1
|
Glass E, Robinson SL, Rosowski EE. Zebrafish use conserved CLR and TLR signaling pathways to respond to fungal PAMPs in zymosan. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105286. [PMID: 39536806 PMCID: PMC11740225 DOI: 10.1016/j.dci.2024.105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Pattern recognition receptors (PRRs) such as C-type lectin receptors (CLRs) and Toll-like receptors (TLRs) are used by hosts to recognize pathogen-associated molecular patterns (PAMPs) in microorganisms and to initiate innate immune responses. While PRRs exist across invertebrate and vertebrate species, the functional homology of many of these receptors is still unclear. In this study, we investigate the innate immune response of zebrafish larvae to zymosan, a β-glucan-containing particle derived from fungal cell walls. Macrophages and neutrophils robustly respond to zymosan and are required for zymosan-induced activation of the NF-κB transcription factor. Full activation of NF-κB in response to zymosan depends on Card9/Syk and Myd88, conserved CLR and TLR adaptor proteins, respectively. Two putative CLRs, Clec4c and Sclra, are both required for maximal sensing of zymosan and NF-κB activation but not required for inflammatory gene expression. Altogether, we identify conserved PRRs and PRR signaling pathways in larval zebrafish that promote recognition of fungal PAMPs. These results inform modeling of human fungal infections in zebrafish and increase our knowledge of the evolution and conservation of PRR pathways in vertebrates.
Collapse
Affiliation(s)
- Erin Glass
- Department of Biological Sciences, Clemson University, Clemson, SC, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA
| | - Stephan L Robinson
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA; School of Medicine Greenville, University of South Carolina, Greenville, SC, USA
| | - Emily E Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA.
| |
Collapse
|
2
|
Xu Z, Wu XM, Luo YB, Li H, Zhou YQ, Liu ZQ, Li ZY. Exploring the therapeutic potential of yeast β-glucan: Prebiotic, anti-infective, and anticancer properties - A review. Int J Biol Macromol 2024; 283:137436. [PMID: 39522898 DOI: 10.1016/j.ijbiomac.2024.137436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Yeast β-glucan (YBG), an indigestible polysaccharide from yeast cell walls, is multifunctional. It plays a pivotal role in regulating gut microbiota (GM) and boosting the immune system, which is central to research on inflammation, cancer, and metabolic diseases. By modulating the GM, YBG exhibits various prebiotic effects, including hypoglycemic, hypolipidemic, and immune-regulating properties. Additionally, acting as a bioreactor modulator, it activates immune responses, demonstrating potential in anti-infection and anticancer applications. This article synthesizes the latest data from in vitro, in vivo, and clinical studies. It comprehensively evaluates the therapeutic potential of YBG, starting from its structure-function relationship. It particularly focuses on the application prospects of yeast β-glucan in probiotic-like effects, anti-infectious properties, and anti-cancer activity, and explores the underlying mechanisms of these actions. The aim of this article is to elucidate the positive impact of YBG on health by modulating the gut microbiota and enhancing immune responses. Simultaneously, it identifies critical areas for future research to provide theoretical support for its development in biomedical applications.
Collapse
Affiliation(s)
- Zhen Xu
- The Second Clinical Medical College, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiao Meng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yan Bin Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Hui Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yong Qin Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Zhao Qi Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Zhi Ying Li
- The Second Clinical Medical College, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
3
|
Glass E, Robinson SL, Rosowski EE. Zebrafish use conserved CLR and TLR signaling pathways to respond to fungal PAMPs in zymosan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600417. [PMID: 38979385 PMCID: PMC11230284 DOI: 10.1101/2024.06.24.600417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Pattern recognition receptors (PRRs) such as C-type lectin receptors (CLRs) and Toll-like receptors (TLRs) are used by hosts to recognize pathogen-associated molecular patterns (PAMPs) in microorganisms and to initiate innate immune responses. While PRRs exist across invertebrate and vertebrate species, the functional homology of many of these receptors is still unclear. In this study, we investigate the innate immune response of zebrafish larvae to zymosan, a β-glucan-containing particle derived from fungal cell walls. Macrophages and neutrophils robustly respond to zymosan and are required for zymosan-induced activation of the NF-κB transcription factor. Full activation of NF-κB in response to zymosan depends on Card9/Syk and Myd88, conserved CLR and TLR adaptor proteins, respectively. Two putative CLRs, Clec4c and Sclra, are both required for maximal sensing of zymosan and NF-κB activation. Altogether, we identify conserved PRRs and PRR signaling pathways in larval zebrafish that promote recognition of fungal PAMPs. These results inform modeling of human fungal infections in zebrafish and increase our knowledge of the evolution and conservation of PRR pathways in vertebrates.
Collapse
Affiliation(s)
- Erin Glass
- Department of Biological Sciences, Clemson University, Clemson, SC
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
| | - Stephan L Robinson
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
- School of Medicine Greenville, University of South Carolina, Greenville, SC
| | - Emily E Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
| |
Collapse
|
4
|
Yang F, Shang S, Qi M, Xiang Y, Wang L, Wang X, Lin T, Hao D, Chen J, Liu J, Wu Q. Yeast glucan particles: An express train for oral targeted drug delivery systems. Int J Biol Macromol 2023; 253:127131. [PMID: 37776921 DOI: 10.1016/j.ijbiomac.2023.127131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
As an emerging drug delivery vehicle, yeast glucan particles (YGPs) derived from yeast cells could be specifically taken up by macrophages. Therefore, these vehicles could rely on the recruitment of macrophages at the site of inflammation and tumors to enable targeted imaging and drug delivery. This review summarizes recent advances in the application of YGPs in oral targeted delivery systems, covering the basic structure of yeast cells, methods for pre-preparation, drug encapsulation and characterization. The mechanism and validation of the target recognition interaction of YGPs with macrophages are highlighted, and some inspiring cases are presented to show that yeast cells have promising applications. The future chances and difficulties that YGPs will confront are also emphasized throughout this essay. YGPs are not only the "armor" but also the "compass" of drugs in the process of targeted drug transport. This system is expected to provide a new idea about the oral targeted delivery of anti-inflammatory and anti-tumor drugs, and furthermore offer an effective delivery strategy for targeted therapy of other macrophage-related diseases.
