1
|
Tiwari M, Dingankar M, Das J, R SS, Solanki A, Subramanyam D. CLCa mediates a novel cross-talk between Wnt secretion and actin organization. Life Sci Alliance 2025; 8:e202402962. [PMID: 40316417 PMCID: PMC12050421 DOI: 10.26508/lsa.202402962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
Mammalian clathrin light chains (CLCa, CLCb) are critical players in clathrin-mediated endocytosis. However, their physiological role in contributing to specific cellular processes and early development remains elusive. To elucidate their individual functions, we generated CLC knockout mESCs. Loss of CLCa resulted in down-regulation of Wnt pathway genes along with altered secretion of Wnt3a because of impaired trafficking of its secretion mediator, WLS. Reduced Wnt signaling led to lower levels of Hip1R causing a reorganization of the actin cytoskeleton. CLCa knockout cells displayed actin patches enriched for Arp3 and cortactin, with activation of the Wnt pathway resulting in disassembly of these patches. Furthermore, we uncovered a bidirectional cross-talk between Wnt signaling and actin organization, with actin disruption resulting in lower Wnt signaling. Our data reveal a previously undiscovered role of CLCa in mediating molecular communication between actin organization and Wnt signaling.
Collapse
Affiliation(s)
- Mahak Tiwari
- National Centre for Cell Science, SP Pune University Campus, Pune, India
- SP Pune University, Pune, India
| | - Mihir Dingankar
- Indian Institute of Science Education and Research (IISER) Pune, Pune, India
| | - Jyoti Das
- National Centre for Cell Science, SP Pune University Campus, Pune, India
- SP Pune University, Pune, India
| | - Sreelekshmi S R
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Apurv Solanki
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
2
|
Chen Y, Klute S, Sparrer KMJ, Serra-Moreno R. RAB5 is a host dependency factor for the generation of SARS-CoV-2 replication organelles. mBio 2025; 16:e0331424. [PMID: 40167317 PMCID: PMC12077180 DOI: 10.1128/mbio.03314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a threat due to the emergence of variants with increased transmissibility and enhanced escape from immune responses. Like other coronaviruses before, SARS-CoV-2 likely emerged after its transmission from bats. The successful propagation of SARS-CoV-2 in humans might have been facilitated by usurping evolutionarily conserved cellular factors to execute crucial steps in its life cycle, such as the generation of replication organelles-membrane structures where coronaviruses assemble their replication-transcription complex. In this study, we found that RAB5, which is highly conserved across mammals, is a critical host dependency factor for the replication of the SARS-CoV-2 genome. Our results also suggest that SARS-CoV-2 uses RAB5+ membranes to build replication organelles with the aid of COPB1, a component of the COP-I complex, and that the virus protein NSP6 participates in this process. Hence, targeting NSP6 represents a promising approach to interfere with SARS-CoV-2 RNA synthesis and halt its propagation.IMPORTANCEIn this study, we sought to identify the host dependency factors that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses for the generation of replication organelles: cellular membranous structures that SARS-CoV-2 builds in order to support the replication and transcription of its genome. We uncovered that RAB5 is an important dependency factor for SARS-CoV-2 replication and the generation of replication organelles, and that the viral protein NSP6 participates in this process. Hence, NSP6 represents a promising target to halt SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Yuexuan Chen
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Susanne Klute
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Konstantin Maria Johannes Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Xu W, Boer K, Hesselink DA, Baan CC. Extracellular Vesicles and Immune Activation in Solid Organ Transplantation: The Impact of Immunosuppression. BioDrugs 2025; 39:445-459. [PMID: 40140222 PMCID: PMC12031870 DOI: 10.1007/s40259-025-00713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Recent advances in extracellular vesicle (EV) research in organ transplantation have highlighted the crucial role of donor-derived EVs in triggering alloimmune responses, ultimately contributing to transplant rejection. Following transplantation, EVs carrying donor major histocompatibility complex (MHC) molecules activate recipient antigen-presenting cells (APCs), initiating both alloreactive and regulatory T-cell responses. While immunosuppressive drugs are essential for preventing rejection, they may also influence the biogenesis and release of EVs from donor cells. This review examines the impact of maintenance immunosuppressive therapy on EV biogenesis and release post-transplantation. In addition, EV release and uptake may be influenced by specific factors such as the patient's end-stage organ disease and the transplant procedure itself. In-vitro studies using primary human parenchymal and immune cells-integrated with cutting-edge multi-omics techniques, including genomics, proteomics, lipidomics, and single-EV analysis-will offer deeper insights into EV biology and the mechanisms by which immunosuppressive agents regulate EV-initiated immune processes. A detailed understanding of how organ failure, the transplantation procedure and immunosuppressive drugs affect the biology of EVs may uncover new roles for EVs in immune activation and regulation in patients, ultimately leading to improved immunosuppressive strategies and better transplant outcomes.
Collapse
Affiliation(s)
- Weicheng Xu
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands.
| | - Karin Boer
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Wang L, Xu M, Shao Y, Zhang G, Ran Y, Lu H, Ma J, Jiang J, Chen X, Yan X, Shou J, Wang C. Clathrin-mediated trafficking regulates copper tolerance by modulating the localization of HEAVY METAL ATPase 5 in Arabidopsis root cells. PLANT PHYSIOLOGY 2025; 198:kiaf183. [PMID: 40343946 PMCID: PMC12089983 DOI: 10.1093/plphys/kiaf183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 05/11/2025]
Abstract
Plant clathrin and its adaptor protein complexes-adaptor protein complex-1 (AP-1) at the trans-Golgi network/early endosome (TGN/EE) and the adaptor protein complex-2 (AP-2) at the plasma membrane (PM)-function in clathrin-mediated trafficking (CMT). This study reports the role of CMT in regulating copper (Cu) tolerance in plants. We found that high concentrations of exogenous Cu treatment increase the abundance of clathrin and adaptor protein complexes at the TGN/EE and/or the PM. We further found that a CMT-deficient mutant ap2μ2, clc2 clc3 exhibits hypersensitivity to Cu stress, similar to a mutant lacking the Cu transporter HEAVY METAL ATPase 5 (HMA5). As previously reported, HMA5 relocates from the endoplasmic reticulum (ER) to the PM on the soil side, where it excretes excess Cu from the root cell, which is crucial for Cu tolerance. Our protein interaction assays showed that the AP-1 and AP-2 σ subunits depend on the YXXΦ sorting motif of HMA5 for recognition. Defective AP-1 hinders HMA5 translocation to the PM after its transfer from the ER to the TGN/EE following Cu stress, while impaired AP-2 function inhibits HMA5 endocytosis at the PM. These results demonstrate that CMT mediates the endocytic recycling of HMA5 between the TGN/EE and the PM, thereby regulating Cu efflux from root cells. Our findings highlight a function of CMT in maintaining Cu homeostasis.
