1
|
Zhang DD. Thirty years of NRF2: advances and therapeutic challenges. Nat Rev Drug Discov 2025:10.1038/s41573-025-01145-0. [PMID: 40038406 DOI: 10.1038/s41573-025-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 03/06/2025]
Abstract
Over the last 30 years, NRF2 has evolved from being recognized as a transcription factor primarily involved in redox balance and detoxification to a well-appreciated master regulator of cellular proteostasis, metabolism and iron homeostasis. NRF2 plays a pivotal role in diverse pathologies, including cancer, and metabolic, inflammatory and neurodegenerative disorders. It exhibits a Janus-faced duality, safeguarding cellular integrity in normal cells against environmental insults to prevent disease onset, whereas in certain cancers, constitutively elevated NRF2 levels provide a tumour survival advantage, promoting progression, therapy resistance and metastasis. Advances in understanding the mechanistic regulation of NRF2 and its roles in human pathology have propelled the investigation of NRF2-targeted therapeutic strategies. This Review dissects the mechanistic intricacies of NRF2 signalling, its cross-talk with biological processes and its far-reaching implications for health and disease, highlighting key discoveries that have shaped innovative therapeutic approaches targeting NRF2.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Molecular Medicine, Center for Inflammation Science and Systems Medicine, UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Strazielle N, Silva K, Rault E, Durand C, Saudrais E, Mein P, Blondel S, Denuzière A, Ghersi-Egea JF. The glutathione-dependent neuroprotective activity of the blood-CSF barrier is inducible through the Nrf2 signaling pathway during postnatal development. Fluids Barriers CNS 2025; 22:19. [PMID: 39985067 PMCID: PMC11846383 DOI: 10.1186/s12987-025-00622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/16/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Choroid plexuses regulate the exchanges between the blood and the CSF, and provide trophic factors necessary to brain development. They also express detoxifying enzymes that protect the developing brain from harmful substances. Targeting the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathway may enhance the detoxification capabilities of choroid plexuses that are linked to glutathione conjugation, but little is known about mechanisms of enzyme induction in this tissue. METHODS Rat pups were treated with dimethylfumarate and the subcellular localization of Nrf2 was analyzed in the choroidal tissue by confocal imaging. Glutathione-S-transferase (GST) activity was assessed ex vivo in the choroidal tissue, and 1-chloro-2,4-dinitrobenzene, a toxicant and prototypic GST substrate, was used to evaluate in vivo the efficiency of the glutathione-dependent enzymatic barrier function of choroid plexuses. Nrf2 knockout rat pups were used to establish the Nrf2 dependency of GST induction in this tissue. RESULTS We show an early postnatal expression of Nrf2 in the rat choroidal tissue. Treatment of rat pups with dimethylfumarate triggers Nrf2 nuclear translocation in choroidal epithelial cells. This treatment increases GST activity in choroid plexus, and reduces the blood-to-CSF permeation of 1-chloro-2,4-dinitrobenzene. In Nrf2 knockout rats, the constitutive activity of the choroidal glutathione-dependent detoxifying machinery is maintained, but the efficacy of dimethylfumarate to induce glutathione conjugation in the choroid plexuses is strongly reduced, indicating that dimethylfumarate acts mainly through the Nrf2 signaling pathway. CONCLUSIONS This work shows that the glutathione-dependent detoxifying function of the blood-CSF barrier can be pharmacologically enhanced through the Nrf2 signaling pathway to better protect the neural fluid environment from drug and toxic accumulation during the neonatal period.
Collapse
Affiliation(s)
- Nathalie Strazielle
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
- Brain-i, Lyon, France
| | - Karen Silva
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Emmanuel Rault
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Cindy Durand
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Elodie Saudrais
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Pascal Mein
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Sandrine Blondel
- 1 BIP Facility, Lyon Neurosciences Research Center, Bron, France
| | - Anne Denuzière
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Jean-François Ghersi-Egea
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France.
- 1 BIP Facility, Lyon Neurosciences Research Center, Bron, France.
| |
Collapse
|
3
|
Fan W, Zheng J, Jiang F. Analysis of ferroptosis-related genes in cerebral ischemic stroke via immune infiltration and single-cell RNA-sequencing. BMC Med Genomics 2025; 18:31. [PMID: 39934808 DOI: 10.1186/s12920-025-02098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Ischemic stroke (IS) represents a harmful neurological disorder with limited treatment options. Ferroptosis accounts for the iron-dependent, nonapoptotic cell death pattern, which shows the feature of fatal lipid ROS accumulation. Nonetheless, ferroptosis-related biomarkers for identifying IS early are currently lacking. The present study focused on investigating the possible ferroptosis-related biomarkers for IS and analyzing their effects on immune infiltration. Altogether five hub differentially expressed ferroptosis-related genes (DEFRGs) were identified from the relevant databases. Additionally, single-cell RNA-sequencing (seq) analysis was conducted for the comprehensive mapping of cell populations based on the IS database. These five hub DEFRGs were analyzed using gene set enrichment analysis, miRNA prediction, and single-cell RNA-seq analysis. A transient middle cerebral artery occlusion mouse model was constructed. We also adopted bioinformatics methods combined with western blot, changes to mitochondria, hematoxylin & eosin staining, Nissl staining, ROS fluorescence staining, immunohistochemistry, and quantitative real-time polymerase chain reaction (qRT-PCR) to show the involvement of ferroptosis in IS progression. The results revealed that nuclear factor erythroid-derived 2-like 2 (Nfe2l2) was the potential candidate biomarker for IS diagnosis, and ferroptosis may be suppressed via the Nfe2l2/HO-1 pathway. Thus, drug targeting Nfe2l2 can shed novel lights on IS treatment.
Collapse
Affiliation(s)
- Wei Fan
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinhua Zheng
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Fangchao Jiang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, Henan, China.
| |
Collapse
|
4
|
Wang D, Zhang C, Guo H, Cui T, Pu W, Huang B, Zhu J, Dai X. Co-exposure to Environmentally Relevant Levels of Molybdenum and Cadmium Induces Oxidative Stress and Ferroptosis in the Ovary of Ducks. Biol Trace Elem Res 2025; 203:374-383. [PMID: 38467966 DOI: 10.1007/s12011-024-04144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Excessive doses of molybdenum (Mo) and cadmium (Cd) have toxic effects on animals. Nevertheless, the reproductive toxicity elicited by Mo and Cd co-exposure remains obscure. To evaluate the co-induce toxic impacts of Mo and Cd on ovaries, 8-day-old 40 healthy ducks were stochastically distributed to four groups and were raised a basal diet supplemented with Cd (4 mg/kg Cd) and/or Mo (100 mg/kg Mo). In the 16th week, ovary tissues were gathered. The data revealed that Mo and/or Cd decreased GSH content, CAT, T-SOD, and GSH-Px activities and increased MDA and H2O2 levels. Moreover, there was a significant decrease in nuclear Nrf2 protein level and its related downstream factors, while cytoplasmic Nrf2 protein level showed a substantial increase. Additionally, a marked elevation was observed in ferrous ion content and TFRC, GCLC, SLC7A11, ACSL4, and PTGS2 expression levels, while FTH1, FTL1, FPN1, and GPX4 expression levels were conversely reduced. These indicators exhibited more marked changes in the joint exposure group. In brief, our results announced that Mo and/or Cd resulted in oxidative stress and ferroptosis in duck ovaries. Synchronously, the Cd and Mo mixture intensified the impacts.
Collapse
Affiliation(s)
- Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Tang D, Kang R. NFE2L2 and ferroptosis resistance in cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:41. [PMID: 39534872 PMCID: PMC11555182 DOI: 10.20517/cdr.2024.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
NFE2-like basic leucine zipper transcription factor 2 (NFE2L2, also known as NRF2), is a key transcription factor in the cellular defense against oxidative stress, playing a crucial role in cancer cell survival and resistance to therapies. This review outlines the current knowledge on the link between NFE2L2 and ferroptosis - a form of regulated cell death characterized by iron-dependent lipid peroxidation - within cancer cells. While NFE2L2 activation can protect normal cells from oxidative damage, its overexpression in cancer cells contributes to drug resistance by upregulating antioxidant defenses and inhibiting ferroptosis. We delve into the molecular pathways of ferroptosis, highlighting the involvement of NFE2L2 and its target genes, such as NQO1, HMOX1, FTH1, FTL, HERC2, SLC40A1, ABCB6, FECH, PIR, MT1G, SLC7A11, GCL, GSS, GSR, GPX4, AIFM2, MGST1, ALDH1A1, ALDH3A1, and G6PD, in ferroptosis resistance. Understanding the delicate balance between NFE2L2's protective and deleterious roles could pave the way for novel therapeutic strategies targeting NFE2L2 to enhance the efficacy of ferroptosis inducers in cancer therapy.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TA 75390, USA
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TA 75390, USA
| |
Collapse
|
6
|
Li H, Fan X, Ding X, Zhang QY. Tissue-, Region-, and Gene-Specific Induction of Microsomal Epoxide Hydrolase Expression and Activity in the Mouse Intestine by Arsenic in Drinking Water. Drug Metab Dispos 2024; 52:681-689. [PMID: 38719743 PMCID: PMC11185820 DOI: 10.1124/dmd.124.001720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 06/19/2024] Open
Abstract
This study aimed to characterize the effects of arsenic exposure on the expression of microsomal epoxide hydrolase (mEH or EPHX1) and soluble epoxide hydrolase (sEH or EPHX2) in the liver and small intestine. C57BL/6 mice were exposed to sodium arsenite in drinking water at various doses for up to 28 days. Intestinal, but not hepatic, mEH mRNA and protein expression was induced by arsenic at 25 ppm, in both males and females, whereas hepatic mEH expression was induced by arsenic at 50 or 100 ppm. The induction of mEH was gene specific, as the arsenic exposure did not induce sEH expression in either tissue. Within the small intestine, mEH expression was induced only in the proximal, but not the distal segments. The induction of intestinal mEH was accompanied by increases in microsomal enzymatic activities toward a model mEH substrate, cis-stilbene oxide, and an epoxide-containing drug, oprozomib, in vitro, and by increases in the levels of PR-176, the main hydrolysis metabolite of oprozomib, in the proximal small intestine of oprozomib-treated mice. These findings suggest that intestinal mEH, playing a major role in converting xenobiotic epoxides to less reactive diols, but not sEH, preferring endogenous epoxides as substrates, is relevant to the adverse effects of arsenic exposure, and that further studies of the interactions between drinking water arsenic exposure and the disposition or possible adverse effects of epoxide-containing drugs and other xenobiotic compounds in the intestine are warranted. SIGNIFICANCE STATEMENT: Consumption of arsenic-contaminated water has been associated with increased risks of various adverse health effects, such as diabetes, in humans. The small intestinal epithelial cells are the main site of absorption of ingested arsenic, but they are not well characterized for arsenic exposure-related changes. This study identified gene expression changes in the small intestine that may be mechanistically linked to the adverse effects of arsenic exposure and possible interactions between arsenic ingestion and the pharmacokinetics of epoxide-containing drugs in vivo.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Xiaoyu Fan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Yu Q, Wang Z, Tu Y, Cao Y, Zhu H, Shao J, Zhuang R, Zhou Y, Zhang J. Proteasome activation: A novel strategy for targeting undruggable intrinsically disordered proteins. Bioorg Chem 2024; 145:107217. [PMID: 38368657 DOI: 10.1016/j.bioorg.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by their inability to adopt well-defined tertiary structures under physiological conditions. Nonetheless, they often play pivotal roles in the progression of various diseases, including cancer, neurodegenerative disorders, and cardiovascular ailments. Owing to their inherent dynamism, conventional drug design approaches based on structural considerations encounter substantial challenges when applied to IDPs. Consequently, the pursuit of therapeutic interventions directed towards IDPs presents a complex endeavor. While there are indeed existing methodologies for targeting IDPs, they are encumbered by noteworthy constrains. Hence, there exists an imminent imperative to investigate more efficacious and universally applicable strategies for modulating IDPs. Here, we present an overview of the latest advancements in the research pertaining to IDPs, along with the indirect regulation approach involving the modulation of IDP degradation through proteasome. By comprehending these advancements in research, novel insights can be generated to facilitate the development of new drugs targeted at addressing the accumulation of IDPs in diverse pathological conditions.