Collapse
Affiliation(s)
- Fan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shang Shang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengfei Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajinjing Xiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lingmin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinyi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiajia Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
5
|
Ochoa AE, Congel JH, Corley JM, Janssen WJ, Nick JA, Malcolm KC, Hisert KB. Dectin-1-Independent Macrophage Phagocytosis of Mycobacterium abscessus. Int J Mol Sci 2023; 24:11062. [PMID: 37446240 PMCID: PMC10341562 DOI: 10.3390/ijms241311062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Mycobacterium abscessus, a species of nontuberculous mycobacteria (NTM), is an opportunistic pathogen that is readily cleared by healthy lungs but can cause pulmonary infections in people with chronic airway diseases. Although knowledge pertaining to molecular mechanisms of host defense against NTM is increasing, macrophage receptors that recognize M. abscessus remain poorly defined. Dectin-1, a C-type lectin receptor identified as a fungal receptor, has been shown to be a pathogen recognition receptor (PRR) for both M. tuberculosis and NTM. To better understand the role of Dectin-1 in host defense against M. abscessus, we tested whether blocking Dectin-1 impaired the uptake of M. abscessus by human macrophages, and we compared M. abscessus pulmonary infection in Dectin-1-deficient and wild-type mice. Blocking antibody for Dectin-1 did not reduce macrophage phagocytosis of M. abscessus, but did reduce the ingestion of the fungal antigen zymosan. Laminarin, a glucan that blocks Dectin-1 and other PRRs, caused decreased phagocytosis of both M. abscessus and zymosan. Dectin-1-/- mice exhibited no defects in the control of M. abscessus infection, and no differences were detected in immune cell populations between wild type and Dectin-1-/- mice. These data demonstrate that murine defense against M. abscessus pulmonary infection, as well as ingestion of M. abscessus by human macrophages, can occur independent of Dectin-1. Thus, additional PRR(s) recognized by laminarin participate in macrophage phagocytosis of M. abscessus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katherine B. Hisert
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A550, Denver, CO 80206, USA
| |
Collapse
|
6
|
Rawling M, Schiavone M, Apper E, Merrifield DL, Castex M, Leclercq E, Foey A. Yeast cell wall extracts from Saccharomyces cerevisiae varying in structure and composition differentially shape the innate immunity and mucosal tissue responses of the intestine of zebrafish ( Danio rerio). Front Immunol 2023; 14:1158390. [PMID: 37304290 PMCID: PMC10248512 DOI: 10.3389/fimmu.2023.1158390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
With the rising awareness of antimicrobial resistance, the development and use of functional feed additives (FFAs) as an alternative prophylactic approach to improve animal health and performance is increasing. Although the FFAs from yeasts are widely used in animal and human pharma applications already, the success of future candidates resides in linking their structural functional properties to their efficacy in vivo. Herein, this study aimed to characterise the biochemical and molecular properties of four proprietary yeast cell wall extracts from S. cerevisiae in relation to their potential effect on the intestinal immune responses when given orally. Dietary supplementation of the YCW fractions identified that the α-mannan content was a potent driver of mucus cell and intraepithelial lymphocyte hyperplasia within the intestinal mucosal tissue. Furthermore, the differences in α-mannan and β-1,3-glucans chain lengths of each YCW fraction affected their capacity to be recognised by different PRRs. As a result, this affected the downstream signalling and shaping of the innate cytokine milieu to elicit the preferential mobilisation of effector T-helper cell subsets namely Th17, Th1, Tr1 and FoxP3+-Tregs. Together these findings demonstrate the importance of characterising the molecular and biochemical properties of YCW fractions when assessing and concluding their immune potential. Additionally, this study offers novel perspectives in the development specific YCW fractions derived from S. cerievisae for use in precision animal feeds.
Collapse
Affiliation(s)
- Mark Rawling
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| | | | | | - Daniel L. Merrifield
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| | | | | | - Andrew Foey
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| |
Collapse
|
7
|
Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr 2023; 10:1143682. [PMID: 37215217 PMCID: PMC10198134 DOI: 10.3389/fnut.2023.1143682] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
The human gastrointestinal (GI) tract holds a complex and dynamic population of microbial communities, which exerts a marked influence on the host physiology during homeostasis and disease conditions. Diet is considered one of the main factors in structuring the gut microbiota across a lifespan. Intestinal microbial communities play a vital role in sustaining immune and metabolic homeostasis as well as protecting against pathogens. The negatively altered gut bacterial composition has related to many inflammatory diseases and infections. β-glucans are a heterogeneous assemblage of glucose polymers with a typical structure comprising a leading chain of β-(1,4) and/or β-(1,3)-glucopyranosyl units with various branches and lengths as a side chain. β-glucans bind to specific receptors on immune cells and initiate immune responses. However, β-glucans from different sources differ in their structures, conformation, physical properties, and binding affinity to receptors. How these properties modulate biological functions in terms of molecular mechanisms is not known in many examples. This review provides a critical understanding of the structures of β-glucans and their functions for modulating the gut microbiota and immune system.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
8
|
Antonio LC, Ribovski L, Pincela Lins PM, Zucolotto V. The amount of dextran in PLGA nanocarriers modulates protein corona and promotes cell membrane damage. J Mater Chem B 2022; 10:8282-8294. [PMID: 36155711 DOI: 10.1039/d2tb01296k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric nanocarriers (NCs) are efficient vehicles to prevent drug unspecific biodistribution and increase the drug amounts delivered to tumor tissues. However, some toxicological aspects of NCs still lack a comprehensive assessment, such as their effects on cellular processes that lead to toxicity. We evaluate the interaction of poly(lactic-co-glycolic acid) (PLGA) NCs prepared using dextran (Dex) and Pluronic®-F127 as stabilizing agents with myocardial cells (H9C2), breast adenocarcinoma cells (MCF-7) and macrophages (RAW 264.7) to address the effect of Dex in PLGA NC formulations. By an emulsion diffusion method, doxorubicin-loaded NCs were prepared with no Dex (PLGA-DOX), 1% (w/v) Dex (Dex1/PLGA-DOX) and 5% (w/v) Dex (Dex5/PLGA-DOX). Uptake analyses revealed a significant reduction in Dex5/PLGA-DOX NC uptake by H9C2 and MCF-7, as in the case of Dex1/PLGA-DOX NCs in the absence of in vitro protein corona, revealing an effect of dextran concentration on the formation of protein corona. RAW 264.7 cells presented a greater uptake of Dex5/PLGA-DOX NCs than the other NCs likely because of receptor mediated endocytosis, since C-type lectins like SIGN-R1, mannose receptors and scavenger receptor type 1 that are expressed in RAW 264.7 can mediate Dex uptake. Despite the lower uptake, Dex5/PLGA-DOX NCs promote the generation of reactive oxygen species and oxidative membrane damage in MCF-7 and H9C2 even though cellular metabolic activity assessed by MTT was comparable among all the NCs. Our results highlight the importance of an in-depth investigation of the NC-cell interaction considering additional mechanisms of damage apart from metabolic variations, as nanoparticle-induced damage is not limited to imbalance in metabolic processes, but also associated with other mechanisms, e.g., membrane and DNA damage.