Collapse
Affiliation(s)
- Liufan Wang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Mei Xu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Yonghua Shao
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Guochao Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Yuling Ran
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Hongqian Lu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Jiaqi Ma
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jieming Jiang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xifeng Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xu Yan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Jianxin Shou
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Chao Wang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
5
|
Gottlieb S, Zeliff D, O'Rourke B, Rogers WD, Miles MF. GSK3B inhibition partially reverses brain ethanol-induced transcriptomic changes in C57BL/6J mice: Expression network co-analysis with human genome-wide association studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647116. [PMID: 40235963 PMCID: PMC11996488 DOI: 10.1101/2025.04.03.647116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Alcohol use disorder (AUD) is a chronic behavioral disease with greater than 50% of its risk due to complex genetic contributions. Existing pharmacological and behavioral treatments for AUD are minimally effective and underutilized. Animal model behavioral genetics and human genome-wide association studies have begun to identify individual genes contributing to the progressive compulsive consumption of ethanol that occurs with AUD, promising possible new therapeutic targets. Our laboratory has previously identified Gsk3b as a central member in a network of ethanol-responsive genes in mouse prefrontal cortex, which altered ethanol consumption with genetic manipulation and was also significantly associated with risk for alcohol dependence in human genome-wide association studies. Here we perform detailed brain RNA sequencing transcriptomic studies to characterize a highly specific and clinically available GSK3B pharmacological inhibitor, tideglusib, as a possible therapeutic for clinical trials on treatment of AUD. A model of chronic intermittent ethanol consumption was used to study gene expression changes in prefrontal cortex and nucleus accumbens in the presence or absence of tideglusib treatment. Multivariate analysis of differentially expressed genes showed that tideglusib largely reversed ethanol- induced expression changes for two prominent clusters of genes in both prefrontal cortex and nucleus accumbens. Bioinformatic analysis showed these genes to have prominent roles in neuronal functioning and synaptic activity. Additionally, mouse brain differential gene expression data was analyzed together with human protein-protein interaction and genome-wide association studies on AUD to derive networks responding to tideglusib and relevant to human genetic risk for alcohol dependence. These studies identified discrete networks significantly enriched with genes provisionally associated with AUD, and provide key information on central hubs of such networks. Together these studies document tideglusib as a major modulator of chronic ethanol consumption-evoked brain gene expression signatures, and identify possible new targets for therapeutic modulation of AUD.
Collapse
|
6
|
Kuriyama M, Hirose H, Kawaguchi Y, Michibata J, Maekawa M, Futaki S. KCNN4 as a genomic determinant of cytosolic delivery by the attenuated cationic lytic peptide L17E. Mol Ther 2025; 33:595-614. [PMID: 39748507 PMCID: PMC11852704 DOI: 10.1016/j.ymthe.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
The development of a cytosolic delivery strategy for biopharmaceuticals is one of the central issues in drug development. Knowledge of the mechanisms underlying these processes may also pave the way for the discovery of novel delivery systems. L17E is an attenuated cationic amphiphilic lytic (ACAL) peptide developed by our research group that shows promise for cytosolic antibody delivery. In this study, given the high efficacy of L17E in cytosolic delivery, we investigated the mechanism of action of L17E in detail. L17E was found to achieve cytosolic delivery predominantly by transient disruption of the plasma membrane without the need for endocytosis. Importantly, the cell-line selectivity studies of L17E revealed a strong correlation between the efficiency of L17E-mediated delivery and the expression level of KCNN4, the gene encoding the calcium-activated potassium channel KCa3.1. Genetic and pharmacological regulation of KCNN4 expression and KCa3.1 activity, respectively, correlate closely with the efficiency of L17E-mediated cytosolic delivery, suggesting the importance of membrane-potential regulation by extracellular Ca2+ influx. Therefore, the activity of the L17E is relevant to the calcium-activated potassium channel.
Collapse
Affiliation(s)
- Masashi Kuriyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Junya Michibata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
7
|
Lin Z, Li S, Wu Q, Qu H, Shi X, Wang K, Tang C, Yin C. In situ customized apolipoprotein B48-enriched protein corona enhances oral gene delivery of chitosan-based nanoparticles. Biomaterials 2024; 311:122704. [PMID: 39018697 DOI: 10.1016/j.biomaterials.2024.122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The formation of protein corona (PC) is important for promoting the in vivo delivery of nanoparticles (NPs). However, PC formed in the physiological environment of oral delivery is poorly understood. Here, we engineered seven types of trimethyl chitosan-cysteine (TC) NPs, with distinct molecular weights, quaternization degrees, and thiolation degrees, to deeply investigate the influence of various PC formed in the physiological environment of oral delivery on in vivo gene delivery of polymeric NPs, further constructing the relationship between the surface characteristics of NPs and the efficacy of oral gene delivery. Our findings reveal that TC7 NPs, with high molecular weight, moderate quaternization, and high sulfhydryl content, modulate PC formation in the gastrointestinal tract, thereby reducing particle size and promoting oral delivery of gene loaded TC7 NPs. Orally delivered TC7 NPs target macrophages by in situ adsorption of apolipoprotein (Apo) B48 in intestinal tissue, leading to the improved in vivo antihepatoma efficacy via the natural tumor homing ability of macrophages. Our results suggest that efficient oral delivery of genes can be achieved through an in situ customized ApoB48-enriched PC, offering a promising modality in treating macrophage-related diseases.