Collapse
Affiliation(s)
- Qian Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Zheng Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yutong Tu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China.
| | - Yubo Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
8
|
Yang F, Smith MJ. Metal profiling in coronary ischemia-reperfusion injury: Implications for KEAP1/NRF2 regulated redox signaling. Free Radic Biol Med 2024; 210:158-171. [PMID: 37989446 DOI: 10.1016/j.freeradbiomed.2023.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Coronary ischemia-reperfusion (IR) injury results from a blockage of blood supply to the heart followed by restoration of perfusion, leading to oxidative stress induced pathological processes. Nuclear factor erythroid 2-related factor 2 (NRF2), a master antioxidant transcription factor, plays a key role in regulating redox signaling. Over the past decades, the field of metallomics has provided novel insights into the mechanism of pro-oxidant and antioxidant pathological processes. Both redox-active (e.g. Fe and Cu) and redox-inert (e.g. Zn and Mg) metals play unique roles in establishing redox balance under IR injury. Notably, Zn protects against oxidative stress in coronary IR injury by serving as a cofactor of antioxidant enzymes such as superoxide dismutase [Cu-Zn] (SOD1) and proteins such as metallothionein (MT) and KEAP1/NRF2 mediated antioxidant defenses. An increase in labile Zn2+ inhibits proteasomal degradation and ubiquitination of NRF2 by modifying KEAP1 and glycogen synthase kinase 3β (GSK3β) conformations. Fe and Cu catalyse the formation of reactive oxygen species via the Fenton reaction and also serve as cofactors of antioxidant enzymes and can activate NRF2 antioxidant signaling. We review the evidence that Zn and redox-active metals Fe and Cu affect redox signaling in coronary cells during IR and the mechanisms by which oxidative stress influences cellular metal content. In view of the unique double-edged characteristics of metals, we aim to bridge the role of metals and NRF2 regulated redox signaling to antioxidant defenses in IR injury, with a long-term aim of informing the design and application of novel therapeutics.
Collapse
Affiliation(s)
- Fan Yang
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| | - Matthew J Smith
- MSD R&D Innovation Centre, 120 Moorgate, London EC2M 6UR, United Kingdom.
| |
Collapse
|
9
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Sharawi ZW, Jaber FA, Althagafy HS. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci 2023; 334:122209. [PMID: 37890696 DOI: 10.1016/j.lfs.2023.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chronic kidney disease (CKD) is one of the most prevalent chronic diseases and affects between 10 and 14 % of the world's population. The World Health Organization estimates that by 2040, the disease will be fifth in prevalence. End-stage CKD is characterized by renal fibrosis, which can eventually lead to kidney failure and death. Renal fibrosis develops due to multiple injuries and involves oxidative stress and inflammation. In the human body, nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in the expression of antioxidant, anti-inflammatory, and cytoprotective genes, which prevents oxidative stress and inflammation damage. Heme oxygenase (HO-1) is an inducible homolog influenced by heme products and after exposure to cellular stress inducers such as oxidants, inflammatory chemokines/cytokines, and tissue damage as an outcome or downstream of Nrf2 activation. HO-1 is known for its antioxidative properties, which play an important role in regulating oxidative stress. In renal diseases-induced tissue fibrosis and xenobiotics-induced renal fibrosis, Nrf2/HO-1 has been targeted with promising results. This review summarizes these studies and highlights the interesting bioactive compounds that may assist in attenuating renal fibrosis mediated by HO-1 activation. In conclusion, Nrf2/HO-1 signal activation could have a renoprotective effect strategy against CKD caused by oxidative stress, inflammation, and consequent renal fibrosis.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
De Vita S, Masullo M, Grambone S, Bescós PB, Piacente S, Bifulco G. Demethylcalabaxanthone from Garcinia mangostana Exerts Antioxidant Effects through the Activation of the Nrf2 Pathway as Assessed via Molecular Docking and Biological Evaluation. Antioxidants (Basel) 2023; 12:1980. [PMID: 38001833 PMCID: PMC10669650 DOI: 10.3390/antiox12111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation promotes the expression of antioxidant enzymes in response to rising oxidative stress, resulting in reactive oxygen species (ROS) detoxification and playing a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Moreover, the biological effects of Nrf2 pathway activation contribute to reducing apoptosis and enhancing cell survival. The activity of Nrf2 is negatively regulated by Kelch-like ECH-associated protein 1 (Keap1). Prompted by the recent results reporting the impact of xanthone metabolites on oxidative stress, cancer, and inflammation, the antioxidant properties of xanthones isolated from Garcinia mangostana (γ-mangostin, α-mangostin, 8-deoxygartanin, demethylcalabaxanthone, garcinone D) were assessed. In particular, the capability of these natural products to disrupt the interaction between Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2), triggering the activation of the Nrf2-mediated pathway, was evaluated using molecular docking experiments and in vitro tests. The modulation of some key Nrf2-related mediators like glutathione (GSH) and lactate dehydrogenase (LDH) to highlight a possible direct antioxidant effect was investigated. Among the tested compounds, demethylcalabaxanthone showed an indirect antioxidant effect, as corroborated by a Western blot assay, displaying a significant increase in the translocated protein upon its administration.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Milena Masullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Sabrina Grambone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Paloma Bermejo Bescós
- Departamento de Farmacología, Farmacognosia y Botánica, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| |
Collapse
|
11
|
Cao X, An J, Zhu S, Feng M, Gang Y, Wen C, Hu B. Nuclear factor E2-associated factor 2 and musculoaponeurotic fibrosarcoma K mediate regulation glutathione peroxidase of Cristaria plicata after microcystin-induced oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109742. [PMID: 37689170 DOI: 10.1016/j.cbpc.2023.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Nuclear factor E2-associated factor 2 (Nrf2)/Antioxidant Response Element (ARE) signaling pathway is an endogenous antioxidant pathway that protects cells from oxidative damage. This pathway is triggered when aquatic organisms are exposed to environmental toxicants. In this study, CpMafK (musculoaponeurotic fibrosarcoma K of Cristaria plicata) mRNA expression in hepatopancreas and gills were up regulated after Cristaria plicata (C. plicata) was exposed to microcystin (MC), which showed that CpMafK protected C. plicata from MC. After MC treatment and CpNrf2 (Nrf2 of Cristaria plicata) knockdown, the mRNA expression of CpMafK was down regulated. After MC treatment and CpMafK knockdown, the mRNA expression of CpNrf2 was down regulated. Indicating that the expression of CpNrf2 was positively correlated with CpMafK. CpGPx (GPx of Cristaria plicata) mRNA was also down regulated with the down regulation of CpMafK and CpNrf2. CpGPx promoter contains a variety of transcription factor binding sites, including Nrf2, ARE elements, etc. Gel blocking experiments showed that CpNrf2/CpMafK heterodimers were bound to CpGPx promoters in vitro. Dual luciferase reporter assay showed that CpNrf2/CpMafK heterodimer negatively regulated CpGPx promoter in cells. In conclusion, Nrf2 and MafK mediate regulation of GPx play a crucial role in protecting bivalves from MC.
Collapse
Affiliation(s)
- Xinying Cao
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Jinhua An
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Shanshan Zhu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Maolin Feng
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Yang Gang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China.
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Saratsi A, Samartzi F, Panagiotidis I, Basioura A, Tsiokos D, Ligda C, Rekkas CA. Post-Thaw Parameters of Buck Semen Quality after Soy Lecithin Extender Supplementation with Fumaric Acid. Vet Sci 2023; 10:569. [PMID: 37756091 PMCID: PMC10534350 DOI: 10.3390/vetsci10090569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
The supplementation of cryopreservation media with antioxidants improves the post-thaw quality and fertilizing ability of spermatozoa. To maximize the fertility of frozen-thawed buck spermatozoa, further research is required to overcome obstacles that have yielded controversial results and standardize protocols. In the present work, the effect of adding fumaric acid (a well-described antioxidant) to a soy lecithin semen extender on certain quality parameters of spermatozoa following freezing and thawing was examined for the first time. Five sexually mature Skopelos bucks were used, and ejaculates were collected with an artificial vagina. The semen samples (98 samples, five replicates) were diluted (400 × 106 spermatozoa/mL) with OviXcell®, supplemented with fumaric acid (0 mM, 2.15 mM, 10 mM or 30 mM), equilibrated (5 °C; 3 h), packed (0.5 mL straws), frozen and stored (-196 °C) until further processing. After thawing, the spermatozoa total and progressive motility (CASA), viability (eosin-nigrosin), membrane functional integrity (HOST), acrosome integrity (SpermBlue®) and mitochondrial function (Rhodamine-123/SYBR-14/PI) were evaluated. Statistical analysis was performed with one-way ANOVA, followed by Duncan's test; significance was set at 0.05. The addition of 2.15 mM fumaric acid improved (p < 0.05) spermatozoa viability, membrane functional integrity, acrosome integrity and mitochondrial function compared to all other concentrations. The addition of 30 mM fumaric acid decreased (p < 0.05) spermatozoa viability and mitochondrial function compared to all other concentrations. These results indicate a beneficial effect of a 2.15 mM fumaric acid addition to a soy lecithin extender on post-thaw buck spermatozoa quality. Further research is required to evaluate the in vivo fertility of frozen-thawed buck spermatozoa treated with fumaric acid, as well as to elucidate the mechanism of action of fumaric acid in spermatozoa.