Collapse
Affiliation(s)
- Luana Corsi Antonio
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| | - Laís Ribovski
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil.,University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands.
| | - Paula Maria Pincela Lins
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
9
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
10
|
Peruń A, Gębicka M, Biedroń R, Skalska P, Józefowski S. The CD36 and SR-A/CD204 scavenger receptors fine-tune Staphylococcus aureus-stimulated cytokine production in mouse macrophages. Cell Immunol 2022; 372:104483. [DOI: 10.1016/j.cellimm.2022.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
11
|
Jakkawanpitak C, Inafuku M, Oku H, Hutadilok-Towatana N, Bunkrongcheap R, Sermwittayawong N, Aiemchareon P, Sermwittayawong D. Mechanism of the fungal-like particles in the inhibition of adipogenesis in 3T3-L1 adipocytes. Sci Rep 2021; 11:18869. [PMID: 34552185 PMCID: PMC8458348 DOI: 10.1038/s41598-021-98385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The dynamic ability of adipocytes in adipose tissue to store lipid in response to changes in the nutritional input and inflammatory elicitors has a major impact on human health. Previously, we established laminarin-coated beads or LCB as an inflammatory elicitor for adipocytes. However, it was not clear whether LCB inhibits lipid accumulation in adipocytes. Here, we show that LCB acts in the early stage of adipogenesis through both interleukin-1 receptor-associated kinases (IRAK) and spleen tyrosine kinase (SYK) pathways, resulting in the activation of the AMP-activated protein kinase (AMPK) and nuclear factor-κB (NF-κB) complexes, which subsequently cause cell cycle arrest, downregulation of the key transcription factors and enzymes responsible for adipogenesis, inhibition of adipogenesis, and stimulation of an inflammatory response. While LCB could effectively block lipid accumulation during the early stage of adipogenesis, it could stimulate an inflammatory response at any stage of differentiation. Additionally, our results raise a possibility that toll-like receptor 2 (TLR2) and C-type lectin domain family 7 member A (CLEC7A/Dectin-1) might be potential β-glucan receptors on the fat cells. Together, we present the mechanism of LCB, as fungal-like particles, that elicits an inflammatory response and inhibits adipogenesis at the early stage of differentiation.
Collapse
Affiliation(s)
- Chanawee Jakkawanpitak
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Masashi Inafuku
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Hirosuke Oku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Nongporn Hutadilok-Towatana
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Ruthaiwan Bunkrongcheap
- College of Innovation and Management, Songkhla Rajabhat University, Muang District, Songkhla, 90000, Thailand
| | - Natthawan Sermwittayawong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Piyapat Aiemchareon
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Functional Food and Nutrition Program, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Decha Sermwittayawong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
12
|
The Role of Macrophages in the Host's Defense against Sporothrix schenckii. Pathogens 2021; 10:pathogens10070905. [PMID: 34358055 PMCID: PMC8308788 DOI: 10.3390/pathogens10070905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023] Open
Abstract
The role of immune cells associated with sporotrichosis caused by Sporothrix schenckii is not yet fully clarified. Macrophages through pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns (PAMPs) of Sporothrix, engulf it, activate respiratory burst, and secrete pro-inflammatory or anti-inflammatory biological mediators to control infection. It is important to consider that the characteristics associated with S. schenckii and/or the host may influence macrophage polarization (M1/M2), cell recruitment, and the type of immune response (1, 2, and 17). Currently, with the use of new monocyte-macrophage cell lines, it is possible to evaluate different host-pathogen interaction processes, which allows for the proposal of new mechanisms in human sporotrichosis. Therefore, in order to contribute to the understanding of these host-pathogen interactions, the aim of this review is to summarize and discuss the immune responses induced by macrophage-S. schenckii interactions, as well as the PRRs and PAMPs involved during the recognition of S. schenckii that favor the immune evasion by the fungus.
Collapse
|
13
|
Vetvicka V, Teplyakova TV, Shintyapina AB, Korolenko TA. Effects of Medicinal Fungi-Derived β-Glucan on Tumor Progression. J Fungi (Basel) 2021; 7:250. [PMID: 33806255 PMCID: PMC8065548 DOI: 10.3390/jof7040250] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
β-Glucans have been studied in animal species, from earthworms to humans. They form a heterogenous group of glucose polymers found in fungi, plants, bacteria, and seaweed. β-Glucans have slowly emerged as an important target for the recognition of pathogens. In the current review, we highlight the major roles of mushroom-derived β-glucans on cancer progression.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 630117, USA
| | - Tamara V. Teplyakova
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk, Russia;
| | - Alexandra B. Shintyapina
- Federal Research Center of Fundamental and Translational Medicine, Federal State Budget Scientific Institution, 630117 Novosibirsk, Russia;
| | - Tatiana A. Korolenko
- Laboratory of Experimental Models of Neurodegeneration, Scientific Research Institute of Neurosciences and Medicine, Federal State Budgetary Scientific Institution, 4 Timakov St., 630117 Novosibirsk, Russia;
| |
Collapse
|
14
|
Dinh TTH, Tummamunkong P, Padungros P, Ponpakdee P, Boonprakong L, Saisorn W, Leelahavanichkul A, Kueanjinda P, Ritprajak P. Interaction Between Dendritic Cells and Candida krusei β-Glucan Partially Depends on Dectin-1 and It Promotes High IL-10 Production by T Cells. Front Cell Infect Microbiol 2021; 10:566661. [PMID: 33552998 PMCID: PMC7862133 DOI: 10.3389/fcimb.2020.566661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Host-Candida interaction has been broadly studied during Candida albicans infection, with a progressive shift in focus toward non-albicans Candida species. C. krusei is an emerging multidrug resistant pathogen causing rising morbidity and mortality worldwide. Therefore, understanding the interplay between the host immune system and C. krusei is critically important. Candia cell wall β-glucans play significant roles in the induction of host protective immune responses. However, it remains unclear how C. krusei β-glucan impacts dendritic cell (DC) responses. In this study, we investigated DC maturation and function in response to β-glucans isolated from the cell walls of C. albicans, C. tropicalis, and C. krusei. These three distinct Candida β-glucans had differential effects on expression of the DC marker, CD11c, and on DC maturation. Furthermore, bone-marrow derived DCs (BMDCs) showed enhanced cytokine responses characterized by substantial interleukin (IL)-10 production following C. krusei β-glucan stimulation. BMDCs stimulated with C. krusei β-glucan augmented IL-10 production by T cells in tandem with increased IL-10 production by BMDCs. Inhibition of dectin-1 ligation demonstrated that the interactions between dectin-1 on DCs and cell wall β-glucans varied depending on the Candida species. The effects of C. krusei β-glucan were partially dependent on dectin-1, and this dependence, in part, led to distinct DC responses. Our study provides new insights into immune regulation by C. krusei cell wall components. These data may be of use in the development of new clinical approaches for treatment of patients with C. krusei infection.
