1
|
Wu J, Lai Y, Yang X, Zhou Q, Qian Z, Zhang A, Sun J, Gan J. Structure-Dependent uptake and metabolism of Tire additives Benzothiazoles in carrot plant. ENVIRONMENT INTERNATIONAL 2024; 193:109075. [PMID: 39447470 DOI: 10.1016/j.envint.2024.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Tire additives, such as benzothiazole and its derivatives (collectively called BTs), are large-volume chemicals that are constantly emitted into agricultural environment via tire-road wearing and other actions. The potential accumulation of BTs in food crops depends largely on their metabolism in plants, which is poorly understood. Herein, we evaluated uptake and metabolism of six BTs in carrot callus and intact carrot plants to understand their structure-specific metabolism. All BTs were readily taken up by carrot roots, with their root concentration factors (RCF) ranging from 1.66 ± 0.01 to 2.95 ± 0.05. Although the tested BTs exhibited poor upward translocation from root to leaves (translocation factors < 1), the translocation factors of 2-methylbenzothiazole (0.79) and 2-aminobenzothiazole (0.65) were significantly higher than that of 2-methylbenzothiazole (0.18) and 2-(methylthio)benzothiazole (0.22). These results indicated the structure-dependent uptake and translocation of BTs in carrot. Correlation analysis between log Kow and log RCF or TF revealed that the hydrophobicity of BTs predominantly affected their root uptake and acropetal translocation in carrots. With the aid of high-resolution mass spectrometry, a total of 18 novel metabolites of BTs were tentatively identified, suggesting that BT compounds can be metabolized by carrot callus. The proposed metabolites of BTs include four hydroxylated products, one demethylated product, five glycosylated products and eight amino acid conjugated products, revealing that glycosylation and amino acid conjugation were the dominant transformation pathways for BT metabolism in carrot. However, the detected species of metabolites for six BTs varied distinctly, indicating structure-specific metabolism of BTs in plants. The findings of this study improve our understanding of structure-dependent fate and transformation of BTs in plants. Since BTs metabolites in food crops could present an unintended exposure route to consumers, the structure-specific differences of BTs uptake, metabolism and accumulation in plants must be considered when addressing human dietary exposure risks.
Collapse
Affiliation(s)
- Juan Wu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yugang Lai
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xindong Yang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinghua Zhou
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhuxiu Qian
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| |
Collapse
|
2
|
Strom SA, Hager AG, Concepcion JCT, Seiter NJ, Davis AS, Morris JA, Kaundun SS, Riechers DE. Metabolic Pathways for S-Metolachlor Detoxification Differ Between Tolerant Corn and Multiple-Resistant Waterhemp. PLANT & CELL PHYSIOLOGY 2021; 62:1770-1785. [PMID: 34453831 PMCID: PMC8664635 DOI: 10.1093/pcp/pcab132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/27/2021] [Indexed: 05/04/2023]
Abstract
Herbicide resistance in weeds can be conferred by target-site and/or non-target-site mechanisms, such as rapid metabolic detoxification. Resistance to the very-long-chain fatty acid-inhibiting herbicide, S-metolachlor, in multiple herbicide-resistant populations (CHR and SIR) of waterhemp (Amaranthus tuberculatus) is conferred by rapid metabolism compared with sensitive populations. However, enzymatic pathways for S-metolachlor metabolism in waterhemp are unknown. Enzyme assays using S-metolachlor were developed to determine the specific activities of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) from CHR and SIR seedlings to compare with tolerant corn and sensitive waterhemp (WUS). GST activities were greater (∼2-fold) in CHR and SIR compared to WUS but much less than corn. In contrast, P450s in microsomal extracts from CHR and SIR formed O-demethylated S-metolachlor, and their NADPH-dependent specific activities were greater (>20-fold) than corn or WUS. Metabolite profiles of S-metolachlor generated via untargeted and targeted liquid chromatography-mass spectrometry from CHR and SIR differed from WUS, with greater relative abundances of O-demethylated S-metolachlor and O-demethylated S-metolachlor-glutathione conjugates formed by CHR and SIR. In summary, our results demonstrate that S-metolachlor metabolism in resistant waterhemp involves Phase I and Phase II metabolic activities acting in concert, but the initial O-demethylation reaction confers resistance.