Collapse
Affiliation(s)
- Ziyun Lin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Shengqi Li
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Qiuji Wu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Hongfei Qu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Xiliang Shi
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Ke Wang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
8
|
Yuan F, Gollapudi S, Day KJ, Ashby G, Sangani A, Malady BT, Wang L, Lafer EM, Huibregtse JM, Stachowiak JC. Ubiquitin-driven protein condensation stabilizes clathrin-mediated endocytosis. PNAS NEXUS 2024; 3:pgae342. [PMID: 39253396 PMCID: PMC11382290 DOI: 10.1093/pnasnexus/pgae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Clathrin-mediated endocytosis is an essential cellular pathway that enables signaling and recycling of transmembrane proteins and lipids. During endocytosis, dozens of cytosolic proteins come together at the plasma membrane, assembling into a highly interconnected network that drives endocytic vesicle biogenesis. Recently, multiple groups have reported that early endocytic proteins form flexible condensates, which provide a platform for efficient assembly of endocytic vesicles. Given the importance of this network in the dynamics of endocytosis, how might cells regulate its stability? Many receptors and endocytic proteins are ubiquitylated, while early endocytic proteins such as Eps15 contain ubiquitin-interacting motifs. Therefore, we examined the influence of ubiquitin on the stability of the early endocytic protein network. In vitro, we found that recruitment of small amounts of polyubiquitin dramatically increased the stability of Eps15 condensates, suggesting that ubiquitylation could nucleate endocytic assemblies. In live-cell imaging experiments, a version of Eps15 that lacked the ubiquitin-interacting motif failed to rescue defects in endocytic initiation created by Eps15 knockout. Furthermore, fusion of Eps15 to a deubiquitylase enzyme destabilized nascent endocytic sites within minutes. In both in vitro and live-cell settings, dynamic exchange of Eps15 proteins, a measure of protein network stability, was decreased by Eps15-ubiquitin interactions and increased by loss of ubiquitin. These results collectively suggest that ubiquitylation drives assembly of the flexible protein network responsible for catalyzing endocytic events. More broadly, this work illustrates a biophysical mechanism by which ubiquitylated transmembrane proteins at the plasma membrane could regulate the efficiency of endocytic internalization.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sadhana Gollapudi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kasey J Day
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Arjun Sangani
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brandon T Malady
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Ab Rajab NS, Yasin MAM, Ghazali WSW, Talib NA, Taib WRW, Sulong S. Schizophrenia and Rheumatoid Arthritis Genetic Scenery: Potential Non-HLA Genes Involved in Both Diseases Relationship. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:281-295. [PMID: 39351328 PMCID: PMC11426293 DOI: 10.59249/fbot5313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Background: The link between rheumatoid arthritis (RA) and schizophrenia (SZ) has long been a hot topic of deliberation among scientists from various fields. Especially when it comes to genetics, the connection between RA and SZ is still up for discussion, as can be observed in this study. The HLA genes are the most disputed in identifying a connection between the two diseases, but a more thorough investigation of other genes that may be ignored could yield something even more interesting. Thus, finding the genes responsible for this long-sought relationship will necessitate looking for them. Materials and Methods: Shared and overlapped associated genes involved between SZ and RA were extracted from four databases. The overlapping genes were examined using Database for Annotation, Visualization and Integrated Discovery (DAVID) and InnateDB to search the pertinent genes that concatenate between these two disorders. Results: A total of 91 overlapped genes were discovered, and that 13 genes, divided into two clusters, showed a similarity in function, suggesting that they may serve as an important meeting point. FCGR2A, IL18R, BTNL2, AGER, and CTLA4 are five non-HLA genes related to the immune system, which could lead to new discoveries about the connection between these two disorders. Conclusion: An in-depth investigation of these functionally comparable non-HLA genes that overlap could reveal new interesting information in both diseases. Understanding the molecular and immune-related aspects of RA and SZ may shed light on their etiology and inform future research on targeted treatment strategies.
Collapse
Affiliation(s)
- Nur Shafawati Ab Rajab
- Human Genome Centre, School of Medical Sciences,
Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Azhar Mohd Yasin
- Department of Psychiatry, School of Medical Sciences,
Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Wan Syamimee Wan Ghazali
- Department of Internal Medicine, School of Medical
Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norlelawati Abdul Talib
- Department of Pathology and Laboratory Medicine,
Kuliyyah of Medicine, International Islamic University Malaysia, Kuantan,
Pahang, Malaysia
| | - Wan Rohani Wan Taib
- Faculty of Medicine and Health Sciences, Universiti
Sultan Zainal Abidin, Kampung Gong Badak, Terengganu, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences,
Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
10
|
Upshaw WC, Richey JM, Ravi G, Chen A, Ahmadzadeh S, Shekoohi S, Viswanath O, Kaye AD. An overview of the safety and efficacy of LX-9211 in treating neuropathic pain conditions. Expert Opin Investig Drugs 2024; 33:829-837. [PMID: 38973395 DOI: 10.1080/13543784.2024.2376570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION LX-9211 is a drug designed to treat neuropathic pain conditions. It functions by inhibiting the adaptor-associated kinase 1 (AAK1) enzyme which promotes clathrin-dependent endocytosis. Preclinical studies have shown that LX-9211 does produce a reduction in nociceptive related behaviors and produces no major adverse effects in rats. Thus, LX-9211 has advanced to clinical trials to assess its safety and efficacy in humans. So far, phase 1 and phase 2 clinical trials involving patients with postherpetic neuralgia and diabetic peripheral neuropathic pain have been conducted with phase 3 trials planned in the future. AREAS COVERED This paper highlights preclinical studies involving LX-9211 in rodents. Additionally, phase 1 clinical trials examining the safety of LX-9211 in healthy subjects as well as phase 2 studies looking at the safety and efficacy of LX-9211 compared to placebo in patients with diabetic peripheral neuropathic pain and postherpetic neuralgia are also discussed. EXPERT OPINION In phase 1 and phase 2 clinical trials conducted so far, LX-9211 has been shown to produce few adverse effects as well as cause a significantly greater reduction in pain compared to placebo. However, more clinical studies are needed to further assess its effects in humans to ensure its safety.
Collapse
Affiliation(s)
- William C Upshaw
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - John M Richey
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Gurjot Ravi
- School of Medicine, Ross University School of Medicine, Miramar, FL, USA
| | - Adrian Chen
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
- Valley Pain Consultants, Envision Physician Services, Phoenix, AZ, USA
- Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| |
Collapse
|
11
|
Simsek Papur O, Glatz JFC, Luiken JJFP. Protein kinase-D1 and downstream signaling mechanisms involved in GLUT4 translocation in cardiac muscle. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119748. [PMID: 38723678 DOI: 10.1016/j.bbamcr.2024.119748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The Ser/Thr kinase protein kinase-D1 (PKD1) is involved in induction of various cell physiological processes in the heart such as myocellular hypertrophy and inflammation, which may turn maladaptive during long-term stimulation. Of special interest is a key role of PKD1 in the regulation of cardiac substrate metabolism. Glucose and fatty acids are the most important substrates for cardiac energy provision, and the ratio at which they are utilized determines the health status of the heart. Cardiac glucose uptake is mainly regulated by translocation of the glucose transporter GLUT4 from intracellular stores (endosomes) to the sarcolemma, and fatty acid uptake via a parallel translocation of fatty acid transporter CD36 from endosomes to the sarcolemma. PKD1 is involved in the regulation of GLUT4 translocation, but not CD36 translocation, giving it the ability to modulate glucose uptake without affecting fatty acid uptake, thereby altering the cardiac substrate balance. PKD1 would therefore serve as an attractive target to combat cardiac metabolic diseases with a tilted substrate balance, such as diabetic cardiomyopathy. However, PKD1 activation also elicits cardiac hypertrophy and inflammation. Therefore, identification of the events upstream and downstream of PKD1 may provide superior therapeutic targets to alter the cardiac substrate balance. Recent studies have identified the lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) as signaling hub downstream of PKD1 to selectively stimulate GLUT4-mediated myocardial glucose uptake without inducing hypertrophy. Taken together, the PKD1 signaling pathway serves a pivotal role in cardiac glucose metabolism and is a promising target to selectively modulate glucose uptake in cardiac disease.