Collapse
Affiliation(s)
- Aikaterini Saratsi
- Veterinary Research Institute, Hellenic Agricultural Organization—DIMITRA, ELGO Campus, 57001 Thermi-Thessaloniki, Greece; (A.S.); (F.S.); (C.L.)
| | - Foteini Samartzi
- Veterinary Research Institute, Hellenic Agricultural Organization—DIMITRA, ELGO Campus, 57001 Thermi-Thessaloniki, Greece; (A.S.); (F.S.); (C.L.)
| | - Ioannis Panagiotidis
- Department of Animal Reproduction & Artificial Insemination, Directorate of Veterinary Center of Thessaloniki, Ministry of Rural Development and Food, 9 Verias Str., 57008 Thessaloniki, Greece;
| | - Athina Basioura
- Department of Agriculture, University of Western Macedonia, Terma Kontopoulou, 53100 Florina, Greece;
| | - Dimitrios Tsiokos
- Research Institute of Animal Science, Hellenic Agricultural Organization—DIMITRA, 58100 Paralimni Giannitsa, Greece;
| | - Christina Ligda
- Veterinary Research Institute, Hellenic Agricultural Organization—DIMITRA, ELGO Campus, 57001 Thermi-Thessaloniki, Greece; (A.S.); (F.S.); (C.L.)
| | - Constantinos A. Rekkas
- Veterinary Research Institute, Hellenic Agricultural Organization—DIMITRA, ELGO Campus, 57001 Thermi-Thessaloniki, Greece; (A.S.); (F.S.); (C.L.)
| |
Collapse
|
13
|
Cazzaro S, Woo JAA, Wang X, Liu T, Rego S, Kee TR, Koh Y, Vázquez-Rosa E, Pieper AA, Kang DE. Slingshot homolog-1-mediated Nrf2 sequestration tips the balance from neuroprotection to neurodegeneration in Alzheimer's disease. Proc Natl Acad Sci U S A 2023; 120:e2217128120. [PMID: 37463212 PMCID: PMC10374160 DOI: 10.1073/pnas.2217128120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Oxidative damage in the brain is one of the earliest drivers of pathology in Alzheimer's disease (AD) and related dementias, both preceding and exacerbating clinical symptoms. In response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is normally activated to protect the brain from oxidative damage. However, Nrf2-mediated defense against oxidative stress declines in AD, rendering the brain increasingly vulnerable to oxidative damage. Although this phenomenon has long been recognized, its mechanistic basis has been a mystery. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that Slingshot homolog-1 (SSH1) drives this effect by acting as a counterweight to neuroprotective Nrf2 in response to oxidative stress and disease. Specifically, oxidative stress-activated SSH1 suppresses nuclear Nrf2 signaling by sequestering Nrf2 complexes on actin filaments and augmenting Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction, independently of SSH1 phosphatase activity. We also show that Ssh1 elimination in AD models increases Nrf2 activation, which mitigates tau and amyloid-β accumulation and protects against oxidative injury, neuroinflammation, and neurodegeneration. Furthermore, loss of Ssh1 preserves normal synaptic function and transcriptomic patterns in tauP301S mice. Importantly, we also show that human AD brains exhibit highly elevated interactions of Nrf2 with both SSH1 and Keap1. Thus, we demonstrate here a unique mode of Nrf2 blockade that occurs through SSH1, which drives oxidative damage and ensuing pathogenesis in AD. Strategies to inhibit SSH1-mediated Nrf2 suppression while preserving normal SSH1 catalytic function may provide new neuroprotective therapies for AD and related dementias.
Collapse
Affiliation(s)
- Sara Cazzaro
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Jung-A A. Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Tian Liu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Shanon Rego
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Teresa R. Kee
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Yeojung Koh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Edwin Vázquez-Rosa
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Andrew A. Pieper
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH44106
- Brain Health Medicines, Center Harrington Discovery Institute, Cleveland, OH44106
| | - David E. Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH44106
| |
Collapse
|
14
|
Panda SK, Kumar D, Jena GR, Patra RC, Panda SK, Sethy K, Mishra SK, Swain BK, Naik PK, Beura CK, Panda B. Hepatorenal Toxicity of Inorganic Arsenic in White Pekin Ducks and Its Amelioration by Using Ginger. Biol Trace Elem Res 2023; 201:2471-2490. [PMID: 35723853 DOI: 10.1007/s12011-022-03317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
The toxic metalloid arsenic is known to cause liver and kidney injury in many humans and animals. The goal of this paper was to exemplify the antagonism of ginger against arsenic (As)-induced hepato-renal toxicity. In addition, the pathways Nrf2/Keap1 and NF/κB were studied to reveal the molecular mechanism of the stress. One hundred twenty 7-day-old White Pekin ducks were randomly allocated into five groups, having 24 birds in each. Each group contained three replicates having 8 birds in each replicate and maintained for 90 days. The groups were as follows: T-1 [control-basal diet with normal water], T-2 [T1 + As at 28 ppm/L of water], T-3 [T2 + ginger powder at 100 mg/kg feed], T-4 [T2 + ginger powder at 300 mg/kg feed], and T-5 [T2 + ginger powder at 1 g/kg feed]. It was observed that there was a significant increase in oxidative parameters whereas a significant decrease in antioxidant parameters in hepato-renal tissues in T-2. The exposure to As not only decreased the mRNA expression of antioxidant parameters like Nrf2, SOD-1, CAT, GPX, and HO-1and anti-inflammatory markers like IL-4 and IL-10 but also increased the m-RNA expression of NF-κB, Keap-1 and pro-inflammatory markers like IL-2, Il-6, IL-18, IL-1β, and TNF-α. There was also an accumulation of As in hepatic and renal tissue, confirmed by residual analysis of these tissues. By correlating the above parameters, As at 28 ppm showed significant toxic effects, and ginger powder at 1 g/kg feed effectively counteracted the toxic effects of As in ducks.
Collapse
Affiliation(s)
- Santosh Kumar Panda
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| | - Dhirendra Kumar
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Geeta Rani Jena
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Ramesh Chandra Patra
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Susen Kumar Panda
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Kamdev Sethy
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Surya Kant Mishra
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Bijaya Kumar Swain
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Prafulla Kumar Naik
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Chandra Kant Beura
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Bhagyalaxmi Panda
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| |
Collapse
|
15
|
Lee J, Hyun DH. The Interplay between Intracellular Iron Homeostasis and Neuroinflammation in Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12040918. [PMID: 37107292 PMCID: PMC10135822 DOI: 10.3390/antiox12040918] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Iron is essential for life. Many enzymes require iron for appropriate function. However, dysregulation of intracellular iron homeostasis produces excessive reactive oxygen species (ROS) via the Fenton reaction and causes devastating effects on cells, leading to ferroptosis, an iron-dependent cell death. In order to protect against harmful effects, the intracellular system regulates cellular iron levels through iron regulatory mechanisms, including hepcidin-ferroportin, divalent metal transporter 1 (DMT1)-transferrin, and ferritin-nuclear receptor coactivator 4 (NCOA4). During iron deficiency, DMT1-transferrin and ferritin-NCOA4 systems increase intracellular iron levels via endosomes and ferritinophagy, respectively. In contrast, repleting extracellular iron promotes cellular iron absorption through the hepcidin-ferroportin axis. These processes are regulated by the iron-regulatory protein (IRP)/iron-responsive element (IRE) system and nuclear factor erythroid 2-related factor 2 (Nrf2). Meanwhile, excessive ROS also promotes neuroinflammation by activating the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). NF-κB forms inflammasomes, inhibits silent information regulator 2-related enzyme 1 (SIRT1), and induces pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β). Furthermore, 4-hydroxy-2,3-trans-nonenal (4-HNE), the end-product of ferroptosis, promotes the inflammatory response by producing amyloid-beta (Aβ) fibrils and neurofibrillary tangles in Alzheimer's disease, and alpha-synuclein aggregation in Parkinson's disease. This interplay shows that intracellular iron homeostasis is vital to maintain inflammatory homeostasis. Here, we review the role of iron homeostasis in inflammation based on recent findings.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
16
|
Liu J, Yang G, Zhang H. Glyphosate-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160839. [PMID: 36521597 DOI: 10.1016/j.scitotenv.2022.160839] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate (GLY) exposure has been reported to damage organs in animals, in particular the liver, due to increased reactive oxygen species (ROS). Ferroptosis is defined as a new type of cell death that is characterized by the increase of ROS. The purpose of this study was to elucidate whether the relationship between ferroptosis and GLY-induced hepatotoxicity is of significance to enlarge the knowledge about GLY toxicity and consequences for human and animal health. To this end, in this study, we investigated the role of ferroptosis in GLY-induced hepatotoxicity both in vivo and in vitro. The results showed that GLY exposure triggered ferroptosis in L02 cells, but pretreatment with ferroptosis inhibitor ferrostatin (Fer-1) rescued ferroptosis-induced injury, thereby indicating that ferroptosis plays a key role in GLY-induced hepatotoxicity. Moreover, N-acetylcysteine, a glutathione (GSH) synthesis precursor, reversed GLY-triggered ferroptosis damage, thus indicating that GSH exhaustion may be a prerequisite for GLY-triggered hepatotoxicity. Mechanistically, GLY inhibited GSH biosynthesis via blocking the phosphorylation and nuclear translocation of Nrf2, which resulted in GSH depletion-induced hepatocyte ferroptosis. In a mouse model, GLY exposure triggered ferroptosis-induced liver damage, which can be rescued by pretreatment with Fer-1 or tBHQ (a specific agonist of Nrf2). To our knowledge, this is the first study to reveal that GLY-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity, which expands our knowledge about GLY toxicity in animal and human health.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, 271000 Tai'an City, Shandong Province, China.
| | - Guangcheng Yang
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, 271000 Tai'an City, Shandong Province, China
| | - Hongna Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, No. 47 Xuefu Road, 050061 Shijiazhuang City, Hebei Province, China.
| |
Collapse
|
17
|
Pterostilbene Confers Protection against Diquat-Induced Intestinal Damage with Potential Regulation of Redox Status and Ferroptosis in Broiler Chickens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8258354. [PMID: 36733420 PMCID: PMC9889155 DOI: 10.1155/2023/8258354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress causes damage to macromolecules, including proteins, DNA, and lipid, and has been recognized as a crucial driver of the onset and progression of several intestinal disorders. Pterostilbene, one of the natural antioxidants, has attracted considerable attention owing to its multiple biological activities. In the present study, we established an oxidative stress model in broiler chickens via injection with diquat to investigate whether pterostilbene could attenuate diquat-induced intestinal damage and reveal the underlying mechanisms. We found that diquat-induced decreases in the activities of superoxide dismutase and glutathione peroxidase and the level of reduced glutathione and the increase in hydrogen peroxide content in plasma and jejunum were significantly alleviated by pterostilbene (P < 0.05). Pterostilbene supplementation also decreased intestinal permeability and jejunal apoptosis rate, improved jejunal villus height and the ratio of villus height to crypt depth, and promoted the transcription and translation of jejunal tight junction proteins occludin and zona occludens 1 in diquat-challenged broilers (P < 0.05). Furthermore, pterostilbene reversed diquat-induced mitochondrial injury in the jejunum, as indicated by the decreased reactive oxygen species level and elevated activities of superoxide dismutase 2 and mitochondrial respiratory complexes (P < 0.05). Importantly, administering pterostilbene maintained iron homeostasis, inhibited lipid peroxidation, and regulated the expression of the markers of ferroptosis in the jejunum of diquat-exposed broilers (P < 0.05). The nuclear factor erythroid 2-related factor 2 signaling pathway in the jejunum of diquat-exposed broilers was also activated by pterostilbene (P < 0.05). In conclusion, our study provides evidence that pterostilbene alleviates diquat-induced intestinal mucosa injury and barrier dysfunction by strengthening antioxidant capacity and regulating ferroptosis of broiler chickens.
Collapse
|
18
|
Reciprocal REG γ-Nrf2 Regulation Promotes Long Period ROS Scavenging in Oxidative Stress-Induced Cell Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4743885. [PMID: 36659906 PMCID: PMC9845040 DOI: 10.1155/2023/4743885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023]
Abstract
Increased accumulation of reactive oxygen species (ROS) and decline of adaptive response of antioxidants to oxidative stimuli has been implicated in the aging process. Nuclear factor erythroid 2-related factor 2 (Nrf2) activation is a core event in attenuating oxidative stress-associated aging. The activity is modulated by a more complex regulatory network. In this study, we demonstrate the proteasome activator REGγ function as a new regulator of Nrf2 activity upon oxidative stress in cell aging model induced by hydrogen peroxide (H2O2). REGγ deficiency promotes cell senescence in primary MEF cells after H2O2 treatment. Accordingly, ROS scavenging is accelerated in WT cells but blunted in REGγ lacking cells during 12-hour recovery from a 1-hour H2O2 treatment, indicating long-lasting antioxidant buffering capacity of REGγ. Mechanistically, through GSK-3β inhibition, REGγ enhances the nuclear distribution and transcriptional activity of Nrf2, which is surveyed by induction of phase II enzymes including Ho1 and Nqo1. Meanwhile, Nrf2 mediates the transcriptional activation of REGγ upon H2O2 stimulation. More interestingly, short-term exposure to H2O2 leads to transiently upregulation and gradually descent of REGγ transcription, however sustained higher REGγ protein level even in the absence of H2O2 for 24 hours. Thus, our results establish a positive feedback loop between REGγ and Nrf2 and a new layer of adaptive response after oxidative stimulation that is the REGγ-GSK-3β-Nrf2 pathway.