Collapse
Affiliation(s)
| | - Aaron G Hager
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Nicholas J Seiter
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Adam S Davis
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - James A Morris
- Jealott’s Hill International Research Centre, Syngenta UK Ltd, Bracknell, Berkshire RG42, UK
| | - Shiv S Kaundun
- Jealott’s Hill International Research Centre, Syngenta UK Ltd, Bracknell, Berkshire RG42, UK
| | | |
Collapse
|
3
|
The Effect of Salicylic Acid and 20 Substituted Molecules on Alleviating Metolachlor Herbicide Injury in Rice (Oryza sativa). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10030317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salicylic acid (SA) is an endogenous plant hormone that has a wide range of pharmacological effects. Studies have indicated that SA has herbicide safening activity. In this study, the herbicide safening activity of SA and 20 substituted molecules were tested on agar-cultured rice. Biological assay results indicated that SA and substituted SA had a low inhibitory effect on the growth of rice seedlings (Oryza sativa), and partially alleviated the effects of metolachlor toxicity. Moreover, at 0.25 mg L−1, the safening effect of compounds l and u lessened the effects of metolachlor phytotoxicity on plant height and fresh weight when compared to the effects of the control, fenclorim. The effects of metolachlor toxicity were reduced on root length due to the safening effects of compounds l, n, and u; these effects were greater than those of fenclorim. These compounds could facilitate the development of novel herbicide safeners.
Collapse
|
4
|
Bigott Y, Khalaf DM, Schröder P, Schröder PM, Cruzeiro C. Uptake and Translocation of Pharmaceuticals in Plants: Principles and Data Analysis. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Phytoremediation of Heavy Metals and Pesticides Present in Water Using Aquatic Macrophytes. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-32-9664-0_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
la Cecilia D, Tang FHM, Coleman NV, Conoley C, Vervoort RW, Maggi F. Glyphosate dispersion, degradation, and aquifer contamination in vineyards and wheat fields in the Po Valley, Italy. WATER RESEARCH 2018; 146:37-54. [PMID: 30223108 DOI: 10.1016/j.watres.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Biodegradation of glyphosate (GLP) and its metabolite aminomethylphosphonic acid (AMPA) was numerically assessed for a vineyard and a wheat field in the Po Valley, Italy. Calculation of the Hazard Quotient suggested that GLP and AMPA can pose a risk of aquifer contamination in the top 1.5 m depth within 50 years of GLP use. Numerical results relative to soil GLP and AMPA concentrations, and GLP age, half life, and turnover time show that GLP was equivalently removed through hydrolysis and oxidation, but the latter produced AMPA. Biodegradation processes in the root zone removed more than 90% of applied GLP and more than 23% of the produced AMPA between two consecutive applications. Doubling organic carbon availability enhanced GLP and AMPA biodegradation, especially GLP hydrolysis to sarcosine. This work highlights that GLP and AMPA removal is controlled by soil water dynamics that depend on ecohydrological boundary conditions, and by carbon sources availability to biodegraders.
Collapse
Affiliation(s)
- Daniele la Cecilia
- Laboratory for Environmental Engineering, School of Civil Engineering, The University of Sydney, Bld. J05, 2006, Sydney, NSW, Australia.