Collapse
Affiliation(s)
- Ozlenen Simsek Papur
- Department of Molecular Medicine, Institute of Health Science, Dokuz Eylül University, Izmir, Turkey
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands.
| |
Collapse
|
12
|
Sulpiana, Amalia R, Atik N. The Roles of Endocytosis and Autophagy at the Cellular Level During Influenza Virus Infection: A Mini-Review. Infect Drug Resist 2024; 17:3199-3208. [PMID: 39070720 PMCID: PMC11283801 DOI: 10.2147/idr.s471204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Acute respiratory infections contribute to morbidity and mortality worldwide. The common cause of this deadly disease is a virus, and one of the most commonly found is the influenza virus. Influenza viruses have several capabilities in infection, including utilizing the host's machinery to survive within cells and replicate safely. This review aims to examine the literature on how influenza viruses use host machinery, including endocytosis and autophagy, for their internalization and replication within cells. This review method involves a literature search by examining articles published in the PubMed and Scopus databases. The keywords used were "Endocytosis" OR "Autophagy" AND "Influenza Virus". Eighteen articles were included due to inclusion and exclusion criteria. GTPases switch, and V-ATPase plays a key role in the endocytic machinery hijacked by influenza viruses to enter host cells. On the other hand, LC3 and Atg5 facilitate influenza-induced apoptosis via the autophagic pathway. In conclusion, influenza viruses primarily use clathrin-mediated endocytosis to enter cells and avoid degradation during endosomal maturation by exiting endosomes for transfer to the nucleus for replication. It also uses autophagy to induce apoptosis to continue replication. The capability of the influenza viruses to hijack endocytosis and autophagy mechanisms could be critical points for further research. Therefore, we discuss how the influenza virus utilizes both endocytosis and autophagy and the approach for a new strategic therapy targeting those mechanisms.
Collapse
Affiliation(s)
- Sulpiana
- Biomedical Science Master Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 54211, Indonesia
- Faculty of Medicine, IPB University, Bogor, 16680, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| |
Collapse
|
13
|
Wijerathne SVT, Pandit R, Ipinmoroti AO, Crenshaw BJ, Matthews QL. Feline coronavirus influences the biogenesis and composition of extracellular vesicles derived from CRFK cells. Front Vet Sci 2024; 11:1388438. [PMID: 39091390 PMCID: PMC11292801 DOI: 10.3389/fvets.2024.1388438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Coronavirus (CoV) has become a public health crisis that causes numerous illnesses in humans and certain animals. Studies have identified the small, lipid-bound structures called extracellular vesicles (EVs) as the mechanism through which viruses can enter host cells, spread, and evade the host's immune defenses. EVs are able to package and carry numerous viral compounds, including proteins, genetic substances, lipids, and receptor proteins. We proposed that the coronavirus could alter EV production and content, as well as influence EV biogenesis and composition in host cells. Methods In the current research, Crandell-Rees feline kidney (CRFK) cells were infected with feline coronavirus (FCoV) in an exosome-free media at a multiplicity of infection (MOI) of 2,500 infectious units (IFU) at 48 h and 72 h time points. Cell viability was analyzed and found to be significantly decreased by 9% (48 h) and 15% (72 h) due to FCoV infection. EVs were isolated by ultracentrifugation, and the surface morphology of isolated EVs was analyzed via Scanning Electron Microscope (SEM). Results NanoSight particle tracking analysis (NTA) confirmed that the mean particle sizes of control EVs were 131.9 nm and 126.6 nm, while FCoV infected-derived EVs were 143.4 nm and 120.9 nm at 48 and 72 h, respectively. Total DNA, RNA, and protein levels were determined in isolated EVs at both incubation time points; however, total protein was significantly increased at 48 h. Expression of specific protein markers such as TMPRSS2, ACE2, Alix, TSG101, CDs (29, 47, 63), TLRs (3, 6, 7), TNF-α, and others were altered in infection-derived EVs when compared to control-derived EVs after FCoV infection. Discussion Our findings suggested that FCoV infection could alter the EV production and composition in host cells, which affects the infection progression and disease evolution. One purpose of studying EVs in various animal coronaviruses that are in close contact with humans is to provide significant information about disease development, transmission, and adaptation. Hence, this study suggests that EVs could provide diagnostic and therapeutic applications in animal CoVs, and such understanding could provide information to prevent future coronavirus outbreaks.