Collapse
|
19
|
Yaylım İ, Farooqi AA, Telkoparan-Akillilar P, Saso L. Interplay between Non-Coding RNAs and NRF2 in Different Cancers: Spotlight on MicroRNAs and Long Non-Coding RNAs. J Pharmacol Exp Ther 2023; 384:28-34. [PMID: 35667688 DOI: 10.1124/jpet.121.000921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 01/12/2023] Open
Abstract
Cancer is a multifactorial disease, and a wealth of information has enabled basic and clinical researchers to develop a better conceptual knowledge of the highly heterogeneous nature of cancer. Deregulations of spatio-temporally controlled transduction pathways play a central role in cancer progression. NRF2-driven signaling has engrossed significant attention because of its fundamentally unique features to dualistically regulate cancer progression. Context-dependent diametrically opposed roles of NRF2-induced signaling are exciting. More importantly, non-coding RNA (ncRNA) mediated regulation of NRF2 and interplay between NRF2 and ncRNAs have added new layers of complexity to already intricate nature of NRF2 signaling. There is a gradual enrichment in the existing pool of knowledge related to interplay between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in different cancers. However, surprisingly, there are no clues about interplay between circular RNAs and NRF2 in various cancers. Therefore, future studies must converge on the functional characterization of additional important lncRNAs and circular RNAs, which regulated NRF2-driven signaling or, conversely, NRF2 transcriptionally controlled their expression to regulate various stages of cancer. SIGNIFICANCE STATEMENT: Recently, many researchers have focused on the NRF2-driven signaling in cancer progression. Excitingly, discovery of non-coding RNAs has added new layers of intricacy to the already complicated nature of KEAP1/NRF2 signaling in different cancers. These interactions are shaping the NRF2-driven signaling landscape, and better knowledge of these pathways will be advantageous in pharmacological modulation of non-coding RNA-mediated NRF2 signaling in various cancers.
Collapse
Affiliation(s)
- İlhan Yaylım
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey (I.Y.); Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan (A.A.F.); Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, Ankara, Turkey (P.T.-A.); and Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy (L.S.)
| | - Ammad Ahmad Farooqi
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey (I.Y.); Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan (A.A.F.); Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, Ankara, Turkey (P.T.-A.); and Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy (L.S.)
| | - Pelin Telkoparan-Akillilar
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey (I.Y.); Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan (A.A.F.); Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, Ankara, Turkey (P.T.-A.); and Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy (L.S.)
| | - Luciano Saso
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey (I.Y.); Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan (A.A.F.); Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, Ankara, Turkey (P.T.-A.); and Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy (L.S.)
| |
Collapse
|
20
|
Nrf2 Modulation in Breast Cancer. Biomedicines 2022; 10:biomedicines10102668. [PMID: 36289931 PMCID: PMC9599257 DOI: 10.3390/biomedicines10102668] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 12/05/2022] Open
Abstract
Reactive oxygen species (ROS) are identified to control the expression and activity of various essential signaling intermediates involved in cellular proliferation, apoptosis, and differentiation. Indeed, ROS represents a double-edged sword in supporting cell survival and death. Many common pathological processes, including various cancer types and neurodegenerative diseases, are inflammation and oxidative stress triggers, or even initiate them. Keap1-Nrf2 is a master antioxidant pathway in cytoprotective mechanisms through Nrf2 target gene expression. Activation of the Nfr2 pathway benefits cells in the early stages and reduces the level of ROS. In contrast, hyperactivation of Keap1-Nrf2 creates a context that supports the survival of both healthy and cancerous cells, defending them against oxidative stress, chemotherapeutic drugs, and radiotherapy. Considering the dual role of Nrf2 in suppressing or expanding cancer cells, determining its inhibitory/stimulatory position and targeting can represent an impressive role in cancer treatment. This review focused on Nrf2 modulators and their roles in sensitizing breast cancer cells to chemo/radiotherapy agents.
Collapse
|
21
|
A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms231911746. [PMID: 36233051 PMCID: PMC9569933 DOI: 10.3390/ijms231911746] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) induce carcinogenesis by causing genetic mutations, activating oncogenes, and increasing oxidative stress, all of which affect cell proliferation, survival, and apoptosis. When compared to normal cells, cancer cells have higher levels of ROS, and they are responsible for the maintenance of the cancer phenotype; this unique feature in cancer cells may, therefore, be exploited for targeted therapy. Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors. Adaptive stress responses may be induced by persistent ROS stress, allowing cancer cells to survive with high levels of ROS while maintaining cellular viability. However, large amounts of ROS make cancer cells extremely susceptible to quercetin, one of the most available dietary flavonoids. Because of the molecular and metabolic distinctions between malignant and normal cells, targeting ROS metabolism might help overcome medication resistance and achieve therapeutic selectivity while having little or no effect on normal cells. The powerful bioactivity and modulatory role of quercetin has prompted extensive research into the chemical, which has identified a number of pathways that potentially work together to prevent cancer, alongside, QC has a great number of evidences to use as a therapeutic agent in cancer stem cells. This current study has broadly demonstrated the function-mechanistic relationship of quercetin and how it regulates ROS generation to kill cancer and cancer stem cells. Here, we have revealed the regulation and production of ROS in normal cells and cancer cells with a certain signaling mechanism. We demonstrated the specific molecular mechanisms of quercetin including MAPK/ERK1/2, p53, JAK/STAT and TRAIL, AMPKα1/ASK1/p38, RAGE/PI3K/AKT/mTOR axis, HMGB1 and NF-κB, Nrf2-induced signaling pathways and certain cell cycle arrest in cancer cell death, and how they regulate the specific cancer signaling pathways as long-searched cancer therapeutics.
Collapse
|
22
|
Hernández-Caballero ME, Sierra-Ramírez JA, Villalobos-Valencia R, Seseña-Méndez E. Potential of Kalanchoe pinnata as a Cancer Treatment Adjuvant and an Epigenetic Regulator. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196425. [PMID: 36234962 PMCID: PMC9573125 DOI: 10.3390/molecules27196425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Cancer is a global public health problem that is related to different environmental and lifestyle factors. Although the combination of screening, prevention, and treatment of cancer has resulted in increased patient survival, conventional treatments sometimes have therapeutic limitations such as resistance to drugs or severe side effects. Oriental culture includes herbal medicine as a complementary therapy in combination with chemotherapy or radiotherapy. This study aimed to identify the bioactive ingredients in Kalanchoe pinnata, a succulent herb with ethnomedical applications for several diseases, including cancer, and reveal its anticancer mechanisms through a molecular approach. The herb contains gallic acid, caffeic acid, coumaric acid, quercetin, quercitrin, isorhamnetin, kaempferol, bersaldegenin, bryophyllin a, bryophyllin c, bryophynol, bryophyllol and bryophollone, stigmasterol, campesterol, and other elements. Its phytochemicals participate in the regulation of proliferation, apoptosis, cell migration, angiogenesis, metastasis, oxidative stress, and autophagy. They have the potential to act as epigenetic drugs by reverting the acquired epigenetic changes associated with tumor resistance to therapy-such as the promoter methylation of suppressor genes, inhibition of DNMT1 and DNMT3b activity, and HDAC regulation-through methylation, thereby regulating the expression of genes involved in the PI3K/Akt/mTOR, Nrf2/Keap1, MEK/ERK, and Wnt/β-catenin pathways. All of the data support the use of K. pinnata as an adjuvant in cancer treatment.
Collapse
Affiliation(s)
- Marta Elena Hernández-Caballero
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Biomedicina, 13 sur 2702 Col. Volcanes, Puebla C.P. 72410, Mexico
- Correspondence: or
| | - José Alfredo Sierra-Ramírez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico
| | - Ricardo Villalobos-Valencia
- UMAE Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Cd México C.P. 06725, Mexico
| | - Emmanuel Seseña-Méndez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Biomedicina, 13 sur 2702 Col. Volcanes, Puebla C.P. 72410, Mexico
| |
Collapse
|
23
|
G Bardallo R, Panisello-Roselló A, Sanchez-Nuno S, Alva N, Roselló-Catafau J, Carbonell T. Nrf2 and oxidative stress in liver ischemia/reperfusion injury. FEBS J 2022; 289:5463-5479. [PMID: 34967991 DOI: 10.1111/febs.16336] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022]
Abstract
In response to stress signal, nuclear factor-erythroid 2-related factor 2 (Nrf2) induces the expression of target genes involved in antioxidant defense and detoxification. Nrf2 activity is strictly regulated through a variety of mechanisms, including regulation of Keap1-Nrf2 stability, transcriptional regulation (NF-ĸB, ATF3, ATF4), and post-transcriptional regulation (miRNA), evidencing that transcriptional responses of Nrf2 are critical for the maintenance of homeostasis. Ischemia-reperfusion (IR) injury is a major cause of graft loss and dysfunction in clinical transplantation and organ resection. During the IR process, the generation of reactive oxygen species (ROS) leads to damage from oxidative stress, oxidation of biomolecules, and mitochondrial dysfunction. Oxidative stress can trigger apoptotic and necrotic cell death. Stress factors also result in the assembly of the inflammasome protein complex and the subsequent activation and secretion of proinflammatory cytokines. After Nrf2 activation, the downstream antioxidant upregulation can act as a primary cellular defense against the cytotoxic effects of oxidative stress and help to promote hepatic recovery during IR. The complex crosstalk between Nrf2 and cellular pathways in liver IR injury and the potential therapeutic target of the Nrf2 inducers will be discussed in the present review.
Collapse
Affiliation(s)
- Raquel G Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, Barcelona, Spain
| | - Sergio Sanchez-Nuno
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| | - Norma Alva
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, Barcelona, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| |
Collapse
|
24
|
Arginine Enhances Ovarian Antioxidant Capability via Nrf2/Keap1 Pathway during the Luteal Phase in Ewes. Animals (Basel) 2022; 12:ani12162017. [PMID: 36009609 PMCID: PMC9404438 DOI: 10.3390/ani12162017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
This study evaluated the effect of arginine (Arg) on ovarian antioxidant capability during the luteal phase in ewes. A total of 108 multiparous Hu sheep at two years of age were randomly allocated to three groups: a control group (CG), a restriction group (RG), and an Arg group (AG), with six replicates per group and six ewes per replicate. Our results showed that the end body weight was significantly decreased in the RG group (p < 0.05), while the Arg addition reversed this reduction. The estrous cycle days were significantly increased in the RG group (p < 0.05), while Arg addition reversed this time extension. Compared with the control group, restricting feeding could significantly enhance the number of small follicles (SF), total follicles (TF), large corpora lutea, and the SF/TF (p < 0.05), while Arg addition reduced the number of SF and TF. However, the large follicles/TF were significantly decreased (p < 0.05), while Arg addition reversed this reduction. In addition, nutrition restriction significantly increased the malondialdehyde (MDA) level (p < 0.05), while significantly decreased the glutathione/glutathione disulfide and the activities of superoxidative dismutase, catalase, and glutathione peroxidase in the ovaries (p < 0.05). However, Arg addition reversed this enhancement of the MDA level and the reductions in these antioxidant enzymes activities. In addition, positive relationships occurred between antioxidant enzyme activities and the enzyme mRNA expressions. Meanwhile, the nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression was positively connected with antioxidant mRNA expressions and negatively related to the Kelch-like ECH-associated protein 1 (Keap1) mRNA expression. The Nrf2 protein expression was negatively related to the Keap1 protein expression. In conclusion, nutrition restriction reduced the ovarian antioxidant capability in ewes, while this was significantly improved by Arg supplementation, which was associated with the Nrf2/Keap1 pathway.