Collapse
Affiliation(s)
- Truc Thi Huong Dinh
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Phawida Tummamunkong
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pranpariya Ponpakdee
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Lawan Boonprakong
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Wójcik R, Ząbek K, Małaczewska J, Milewski S, Kaczorek-Łukowska E. The Effects of β-Hydroxy-β-Methylbutyrate (HMB) on Chemotaxis, Phagocytosis, and Oxidative Burst of Peripheral Blood Granulocytes and Monocytes in Goats. Animals (Basel) 2019; 9:ani9121031. [PMID: 31779122 PMCID: PMC6940930 DOI: 10.3390/ani9121031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The main focus of industrial livestock production is to maximise production output without compromising the well-being of animals, which is why animal diets are supplemented with various feed additives. Feed additives boost immunity and protect animals against pathogens. The list of potential feed additives includes β-hydroxy-β-methylbutyrate (HMB) which occurs naturally in small quantities in citrus fruit, avocado, asparagus, cauliflower, selected fish species, red wine, milk, and alfalfa. However, its mechanism of action and effects on immune system cells have not been thoroughly investigated in animals, including goats. In the present study, the experimental goats whose diets were supplemented with HMB over a period of 60 days were characterised by higher levels of chemotactic and phagocytic activity and a higher rate of oxidative metabolism of peripheral blood granulocytes and monocytes than control group animals whose diets were not supplemented. Granulocytes and monocytes constitute the first line of defence against pathogens and protect animals against disease. They play a particularly important role in young animals which are more susceptible to viral and bacterial infections. Feed additives can deliver numerous benefits by boosting immunity and preventing the spread of infectious diseases in goats. Abstract The objective of this study was to determine the effect of β-hydroxy-β-methylbutyrate (HMB) on the chemotactic activity, phagocytic activity, and oxidative metabolism of peripheral blood granulocytes and monocytes in goats. Goat kids aged 30 ± 3 days were divided into two groups of 12 animals each: I—control, and II—experimental. Experimental group animals were fed a diet supplemented with HMB in the amount of 50 mg/Kg BW; whereas the diets of control goats were not supplemented. At the beginning of the experiment (day 0) and on experimental days 15, 30, and 60, blood was sampled from the jugular vein to determine and compare chemotactic activity (MIGRATEST® kit), phagocytic activity (PHAGOTEST® kit), and oxidative metabolism (BURSTTEST® kit) of peripheral blood granulocytes and monocytes by flow cytometry. The analyses of the chemotactic and phagocytic activity of granulocytes and monocytes revealed statistically higher levels of phagocytic activity in the experimental group than in the control group, as expressed by the percentage of phagocytic cells and mean fluorescence intensity. HMB also enhanced the oxidative metabolism of both granulocytes and monocytes, expressed by the rate of oxidative metabolism and mean fluorescence intensity after stimulation with Escherichia coli bacteria and PMA (4-phorbol-12-β-myristate-13-acetate).
Collapse
Affiliation(s)
- Roman Wójcik
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (J.M.); (E.K.-Ł.)
- Correspondence: ; Tel.: +48-89-523-39-11
| | - Katarzyna Ząbek
- Department of Sheep and Goat Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-917 Olsztyn, Poland; (K.Z.); (S.M.)
| | - Joanna Małaczewska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (J.M.); (E.K.-Ł.)
| | - Stanisław Milewski
- Department of Sheep and Goat Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-917 Olsztyn, Poland; (K.Z.); (S.M.)
| | - Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (J.M.); (E.K.-Ł.)
| |
Collapse
|
16
|
Li X, Xue Y, Pang L, Len B, Lin Z, Huang J, ShangGuan Z, Pan Y. Agaricus bisporus-derived β-glucan prevents obesity through PPAR γ downregulation and autophagy induction in zebrafish fed by chicken egg yolk. Int J Biol Macromol 2018; 125:820-828. [PMID: 30557642 DOI: 10.1016/j.ijbiomac.2018.12.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 01/06/2023]
Abstract
β-(1,4)-d-Glucan with (1,2) and (1,6)-linked branches (short for β-glucan), extracted from Agaricus bisporus (Lange) Sing, had significant anti-obesity and lowering-fat effect. FITC-β-glucan was absorbed by adipocytes of zebrafish larvae when stained by Nile Red. β-Glucan decreased the adiposity mass, reduced the expression of ppar g, mtp, L-fabp, ifabp in ISH, which was coincident as the results of RT-PCT. β-Glucan lowered the level of C/EBP α, c SREBP1, LXR α, PPAR γ by WB analysis, which were accompanied by an increase level in LC3 II/LC3 I and a decline level in p62 in dose-dependent manner. This study explored the effect and mechanisms of Agaricus bisporus derived-β-glucan to regulate lipid metabolism and prevent lipid deposits, and provided the experimental data for its use in diet food and food addictive.
Collapse
Affiliation(s)
- Xiumin Li
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China.