Collapse
Affiliation(s)
| | - Rachana Pandit
- Microbiology Program, Alabama State University, Montgomery, AL, United States
| | | | | | - Qiana L. Matthews
- Microbiology Program, Alabama State University, Montgomery, AL, United States
- Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
14
|
Wang L, Sheth V, Liu K, Panja P, Frickenstein AN, He Y, Yang W, Thomas AG, Jamei MH, Park J, Lyu S, Donahue ND, Chen WR, Bhattacharya R, Mukherjee P, Wilhelm S. Primary Human Breast Cancer-Associated Endothelial Cells Favor Interactions with Nanomedicines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403986. [PMID: 38663008 PMCID: PMC11239290 DOI: 10.1002/adma.202403986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Indexed: 05/04/2024]
Abstract
Cancer nanomedicines predominately rely on transport processes controlled by tumor-associated endothelial cells to deliver therapeutic and diagnostic payloads into solid tumors. While the dominant role of this class of endothelial cells for nanoparticle transport and tumor delivery is established in animal models, the translational potential in human cells needs exploration. Using primary human breast cancer as a model, the differential interactions of normal and tumor-associated endothelial cells with clinically relevant nanomedicine formulations are explored and quantified. Primary human breast cancer-associated endothelial cells exhibit up to ≈2 times higher nanoparticle uptake than normal human mammary microvascular endothelial cells. Super-resolution imaging studies reveal a significantly higher intracellular vesicle number for tumor-associated endothelial cells, indicating a substantial increase in cellular transport activities. RNA sequencing and gene expression analysis indicate the upregulation of transport-related genes, especially motor protein genes, in tumor-associated endothelial cells. Collectively, the results demonstrate that primary human breast cancer-associated endothelial cells exhibit enhanced interactions with nanomedicines, suggesting a potentially significant role for these cells in nanoparticle tumor delivery in human patients. Engineering nanoparticles that leverage the translational potential of tumor-associated endothelial cell-mediated transport into human solid tumors may lead to the development of safer and more effective clinical cancer nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Kaili Liu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Prasanta Panja
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Alex N Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Abigail G Thomas
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Mohammad Hasan Jamei
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Jeesoo Park
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Nathan D Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Wei R Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Institute for Biomedical Engineering, Science and Technology (IBEST), Norman, OK, 73019, USA
| |
Collapse
|
15
|
Cirillo S, Zhang B, Brown S, Zhao X. Antimicrobial peptide A 9K as a gene delivery vector in cancer cells. Eur J Pharm Biopharm 2024; 198:114244. [PMID: 38467336 DOI: 10.1016/j.ejpb.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Designed peptides are promising biomaterials for biomedical applications. The amphiphilic cationic antimicrobial peptide (AMP), A9K, can self-assemble into nano-rod structures and has shown cancer cell selectivity and could therefore be a promising candidate for therapeutic delivery into cancer cells. In this paper, we investigate the selectivity of A9K for cancer cell models, examining its effect on two human cancer cell lines, A431 and HCT-116. Little or no activity was observed on the control, human dermal fibroblasts (HDFs). In the cancer cell lines the peptide inhibited cellular growth through changes in mitochondrial morphology and membrane potential while remaining harmless towards HDFs. In addition, the peptide can bind to and protect nucleic acids while transporting them into both 2D cultures and 3D spheroids of cancer cells. A9K showed high efficiency in delivering siRNA molecules into the centre of the spheroids. A9K was also explored in vivo, using a zebrafish (Danio rerio) development toxicity assay, showing that the peptide is safe at low doses. Finally, a high-content imaging screen, using RNA interference (RNAi) targeted towards cellular uptake, in HCT-116 cells was carried out. Our findings suggest that active cellular uptake is involved in peptide internalisation, mediated through clathrin-mediated endocytosis. These new discoveries make A9K attractive for future developments in clinical and biotechnological applications.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Bo Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Stephen Brown
- The Sheffield RNAi Screening Facility, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
16
|
Silver BB, Kreutz A, Weick M, Gerrish K, Tokar EJ. Biomarkers of chemotherapy-induced cardiotoxicity: toward precision prevention using extracellular vesicles. Front Oncol 2024; 14:1393930. [PMID: 38706609 PMCID: PMC11066856 DOI: 10.3389/fonc.2024.1393930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Detrimental side effects of drugs like doxorubicin, which can cause cardiotoxicity, pose barriers for preventing cancer progression, or treating cancer early through molecular interception. Extracellular vesicles (EVs) are valued for their potential as biomarkers of human health, chemical and molecular carcinogenesis, and therapeutics to treat disease at the cellular level. EVs are released both during normal growth and in response to toxicity and cellular death, playing key roles in cellular communication. Consequently, EVs may hold promise as precision biomarkers and therapeutics to prevent or offset damaging off-target effects of chemotherapeutics. EVs have promise as biomarkers of impending cardiotoxicity induced by chemotherapies and as cardioprotective therapeutic agents. However, EVs can also mediate cardiotoxic cues, depending on the identity and past events of their parent cells. Understanding how EVs mediate signaling is critical toward implementing EVs as therapeutic agents to mitigate cardiotoxic effects of chemotherapies. For example, it remains unclear how mixtures of EV populations from cells exposed to toxins or undergoing different stages of cell death contribute to signaling across cardiac tissues. Here, we present our perspective on the outlook of EVs as future clinical tools to mitigate chemotherapy-induced cardiotoxicity, both as biomarkers of impending cardiotoxicity and as cardioprotective agents. Also, we discuss how heterogeneous mixtures of EVs and transient exposures to toxicants may add complexity to predicting outcomes of exogenously applied EVs. Elucidating how EV cargo and signaling properties change during dynamic cellular events may aid precision prevention of cardiotoxicity in anticancer treatments and development of safer chemotherapeutics.
Collapse
Affiliation(s)
- Brian B. Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Epigenetics & Stem Cell Biology Laboratory, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Inotiv, Durham, NC, United States
| | - Madeleine Weick
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Kevin Gerrish
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Erik J. Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| |
Collapse
|
17
|
Arora S, Bajaj T, Kumar J, Goyal M, Singh A, Singh C. Recent Advances in Delivery of Peptide and Protein Therapeutics to the Brain. J Pharmacol Exp Ther 2024; 388:54-66. [PMID: 37977811 DOI: 10.1124/jpet.123.001690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
The classes of neuropharmaceuticals known as proteins and peptides serve as diagnostic tools and are involved in specific communication in the peripheral and central nervous systems. However, due to tight junctions resembling epithelial cells found in the blood-brain barrier (BBB) in vivo, they are typically excluded from transport from the blood to the brain. The drugs having molecular weight of less than 400 Dalton are able to cross the BBB via lipid-mediated free diffusion. However, large molecule therapeutics are devoid of these characteristics. As an alternative, these substances may be carried via chimeric peptide drug delivery systems, and assist in transcytosis through BBB with the aid of linker strategies. With their recent developments, several forms of nanoparticles, including poly (ethylene glycol)-poly(ε-caprolactone) copolymers, nanogels, liposomes, nanostructured lipid carriers, poly (D, L-lactide-co-glycolide) nanoparticles, chitosan, and solid lipid nanoparticles, have also been considered for their therapeutic applications. Moreover, the necessity for physiologic optimization of current drug delivery methods and their carriers to deliver therapeutic doses of medication into the brain for the treatment of various neurologic illnesses has also been emphasized. Therapeutic use of proteins and peptides has no neuroprotective impact in the absence of all these methods. Each tactic, however, has unique drawbacks and considerations. In this review, we discuss different drug delivery methods for therapeutic distribution of pharmaceuticals, primarily neuroproteins and neuropeptides, through endothelial capillaries via blood-brain barrier. Finally, we have also discussed the challenges and future perspective of protein and peptide therapeutics delivery to the brain. SIGNIFICANCE STATEMENT: Very few reports on the delivery of therapeutic protein and peptide nanoformulations are available in the literature. Herein, we attempted to discuss these nanoformulations of protein and peptide therapeutics used to treat brain diseases.