Collapse
|
25
|
Mumu M, Das A, Emran TB, Mitra S, Islam F, Roy A, Karim MM, Das R, Park MN, Chandran D, Sharma R, Khandaker MU, Idris AM, Kim B. Fucoxanthin: A Promising Phytochemical on Diverse Pharmacological Targets. Front Pharmacol 2022; 13:929442. [PMID: 35983376 PMCID: PMC9379326 DOI: 10.3389/fphar.2022.929442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Fucoxanthin (FX) is a special carotenoid having an allenic bond in its structure. FX is extracted from a variety of algae and edible seaweeds. It has been proved to contain numerous health benefits and preventive effects against diseases like diabetes, obesity, liver cirrhosis, malignant cancer, etc. Thus, FX can be used as a potent source of both pharmacological and nutritional ingredient to prevent infectious diseases. In this review, we gathered the information regarding the current findings on antimicrobial, antioxidant, anti-inflammatory, skin protective, anti-obesity, antidiabetic, hepatoprotective, and other properties of FX including its bioavailability and stability characteristics. This review aims to assist further biochemical studies in order to develop further pharmaceutical assets and nutritional products in combination with FX and its various metabolites.
Collapse
Affiliation(s)
- Mumtaza Mumu
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Md. Mobarak Karim
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Rajib Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Bonglee Kim
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
26
|
Xu Y, Li Y, Li J, Chen W. Ethyl carbamate triggers ferroptosis in liver through inhibiting GSH synthesis and suppressing Nrf2 activation. Redox Biol 2022; 53:102349. [PMID: 35623314 PMCID: PMC9142717 DOI: 10.1016/j.redox.2022.102349] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Humans are inevitably exposed to ethyl carbamate (EC) via consumption of fermented food and beverages. EC, known as an environmental toxin, can cause oxidative stress-mediated severe toxicity, but the underlying mechanisms remain unveiled. Ferroptosis is a newly identified ROS-mediated non-apoptotic cell death characterized by iron accumulation and excessive lipid oxidation. In this study, we first found that EC triggered ferroptosis in liver cells by detection of decreased cell viability, GSH, GPX4 and Ferritin levels, as well as increased iron and MDA contents. Ferroptosis inhibitor ferrostatin-1 (Fer-1) pretreatment rescued ferroptotic damage, indicating that ferroptosis was critical for EC-caused cell death. Furthermore, GSH synthesis precursor N-acetylcysteine displayed significant anti-ferroptotic properties and we suggested that GSH depletion might be the main cause of ferroptosis under EC exposure. EC-triggered GSH depletion mainly depended on suppressed GSH synthesis via inhibition of SLC7A11 and GCLC expressions. Notably, EC blocked Nrf2 activation by repression of phosphorylation modification and nuclear translocation, which further resulted in ferroptosis occurrence. We also observed EC-induced liver dysfunction and inflammation, accompanied with oxidative stress, ferroptosis and downregulated Nrf2 signaling in Balb/c mice, which could be effectively reversed by Fer-1 and tBHQ pretreatment. Together, our study indicated that ferroptosis is a new mechanism for EC-caused toxicity, which was attributed to Nrf2 inactivation and GSH depletion. Ethyl carbamate (EC) caused ferroptosis in L02 cells and liver tissues. GSH depletion was critical for EC-induced ferroptotic cell death. EC exposure blocked GSH synthesis-related pathways. Inactivation of Nrf2 signaling was involved in EC-triggered ferroptosis.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiaxin Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
27
|
Masubuchi Y, Ihara A. Protection of mice against carbon tetrachloride-induced acute liver injury by endogenous and exogenous estrogens. Drug Metab Pharmacokinet 2022; 46:100460. [DOI: 10.1016/j.dmpk.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
|
28
|
Huang C, Peng X, Pang DJ, Li J, Paulsen BS, Rise F, Chen YL, Chen ZL, Jia RY, Li LX, Song X, Feng B, Yin ZQ, Zou YF. Pectic polysaccharide from Nelumbo nucifera leaves promotes intestinal antioxidant defense in vitro and in vivo. Food Funct 2021; 12:10828-10841. [PMID: 34617945 DOI: 10.1039/d1fo02354c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, the Nelumbo nucifera leaf polysaccharide (NNLP) was isolated by hot water extraction and ethanol precipitation. DEAE anion exchange chromatography and gel filtration were further performed to obtained the purified fraction NNLP-I-I, the molecular weight of which was 16.4 kDa. The monosaccharide composition analysis and linkage units determination showed that the fraction NNLP-I-I was a pectic polysaccharide. In addition, the NMR spectra analysis revealed that NNLP-I-I mainly consisted of a homogalacturonan backbone and rhamnogalacturonan I, containing a long HG region and short RG-I region, with AG-II and 1-3 linked rhamnose as side chains. The biological studies demonstrated that NNLP-I-I displayed antioxidant properties through mediating the Nrf2-regulated intestinal cellular antioxidant defense, which could protect cultured intestinal cells from oxidative stress and improve the intestinal function of aged mice.
Collapse
Affiliation(s)
- Chao Huang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - De-Jiang Pang
- Neuroscience & Metabolism Research, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Juan Li
- Institute of Animal Science; Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan Province, 611130, China
| | - Berit Smestad Paulsen
- Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Yu-Long Chen
- Sichuan Academy of Forestry, Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province. Chengdu, Sichuan, 610081, China.
| | - Zheng-Li Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yuan-Feng Zou
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| |
Collapse
|
29
|
Piorczynski TB, Lapehn S, Ringer KP, Allen SA, Johnson GA, Call K, Lucas SM, Harris C, Hansen JM. NRF2 activation inhibits valproic acid-induced neural tube defects in mice. Neurotoxicol Teratol 2021; 89:107039. [PMID: 34737154 DOI: 10.1016/j.ntt.2021.107039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 01/02/2023]
Abstract
Valproic acid (VPA) is a widely prescribed medication that has traditionally been used to treat epilepsy, yet embryonic exposure to VPA increases the risk of the fetus developing neural tube defects (NTDs). While the mechanism by which VPA causes NTDs is unknown, we hypothesize that VPA causes dysmorphogenesis through the disruption of redox-sensitive signaling pathways that are critical for proper embryonic development, and that protection from the redox disruption may decrease the prevalence of NTDs. Time-bred CD-1 mice were treated with 3H-1,2-dithiole-3-thione (D3T), an inducer of nuclear factor erythroid 2-related factor 2 (NRF2)-a transcription factor that activates the intracellular antioxidant response to prevent redox disruptions. Embryos were then collected for whole embryo culture and subsequently treated with VPA in vitro. The glutathione (GSH)/glutathione disulfide (GSSG) redox potential (Eh), a measure of the intracellular redox environment, was measured in the developing mouse embryos. Embryos treated with VPA exhibited a transiently oxidizing GSH/GSSG Eh, while those that received D3T pretreatment prior to VPA exposure showed no differences compared to controls. Moving to an in utero mouse model, time-bred C57BL/6 J dams were pretreated with or without D3T and then exposed to VPA, after which all embryos were collected for morphological analyses. The prevalence of open neural tubes in embryos treated with VPA significantly decreased with D3T pretreatment, as did the severity of the observed defects evaluated by a morphological assessment. These data show that NRF2 induction via D3T pretreatment protects against VPA-induced redox dysregulation and decreases the prevalence of NTDs in developing mouse embryos.
Collapse
Affiliation(s)
- Ted B Piorczynski
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelsey P Ringer
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Spencer A Allen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Garett A Johnson
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Krista Call
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - S Marc Lucas
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason M Hansen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
30
|
Zhang L, Zhang J, Jin Y, Yao G, Zhao H, Qiao P, Wu S. Nrf2 Is a Potential Modulator for Orchestrating Iron Homeostasis and Redox Balance in Cancer Cells. Front Cell Dev Biol 2021; 9:728172. [PMID: 34589492 PMCID: PMC8473703 DOI: 10.3389/fcell.2021.728172] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential trace mineral element in almost all living cells and organisms. However, cellular iron metabolism pathways are disturbed in most cancer cell types. Cancer cells have a high demand of iron. To maintain rapid growth and proliferation, cancer cells absorb large amounts of iron by altering expression of iron metabolism related proteins. However, iron can catalyze the production of reactive oxygen species (ROS) through Fenton reaction. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important player in the resistance to oxidative damage by inducing the transcription of antioxidant genes. Aberrant activation of Nrf2 is observed in most cancer cell types. It has been revealed that the over-activation of Nrf2 promotes cell proliferation, suppresses cell apoptosis, enhances the self-renewal capability of cancer stem cells, and even increases the chemoresistance and radioresistance of cancer cells. Recently, several genes involving cellular iron homeostasis are identified under the control of Nrf2. Since cancer cells require amounts of iron and Nrf2 plays pivotal roles in oxidative defense and iron metabolism, it is highly probable that Nrf2 is a potential modulator orchestrating iron homeostasis and redox balance in cancer cells. In this hypothesis, we summarize the recent findings of the role of iron and Nrf2 in cancer cells and demonstrate how Nrf2 balances the oxidative stress induced by iron through regulating antioxidant enzymes and iron metabolism. This hypothesis provides new insights into the role of Nrf2 in cancer progression. Since ferroptosis is dependent on lipid peroxide and iron accumulation, Nrf2 inhibition may dramatically increase sensitivity to ferroptosis. The combination of Nrf2 inhibitors with ferroptosis inducers may exert greater efficacy on cancer therapy.
Collapse
Affiliation(s)
- Lingyan Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanqing Jin
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
31
|
Duarte TL, Talbot NP, Drakesmith H. NRF2 and Hypoxia-Inducible Factors: Key Players in the Redox Control of Systemic Iron Homeostasis. Antioxid Redox Signal 2021; 35:433-452. [PMID: 32791852 DOI: 10.1089/ars.2020.8148] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Oxygen metabolism and iron homeostasis are closely linked. Iron facilitates the oxygen-carrying capacity of blood, and its deficiency causes anemia. Conversely, excess free iron is detrimental for stimulating the formation of reactive oxygen species, causing tissue damage. The amount and distribution of iron thus need to be tightly regulated by the liver-expressed hormone hepcidin. This review analyzes the roles of key oxygen-sensing pathways in cellular and systemic regulation of iron homeostasis; specifically, the prolyl hydroxylase domain (PHD)/hypoxia-inducible factor (HIF) and the Kelch-like ECH-associated protein 1/NF-E2 p45-related factor 2 (KEAP1/NRF2) pathways, which mediate tissue adaptation to low and high oxygen, respectively. Recent Advances: In macrophages, NRF2 regulates genes involved in hemoglobin catabolism, iron storage, and iron export. NRF2 was recently identified as the molecular sensor of iron-induced oxidative stress and is responsible for BMP6 expression by liver sinusoidal endothelial cells, which in turn activates hepcidin synthesis by hepatocytes to restore systemic iron levels. Moreover, NRF2 orchestrates the activation of antioxidant defenses that are crucial to protect against iron toxicity. On the contrary, low iron/hypoxia stabilizes renal HIF2a via inactivation of iron-dependent PHD dioxygenases, causing an erythropoietic stimulus that represses hepcidin via an inhibitory effect of erythroferrone on bone morphogenetic proteins. Intestinal HIF2a is also stabilized, increasing the expression of genes involved in dietary iron absorption. Critical Issues: An intimate crosstalk between oxygen-sensing pathways and iron regulatory mechanisms ensures that fluctuations in systemic iron levels are promptly detected and restored. Future Directions: The realization that redox-sensitive transcription factors regulate systemic iron levels suggests novel therapeutic approaches. Antioxid. Redox Signal. 35, 433-452.
