.1177/1758834017728927] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are a heterogeneous group of neoplasms of mesenchymal origin. Approximately 80% arise from soft tissue and 20% originate from bone. To date more than 100 sarcoma subtypes have been identified and they vary in molecular characteristics, pathology, clinical presentation and response to treatment. While sarcomas represent <1% of adult cancers, they account for approximately 21% of paediatric malignancies and thus pose some of the greatest risks of mortality and morbidity in children and young adults. Metastases occur in one-third of all patients and approximately 10-20% of sarcomas recur locally. Surgery in combination with preoperative and postoperative therapies is the primary treatment for localized sarcoma tumours and is the most promising curative possibility. Metastasized sarcomas, on the other hand, are treated primarily with single-agent or combination chemotherapy, but this rarely leads to a complete and robust response and often becomes a palliative form of treatment. The heterogeneity of sarcomas results in variable responses to current generalized treatment strategies. In light of this and the lack of curative strategies for metastatic and unresectable sarcomas, there is a need for novel subtype-specific treatment strategies. With the more recent understanding of the molecular mechanisms underlying the pathogenesis of some of these tumours, the treatment of sarcoma subtypes with targeted therapies is a rapidly evolving field. This review discusses the current management of sarcomas as well as promising new therapies that are currently underway in clinical trials.
Collapse
Affiliation(s)
- Jenna S Bleloch
- Department of Human Biology, University of Cape Town, South Africa
| | - Reyna D Ballim
- Department of Human Biology, University of Cape Town, South Africa
| | - Serah Kimani
- Department of Human Biology, University of Cape Town, South Africa
| | - Jeannette Parkes
- Department of Radiation Oncology, University of Cape Town, South Africa
| | - Eugenio Panieri
- Department of Surgery, University of Cape Town, South Africa
| | - Tarryn Willmer
- Department of Human Biology, University of Cape Town, South Africa
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| |
Collapse
|
42
|
Afolabi S, Olorundare O, Ninomiya M, Babatunde A, Mukhtar H, Koketsu M. Comparative Antileukemic Activity of a Tetranorditerpene Isolated from Polyalthia longifolia Leaves and the Derivative against Human Leukemia HL-60 Cells. J Oleo Sci 2017; 66:1169-1174. [PMID: 28924081 DOI: 10.5650/jos.ess17042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of potent cytotoxic isolates from botanicals provides an opportunity to explore this viable tool for cancer chemoprevention. The antileukemic potential of clerodane diterpene from Polyalthia longifolia leaves has already been established. However, in this present study, utilizing chromatographic techniques we report for the first time, the isolation of a rare tetranorditerpene (compound 1) from P. longifolia. The structure of compound 1 was elucidated and confirmed by spectrophotometric data. UPLC-MS analysis was conducted on the methanolic extract, ethyl acetate fraction, and isolated tetranorditerpene showed that the tetranorditerpene is one of the major constituents of the plant with a retention time of 30.78 min. In addition, a methyl ester derivative (compound 2) of the isolated tetranorditerpene was synthesized. Using the CCK-8 assay, we compared the cytotoxic potential of isolated tetranorditerpene (1) and methyl ester derivative (2) with the previously isolated clerodane diterpenes. Our results showed that the methyl ester derivative (2) displayed the highest inhibitory activity against human leukemia HL-60 cells. The isolated tetranorditerpene (1) did not exhibit significant inhibitory effect against HL-60 cells. Morphological examination indicated chromatin condensation and nuclear fragmentation suggesting induction of apoptosis in compound 2 treated HL-60 cells. The methyl esterification of the isolated tetranorditerpene (1) conferred on it a significant level of antileukemic activity suggesting the possibility of a synergistic relationship between pure compound isolation and synthetic reaction in the discovery of new chemopreventive agents.
Collapse
Affiliation(s)
- Saheed Afolabi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ilorin
| | - Olufunke Olorundare
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ilorin
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University
| | - Abiola Babatunde
- Department of Haematology, Faculty of Basic Medical Sciences, University of Ilorin
| | | | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University
| |
Collapse
|
43
|
Tang X, Loc WS, Dong C, Matters GL, Butler PJ, Kester M, Meyers C, Jiang Y, Adair JH. The use of nanoparticulates to treat breast cancer. Nanomedicine (Lond) 2017; 12:2367-2388. [PMID: 28868970 DOI: 10.2217/nnm-2017-0202] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a major ongoing public health issue among women in both developing and developed countries. Significant progress has been made to improve the breast cancer treatment in the past decades. However, the current clinical approaches are invasive, of low specificity and can generate severe side effects. As a rapidly developing field, nanotechnology brings promising opportunities to human cancer diagnosis and treatment. The use of nanoparticulate-based platforms overcomes biological barriers and allows prolonged blood circulation time, simultaneous tumor targeting and enhanced accumulation of drugs in tumors. Currently available and clinically applicable innovative nanoparticulate-based systems for breast cancer nanotherapies are discussed in this review.