Collapse
Affiliation(s)
- Sanchit Arora
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Tania Bajaj
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Jayant Kumar
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Manoj Goyal
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Arti Singh
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Charan Singh
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| |
Collapse
|
18
|
Billah MM, Deng H, Dutta P, Liu J. Effects of receptor properties on particle internalization through receptor-mediated endocytosis. SOFT MATTER 2023; 19:5907-5915. [PMID: 37483086 DOI: 10.1039/d3sm00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Receptor-mediated endocytosis (RME) is a highly complex process carried out by bioparticles, such as viruses and drug carriers, to enter cells. The discovery of both clathrin-dependent and clathrin-free pathways makes the RME process even more intriguing. Numerical models have been developed to facilitate the exploration of the process. However, the impacts of the receptor properties on RME have been less studied partially due to the oversimplifications of the receptor models. In this paper, we implement a stochastic model to systematically investigate the effects of mechanical (receptor flexure), geometrical (receptor length) and biochemical (ligand-receptor cutoff) properties of receptors, on RME with and without the existence of clathrin. Our simulation results show that the receptor's flexural rigidity plays an important role in RME with clathrin. There is a threshold beyond which particle internalization will not occur. Without clathrin, it is very difficult to achieve complete endocytosis with ligand-receptor interactions alone. A shorter receptor length and longer ligand-receptor reaction cutoff promote the formation of ligand-receptor bonds and facilitate particle internalization. Complete internalization can only be obtained with an extremely short receptor length and long reaction cutoff. Therefore, there are most likely some additional mechanisms to drive the membrane deformation in clathrin-free RME. Our results yield important fundamental insights into RME and provide crucial guidance when correlating the simulation results with experimental observations.
Collapse
Affiliation(s)
- Md Muhtasim Billah
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | | | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
19
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
20
|
Shyamasundar S, Ramya S, Kandilya D, Srinivasan DK, Bay BH, Ansari SA, Dheen ST. Maternal Diabetes Deregulates the Expression of Mecp2 via miR-26b-5p in Mouse Embryonic Neural Stem Cells. Cells 2023; 12:1516. [PMID: 37296636 PMCID: PMC10252249 DOI: 10.3390/cells12111516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Maternal diabetes has been associated with a greater risk of neurodevelopmental disorders in offspring. It has been established that hyperglycemia alters the expression of genes and microRNAs (miRNAs) regulating the fate of neural stem cells (NSCs) during brain development. In this study, the expression of methyl-CpG-binding protein-2 (Mecp2), a global chromatin organizer and a crucial regulator of synaptic proteins, was analyzed in NSCs obtained from the forebrain of embryos of diabetic mice. Mecp2 was significantly downregulated in NSCs derived from embryos of diabetic mice when compared to controls. miRNA target prediction revealed that the miR-26 family could regulate the expression of Mecp2, and further validation confirmed that Mecp2 is a target of miR-26b-5p. Knockdown of Mecp2 or overexpression of miR-26b-5p altered the expression of tau protein and other synaptic proteins, suggesting that miR-26b-5p alters neurite outgrowth and synaptogenesis via Mecp2. This study revealed that maternal diabetes upregulates the expression of miR-26b-5p in NSCs, resulting in downregulation of its target, Mecp2, which in turn perturbs neurite outgrowth and expression of synaptic proteins. Overall, hyperglycemia dysregulates synaptogenesis that may manifest as neurodevelopmental disorders in offspring from diabetic pregnancy.
Collapse
Affiliation(s)
- Sukanya Shyamasundar
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Seshadri Ramya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Deepika Kandilya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
21
|
Nilsson J, Cousins KAQ, Gobom J, Portelius E, Chen-Plotkin A, Shaw LM, Grossman M, Irwin DJ, Trojanowski JQ, Zetterberg H, Blennow K, Brinkmalm A. Cerebrospinal fluid biomarker panel of synaptic dysfunction in Alzheimer's disease and other neurodegenerative disorders. Alzheimers Dement 2023; 19:1775-1784. [PMID: 36239248 PMCID: PMC10102247 DOI: 10.1002/alz.12809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Synaptic degeneration is a key part of the pathophysiology of neurodegenerative diseases, and biomarkers reflecting the pathological alterations are greatly needed. METHOD Seventeen synaptic proteins were quantified in a pathology-confirmed cerebrospinal fluid cohort of patients with Alzheimer's disease (AD; n = 63), frontotemporal lobar degeneration (FTLD; n = 53), and Lewy body spectrum of disorders (LBD; n = 21), as well as healthy controls (HC; n = 48). RESULTS Comparisons revealed four distinct patterns: markers decreased across all neurodegenerative conditions compared to HC (the neuronal pentraxins), markers increased across all neurodegenerative conditions (14-3-3 zeta/delta), markers selectively increased in AD compared to other neurodegenerative conditions (neurogranin and beta-synuclein), and markers selectively decreased in LBD and FTLD compared to HC and AD (AP2B1 and syntaxin-1B). DISCUSSION Several of the synaptic proteins may serve as biomarkers for synaptic dysfunction in AD, LBD, and FTLD. Additionally, differential patterns of synaptic protein alterations seem to be present across neurodegenerative diseases. HIGHLIGHTS A panel of synaptic proteins were quantified in the cerebrospinal fluid using mass spectrometry. We compared Alzheimer's disease, frontotemporal degeneration, and Lewy body spectrum of disorders. Pathology was confirmed by autopsy or familial mutations. We discovered synaptic biomarkers for synaptic degeneration and cognitive decline. We found differential patterns of synaptic proteins across neurodegenerative diseases.