Collapse
Affiliation(s)
- Tiago L Duarte
- Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Nick P Talbot
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Haematology Theme, Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
32
|
Atia A, Alrawaiq NS, Abdullah A. Tocotrienols Activate Nrf2 Nuclear Translocation and Increase the Antioxidant- Related Hepatoprotective Mechanism in Mice Liver. Curr Pharm Biotechnol 2021; 22:1085-1098. [PMID: 32988349 DOI: 10.2174/1389201021666200928095950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/26/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The most common preparation of tocotrienols is the Tocotrienol-Rich Fraction (TRF). This study aimed to investigate whether TRF induced liver Nrf2 nuclear translocation and influenced the expression of Nrf2-regulated genes. METHODS In the Nrf2 induction study, mice were divided into control, 2000 mg/kg TRF and diethyl maleate treated groups. After acute treatment, mice were sacrificed at specific time points. Liver nuclear extracts were prepared and Nrf2 nuclear translocation was detected through Western blotting. To determine the effect of increasing doses of TRF on the extent of liver nuclear Nrf2 translocation and its implication on the expression levels of several Nrf2-regulated genes, mice were divided into 5 groups (control, 200, 500 and 1000 mg/kg TRF, and butylated hydroxyanisole-treated groups). After 14 days, mice were sacrificed and liver RNA was extracted for qPCR assay. RESULTS 2000 mg/kg TRF administration initiated Nrf2 nuclear translocation within 30 min, reached a maximum level of around 1 h and dropped to half-maximal levels by 24 h. Incremental doses of TRF resulted in dose-dependent increases in liver Nrf2 nuclear levels, along with concomitant dosedependent increases in the expressions of Nrf2-regulated genes. CONCLUSION TRF activated the liver Nrf2 pathway resulting in increased expression of Nrf2-regulated cytoprotective genes.
Collapse
Affiliation(s)
- Ahmed Atia
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nadia S Alrawaiq
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Azman Abdullah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Kulkarni N, Gadde R, Gugnani KS, Vu N, Yoo C, Zaveri R, Betharia S. Neuroprotective effects of disubstituted dithiolethione ACDT against manganese-induced toxicity in SH-SY5Y cells. Neurochem Int 2021; 147:105052. [PMID: 33905764 DOI: 10.1016/j.neuint.2021.105052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/05/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Dithiolethiones are lipophilic, organosulfur compounds that activate the Nrf2 transcription factor causing an upregulation of various phase II antioxidant enzymes. A disubstituted dithiolethione 5-amino-3-thioxo-3H-(1,2) dithiole-4-carboxylic acid ethyl ester (ACDT) retains the functional pharmacophore while also containing modifiable functional groups. Neuroprotection against autoimmune encephalomyelitis in vivo and 6-hydroxy dopamine (a model for Parkinson's disease) in vitro have been previously reported with ACDT. Manganese (Mn) is a metal essential for metabolic processes at low concentrations. Overexposure and accumulation of Mn leads to a neurological condition called manganism which shares pathophysiological sequelae with parkinsonism. Here we hypothesized ACDT to be protective against manganese-induced cytotoxicity. SH-SY5Y human neuroblastoma cells exposed to 300 μM MnCl2 displayed approximately 50% cell death, and a 24-h pretreatment with 75 μM ACDT significantly reversed this cytotoxicity. ACDT pretreatment was also found to increase total GSH levels (2.18-fold) and the protein levels of NADPH:quinone oxidoreductase-1 (NQO1) enzyme (6.33-fold), indicating an overall increase in the cells' antioxidant defense stores. A corresponding 2.32-fold reduction in the level of Mn-induced reactive oxygen species was also observed in cells pretreated with ACDT. While no changes were observed in the protein levels of apoptotic markers Bax and Bcl-2, pretreatment with 75 μM ACDT led to a 2.09-fold downregulation of ZIP14 import transporter, indicating a potential reduction in the cellular uptake of Mn as an additional neuroprotective mechanism. These effects did not extend to other transporters like the divalent metal transporter 1 (DMT1) or ferroportin. Collectively, ACDT showed substantial neuroprotection against Mn-induced cytotoxicity, opening a path for dithiolethiones as a potential novel therapeutic option against heavy metal neurotoxicity.
Collapse
Affiliation(s)
- Neha Kulkarni
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA.
| | - Rajitha Gadde
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Kuljeet S Gugnani
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Nguyen Vu
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Claude Yoo
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Rohan Zaveri
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Swati Betharia
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
34
|
Identification of Dominant Transcripts in Oxidative Stress Response by a Full-Length Transcriptome Analysis. Mol Cell Biol 2021; 41:MCB.00472-20. [PMID: 33168698 DOI: 10.1128/mcb.00472-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
Our body responds to environmental stress by changing the expression levels of a series of cytoprotective enzymes/proteins through multilayered regulatory mechanisms, including the KEAP1-NRF2 system. While NRF2 upregulates the expression of many cytoprotective genes, there are fundamental limitations in short-read RNA sequencing (RNA-Seq), resulting in confusion regarding interpreting the effectiveness of cytoprotective gene induction at the transcript level. To precisely delineate isoform usage in the stress response, we conducted independent full-length transcriptome profiling (isoform sequencing; Iso-Seq) analyses of lymphoblastoid cells from three volunteers under normal and electrophilic stress-induced conditions. We first determined the first exon usage in KEAP1 and NFE2L2 (encoding NRF2) and found the presence of transcript diversity. We then examined changes in isoform usage of NRF2 target genes under stress conditions and identified a few isoforms dominantly expressed in the majority of NRF2 target genes. The expression levels of isoforms determined by Iso-Seq analyses showed striking differences from those determined by short-read RNA-Seq; the latter could be misleading concerning the abundance of transcripts. These results support that transcript usage is tightly regulated to produce functional proteins under electrophilic stress. Our present study strongly argues that there are important benefits that can be achieved by long-read transcriptome sequencing.
Collapse
|
35
|
Ren X, Xu Y, Yu Z, Mu C, Liu P, Li J. The role of Nrf2 in mitigating cadmium-induced oxidative stress of Marsupenaeus japonicus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116112. [PMID: 33272803 DOI: 10.1016/j.envpol.2020.116112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Nuclear factor-erythroid 2-related factor-2 (Nrf2) is an important modulator of cellular responses against Cd in mammalian cells. However, whether such modulation is conserved in Marsupenaeus japonicas remains unknown.In our study, the shrimps were injected with dsRNA targeting Nrf2 at 4 μg g-1 body weight (b.w.) or sulforaphane (SFN) at 5 μg g-1 b.w., and then were exposed to 40 mg L-1 CdCl2 for 48 h. After Nrf2 knockdown, the Cd content increased, but decreased in the SFN group. This suggested that Nrf2 could promote Cd excretion. A terminal deoxynulceotidyl transferase nick-end-labeling (TUNEL) assay revealed that the Nrf2 knockdown increased the number of apoptotic cells in M. japonicas, while SFN decreased the number of apoptotic cells. After Nrf2 knockdown, the total antioxidant capacity (T-AOC), superoxide dismutase (Sod) activity, and related gene expression decreased significantly, while the malondialdehyde (MDA) content increased remarkably. By contrast, SFN injection alleviated the oxidative stress, as evidenced by increased T-AOC, Sod activity, sod mRNA expression and a reduced MDA content. Similarly, detoxification related enzyme activities (ethoxyresorufin O-deethylase and glutathione-S-transferase (GST)) and their corresponding gene expressions (cyp3a (cytochrome P450 family 3 subfamily A) and gst) were suppressed in the ds-Nrf2 injection group, while they were elevated in the SFN group. In addition, ds-Nrf2 activated mitochondrial apoptotic pathway, as evidenced the mRNA and protein levels of caspase-3, Bcl2 associated X protein (Bax), and p53, while SFN treatment suppressed them. These results displayed that in M. japonicus Cd-induced cellular oxidative damage probably acts via the Nrf2 pathway.
Collapse
Affiliation(s)
- Xianyun Ren
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Yao Xu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, PR China
| | - Zhenxing Yu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Cuimin Mu
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, PR China
| | - Ping Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
36
|
Han K, Jin X, Guo X, Cao G, Tian S, Song Y, Zuo Y, Yu P, Gao G, Chang YZ. Nrf2 knockout altered brain iron deposition and mitigated age-related motor dysfunction in aging mice. Free Radic Biol Med 2021; 162:592-602. [PMID: 33248265 DOI: 10.1016/j.freeradbiomed.2020.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023]
Abstract
The transcription factor NF-E2-related factor 2 (Nrf2) is a central regulator of cellular antioxidant and detoxification response. The association between Nrf2 activity and iron-related oxidative stress in neurodegenerative diseases has been studied, and Nrf2 was found to transcriptionally regulate the expression of iron transporters and ferroptosis-related factors. However, the role of Nrf2 in age-related motor dysfunction and its link to iron metabolism dysregulation in brain have not been fully elucidated. In this study, with different ages of Nrf2 knockout (KO) and wild type (WT) mice, we investigated the effects of Nrf2 deficiency on brain oxidative stress, iron metabolism and the motor coordination ability of mice. In contrast to the predicted neuroprotective role of Nrf2 in oxidative stress-related diseases, we found that Nrf2 KO remarkably improved the motor coordination of aged mice, which was associated with the reduced ROS level and decreased apoptosis of dopaminergic neurons in substantia nigra (SN) of 18-month-old Nrf2 KO mice. With high-iron and Parkinson's disease (PD) mouse models, we revealed that Nrf2 KO prevented the deposition of brain iron, particularly in SN and striatum, which may subsequently delay motor dysfunction in aged mice. The regulation of Nrf2 KO on brain iron metabolism was likely mediated by decreasing the ferroportin 1 (FPN1) level on brain microvascular endothelial cells, thus hindering the process of iron entry into the brain. Nrf2 may be a potential therapeutic target in age-related motor dysfunction diseases for its role in regulating brain iron homeostasis.
Collapse
Affiliation(s)
- Kang Han
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, China
| | - Xiaofang Jin
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, China
| | - Xin Guo
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, China; Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Guoli Cao
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, China
| | - Siyu Tian
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, China
| | - Yiming Song
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, China
| | - Yuanyuan Zuo
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, China
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, China
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, China.
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, China.
| |
Collapse
|
37
|
The Multifaceted Role of Epoxide Hydrolases in Human Health and Disease. Int J Mol Sci 2020; 22:ijms22010013. [PMID: 33374956 PMCID: PMC7792612 DOI: 10.3390/ijms22010013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Epoxide hydrolases (EHs) are key enzymes involved in the detoxification of xenobiotics and biotransformation of endogenous epoxides. They catalyze the hydrolysis of highly reactive epoxides to less reactive diols. EHs thereby orchestrate crucial signaling pathways for cell homeostasis. The EH family comprises 5 proteins and 2 candidate members, for which the corresponding genes are not yet identified. Although the first EHs were identified more than 30 years ago, the full spectrum of their substrates and associated biological functions remain partly unknown. The two best-known EHs are EPHX1 and EPHX2. Their wide expression pattern and multiple functions led to the development of specific inhibitors. This review summarizes the most important points regarding the current knowledge on this protein family and highlights the particularities of each EH. These different enzymes can be distinguished by their expression pattern, spectrum of associated substrates, sub-cellular localization, and enzymatic characteristics. We also reevaluated the pathogenicity of previously reported variants in genes that encode EHs and are involved in multiple disorders, in light of large datasets that were made available due to the broad development of next generation sequencing. Although association studies underline the pleiotropic and crucial role of EHs, no data on high-effect variants are confirmed to date.