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Liang Pang
- The College of Physical Education, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Bo Len
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Zhichao Lin
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Jiafu Huang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Zhaoshui ShangGuan
- Central Laboratory, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China.
| |
Collapse
|
17
|
Olatunde AC, Abell LP, Landuyt AE, Hiltbold Schwartz E. Development of endocytosis, degradative activity, and antigen processing capacity during GM-CSF driven differentiation of murine bone marrow. PLoS One 2018; 13:e0196591. [PMID: 29746488 PMCID: PMC5944997 DOI: 10.1371/journal.pone.0196591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DC) are sentinels of the immune system, alerting and enlisting T cells to clear pathogenic threats. As such, numerous studies have demonstrated their effective uptake and proteolytic activities coupled with antigen processing and presentation functions. Yet, less is known about how these cellular mechanisms change and develop as myeloid cells progress from progenitor cells to more differentiated cell types such as DC. Thus, our study comparatively examined these functions at different stages of myeloid cell development driven by the GM-CSF. To measure these activities at different stages of development, GM-CSF driven bone marrow cells were sorted based on expression of Ly6C, CD115, and CD11c. This strategy enables isolation of cells representing five distinct myeloid cell types: Common Myeloid Progenitor (CMP), Granulocyte/Macrophage Progenitor (GMP), monocytes, monocyte-derived Macrophage/monocyte-derived Dendritic cell Precursors (moMac/moDP), and monocyte-derived DC (moDC). We observed significant differences in the uptake capacity, proteolysis, and antigen processing and presentation functions between these myeloid cell populations. CMP showed minimal uptake capacity with no detectable antigen processing and presenting function. The GMP population showed higher uptake capacity, modest proteolytic activity, and little T cell stimulatory function. In the monocyte population, the uptake capacity reached its peak, yet this cell type had minimal antigen processing and presentation function. Finally, moMac/moDP and moDC had a modestly decreased uptake capacity, high degradative capacity and strong antigen processing and presentation functions. These insights into when antigen processing and presentation function develop in myeloid cells during GM-CSF driven differentiation are crucial to the development of vaccines, allowing targeting of the most qualified cells as an ideal vaccine vehicles.
Collapse
Affiliation(s)
| | - Laura P. Abell
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Ashley E. Landuyt
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | | |
Collapse
|
18
|
Potential of glucans as vaccine adjuvants: A review of the α-glucans case. Carbohydr Polym 2017; 165:103-114. [DOI: 10.1016/j.carbpol.2017.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/06/2023]
|
19
|
Xu J, Flaczyk A, Neal LM, Fa Z, Eastman AJ, Malachowski AN, Cheng D, Moore BB, Curtis JL, Osterholzer JJ, Olszewski MA. Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:3548-3557. [PMID: 28298522 DOI: 10.4049/jimmunol.1700057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
The scavenger receptor macrophage receptor with collagenous structure (MARCO) promotes protective innate immunity against bacterial and parasitic infections; however, its role in host immunity against fungal pathogens, including the major human opportunistic fungal pathogen Cryptococcus neoformans, remains unknown. Using a mouse model of C. neoformans infection, we demonstrated that MARCO deficiency leads to impaired fungal control during the afferent phase of cryptococcal infection. Diminished fungal containment in MARCO-/- mice was accompanied by impaired recruitment of Ly6Chigh monocytes and monocyte-derived dendritic cells (moDC) and lower moDC costimulatory maturation. The reduced recruitment and activation of mononuclear phagocytes in MARCO-/- mice was linked to diminished early expression of IFN-γ along with profound suppression of CCL2 and CCL7 chemokines, providing evidence for roles of MARCO in activation of the CCR2 axis during C. neoformans infection. Lastly, we found that MARCO was involved in C. neoformans phagocytosis by resident pulmonary macrophages and DC. We conclude that MARCO facilitates early interactions between C. neoformans and lung-resident cells and promotes the production of CCR2 ligands. In turn, this contributes to a more robust recruitment and activation of moDC that opposes rapid fungal expansion during the afferent phase of cryptococcal infection.
Collapse
Affiliation(s)
- Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Adam Flaczyk
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Lori M Neal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Zhenzong Fa
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Alison J Eastman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Antoni N Malachowski
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Daphne Cheng
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; .,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| |
Collapse
|
20
|
Walsh NM, Wuthrich M, Wang H, Klein B, Hull CM. Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1. PLoS One 2017; 12:e0173866. [PMID: 28282442 PMCID: PMC5345868 DOI: 10.1371/journal.pone.0173866] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/28/2017] [Indexed: 11/18/2022] Open
Abstract
Phagocytosis by innate immune cells is an important process for protection against multiple pathologies and is particularly important for resistance to infection. However, phagocytosis has also been implicated in the progression of some diseases, including the dissemination of the human fungal pathogen, Cryptococcus neoformans. Previously, we identified Dectin-1 as a likely phagocytic receptor for C. neoformans spores through the use of soluble components in receptor-ligand blocking experiments. In this study, we used gain-of-function and loss-of-function assays with intact cells to evaluate the in vivo role of Dectin-1 and other C-type lectins in interactions with C. neoformans spores and discovered stark differences in outcome when compared with previous assays. First, we found that non-phagocytic cells expressing Dectin-1 were unable to bind spores and that highly sensitive reporter cells expressing Dectin-1 were not stimulated by spores. Second, we determined that some phagocytes from Dectin-1-/- mice interacted with spores differently than wild type (WT) cells, but the effects varied among assays and were modest overall. Third, while we detected small but statistically significant reductions in phagocytosis by primary alveolar macrophages from Dectin-1-/- mice compared to WT, we found no differences in survival between WT and Dectin-1-/- mice challenged with spores. Further analyses to assess the roles of other C-type lectins and their adapters revealed very weak stimulation of Dectin-2 reporter cells by spores and modest differences in binding and phagocytosis by Dectin-2-/- bone marrow-derived phagocytes. There were no discernable defects in binding or phagocytosis by phagocytes lacking Mannose Receptor, Mincle, Card-9, or FcRγ. Taken together, these results lead to the conclusion that Dectin-1 and other C-type lectins do not individually play a major roles in phagocytosis and innate defense by phagocytes against C. neoformans spores and highlight challenges in using soluble receptor/ligand blocking experiments to recapitulate biologically relevant interactions.