Collapse
Affiliation(s)
- Xiaomeng Tang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.,Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Welley S Loc
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.,Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Dong
- Department of Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Gail L Matters
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Peter J Butler
- Department of Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Craig Meyers
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yixing Jiang
- Marlene & Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James H Adair
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
44
|
Johnson R, Sabnis N, Sun X, Ahluwalia R, Lacko AG. SR-B1-targeted nanodelivery of anti-cancer agents: a promising new approach to treat triple-negative breast cancer. BREAST CANCER-TARGETS AND THERAPY 2017; 9:383-392. [PMID: 28670138 PMCID: PMC5479299 DOI: 10.2147/bctt.s131038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Patients with triple-negative breast cancer (TNBC) have a considerably less favorable prognosis than those with hormone-positive breast cancers. TNBC patients do not respond to current endocrine treatment and have a 5-year survival prognosis of <30%. The research presented here is intended to fill a void toward the much needed development of improved treatment strategies for metastatic TNBC. The overall goal of this research was to evaluate the effectiveness of reconstituted high-density lipoprotein (rHDL) nanoparticles (NPs) as delivery agents for anti-TNBC drugs. Using lapatinib and valrubicin as components of the rHDL/drug complexes resulted in a significantly better performance of the NP-transported drugs compared with their free (unencapsulated) counterparts. The enhancement of the therapeutic effect and the protection of normal cells (cardiomyocytes) achieved via the rHDL NPs were likely due to the overexpression of the high-density lipoprotein (HDL) (scavenger receptor class B type 1 [SR-B1]) receptor by the TNBC cells.
Collapse
Affiliation(s)
| | - Nirupama Sabnis
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center
| | | | | | - Andras G Lacko
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center.,Department of Pediatrics, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
45
|
Segura-Ibarra V, Amione-Guerra J, Cruz-Solbes AS, Cara FE, Iruegas-Nunez DA, Wu S, Youker KA, Bhimaraj A, Torre-Amione G, Ferrari M, Karmouty-Quintana H, Guha A, Blanco E. Rapamycin nanoparticles localize in diseased lung vasculature and prevent pulmonary arterial hypertension. Int J Pharm 2017; 524:257-267. [PMID: 28359821 DOI: 10.1016/j.ijpharm.2017.03.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 12/24/2022]
Abstract
Vascular remodeling resulting from pulmonary arterial hypertension (PAH) leads to endothelial fenestrations. This feature can be exploited by nanoparticles (NP), allowing them to extravasate from circulation and accumulate in remodeled pulmonary vessels. Hyperactivation of the mTOR pathway in PAH drives pulmonary arterial smooth muscle cell proliferation. We hypothesized that rapamycin (RAP)-loaded NPs, an mTOR inhibitor, would accumulate in diseased lungs, selectively targeting vascular mTOR and preventing PAH progression. RAP poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) NPs were fabricated. NP accumulation and efficacy were examined in a rat monocrotaline model of PAH. Following intravenous (IV) administration, NP accumulation in diseased lungs was verified via LC/MS analysis and confocal imaging. Pulmonary arteriole thickness, right ventricular systolic pressures, and ventricular remodeling were determined to assess the therapeutic potential of RAP NPs. Monocrotaline-exposed rats showed increased NP accumulation within lungs compared to healthy controls, with NPs present to a high extent within pulmonary perivascular regions. RAP, in both free and NP form, attenuated PAH development, with histological analysis revealing minimal changes in pulmonary arteriole thickness and no ventricular remodeling. Importantly, NP-treated rats showed reduced systemic side effects compared to free RAP. This study demonstrates the potential for nanoparticles to significantly impact PAH through site-specific delivery of therapeutics.
Collapse
Affiliation(s)
- Victor Segura-Ibarra
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL 64710, Mexico.
| | - Javier Amione-Guerra
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Ana S Cruz-Solbes
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Francisca E Cara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - David A Iruegas-Nunez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL 64710, Mexico.
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Keith A Youker
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Arvind Bhimaraj
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Guillermo Torre-Amione
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA; Catedra de Cardiología y Medicina Vascular, Tecnológico de Monterrey, Monterrey, NL 66278, Mexico.