Collapse
|
38
|
Ma Y, Shi Y, Wu Q, Ma W. Dietary arsenic supplementation induces oxidative stress by suppressing nuclear factor erythroid 2-related factor 2 in the livers and kidneys of laying hens. Poult Sci 2020; 100:982-992. [PMID: 33518152 PMCID: PMC7858178 DOI: 10.1016/j.psj.2020.11.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 01/24/2023] Open
Abstract
This study investigated the effects of dietary arsenic supplementation on laying performance, egg quality, hepatic and renal histopathology, and oxidative stress in the livers and kidneys of laying hens. Furthermore, the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway was explored to reveal the molecular mechanism of the stress. Five hundred and twelve 40-week-old Hyline White laying hens were randomly allocated to 4 groups with 8 pens per group and 16 hens per pen. The doses of arsenic administered to the 4 groups were 0.95, 20.78, 40.67, and 60.25 mg/kg. The results revealed that dietary arsenic supplementation significantly reduced hen-day egg production (P < 0.05), average egg weight (P < 0.05), Haugh units (P < 0.05), albumen height (P < 0.05), and eggshell strength (P < 0.05). Dietary arsenic supplementation also induced the accumulation of arsenic and histopathological damages in the liver and kidney. In accordance, dietary arsenic supplementation significantly enhanced serum alanine aminotransferase (P < 0.05), aspartate aminotransferase (P < 0.05), blood urea nitrogen (P < 0.05), and uric acid (P < 0.05) levels. After arsenic exposure, the activities of superoxide dismutase (SOD) (P < 0.05), catalase (P < 0.01), glutathione reductase (P < 0.05), and glutathione peroxidase (P < 0.05), and glutathione content (P < 0.05) were significantly decreased, while the malondialdehyde level was significantly increased (P < 0.05) in the liver and kidney. Positive correlations occurred between antioxidant enzyme activities and antioxidant enzyme gene expressions in the liver and kidney, except for renal manganese superoxide dismutase gene expression and SOD activity. Additionally, hepatic and renal Nrf2 mRNA expression was positively correlated with antioxidant gene expressions and negatively correlated with Keap1 mRNA expression. In summary, dietary arsenic supplementation induced oxidative stress by suppressing the Nrf2-Keap1 pathway in the livers and kidneys of laying hens.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Yizhen Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
39
|
An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020; 25:molecules25225474. [PMID: 33238435 PMCID: PMC7700122 DOI: 10.3390/molecules25225474] [Citation(s) in RCA: 756] [Impact Index Per Article: 151.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a key driver in many pathological conditions such as allergy, cancer, Alzheimer’s disease, and many others, and the current state of available drugs prompted researchers to explore new therapeutic targets. In this context, accumulating evidence indicates that the transcription factor Nrf2 plays a pivotal role controlling the expression of antioxidant genes that ultimately exert anti-inflammatory functions. Nrf2 and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH- associated protein 1 (Keap1), play a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Interestingly, Nrf2 is proved to contribute to the regulation of the heme oxygenase-1 (HO-1) axis, which is a potent anti-inflammatory target. Recent studies showed a connection between the Nrf2/antioxidant response element (ARE) system and the expression of inflammatory mediators, NF-κB pathway and macrophage metabolism. This suggests a new strategy for designing chemical agents as modulators of Nrf2 dependent pathways to target the immune response. Therefore, the present review will examine the relationship between Nrf2 signaling and the inflammation as well as possible approaches for the therapeutic modulation of this pathway.
Collapse
|
40
|
Ma Y, Shi YZ, Wu QJ, Wang YQ, Wang JP, Liu ZH. Effects of varying dietary intoxication with lead on the performance and ovaries of laying hens. Poult Sci 2020; 99:4505-4513. [PMID: 32867994 PMCID: PMC7598106 DOI: 10.1016/j.psj.2020.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, we explored the effect of dietary lead nitrate on zootechnical performance, egg quality, accumulation of ovarian plumbum (Pb), follicular atresia rate, and ovarian oxidative stress in laying hens. Furthermore, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling molecule was studied to reveal the molecular mechanism of the stress. A total of 512 Hy-Line Brown laying hens aged 40 wk were randomly allocated to 4 groups (with 8 pens per group and 16 hens per pen). The Pb concentrations used to treat the 4 groups were 3.20, 33.20, 63.20, and 93.20 mg/kg. The results revealed that dietary Pb exposure significantly linearly reduced the zootechnical performance (P < 0.01) but significantly linearly increased the feed conversion ratio (P < 0.01). The dietary Pb exposure significantly linearly reduced the Haugh units (P < 0.01), albumen height (P < 0.01), eggshell thickness (P < 0.01), and eggshell strength (P < 0.01). In addition, the dietary Pb exposure significantly enhanced the follicular atresia rate (P < 0.01). After dietary Pb exposure, superoxide dismutase (P < 0.01) and glutathione peroxidase (GSH-Px) (P < 0.01) activities and glutathione (P < 0.01) contents were significant decreased quadratically, and there were significant linear decreases in the activities of catalase (CAT) (P < 0.01) and glutathione reductase (GR) (P < 0.01), whereas malondialdehyde content was significantly linearly increased (P < 0.01). In addition, except for manganese superoxide dismutase, the gene expressions of copper-zinc superoxide dismutase (P < 0.01), CAT (P < 0.01), and GR (P < 0.01) were significant decreased linearly. In addition, there were significantly quadratic decreases in the mRNA expressions of GSH-Px (P < 0.01) and Nrf2 (P < 0.01). By way of contrast, the Kelch-like ECH-associated protein 1 (Keap1) gene expression was significantly linearly increased (P < 0.01). In conclusion, dietary Pb exposure could induce oxidative stress by impairing the Nrf2-Keap1 signal pathway in the ovaries of laying hens.
Collapse
Affiliation(s)
- Y Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Y Z Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Q J Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Y Q Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - J P Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Z H Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
41
|
Martinefski MR, Rodriguez MR, Buontempo F, Lucangioli SE, Bianciotti LG, Tripodi VP. Coenzyme Q 10 supplementation: A potential therapeutic option for the treatment of intrahepatic cholestasis of pregnancy. Eur J Pharmacol 2020; 882:173270. [PMID: 32534074 DOI: 10.1016/j.ejphar.2020.173270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy specific liver disease characterized by pruritus, elevated serum bile acids and abnormal liver function that may be associated with severe adverse pregnancy outcomes. We previously reported that plasma coenzyme Q10 (CoQ10) is decreased in women with ICP as it is its analogue coenzyme Q9 (CoQ9) in rats with ethinyl estradiol (EE)-induced cholestasis. The aim of the present study was to evaluate the possible therapeutic role of CoQ10 in experimental hepatocellular cholestasis and to compare it with ursodeoxycholic acid (UDCA) supplementation. Bile acids, CoQ9, CoQ10, transaminases, alkaline phosphatase, retinol, α-tocopherol, ascorbic acid, thiobarbituric acid reactive substances, carbonyls, glutathione, superoxide dismutase and catalase were assessed in plasma, liver and/or hepatic mitochondria in control and cholestatic rats supplemented with CoQ10 (250 mg/kg) administered alone or combined with UDCA (25 mg/kg). CoQ10 supplementation prevented bile flow decline (P < 0.05) and the increase in serum alkaline phosphatase and bile acids, particularly lithocholic acid (P < 0.05) in cholestatic rats. Furthermore, it also improved oxidative stress parameters in the liver, increased both CoQ10 and CoQ9 plasma levels and partially prevented the fall in α-tocopherol (P < 0.05). UDCA also prevented cholestasis, but it was less efficient than CoQ10 to improve the liver redox environment. Combined administration of CoQ10 and UDCA resulted in additive effects. In conclusion, present findings show that CoQ10 supplementation attenuated EE-induced cholestasis by promoting a favorable redox environment in the liver, and further suggest that it may represent an alternative therapeutic option for ICP.
Collapse
Affiliation(s)
- Manuela R Martinefski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina
| | - Myrian R Rodriguez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, INIGEM, UBA-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina
| | - Fabián Buontempo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina
| | - Silvia E Lucangioli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina
| | - Liliana G Bianciotti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, INIGEM, UBA-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina.
| | - Valeria P Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina.
| |
Collapse
|
42
|
Chan Kwon Y, Sik Kim H, Lee BM. Detoxifying effects of optimal hyperoxia (40% oxygenation) exposure on benzo[a]pyrene-induced toxicity in human keratinocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:82-94. [PMID: 32065759 DOI: 10.1080/15287394.2020.1730083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Detoxifying effects of hyperoxia, which is widely used in clinical practice, were investigated using HaCat cells (human keratinocytes) treated with benzo[a]pyrene (B[a]P) as a model agent to induce adverse effects in the skin. It is well-established that B[a]P may produce toxicities including cancer, endocrine disruption, and phototoxicity involving DNA damage, free radical generation, and down regulation of nuclear factor erythroid 2-related factor 2 (Nrf2). It is well-known that Nrf2 is associated increase of antioxidant enzyme catalase (CAT) or detoxification enzyme glutathione S-transferase (GST) in HaCat cells treated with B[a]P under optimal condition of hyperoxia (40% oxygenation) conditions. To further examine the underlying basis of this phenomenon, factors affecting the expression of Nrf2 were determined. Nrf2 was upregulated accompanied by a rise in p38 MAPK, sequestosome-1 (also known as p62) and NF-κB. In contrast, Nrf2 was downregulated associated with an elevation in glycogen synthase kinase 3 beta (GSK-3β) and peroxisome proliferator-activated receptor alpha (PPARα). Hyperoxia was also found to diminish DNA damage and generation of free radicals initiated in B[a]P-treated cells which was attributed to an significant rise of Nrf2, leading to elevated antioxidant activities or detoxification proteins including heme oxygenase 1 (HO-1), superoxide dismutase (SOD), glutathione peroxidase-1/2 (GPX-1/2), CAT, GST and glutathione (GSH). In addition, factors related to skin aging were also altered by hyperoxia. Data suggest that optimal hyperoxia exposure of 40% oxygenation may reduce cellular toxicity induced by B[a]P in HaCat cells as evidenced by inhibition of DNA damage, free radical generation, and down-regulation of Nrf2.
Collapse
Affiliation(s)
- Yong Chan Kwon
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
43
|
Artichoke Polyphenols Sensitize Human Breast Cancer Cells to Chemotherapeutic Drugs via a ROS-Mediated Downregulation of Flap Endonuclease 1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7965435. [PMID: 31998443 PMCID: PMC6969650 DOI: 10.1155/2020/7965435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/22/2019] [Indexed: 01/20/2023]
Abstract
Combined treatment of several natural polyphenols and chemotherapeutic agents is more effective comparing to the drug alone in inhibiting cancer cell growth. Polyphenolic artichoke extracts (AEs) have been shown to have anticancer properties by triggering apoptosis or reactive oxygen species- (ROS-) mediated senescence when used at high or low doses, respectively. Our aim was to explore the chemosensitizing potential of AEs in order to enhance the efficacy of conventional chemotherapy in breast cancer cells. We employed breast cancer cell lines to assess the potential synergistic effect of a combined treatment of AEs/paclitaxel (PTX) or AEs/adriamycin (ADR) and to determine the underlying mechanisms correlated to this potential therapeutic approach. Our data shows that AEs/PTX reduced cell proliferation by increasing DNA damage response (DDR) mediated by Flap endonuclease 1 (FEN1) downregulation that results into enhanced breast cancer cell sensitivity to chemotherapeutic drugs. We demonstrated that ROS/Nrf2 and p-ERK pathways are two molecular mechanisms involved in the synergistic effect of AEs plus PTX treatment. To highlight the role of ROS herein, we report that the addition of antioxidant N-acetylcysteine (NAC) significantly decreased the antiproliferative effect of the combined treatment. A combined therapy could be able to reduce the dose of chemotherapeutic drugs, minimizing toxicity and side effects. Our results suggest the use of artichoke polyphenols as ROS-mediated sensitizers of chemotherapy paving the way for innovative and promising natural compound-based therapeutic strategies in oncology.