Collapse
Affiliation(s)
- Naomi M. Walsh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Marcel Wuthrich
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Huafeng Wang
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Bruce Klein
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Christina M. Hull
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
21
|
MARCO variants are associated with phagocytosis, pulmonary tuberculosis susceptibility and Beijing lineage. Genes Immun 2016; 17:419-425. [PMID: 27853145 PMCID: PMC5133378 DOI: 10.1038/gene.2016.43] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 11/22/2022]
Abstract
Macrophage receptor with collagenous structure (MARCO) has an important role in the phagocytosis of Mycobacterium tuberculosis (M. tuberculosis). We hypothesized that MARCO polymorphisms are associated with phagocytosis, tuberculosis (TB) disease susceptibility and presentation, and infecting lineage. We used a human cellular model to examine how MARCO genotype mediates the immune response; a case–control study to investigate tuberculosis host genetic susceptibility; and a host–pathogen genetic analysis to study host–pathogen interactions. Two MARCO heterozygous (AG) genotypes (single-nucleotide polymorphisms rs2278589 and rs6751745) were associated with impaired phagocytosis of M. tuberculosis trehalose 6,6'-dimycolate-cord factor and β-glucan-coated beads in macrophages. The heterozygous genotypes of rs2278589 and rs6751745 were also associated with increased risk of pulmonary TB (PTB; rs2278589, P=0.001, odds ratio (OR)=1.6; rs6751745, P=0.009, OR=1.4), and with severe chest X-ray abnormalities (P=0.007, OR=1.6). These two genotypes were also associated with the Beijing lineage (rs2278589, P=0.001, OR=1.7; rs6751745, P=0.01, OR=1.5). Together, these results suggest that MARCO polymorphisms may regulate phagocytosis of M. tuberculosis and susceptibility and severity of PTB. They also suggest MARCO genotype and Beijing strains may interact to increase the risk of PTB.
Collapse
|
22
|
Sigola LB, Fuentes AL, Millis LM, Vapenik J, Murira A. Effects of Toll-like receptor ligands on RAW 264.7 macrophage morphology and zymosan phagocytosis. Tissue Cell 2016; 48:389-96. [PMID: 27157550 DOI: 10.1016/j.tice.2016.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 02/01/2016] [Accepted: 04/21/2016] [Indexed: 01/21/2023]
Abstract
In this study we compared the effects of the Toll-like receptor (TLR) ligands lipopolysaccharide (LPS), flagellin, the synthetic bacterial triacylated lipopeptide Pam3-Cys-Ser-Lys4 (Pam3CSK4), Polyinosinic:polycytidylic acid (Poly I:C), and macrophage-activating lipopeptide (MALP-2), which are TLR4, TLR5, TLR1/2, TLR3, and TLR2/6 agonists, respectively, on cell morphology and phagocytosis of zymosan particles, derived from Saccharomyces cerevisiae, and rich in fungal PAMPs including beta-glucan, mannose, and chitin. LPS, Pam3CSK4, and MALP-2 induced an activated macrophage phenotype and enhanced zymosan phagocytosis. In contrast, flagellin and Poly I:C, respectively, had little effect on cell morphology and phagocytosis. We examined the role of scavenger receptor A (SR-A) on zymosan phagocytosis. Cells cultured in medium alone expressed SR-A, and LPS induced further expression of the receptor. We also observed inhibitory effects of scavenger receptor antagonists fucoidan, dextran sulphate, and Polyinosinic (Poly I), respectively, on zymosan phagocytosis of cells in medium alone and those pre-treated with LPS. We conclude that exposure to specific TLR ligands impacts both cellular morphology and phagocytic capacity, and that scavenger receptors contribute to zymosan ingestion as well as LPS-induced augmentation of phagocytosis.
Collapse
Affiliation(s)
- Lynette B Sigola
- Biology Department, Douglas College, P.O. Box 2503, New Westminster B.C. V3L 5B2, Canada.
| | - Ana-Lucía Fuentes
- Biology Department, Douglas College, P.O. Box 2503, New Westminster B.C. V3L 5B2, Canada
| | - Leonard M Millis
- Biology Department, Douglas College, P.O. Box 2503, New Westminster B.C. V3L 5B2, Canada
| | - Jacqueline Vapenik
- Faculty of Health Sciences, Douglas College, P.O. Box 2503, New Westminster B.C. V3L 5B2, Canada
| | - Armstrong Murira
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6 Canada
| |
Collapse
|
23
|
Ali MF, Driscoll CB, Walters PR, Limper AH, Carmona EM. β-Glucan-Activated Human B Lymphocytes Participate in Innate Immune Responses by Releasing Proinflammatory Cytokines and Stimulating Neutrophil Chemotaxis. THE JOURNAL OF IMMUNOLOGY 2015; 195:5318-26. [PMID: 26519534 DOI: 10.4049/jimmunol.1500559] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/29/2015] [Indexed: 01/20/2023]
Abstract
B lymphocytes play an essential regulatory role in the adaptive immune response through Ab production during infection. A less known function of B lymphocytes is their ability to respond directly to infectious Ags through stimulation of pattern recognition receptors expressed on their surfaces. β-Glucans are carbohydrates present in the cell wall of many pathogenic fungi that can be detected in the peripheral blood of patients during infection. They have been shown to participate in the innate inflammatory response, as they can directly activate peripheral macrophages and dendritic cells. However, their effect as direct stimulators of B lymphocytes has not been yet fully elucidated. The aim of this study was to examine the molecular mechanisms and cytokine profiles generated following β-glucan stimulation of B lymphocytes, compared with the well-established TLR-9 agonist CpG oligodeoxynucleotide (CpG), and study the participation of β-glucan-stimulated B cells in the innate immune response. In this article, we demonstrate that β-glucan-activated B lymphocytes upregulate proinflammatory cytokines (TNF-α, IL-6, and IL-8). Of interest, β-glucan, unlike CpG, had no effect on B lymphocyte proliferation or IgM production. When compared with CpG (TLR9 agonist), β-glucan-activated cells secreted significantly higher levels of IL-8. Furthermore, IL-8 secretion was partially mediated by Dectin-1 and required SYK, MAPKs, and the transcription factors NF-κB and AP-1. Moreover, we observed that conditioned media from β-glucan-stimulated B lymphocytes elicited neutrophil chemotaxis. These studies suggest that β-glucan-activated B lymphocytes have an important and novel role in fungal innate immune responses.