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Ashrith Guha
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Chen YF, Chen LH, Yeh YM, Wu PY, Chen YF, Chang LY, Chang JY, Shen MR. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy. Sci Rep 2017; 7:45366. [PMID: 28349969 PMCID: PMC5368986 DOI: 10.1038/srep45366] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of cancer treatment. No medication has been shown to be effective in the treatment of CIPN. This study aims to integrate the image-based high-content screening, mouse behavior models and mechanistic cell-based assays to discover potential neuroprotective drugs. Among screened compounds, minoxidil showed the most potent neuroprotective effect against paclitaxel, with regard to neurite outgrowth of dorsal root ganglia (DRG). Minoxidil protected mice from thermal insensitivity and alleviated mechanical allodynia in paclitaxel-treated mice. The ultrastructure and quantified G-ratio of myelin integrity of sciatic nerve tissues supported the observations in mouse behavioral tests. The mechanistic study on DRG neurons suggested that minoxidil suppressed neuroinflammation and remodeled the dysregulation of intracellular calcium homeostasis provoked by paclitaxel. Importantly, minoxidil showed a synergistic anti-tumor effect with paclitaxel both in tumor xenograft models of cervical and breast cancer. Interestingly, the quantitative assays on hair length and hair growth both exhibited that minoxidil significantly improved the hair quality after chemotherapy. Since minoxidil is a drug approved by the Food and Drug Administration (FDA), the safety and biocompatibility are well documented. The immediate next step is to launch an early-stage clinical trial intending to prevent CIPN by minoxidil.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan
| | - Li-Hsien Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan
| | - Yu-Min Yeh
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Taiwan
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lian-Yun Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Taiwan.,Advanced Optoelectronic Technology Center, National Cheng Kung University, Taiwan
| |
Collapse
|
47
|
Areti A, Yerra VG, Komirishetty P, Kumar A. Potential Therapeutic Benefits of Maintaining Mitochondrial Health in Peripheral Neuropathies. Curr Neuropharmacol 2017; 14:593-609. [PMID: 26818748 PMCID: PMC4981743 DOI: 10.2174/1570159x14666151126215358] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/31/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023] Open
Abstract
Background: Peripheral neuropathies are a group of diseases characterized by malfunctioning of peripheral nervous system. Neuropathic pain, one of the core manifestations of peripheral neuropathy remains as the most severe disabling condition affecting the social and daily routine life of patients suffering from peripheral neuropathy. Method: The current review is aimed at unfolding the possible role of mitochondrial dysfunction in peripheral nerve damage and to discuss on the probable therapeutic strategies against neuronal mitotoxicity. The article also highlights the therapeutic significance of maintaining a healthy mitochondrial environment in neuronal cells via pharmacological management in context of peripheral neuropathies. Results: Aberrant cellular signaling coupled with changes in neurotransmission, peripheral and central sensitization are found to be responsible for the pathogenesis of variant toxic neuropathies. Current research reports have indicated the possible involvement of mitochondria mediated redox imbalance as one of the principal causes of neuropathy aetiologies. In addition to imbalance in redox homeostasis, mitochondrial dysfunction is also responsible for alterations in physiological bioenergetic metabolism, apoptosis and autophagy pathways. Conclusions: In spite of various etiological factors, mitochondrial dysfunction has been found to be a major pathomechanism underlying the neuronal dysfunction associated with peripheral neuropathies. Pharmacological modulation of mitochondria either directly or indirectly is expected to yield therapeutic relief from various primary and secondary mitochondrial diseases.
Collapse
Affiliation(s)
| | | | | | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, TG-500037.
| |
Collapse
|
48
|
Falagan-Lotsch P, Grzincic EM, Murphy CJ. New Advances in Nanotechnology-Based Diagnosis and Therapeutics for Breast Cancer: An Assessment of Active-Targeting Inorganic Nanoplatforms. Bioconjug Chem 2017; 28:135-152. [DOI: 10.1021/acs.bioconjchem.6b00591] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Priscila Falagan-Lotsch
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Elissa M. Grzincic
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Catherine J. Murphy
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
49
|
Mechanisms of breast cancer resistance to anthracyclines or taxanes: an overview of the proposed roles of noncoding RNA. Curr Opin Oncol 2016; 27:457-65. [PMID: 26371779 DOI: 10.1097/cco.0000000000000235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Anthracyclines and taxanes are the two most active classes of cytotoxic agents that are commonly used for the treatment of breast cancer. However, resistance to these agents has become a major clinical obstacle. The aim of the present review is to define the roles of noncoding RNA (ncRNA) in breast cancer progression and the development of chemotherapy resistance. The ultimate goal is to exploit ncRNAs as new therapeutic tools to overcome resistance. RECENT FINDINGS Two important types of ncRNA include microRNA (miRNA) and long noncoding RNA (lncRNA). Both miRNA and lncRNA have recently impacted the field of breast cancer research as important pieces in the mechanistic puzzle of the genes and pathways involved in breast cancer development and progression. SUMMARY Herein, we review the roles of miRNA and lncRNA in breast cancer progression and the development of chemotherapy resistance. Future research should include identification of ncRNAs that could be potential therapeutic targets in chemotherapy-resistant tumors, as well as ncRNA biomarkers that facilitate more tumor-specific treatment options for chemotherapy-resistant breast cancer patients.
Collapse
|
50
|
Aydin O, Youssef I, Yuksel Durmaz Y, Tiruchinapally G, ElSayed MEH. Formulation of Acid-Sensitive Micelles for Delivery of Cabazitaxel into Prostate Cancer Cells. Mol Pharm 2016; 13:1413-29. [DOI: 10.1021/acs.molpharmaceut.6b00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Omer Aydin
- Cellular Engineering & Nano-Therapeutics Laboratory, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ibrahim Youssef
- Cellular Engineering & Nano-Therapeutics Laboratory, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, Faculty of Science, Mansoura University, Mansoura ET-35516, Egypt
| | - Yasemin Yuksel Durmaz
- Cellular Engineering & Nano-Therapeutics Laboratory, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Gopinath Tiruchinapally
- Cellular Engineering & Nano-Therapeutics Laboratory, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mohamed E. H. ElSayed
- Cellular Engineering & Nano-Therapeutics Laboratory, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|