| | - Fiona H M Tang
- Laboratory for Environmental Engineering, School of Civil Engineering, The University of Sydney, Bld. J05, 2006, Sydney, NSW, Australia
| | - Nicholas V Coleman
- School of Life and Environmental Sciences, The University of Sydney, Bld. G08, 2006, Sydney, NSW, Australia
| | - Chris Conoley
- Environmental Earth Sciences International Pty Ltd, 82-84, Dickson Ave, Artarmon, NSW, Australia
| | - R Willem Vervoort
- School of Life and Environmental Sciences, The University of Sydney, Bld. G08, 2006, Sydney, NSW, Australia
| | - Federico Maggi
- Laboratory for Environmental Engineering, School of Civil Engineering, The University of Sydney, Bld. J05, 2006, Sydney, NSW, Australia
| |
Collapse
|
7
|
Synthesis, Crystal Structure, Herbicide Safening, and Antifungal Activity of N-(4,6-Dichloropyrimidine-2-Yl)Benzamide. CRYSTALS 2018. [DOI: 10.3390/cryst8020075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Ramborger BP, Ortis Gularte CA, Rodrigues DT, Gayer MC, Sigal Carriço MR, Bianchini MC, Puntel RL, Denardin ELG, Roehrs R. The phytoremediation potential of Plectranthus neochilus on 2,4-dichlorophenoxyacetic acid and the role of antioxidant capacity in herbicide tolerance. CHEMOSPHERE 2017; 188:231-240. [PMID: 28886557 DOI: 10.1016/j.chemosphere.2017.08.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/27/2017] [Accepted: 08/30/2017] [Indexed: 05/23/2023]
Abstract
The possible phytoremediation capacity of Plectranthus neochilus (boldo) exposed to the commercial pesticide (Aminol) in soil and water through consecutive extractions (days interval) was evaluated. After the exposure period, tea leaves from the plant were analyzed in terms of the presence of 2,4-D, total antioxidant capacity (DPPH), concentration of total polyphenols and flavonoids for plants exposed to soil and water. In water, 2,4-D remained up to 67% in the 60 days of experiment in the control group, which provided the use of two treatment groups with the plant (one group of plants for 30 days and another group in the remaining 30 days in the same system), thus, a decontamination up to 49% of the 2,4-D was obtained in this system with water. In both experiments (soil and water) the 2,4-D was not detected in tea leaves, the reduction of the antioxidant activity, polyphenols and flavonoids of plants exposed to the herbicide was also observed when compared to the non-exposed plants. In tea - plants in water - it was also possible to quantify the phenolic compounds and it was observed that in the group of plants of the first 30 days there was a decrease in caffeic acid and an increase in coumaric and ferulic acids, compared to the group of plants that were not exposed to 2,4-D. In the remaining 30 days with the new seedlings there was a decrease of the coumaric acid and an increase of the caffeic and ferulic acids.
Collapse
Affiliation(s)
- Bruna Piaia Ramborger
- Grupo Interdisciplinar de Pesquisa em Práticas de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Claudia Alves Ortis Gularte
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Daniela Teixeira Rodrigues
- Grupo Interdisciplinar de Pesquisa em Práticas de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Mateus Cristofari Gayer
- Grupo Interdisciplinar de Pesquisa em Práticas de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Murilo Ricardo Sigal Carriço
- Grupo Interdisciplinar de Pesquisa em Práticas de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Matheus Chimelo Bianchini
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Robson Luiz Puntel
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Elton Luis Gasparotto Denardin
- Laboratório de Estudos Físico-Químicos e Produtos Naturais (LEFQPN), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Grupo Interdisciplinar de Pesquisa em Práticas de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
9
|
Tang X, Zhou X, Wu J, Li J, Bai L. A novel function of sanshools: the alleviation of injury from metolachlor in rice seedlings. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 110:44-9. [PMID: 24759050 DOI: 10.1016/j.pestbp.2014.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 05/18/2023]
Abstract
Szechuan peppers are extensively used as a spice and in traditional medicine in Asia, primarily because of its active compounds, sanshools (S). However, there is only limited mention in agriculture, and there are no papers reporting its use as an herbicide safener. In this study, we provide the first evidence that S can effectively alleviate rice-seedling injury from metolachlor (M). We observed that the M-treated (0.25 μM) rice seedlings, which were 56.0%, 66.0%, and 57.0% of the non-treated control in shoot height, root length, and fresh biomass, respectively, were recovered by S to 93.1%, 97.6%, and 94.8%, respectively. The emergence rate was enhanced to over 80% in the M+S treatment, whereas it was below 60% in the M treatment. This M+S mixture elevated the rice-seedling root activity to higher than 87.0% of the value for the non-treated control. The activity of glutathione transferases in the combined treatments approximately doubles that of the M treatment and quadruples that of the non-treated controls. This effect was positively correlated with the induced expression of OsGSTU3. Our results suggest that S may represent a new group of safeners and enable the possibility of using these compounds for improving plant production or protecting rice from the phytotoxicity of metolachlor.