Collapse
Affiliation(s)
- Johanna Nilsson
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
| | - Katheryn AQ Cousins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Johan Gobom
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Erik Portelius
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| |
Collapse
|
22
|
Xiao D, Yao J, Gao X, Zhu KY. Clathrin-dependent endocytosis plays a critical role in larval and pupal development, and female oocyte production in the red flour beetle (Tribolium castaneum). PEST MANAGEMENT SCIENCE 2023; 79:1731-1742. [PMID: 36617731 DOI: 10.1002/ps.7348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clathrin-dependent endocytosis is a vesicular transport process by which cells take macromolecules from the extracellular space to the intracellular space. It plays important roles in various cellular functions, but its biological significance in insect development and reproduction has not been well studied. RESULTS We characterized and functionally analyzed four major clathrin-dependent endocytic pathway genes (TcChc, TcAP50, TcVhaSFD, TcRab7) in Tribolium castaneum. RNA interference (RNAi) by injecting double-stranded RNA (dsRNA) targeting each gene at three doses (50, 100, or 200 ng per insect) in 20-day-old larvae led to 100% larval mortality. When the expressions of TcChc, TcVhaSFD, and TcRab7 were suppressed by injecting their respective dsRNAs at each dose in 1-day-old pupae, the adults that emerged from the dsRNA-injected pupae were deformed, with the absence of wing development. The deformed adults died within 2 days after eclosion. When the expression of TcAP50 was suppressed by injecting its dsRNA into 1-day-old pupae, although no apparent deformed adults were observed, all the adults died within 35 days after eclosion. In addition, when the expressions of TcChc and TcVhaSFD were suppressed by injecting their respective dsRNAs at a reduced dose (10 ng per insect) in 5-day-old pupae, the ovarian development and oocyte production in the resultant females were completely inhibited. CONCLUSION Our results indicate that clathrin-dependent endocytosis is essential for insect development and reproduction. The results from this study can help researchers identify potential molecular targets for developing novel strategies for insect pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Da Xiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| | - Jianxiu Yao
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
23
|
A conformational switch in clathrin light chain regulates lattice structure and endocytosis at the plasma membrane of mammalian cells. Nat Commun 2023; 14:732. [PMID: 36759616 PMCID: PMC9911608 DOI: 10.1038/s41467-023-36304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Conformational changes in endocytic proteins are regulators of clathrin-mediated endocytosis. Three clathrin heavy chains associated with clathrin light chains (CLC) assemble into triskelia that link into a geometric lattice that curves to drive endocytosis. Structural changes in CLC have been shown to regulate triskelia assembly in solution, yet the nature of these changes, and their effects on lattice growth, curvature, and endocytosis in cells are unknown. Here, we develop a new correlative fluorescence resonance energy transfer (FRET) and platinum replica electron microscopy method, named FRET-CLEM. With FRET-CLEM, we measure conformational changes in clathrin at thousands of individual morphologically distinct clathrin-coated structures. We discover that the N-terminus of CLC repositions away from the plasma membrane and triskelia vertex as coats curve. Preventing this conformational switch with chemical tools increases lattice sizes and inhibits endocytosis. Thus, a specific conformational switch in the light chain regulates lattice curvature and endocytosis in mammalian cells.
Collapse
|
24
|
Jung S, Jiang L, Zhao J, Shultz LD, Greiner DL, Bae M, Li X, Ordikhani F, Kuai R, Joseph J, Kasinath V, Elmaleh DR, Abdi R. Clathrin light chain-conjugated drug delivery for cancer. Bioeng Transl Med 2023; 8:e10273. [PMID: 36684105 PMCID: PMC9842032 DOI: 10.1002/btm2.10273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023] Open
Abstract
Targeted drug delivery systems hold the remarkable potential to improve the therapeutic index of anticancer medications markedly. Here, we report a targeted delivery platform for cancer treatment using clathrin light chain (CLC)-conjugated drugs. We conjugated CLC to paclitaxel (PTX) through a glutaric anhydride at high efficiency. Labeled CLCs localized to 4T1 tumors implanted in mice, and conjugation of PTX to CLC enhanced its delivery to these tumors. Treatment of three different mouse models of cancer-melanoma, breast cancer, and lung cancer-with CLC-PTX resulted in significant growth inhibition of both the primary tumor and metastatic lesions, as compared to treatment with free PTX. CLC-PTX treatment caused a marked increase in apoptosis of tumor cells and reduction of tumor angiogenesis. Our data suggested HSP70 as a binding partner for CLC. Our study demonstrates that CLC-based drug-conjugates constitute a novel drug delivery platform that can augment the effects of chemotherapeutics in treating a variety of cancers. Moreover, conjugation of therapeutics with CLC may be used as means by which drugs are delivered specifically to primary tumors and metastatic lesions, thereby prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Sungwook Jung
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Liwei Jiang
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Institute of Health and Medical TechnologyHefei Institutes of Physical Science, Chinese Academy of SciencesBostonHefeiChina
| | - Jing Zhao
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Dale L. Greiner
- Department of Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Xiaofei Li
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - John Joseph
- Center for Nanomedicine and Division of Engineering in Medicine, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Vivek Kasinath
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David R. Elmaleh
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Reza Abdi
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
25
|
Mondal M, Carver M, Brown JK. Characteristics of environmental RNAi in potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Psylloidea: Triozidae). Front Physiol 2022; 13:931951. [PMID: 36330211 PMCID: PMC9623324 DOI: 10.3389/fphys.2022.931951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) has potential to become a major tool for integrated management of insect pests of agricultural crops based on sequence-specificity and low doses of rapidly biodegradable dsRNA. Deploying ‘environmental RNAi’ for control of insect vectors of plant pathogens is of increasing interest for combatting emerging plant diseases. Hemipteran insect vectors, including psyllids, are vascular feeders, making their development difficult to control specifically by targeting with pesticidal chemistries. Psyllids transmit “Candidatus Liberibacter solanacearum” the causal organism of potato zebra chip and tomato vein greening diseases, transmitted, respectively, by the potato or tomato psyllid (PoP). Until now, the optimal effective concentration(s) of double-stranded RNA (dsRNA) required for significant gene knockdown and RNAi persistence in PoP have not been determined. The objective of this study was to optimize RNAi in young PoP adults and 3rd instars for screening by oral delivery of dsRNAs. The minimal effective dsRNA concentrations required for robust knockdown and persistence were evaluated by delivering seven concentrations spanning 0.1 ng/μL to 500 ng/μL over post ingestion-access periods (IAP) ranging from 48 h to 12 days. The PoP gene candidates evaluated as targets were vacuolar ATPase subunit A, clathrin heavy chain, and non-fermenting protein 7, which were evaluated for knockdown by qPCR amplification. The minimum and/or the second most effective dsRNA concentration resulting in effective levels of gene knockdown was 100 ng/μL for all three targets. Higher concentrations did not yield further knockdown, indicating potential RISC saturation at the higher doses. Gene silencing post-IAP of 100 ng/μL dsRNA persisted for 3–5 days in adults and nymphs, with the PoP 3rd instar, followed by teneral and mature adults, respectively, exhibiting the most robust RNAi-response.