Collapse
Affiliation(s)
- Mohamed F Ali
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905; and
| | - Christopher B Driscoll
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905; and
| | - Paula R Walters
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905; and
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905; and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905; and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905
| |
Collapse
|
24
|
Airway fibrinogenolysis and the initiation of allergic inflammation. Ann Am Thorac Soc 2015; 11 Suppl 5:S277-83. [PMID: 25525732 DOI: 10.1513/annalsats.201403-105aw] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past 15 years of allergic disease research have produced extraordinary improvements in our understanding of the pathogenesis of airway allergic diseases such as asthma. Whereas it was previously viewed as largely an immunoglobulin E-mediated process, the gradual recognition that T cells, especially Type 2 T helper (Th2) cells and Th17 cells, play a major role in asthma and related afflictions has inspired clinical trials targeting cytokine-based inflammatory pathways that show great promise. What has yet to be clarified about the pathogenesis of allergic inflammatory disorders, however, are the fundamental initiating factors, both exogenous and endogenous, that drive and sustain B- and T-cell responses that underlie the expression of chronic disease. Here we review how proteinases derived from diverse sources drive allergic responses. A central discovery supporting the proteinase hypothesis of allergic disease pathophysiology is the role played by airway fibrinogen, which in part appears to serve as a sensor of unregulated proteinase activity and which, when cleaved, both participates in a novel allergic signaling pathway through Toll-like receptor 4 and forms fibrin clots that contribute to airway obstruction. Unresolved at present is the ultimate source of airway allergenic proteinases. From among many potential candidates, perhaps the most intriguing is the possibility such enzymes derive from airway fungi. Together, these new findings expand both our knowledge of allergic disease pathophysiology and options for therapeutic intervention.
Collapse
|
25
|
Descroix K, Jamois F, Yvin JC, Vetvicka V, Ferrières V. β-(1→3)-Glucan-mannitol conjugates: scope and amazing results. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:12. [PMID: 25332988 DOI: 10.3978/j.issn.2305-5839.2014.01.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 11/14/2022]
Abstract
It is well known that β-(1→3)-Glucans present high applicative potential in human health as immunostimulating agents. Numerous studies have highlighted this, but mainly used native polysaccharides extracted from various natural sources. These compounds are therefore inevitably polydisperse but also present structures that are not homogeneous, in an analytical point of view. This is the reason why we have achieved the chemical synthesis of small glucan-mannitol derivatives especially found in brown seaweeds. The targets differ from each other by the nature of the conjunction between the laminaribiose and the mannose or mannitol, i.e., (1→6) or (1→3). We established that (I) these molecules were efficiently obtained from glucose, laminaribiose and/or mannose derivatives; (II) the synthetic plan has to be adapted to the first connection between a glucosyl entity and the mannosyl residue; and (III) resulting pure compounds may be used as the standard for analytical purposes.
Collapse
Affiliation(s)
- Karine Descroix
- 1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France ; 2 Université européenne de Bretagne, France ; 3 Laboratoire Goëmar, ZAC La Madeleine, 35400 Saint Malo, France ; 4 University of Louisville, Department of Pathology, Louisville, KY 40202, USA
| | - Frank Jamois
- 1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France ; 2 Université européenne de Bretagne, France ; 3 Laboratoire Goëmar, ZAC La Madeleine, 35400 Saint Malo, France ; 4 University of Louisville, Department of Pathology, Louisville, KY 40202, USA
| | - Jean-Claude Yvin
- 1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France ; 2 Université européenne de Bretagne, France ; 3 Laboratoire Goëmar, ZAC La Madeleine, 35400 Saint Malo, France ; 4 University of Louisville, Department of Pathology, Louisville, KY 40202, USA
| | - Vaclav Vetvicka
- 1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France ; 2 Université européenne de Bretagne, France ; 3 Laboratoire Goëmar, ZAC La Madeleine, 35400 Saint Malo, France ; 4 University of Louisville, Department of Pathology, Louisville, KY 40202, USA
| | - Vincent Ferrières
- 1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France ; 2 Université européenne de Bretagne, France ; 3 Laboratoire Goëmar, ZAC La Madeleine, 35400 Saint Malo, France ; 4 University of Louisville, Department of Pathology, Louisville, KY 40202, USA
| |
Collapse
|
26
|
Sylla B, Legentil L, Saraswat-Ohri S, Vashishta A, Daniellou R, Wang HW, Vetvicka V, Ferrières V. Oligo-β-(1 → 3)-glucans: impact of thio-bridges on immunostimulating activities and the development of cancer stem cells. J Med Chem 2014; 57:8280-92. [PMID: 25268857 DOI: 10.1021/jm500506b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent developments of innovative anticancer therapies are based on compounds likely to stimulate the immune defense of the patients. β-(1 → 3)-Glucans are natural polysaccharides well-known for their immunostimulating properties. We report here on the synthesis of small oligo-β-(1 → 3)-glucans characterized by thioglycosidic linkages. The presence of sulfur atom(s) was not only crucial to prolong in vivo immunoactive activities in time, compared to native polysaccharides, but sulfur atoms also had a direct impact on the development of colorectal cancer stem cells. As a result, a short, pure, and structurally well-defined trisaccharidic thioglucan demonstrated similar activities compared to those of natural laminarin.
Collapse
Affiliation(s)
- Balla Sylla
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fuentes AL, Millis L, Vapenik J, Sigola L. Lipopolysaccharide-mediated enhancement of zymosan phagocytosis by RAW 264.7 macrophages is independent of opsonins, laminarin, mannan, and complement receptor 3. J Surg Res 2014; 189:304-12. [PMID: 24726062 DOI: 10.1016/j.jss.2014.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/27/2013] [Accepted: 03/11/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Fungal and bacterial coinfections are common in surgical settings; however, little is known about the effects of polymicrobial interactions on the cellular mechanisms involved in innate immune recognition and phagocytosis. MATERIALS AND METHODS Zymosan particles, cell wall derivatives of the yeast Saccharomyces cerevisiae, are used to model fungal interactions with host immune cells since they display carbohydrates, including beta-glucan, that are characteristic of fungal pathogens. Using in vitro cell culture, RAW 264.7 macrophages were challenged with zymosan, and phagocytosis determined via light microscopy. The effects of different concentrations of lipopolysaccharide (LPS) on zymosan phagocytosis were assessed. In addition, the transfer of supernatant from LPS-treated cells to naïve cells, the effects of soluble carbohydrates laminarin, mannan, or galactomannan, and the impact of complement receptor 3 (CR3) inhibition on phagocytosis were also determined. RESULTS LPS enhanced phagocytosis of zymosan in a dose-dependent manner. Transfer of supernatants from LPS-primed cells to naïve cells had no effect on phagocytosis. Laminarin inhibited zymosan phagocytosis in naïve cells but not in LPS-primed cells. Neither mannan, galactomannan, nor CR3 inhibition had a significant effect on ingestion of unopsonized zymosan in naïve or LPS-treated cells. CONCLUSIONS Zymosan recognition by naïve cells is inhibited by laminarin, but not mannan, galactomannan, or CR3 inhibition. LPS enhancement of phagocytosis is laminarin insensitive and not mediated by supernatant factors or zymosan engagement by the mannose or CR3 receptors. Our data suggest alternative mechanisms of zymosan recognition in the presence and absence of LPS.