Collapse
Affiliation(s)
- Xinke Tang
- Institute of Pesticide, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Xiaomao Zhou
- Institute of Pesticide, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Jing Wu
- Institute of Pesticide, Hunan Agricultural University, Changsha 410128, Hunan, China; Agricultural Products Quality Monitoring Center of Changsha, Changsha 410128, Hunan, China
| | - Jingbo Li
- Hunan Institute of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Lianyang Bai
- Hunan Academy of Agricultural Sciences, Changsha 410128, Hunan, China; Hunan Institute of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| |
Collapse
|
10
|
Maleva M, Borisova G, Chukina N, Nekrasova G, Prasad MNV. Influence of exogenous urea on photosynthetic pigments, (14)CO 2 uptake, and urease activity in Elodea densa-environmental implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6172-7. [PMID: 23546854 DOI: 10.1007/s11356-013-1639-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/12/2013] [Indexed: 05/20/2023]
Abstract
This paper analyzes the effect of exogenous urea in increased concentration gradient (0, 100, 500 and 1,000 mg L(-1)) on photosynthetic pigments (measured spectrophotometrically), uptake of (14)CO2 (using radioisotope), and urease activity (by measuring ammonia with Nessler's reagent) in leaves of Elodea densa Planch. We have observed that low concentration of urea (100 mg L(-1)) stimulates the accumulation of photosynthetic pigments and intensifies photosynthesis in E. densa, whereas high concentration (1,000 mg L(-1)) suppresses these processes. Urease activity increased by approximately 2.7 and 8 fold when exogenous urea concentrations were 100 and 500 mg L(-1), respectively. However, exogenous urea in high concentration (1,000 mg L(-1)) decreased urease activity by 1.5 fold compared to the control. The necessity of mitigating urea and other nitrogen-containing compounds (NH3 from urea) in water bodies has been discussed with emphasis on the potential for phytoremediation of urea using common water weed viz. E. densa.
Collapse
Affiliation(s)
- Maria Maleva
- Department of Biology, Institute of Natural Sciences, Ural Federal University, Lenin Ave., 51, Ekaterinburg, Russia, 620000.
| | | | | | | | | |
Collapse
|
11
|
Dordio AV, Carvalho AJP. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:272-92. [PMID: 23542322 DOI: 10.1016/j.jhazmat.2013.03.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/07/2013] [Accepted: 03/04/2013] [Indexed: 05/16/2023]
Abstract
Constructed wetlands (CWs) are increasingly popular as an efficient and economical alternative to conventional wastewater treatment processes for removal, among other pollutants, of organic xenobiotics. In CWs, pollutants are removed through the concerted action of their components, whose contribution can be maximized by careful selection of those components. Specifically for non-biodegradable organic pollutants, the materials used as support matrix of CWs can play a major role through sorption phenomena. In this review the role played by such materials in CWs is examined with special focus on the amount of research that has been conducted to date on their sorption properties relatively to organic compounds. Where available, the reports on the utilization of some of those materials on pilot or full-scale CWs are also recognized. Greatest interest has been directed to cheaper and widely available materials. Among these, clays are generally regarded as efficient sorbents, but materials originated from agricultural wastes have also gained recent popularity. Most available studies are lab-scale batch sorption experiments, whereas assays performed in full-scale CWs are still scarce. However, the available lab-scale data points to an interesting potential of many of these materials for experimentation as support matrix of CWs targeted for organic xenobiotics removal.
Collapse
Affiliation(s)
- A V Dordio
- Chemistry Department, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal.