Collapse
|
44
|
Taguchi K, Kensler TW. Nrf2 in liver toxicology. Arch Pharm Res 2019; 43:337-349. [PMID: 31782059 DOI: 10.1007/s12272-019-01192-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Liver plays essential roles in the metabolism of many endogenous chemicals and exogenous toxicants. Mechanistic studies in liver have been at the forefront of efforts to probe the roles of bioactivation and detoxication of environmental toxins and toxicants in hepatotoxicity. Moreover, idiosyncratic hepatoxicity remains a key barrier in the clinical development of drugs. The now vast Nrf2 field emerged in part from biochemical and molecular studies on chemical inducers of hepatic detoxication enzymes and subsequent characterization of the modulation of drug/toxicant induced hepatotoxicities in mice through disruption of either Nrf2 or Keap1 genes. In general, loss of Nrf2 increases the sensitivity to such toxic chemicals, highlighting a central role of this transcription factor and its downstream target genes as a modifier to chemical stress. In this review, we summarize the impact of Nrf2 on the toxicology of multiple hepatotoxicants, and discuss efforts to utilize the Nrf2 response in predictive toxicology.
Collapse
Affiliation(s)
- Keiko Taguchi
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba, Sendai, 980-8575, Japan.
| | - Thomas W Kensler
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA, 98109, USA
| |
Collapse
|
45
|
Kay J, Thadhani E, Samson L, Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst) 2019; 83:102673. [PMID: 31387777 DOI: 10.1016/j.dnarep.2019.102673] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/15/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022]
Abstract
The relationships between inflammation and cancer are varied and complex. An important connection linking inflammation to cancer development is DNA damage. During inflammation reactive oxygen and nitrogen species (RONS) are created to combat pathogens and to stimulate tissue repair and regeneration, but these chemicals can also damage DNA, which in turn can promote mutations that initiate and promote cancer. DNA repair pathways are essential for preventing DNA damage from causing mutations and cytotoxicity, but RONS can interfere with repair mechanisms, reducing their efficacy. Further, cellular responses to DNA damage, such as damage signaling and cytotoxicity, can promote inflammation, creating a positive feedback loop. Despite coordination of DNA repair and oxidative stress responses, there are nevertheless examples whereby inflammation has been shown to promote mutagenesis, tissue damage, and ultimately carcinogenesis. Here, we discuss the DNA damage-mediated associations between inflammation, mutagenesis and cancer.
Collapse
Affiliation(s)
- Jennifer Kay
- Department of Biological Engineering, United States.
| | | | - Leona Samson
- Department of Biological Engineering, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | | |
Collapse
|
46
|
Ali SM, Khan NA, Sagathevan K, Anwar A, Siddiqui R. Biologically active metabolite(s) from haemolymph of red-headed centipede Scolopendra subspinipes possess broad spectrum antibacterial activity. AMB Express 2019; 9:95. [PMID: 31254123 PMCID: PMC6598926 DOI: 10.1186/s13568-019-0816-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022] Open
Abstract
The discovery of novel antimicrobials from animal species under pollution is an area untapped. Chinese red-headed centipede is one of the hardiest arthropod species commonly known for its therapeutic value in traditional Chinese medicine. Here we determined the antibacterial activity of haemolymph and tissue extracts of red-headed centipede, Scolopendra subspinipes against a panel of Gram-positive and Gram-negative bacteria. Lysates exhibited potent antibacterial activities against a broad range of bacteria tested. Chemical characterization of biologically active molecules was determined via liquid chromatography mass spectrometric analysis. From crude haemolymph extract, 12 compounds were identified including: (1) L-Homotyrosine, (2) 8-Acetoxy-4-acoren-3-one, (3) N-Undecylbenzenesulfonic acid, (4) 2-Dodecylbenzenesulfonic acid, (5) 3H-1,2-Dithiole-3-thione, (6) Acetylenedicarboxylate, (7) Albuterol, (8) Tetradecylamine, (9) Curcumenol, (10) 3-Butylidene-7-hydroxyphthalide, (11) Oleoyl Ethanolamide and (12) Docosanedioic acid. Antimicrobial activities of the identified compounds were reported against Gram-positive and Gram-negative bacteria, fungi, viruses and parasites, that possibly explain centipede's survival in harsh and polluted environments. Further research in characterization, molecular mechanism of action and in vivo testing of active molecules is needed for the development of novel antibacterials.
Collapse
Affiliation(s)
- Salwa Mansur Ali
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - K. Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| |
Collapse
|
47
|
Stoddard EG, Killinger BJ, Nag SA, Corley RA, Smith JN, Wright AT. Benzo[ a]pyrene Induction of Glutathione S-Transferases: An Activity-Based Protein Profiling Investigation. Chem Res Toxicol 2019; 32:1259-1267. [PMID: 30938511 PMCID: PMC7138413 DOI: 10.1021/acs.chemrestox.9b00069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated from combustion of carbon-based matter. Upon ingestion, these molecules can be bioactivated by cytochrome P450 monooxygenases to oxidized toxic metabolites. Some of these metabolites are potent carcinogens that can form irreversible adducts with DNA and other biological macromolecules. Conjugative enzymes, such as glutathione S-transferases or UDP-glucuronosyltransferases, are responsible for the detoxification and/or facilitate the elimination of these carcinogens. While responses to PAH exposures have been extensively studied for the bioactivating cytochrome P450 enzymes, much less is known regarding the response of glutathione S-transferases in mammalian systems. In this study, we investigated the expression and activity responses of murine hepatic glutathione S-transferases to benzo[ a]pyrene exposure using global proteomics and activity-based protein profiling for chemoproteomics, respectively. Using this approach, we identified several enzymes exhibiting increased activity including GSTA2, M1, M2, M4, M6, and P1. The activity of one GST enzyme, GSTA4, was found to be downregulated with increasing B[ a]P dose. Activity responses of several of these enzymes were identified as being expression-independent when comparing global and activity-based data sets, possibly alluding to as of yet unknown regulatory post-translational mechanisms.
Collapse
Affiliation(s)
- Ethan G. Stoddard
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bryan J. Killinger
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| | - Subhasree A. Nag
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard A. Corley
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jordan N. Smith
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Aaron T. Wright
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
48
|
Tu W, Wang H, Li S, Liu Q, Sha H. The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases. Aging Dis 2019; 10:637-651. [PMID: 31165007 PMCID: PMC6538222 DOI: 10.14336/ad.2018.0513] [Citation(s) in RCA: 435] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress is defined as an imbalance between production of free radicals and reactive metabolites or [reactive oxygen species (ROS)] and their elimination by through protective mechanisms, including (antioxidants). This Such imbalance leads to damage of cells and important biomolecules and cells, with hence posing a potential adverse impact on the whole organism. At the center of the day-to-day biological response to oxidative stress is the Kelch-like ECH-associated protein 1 (Keap1) - nuclear factor erythroid 2-related factor 2 (Nrf2)- antioxidant response elements (ARE) pathway, which regulates the transcription of many several antioxidant genes that preserve cellular homeostasis and detoxification genes that process and eliminate carcinogens and toxins before they can cause damage. The redox-sensitive signaling system Keap1/Nrf2/ARE plays a key role in the maintenance of cellular homeostasis under stress, inflammatory, carcinogenic, and pro-apoptotic conditions, which allows us to consider it as a pharmacological target. Herein, we review and discuss the recent advancements in the regulation of the Keap1/Nrf2/ARE system, and its role under physiological and pathophysiological conditions, e.g. such as in exercise, diabetes, cardiovascular diseases, cancer, neurodegenerative disorders, stroke, liver and kidney system, etc. and such.
Collapse
Affiliation(s)
- Wenjun Tu
- Institute of Radiation Medicine, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
- Department of Neurosurgery, Beijing Tiantan Hospital of Capital Medical University, Beijing, China
- Center for Translational Medicine, Institutes of Stroke, Weifang Medical University, Weifang, China
| | - Hong Wang
- Institute of Biomedical Engineering, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Song Li
- Institute of Radiation Medicine, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Hong Sha
- Institute of Biomedical Engineering, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
49
|
Koehn LM, Dziegielewska KM, Møllgård K, Saudrais E, Strazielle N, Ghersi-Egea JF, Saunders NR, Habgood MD. Developmental differences in the expression of ABC transporters at rat brain barrier interfaces following chronic exposure to diallyl sulfide. Sci Rep 2019; 9:5998. [PMID: 30979952 PMCID: PMC6461637 DOI: 10.1038/s41598-019-42402-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Many pregnant women and prematurely born infants require medication for clinical conditions including cancer, cardiac defects and psychiatric disorders. In adults drug transfer from blood into brain is mostly restricted by efflux mechanisms (ATP-binding cassette, ABC transporters). These mechanisms have been little studied during brain development. Here expression of eight ABC transporters (abcb1a, abcb1b, abcg2, abcc1, abcc2, abcc3, abcc4, abcc5) and activity of conjugating enzyme glutathione-s-transferase (GST) were measured in livers, brain cortices (blood-brain-barrier) and choroid plexuses (blood-cerebrospinal fluid, CSF, barrier) during postnatal rat development. Controls were compared to animals chronically injected (4 days, 200 mg/kg/day) with known abcb1a inducer diallyl sulfide (DAS). Results reveal both tissue- and age-dependent regulation. In liver abcb1a and abcc3 were up-regulated at all ages. In cortex abcb1a/b, abcg2 and abcc4/abcc5 were up-regulated in adults only, while in choroid plexus abcb1a and abcc2 were up-regulated only at P14. DAS treatment increased GST activity in livers, but not in cortex or choroid plexuses. Immunocytochemistry of ABC transporters at the CSF-brain interface showed that PGP and BCRP predominated in neuroepithelium while MRP2/4/5 were prominent in adult ependyma. These results indicate an age-related capacity of brain barriers to dynamically regulate their defence mechanisms when chronically challenged by xenobiotic compounds.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katarzyna M Dziegielewska
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kjeld Møllgård
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elodie Saudrais
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France
| | - Nathalie Strazielle
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France.,Brain-I, Lyon, France
| | - Jean-Francois Ghersi-Egea
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France
| | - Norman R Saunders
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol 2019; 10:203. [PMID: 30967773 PMCID: PMC6438930 DOI: 10.3389/fphar.2019.00203] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer heterogeneity constitutes the major source of disease progression and therapy failure. Tumors comprise functionally diverse subpopulations, with cancer stem cells (CSCs) as the source of this heterogeneity. Since these cells bear in vivo tumorigenicity and metastatic potential, survive chemotherapy and drive relapse, its elimination may be the only way to achieve long-term survival in patients. Thanks to the great advances in the field over the last few years, we know now that cellular metabolism and stemness are highly intertwined in normal development and cancer. Indeed, CSCs show distinct metabolic features as compared with their more differentiated progenies, though their dominant metabolic phenotype varies across tumor entities, patients and even subclones within a tumor. Following initial works focused on glucose metabolism, current studies have unveiled particularities of CSC metabolism in terms of redox state, lipid metabolism and use of alternative fuels, such as amino acids or ketone bodies. In this review, we describe the different metabolic phenotypes attributed to CSCs with special focus on metabolism-based therapeutic strategies tested in preclinical and clinical settings.
Collapse
Affiliation(s)
- Petra Jagust
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz Parejo-Alonso
- Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| |
Collapse
|