Collapse
Affiliation(s)
- Ana-Lucía Fuentes
- Department of Natural Sciences, LaGuardia Community College, City University of New York, Long Island City, New York
| | - Leonard Millis
- Biology Department, Faculty of Science and Technology, New Westminster British Columbia, Canada
| | - Jacqueline Vapenik
- Nursing Department, Faculty of Health Sciences, Douglas College, New Westminster British Columbia, Canada
| | - Lynette Sigola
- Biology Department, Faculty of Science and Technology, New Westminster British Columbia, Canada.
| |
Collapse
|
28
|
Józefowski S, Biedroń R, Sróttek M, Chadzińska M, Marcinkiewicz J. The class A scavenger receptor SR-A/CD204 and the class B scavenger receptor CD36 regulate immune functions of macrophages differently. Innate Immun 2013; 20:826-47. [PMID: 24257313 DOI: 10.1177/1753425913510960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SR-A/CD204 and CD36 are major receptors responsible for oxidized lipoproteins uptake by macrophages in atherosclerotic plaques. Both receptors also share the role as receptors for different pathogens, but studies on their signaling have been hampered by the lack of selective ligands. We report that, upon specific ligation by Ab, SR-A does not induce cytokine production, but mediates inhibition of LPS-stimulated production of IL-6 and IL-12/23p40, enhancement of IL-10 release, and has no effect on TNF-α and RANTES production in murine macrophages. In contrast, anti-CD36 Ab alone stimulated production of all these cytokines, with IL-10 production being exceptionally high. Effects of anti-CD36 Ab, except of IL-10 production, were mediated by CD14 and TLR2, whereas those of SR-A ligation by heterotrimeric Gi/o proteins and by phosphatidylinositol 3-kinases. Surprisingly, we found that LPS uptake by macrophages was mediated in part by CD36 cooperating with CD14, whereas SR-A was not involved in this process. Finely, during in vitro Ag presentation to naïve CD4(+) lymphocytes, pre-incubation of macrophages with anti-CD36 Ab enhanced IFN-γ production in the co-culture, but exerted the opposite effect under conditions enabling IL-10 accumulation. In contrast, anti-SR-A Ab was ineffective alone, but reversed the Th1-polarizing effect of LPS.
Collapse
Affiliation(s)
- Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Rafał Biedroń
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Małgorzata Sróttek
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
29
|
Aminopeptidase N (CD13) is involved in phagocytic processes in human dendritic cells and macrophages. BIOMED RESEARCH INTERNATIONAL 2013; 2013:562984. [PMID: 24063007 PMCID: PMC3766993 DOI: 10.1155/2013/562984] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 01/18/2023]
Abstract
Aminopeptidase N (APN or CD13) is a membrane ectopeptidase expressed by many cell types, including myelomonocytic lineage cells: monocytes, macrophages, and dendritic cells. CD13 is known to regulate the biological activity of various peptides by proteolysis, and it has been proposed that CD13 also participates in several functions such as angiogenesis, cell adhesion, metastasis, and tumor invasion. We had previously reported that, in human monocytes and macrophages, CD13 modulates the phagocytosis mediated by receptors for the Fc portion of IgG antibodies (FcγRs). In this work, we analyzed the possible interaction of CD13 with other phagocytic receptors. We found out that the cross-linking of CD13 positively modulates the phagocytosis mediated by receptors of the innate immune system, since a significant increase in the phagocytosis of zymosan particles or heat-killed E. coli was observed when CD13 was cross-linked using anti-CD13 antibodies, in both macrophages and dendritic cells. Also, we observed that, during the phagocytosis of zymosan, CD13 redistributes and is internalized into the phagosome. These findings suggest that, besides its known functions, CD13 participates in phagocytic processes in dendritic cells and macrophages.
Collapse
|
30
|
Millien VO, Lu W, Shaw J, Yuan X, Mak G, Roberts L, Song LZ, Knight JM, Creighton CJ, Luong A, Kheradmand F, Corry DB. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4. Science 2013; 341:792-6. [PMID: 23950537 DOI: 10.1126/science.1240342] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies.
Collapse
Affiliation(s)
- Valentine Ongeri Millien
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vannucci L, Krizan J, Sima P, Stakheev D, Caja F, Rajsiglova L, Horak V, Saieh M. Immunostimulatory properties and antitumor activities of glucans (Review). Int J Oncol 2013; 43:357-64. [PMID: 23739801 PMCID: PMC3775562 DOI: 10.3892/ijo.2013.1974] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/17/2013] [Indexed: 12/25/2022] Open
Abstract
New foods and natural biological modulators have recently become of scientific interest in the investigation of the value of traditional medical therapeutics. Glucans have an important part in this renewed interest. These fungal wall components are claimed to be useful for various medical purposes and they are obtained from medicinal mushrooms commonly used in traditional Oriental medicine. The immunotherapeutic properties of fungi extracts have been reported, including the enhancement of anticancer immunity responses. These properties are principally related to the stimulation of cells of the innate immune system. The discovery of specific receptors for glucans on dendritic cells (dectin-1), as well as interactions with other receptors, mainly expressed by innate immune cells (e.g., Toll-like receptors, complement receptor-3), have raised new attention toward these products as suitable therapeutic agents. We briefly review the characteristics of the glucans from mycelial walls as modulators of the immunity and their possible use as antitumor treatments.
Collapse
Affiliation(s)
- Luca Vannucci
- Laboratory of Immunotherapy, Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of Czech Republic, v.v.i., 142 20 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Martino RF, Davicino RC, Mattar MA, Sasso CV, Casali YA, Alonso R, Anesini C, Correa SG, Micalizzi B. Macrophages activation by a purified fraction, free of nordihydroguaiaretic acid (NDGA), fromLarrea divaricataCav. as a potential novel therapy againstCandida albicans. Immunopharmacol Immunotoxicol 2012; 34:975-82. [DOI: 10.3109/08923973.2012.682225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|