| | | |
Collapse
|
12
|
Formation of inclusion complexes and controlled release of atrazine using free or silica-anchored β-cyclodextrin. J INCL PHENOM MACRO 2012. [DOI: 10.1007/s10847-012-0125-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Cui LE, Yang H. Accumulation and residue of napropamide in alfalfa (Medicago sativa) and soil involved in toxic response. JOURNAL OF HAZARDOUS MATERIALS 2011; 190:81-6. [PMID: 21439724 DOI: 10.1016/j.jhazmat.2011.02.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/27/2011] [Accepted: 02/28/2011] [Indexed: 05/18/2023]
Abstract
Napropamide belongs to the amide herbicide family and widely used to control weeds in farmland. Intensive use of the herbicide has resulted in widespread contamination to ecosystems. The present study demonstrated an analysis on accumulation of the toxic pesticide napropamide in six genotypes of alfalfa (Medicago sativa), along with biological parameters and its residues in soils. Soil was treated with napropamide at 3 mg kg(-1) dry soil and alfalfa plants were cultured for 10 or 30 d, respectively. The maximum value for napropamide accumulation is 0.426 mg kg(-1) in shoots and 2.444 mg kg(-1) in roots. The napropamide-contaminated soil with alfalfa cultivation had much lower napropamide concentrations than the control (soil without alfalfa cultivation). Also, the content of napropamide residue in the rhizosphere was significantly lower than that in the non-rhizosphere soil. M. sativa exposed to 3 mg kg(-1) napropamide showed inhibited growth. Further analysis revealed that plants treated with napropamide accumulated more reactive oxygen species (O(2)(-) and H(2)O(2)) and less amounts of chlorophyll. However, not all cultivars showed oxidative injury, suggesting that the alfalfa cultivars display different tolerance to napropamide.
Collapse
Affiliation(s)
- Li E Cui
- Jiangsu Key Laboratory of Pesticide Science, College of Science, Nanjing Agricultural University, Nanjing, China
| | | |
Collapse
|
14
|
Bartha B, Huber C, Harpaintner R, Schröder P. Effects of acetaminophen in Brassica juncea L. Czern.: investigation of uptake, translocation, detoxification, and the induced defense pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:1553-1562. [PMID: 20574781 DOI: 10.1007/s11356-010-0342-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 05/06/2010] [Indexed: 05/29/2023]
Abstract
PURPOSE Besides classical organic pollutants and pesticides, pharmaceuticals and their residues have nowadays become recognized as relevant environmental contaminants. The risks of these chemicals for aquatic ecosystems are well known, but information about the pharmaca-plant interactions and metabolic pathways is scarce. Therefore, we investigate the process of uptake of acetaminophen (N-Acetyl-4-aminophenol) by Brassica juncea, drug-induced defense responses and detoxification mechanisms in different plant parts. MATERIAL AND METHODS Hydroponically grown Indian mustard (Brassica juncea L. Czern.) plants were treated with acetaminophen and root and leaf samples were collected after 24, 72, and 168 h of treatment. The uptake of acetaminophen and the formation of its metabolites were analyzed using LC-MS/MS technique and enzyme activities including glutathione S-transferases (GSTs) as well as several plant defense enzymes like catalase, ascorbat peroxidase, peroxidase, and glutathione reductase were assayed spectrophotometrically. RESULTS We determined the uptake and the translocation of acetaminophen, and we tried to identify the steps of the detoxification process by assaying typical enzymes, supposing the involvement of the same- or similar enzymes and reactions as in the mammalian detoxification process. After 24-h exposure, effective uptake and translocation were observed to the upper part of plants followed by two independent conjugative detoxification pathways. Changes in antioxidant defense enzyme activities connected to the defense pathway towards reactive oxygen species indicate an additional oxidative stress response in the plants. CONCLUSIONS The major metabolic pathways in mammals are conjugation with activated sulfate and glucuronic acid, while a small amount of acetaminophen forms a chemically reactive and highly toxic, hydroxylated metabolite. We identified a glutathionyl and a glycoside conjugate, which refer to the similarities to mammalian detoxification. Increased GST activities in leaf tissues were observed correlated with the appearance of the acetaminophen-glutathione conjugate which shows the involvement of this enzyme group in the metabolism of acetaminophen in plants to organic pollutants and xenobiotics. High acetaminophen concentrations lead to oxidative stress and irreversible damages in the plants, which necessitates further investigations using lower drug concentrations for the deeper understanding of the induced detoxification-and defense processes.
Collapse
|
15
|
|
16
|
Schröder P, Daubner D, Maier H, Neustifter J, Debus R. Phytoremediation of organic xenobiotics - Glutathione dependent detoxification in Phragmites plants from European treatment sites. BIORESOURCE TECHNOLOGY 2008; 99:7183-7191. [PMID: 18313917 DOI: 10.1016/j.biortech.2007.12.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 05/26/2023]
Abstract
Studies on the uptake of several organic xenobiotics and on their subsequent conjugation to biomolecules have been performed to elucidate the use of reed plants in phytoremediation of polluted water. Phragmites australis plants were able to accumulate organic xenobiotics in their rhizomes. The uptake was correlated to the logKOW and pKa of the xenobiotics and highest with compounds exhibiting logKOWs between 1 and 3. Detoxification of xenobiotics was demonstrated when the activity of glutathione S-transferase was determined in plants from various treatment sites. Enzyme activities were strongly dependent on the provenience of the plant and the history of the stand. Detoxification enzymes were also inducible. Naphthylic acetic acid (NAA), 2,4-dichlorophenol and BION were tested as potential inducers. BION was able to induce the GST activity 5-fold, albeit only for a short period of hours. The mechanism of induction and the flexibility of the detoxification system of certain ecotypes of reed toward stress or the pollution level will require further investigation.
Collapse
Affiliation(s)
- Peter Schröder
- Department Microbe-Plant-Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85758 Oberschleissheim, Germany.
| | | | | | | | | |
Collapse
|
17
|
Merini LJ, Cuadrado V, Flocco CG, Giulietti AM. Dissipation of 2,4-D in soils of the Humid Pampa region, Argentina: a microcosm study. CHEMOSPHERE 2007; 68:259-65. [PMID: 17316752 DOI: 10.1016/j.chemosphere.2007.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 05/14/2023]
Abstract
Phenoxy herbicides like 2,4-dichlorophenoxyacetic acid (2,4-D) are widely used in agricultural practices. Although its half life in soil is 7-14d, the herbicide itself and its first metabolite 2,4-dichlorophenol (2,4-DCP) could remain in the soil for longer periods, as a consequence of its intensive use. Microcosms assays were conducted to study the influence of indigenous microflora and plants (alfalfa) on the dissipation of 2,4-D from soils of the Humid Pampa region, Argentina, with previous history of phenoxy herbicides application. Results showed that 2,4-D was rapidly degraded, and the permanence of 2,4-DCP in soil depended on the presence of plants and soil microorganisms. Regarding soil microbial community, the presence of 2,4-D degrading bacteria was detected even in basal conditions in this soil, possibly due to the adaptation of the microflora to the herbicide. There was an increment of two orders of magnitude in herbicide degraders after 15d from 2,4-D addition, both in planted and unplanted microcosms. Total heterotrophic bacteria numbers were about 1x10(8) CFUg(-1) dry soil and no significant differences were found between different treatments. Overall, the information provided by this work indicates that the soil under study has an important intrinsic degradation capacity, given by a microbial community adapted to the presence of phenoxy herbicides.
Collapse
Affiliation(s)
- Luciano J Merini
- Microbiología Industrial y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Junín 956 (1113), Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
18
|
Eapen S, Singh S, D'Souza SF. Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 2007; 25:442-51. [PMID: 17553651 DOI: 10.1016/j.biotechadv.2007.05.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 05/04/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Phytoremediation-the use of plants for cleaning up of xenobiotic compounds-has received much attention in the last few years and development of transgenic plants tailored for remediation will further enhance their potential. Although plants have the inherent ability to detoxify some xenobiotic pollutants, they generally lack the catabolic pathway for complete degradation/mineralization of these compounds compared to microorganisms. Hence, transfer of genes involved in xenobiotic degradation from microbes/other eukaryotes to plants will further enhance their potential for remediation of these dangerous groups of compounds. Transgenic plants with enhanced potential for detoxification of xenobiotics such as trichloro ethylene, pentachlorophenol, trinitro toluene, glycerol trinitrate, atrazine, ethylene dibromide, metolachlor and hexahydro-1,3,5-trinitro-1,3,5-triazine are a few successful examples of utilization of transgenic technology. As more genes involved in xenobiotic metabolism in microorganisms/eukaryotes are discovered, it will lead to development of novel transgenic plants with improved potential for degradation of recalcitrant contaminants. Selection of suitable candidate plants, field testing and risk assessment are important considerations to be taken into account while developing transgenic plants for phytoremediation of this group of pollutants. Taking advantage of the advances in biotechnology and 'omic' technologies, development of novel transgenic plants for efficient phytoremediation of xenobiotic pollutants, field testing and commercialization will soon become a reality.
Collapse
Affiliation(s)
- Susan Eapen
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| | | | | |
Collapse
|
19
|
Schröder P, Scheer CE, Diekmann F, Stampfl A. How plants cope with foreign compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2007; 14:490-7. [PMID: 17455821 DOI: 10.1065/espr2006.12.373] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
BACKGROUND AND AIM Numerous herbicides and xenobiotic organic pollutants are detoxified in plants to glutathione conjugates. Following this enzyme catalyzed reaction, xenobiotic GS-conjugates are thought to be compartmentalized in the vacuole of plant cells. In the present study, evidence is presented from experiments with roots of barley (Hordeum vulgare cv. Cherie) that part of these conjugates will undergo long range transport in plants, rather than be stored in the vacuole. To our knowledge, this is the first report about the unidirectional long-range transport of xenobiotic conjugates in plants and the exsudation of a glutathione conjugate from the root tips. This could mean that plants possess an excretion system for unwanted compounds giving them similar advantages as animals. METHODS Barley plants (Hordeum vulgare) were grown in Petri dishes soaked with tap water in the greenhouse. Fluorescence Microscopy. Roots of barley seedlings were cut under water, and the end at which the pesticides were applied was fixed in an aperture with a thin latex foil and transferred into a drop of water on a cover slide. The cover slide was fixed in a measuring chamber on the stage of an inverse fluorescence microscope (Zeiss Axiovert 100). Monobromo- and Monochlorobimane, two model xenobiotics that are conjugated rapidly in plant cells with glutathione, hereby forming fluorescent metabolites, were used as markers. Their transport in the root could be followed with high time resolution. Spectrometric enzyme assay. Glutathione S-transferase (GST) activity was determined in the protein extracts following established methods. Aliquots of the enzyme extract were incubated with 1-chloro-2,4-dinitrobenzene (CDNB), or monochlorobimane. Controls lacking enzyme or GSH were measured. Pitman chamber experiments. Ten days old barley plants or detached roots were inserted into special incubation chambers, either complete with tips or decapitated, as well as 10 days old barley plants without root tips. Compartment A was filled with a transport medium and GSH conjugate or L-cysteine conjugate. Compartments B and C contained sugar free media. Samples were taken from the root tip containing compartment C and the amount of conjugate transported was determined spectro-photometrically. Results. The transport in roots is unidirectional towards the root tips and leads to exsudation of the conjugates at rates between 20 and 200 nmol min(-1). The microscopic studies have been complemented by transport studies in small root chambers and spectroscopic quantification of dinitrobenzene-conjugates. The latter experiments confirm the microscopic studies. Furthermore it was shown that glutathione conjugates are transported at higher rates than cysteine conjugates, despite of their higher molecular weights. This observation points to the existence of glutathione specific carriers and a specific role of glutathione in the root. DISCUSSION It can be assumed that long distance transport of glutathione conjugates within the plant proceeds like GSH or amino acid transport in both, phloem and xylem. The high velocity of this translocation of the GS-X is indicative of an active transport. For free glutathione, a rapid transport-system is essential because an accumulation of GSH in the root tip inhibits further uptake of sulfur. Taking into account that all described MRP transporters and also the GSH plasmalemma ATPases have side activities for glutathione derivatives and conjugates, co-transport of these xenobiotic metabolites seems credible. On the other hand, when GS-B was applied to the root tips from the outside, no significant uptake was observed. Thus it can be concluded that only those conjugates can be transported in the xylem which are formed inside the root apex. Having left the root once, there seems to be no return into the root vessels, probably because of a lack of inward directed transporters. CONCLUSIONS Plants seem to possess the capability to store glutathione conjugates in the vacuole, but under certain conditions, these metabolites might also undergo long range transport, predominantly into the plant root. The transport seems dependent on specific carriers and is unidirectional, this means that xenobiotic conjugates from the rhizosphere are not taken up again. The exudation of xenobiotic metabolites offers an opportunity to avoid the accumulation of such compounds in the plant. RECOMMENDATIONS AND PERSPECTIVES The role of glutathione and glutathione related metabolites in the rhizosphere has not been studied in any detail, and only scattered data are available on interactions between the plant root and rhizosphere bacteria that encounter such conjugates. The final fate of these compounds in the root zone has also not been addressed so far. It will be interesting to study effects of the exsuded metabolites on the biology of rhizosphere bacteria and fungi.
Collapse
Affiliation(s)
- Peter Schröder
- Department of Microbe-Plant Interactions, GSF-National Research Center for Environment and Health, Neuherberg, Ingolstädter Landstrasse 1, 85758 Oberschleissheim, Germany.
| | | | | | | |
Collapse
|
20
|
|
21
|
Sulmon C, Gouesbet G, Amrani AE, Couée I. Sugar-induced tolerance to the herbicide atrazine in Arabidopsis seedlings involves activation of oxidative and xenobiotic stress responses. PLANT CELL REPORTS 2006; 25:489-98. [PMID: 16397785 DOI: 10.1007/s00299-005-0062-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/17/2005] [Accepted: 09/11/2005] [Indexed: 05/06/2023]
Abstract
Exogenous sucrose confers to Arabidopsis seedlings a very high level of tolerance to the herbicide atrazine that cannot be ascribed to photoheterotrophic growth. Important differences of atrazine tolerance between sucrose and glucose treatments showed that activation of chloroplast biogenesis per se could not account for induced tolerance. Sucrose-induced acquisition of defence mechanisms was shown by the gene expression pattern of a chloroplastic iron superoxide dismutase and by enhancement of whole-cell glucose-6-phosphate dehydrogenase activity. Activation of these defence mechanisms depended on both soluble sugar and atrazine. Moreover, acquisition of sucrose protection was shown to unmask atrazine-induced gene expression, such as that of a cytosolic glutathione-S-transferase, which remained otherwise cryptic because of the lethal effects of atrazine in the absence of soluble sugars.
Collapse
Affiliation(s)
- Cécile Sulmon
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042, Rennes Cedex, France
| | | | | | | |
Collapse
|
22
|
Mezzari MP, Walters K, Jelínkova M, Shih MC, Just CL, Schnoor JL. Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. PLANT PHYSIOLOGY 2005; 138:858-69. [PMID: 15923336 PMCID: PMC1150403 DOI: 10.1104/pp.104.056168] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Understanding the function of detoxifying enzymes in plants toward xenobiotics is of major importance for phytoremediation applications. In this work, Arabidopsis (Arabidopsis thaliana; ecotype Columbia) seedlings were exposed to 0.6 mm acetochlor (AOC), 2 mm metolachlor (MOC), 0.6 mm 2,4,6-trinitrotoluene (TNT), and 0.3 mm hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). In vivo glutathione (GSH) conjugation reactions of AOC, MOC, RDX, and TNT were studied in root cells using a multiphoton microscope. In situ labeling with monochlorobimane, used as a competitive compound for conjugation reactions with GSH, confirmed that AOC and MOC are conjugated in Arabidopsis cells. Reverse transcription-PCR established the expression profile of glutathione S-transferases (GSTs) and nitroreductases enzymes. Genes selected for this study were AtGSTF2, AtGSTU1, AtGSTU24, and two isoforms of 12-oxophytodienoate reductase (OPR1 and OPR2). The five transcripts tested were induced by all treatments, but RDX resulted in low induction. The mRNA level of AtGSTU24 showed substantial increase for all chemicals (23-fold induction for AOC, 18-fold for MOC, 5-fold for RDX, and 40-fold for TNT). It appears that GSTs are also involved in the conjugation reactions with metabolites of TNT, and to a lesser extent with RDX. Results indicate that OPR2 is involved in plant metabolism of TNT (11-fold induction), and in oxidative stress when exposed to AOC (7-fold), MOC (9-fold), and RDX (2-fold). This study comprises gene expression analysis of Arabidopsis exposed to RDX and AOC, which are considered significant environmental contaminants, and demonstrates the importance of microscopy methods for phytoremediation investigations.
Collapse
Affiliation(s)
- Melissa P Mezzari
- Department of Civil and Environmental Engineering , University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
23
|
Paquin DG, Campbell S, Li QX. Phytoremediation in subtropical Hawaii?A review of over 100 plant species. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/rem.20005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|