Collapse
Affiliation(s)
- Mosharrof Mondal
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- RNAissance Ag LLC, St. Louis, MO, United States
| | - Megan Carver
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Judith K. Brown,
| |
Collapse
|
26
|
Yamazaki Y, Kono K. Clathrin-mediated trafficking of phospholipid flippases is required for local plasma membrane/cell wall damage repair in budding yeast. Biochem Biophys Res Commun 2022; 606:156-162. [DOI: 10.1016/j.bbrc.2022.03.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
|
27
|
Mishra R, Gupta Y, Ghaley G, Bhowmick NA. Functional Diversity of Macropinocytosis. Subcell Biochem 2022; 98:3-14. [PMID: 35378700 DOI: 10.1007/978-3-030-94004-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Eukaryotic cells are capable of internalizing different types of cargo by plasma membrane ruffling and forming vesicles in a process known as endocytosis. The most extensively characterized endocytic pathways are clathrin-coated pits, lipid raft/caveolae-mediated endocytosis, phagocytosis, and macropinocytosis. Macropinocytosis is unique among all the endocytic processes due to its nonselective internalization of extracellular fluid, solutes, and membrane in large endocytic vesicles known as macropinosomes with unique susceptibility toward Na+/H+ exchanger inhibitors. Range of cell types capable of macropinocytosis and known to play important role in different physiological processes, which include antigen presentation, nutrient sensing, migration, and signaling. Understanding the physiological function of macropinocytosis will be helpful in filling the gaps in our knowledge and which can be exploited to develop novel therapeutic targets. In this chapter, we discuss the different molecular mechanisms that initiate the process of macropinocytosis with special emphasis on proteins involved and their diversified role in different cell types.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh, India.
| | - Yamini Gupta
- Cancer Research Laboratory, Department of Biosciences, Manipal University, Jaipur, Rajasthan, India
| | - Garima Ghaley
- Department of Biosciences, Manipal University, Jaipur, Rajasthan, India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
28
|
Clathrin-nanoparticles deliver BDNF to hippocampus and enhance neurogenesis, synaptogenesis and cognition in HIV/neuroAIDS mouse model. Commun Biol 2022; 5:236. [PMID: 35301411 PMCID: PMC8931075 DOI: 10.1038/s42003-022-03177-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Brain derived neurotrophic factor (BDNF) promotes the growth, differentiation, maintenance and survival of neurons. These attributes make BDNF a potentially powerful therapeutic agent. However, its charge, instability in blood, and poor blood brain barrier (BBB) penetrability have impeded its development. Here, we show that engineered clathrin triskelia (CT) conjugated to BDNF (BDNF-CT) and delivered intranasally increased hippocampal BDNF concentrations 400-fold above that achieved previously with intranasal BDNF alone. We also show that BDNF-CT targeted Tropomyosin receptor kinase B (TrkB) and increased TrkB expression and downstream signaling in iTat mouse brains. Mice were induced to conditionally express neurotoxic HIV Transactivator-of-Transcription (Tat) protein that decreases BDNF. Down-regulation of BDNF is correlated with increased severity of HIV/neuroAIDS. BDNF-CT enhanced neurorestorative effects in the hippocampus including newborn cell proliferation and survival, granule cell neurogenesis, synaptogenesis and increased dendritic integrity. BDNF-CT exerted cognitive-enhancing effects by reducing Tat-induced learning and memory deficits. These results show that CT bionanoparticles efficiently deliver BDNF to the brain, making them potentially powerful tools in regenerative medicine.
Collapse
|
29
|
Prichard KL, O'Brien NS, Murcia SR, Baker JR, McCluskey A. Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycling and Implications in Neurological Diseases. Front Cell Neurosci 2022; 15:754110. [PMID: 35115907 PMCID: PMC8805674 DOI: 10.3389/fncel.2021.754110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Endocytosis is a process essential to the health and well-being of cell. It is required for the internalisation and sorting of “cargo”—the macromolecules, proteins, receptors and lipids of cell signalling. Clathrin mediated endocytosis (CME) is one of the key processes required for cellular well-being and signalling pathway activation. CME is key role to the recycling of synaptic vesicles [synaptic vesicle recycling (SVR)] in the brain, it is pivotal to signalling across synapses enabling intracellular communication in the sensory and nervous systems. In this review we provide an overview of the general process of CME with a particular focus on two key proteins: clathrin and dynamin that have a central role to play in ensuing successful completion of CME. We examine these two proteins as they are the two endocytotic proteins for which small molecule inhibitors, often of known mechanism of action, have been identified. Inhibition of CME offers the potential to develop therapeutic interventions into conditions involving defects in CME. This review will discuss the roles and the current scope of inhibitors of clathrin and dynamin, providing an insight into how further developments could affect neurological disease treatments.
Collapse
|
30
|
Hu T, Yin S, Sun J, Linghu Y, Ma J, Pan J, Wang C. Clathrin light chains regulate hypocotyl elongation by affecting the polarization of the auxin transporter PIN3 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1922-1936. [PMID: 34478221 DOI: 10.1111/jipb.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2021] [Indexed: 05/26/2023]
Abstract
PIN-FORMED (PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers. Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Tianwei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shoupeng Yin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jingbo Sun
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuting Linghu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
31
|
Cirillo S, Tomeh MA, Wilkinson RN, Hill C, Brown S, Zhao X. Designed Antitumor Peptide for Targeted siRNA Delivery into Cancer Spheroids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49713-49728. [PMID: 34657415 DOI: 10.1021/acsami.1c14761] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimicrobial/anticancer peptides (AMPs/ACPs) have shown promising results as new therapeutic agents in cancer thearpy. Among them, the designed amphiphilic α-helical peptide G(IIKK)3I-NH2 (G3) displayed great affinity and specificity in targeting cancer cells. Here, we report new insights on how G3 penetrates cancer cells. G3 showed high specificity to HCT-116 colon cancer cells compared to the HDFs (human neonatal primary dermal fibroblasts) control. With high concentrations of peptide, a clear cancer cell membrane disruption was observed through SEM. Gene knockdown of the endocytic pathways demonstrated that an energy-dependent endocytic pathway is required for the uptake of the peptide. In addition, G3 can protect and selectively deliver siRNAs into cancer cells and successfully modulated their gene expression. Gene delivery was also tested in 3D cancer spheroids and showed deep penetration delivery into the cancer spheroids. Finally, the in vivo toxicity of G3 was evaluated on zebrafish embryos, showing an increasing toxicity effect with concentration. However, the toxicity of the peptide was attenuated when complexed with siRNA. In addition, negligible toxicity was observed at the concentration range for efficient gene delivery. The current results demonstrate that G3 is promising as an excellent agent for cancer therapy.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Robert N Wilkinson
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Chris Hill
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
32
|
Liu B, Li X, Yu H, Shi X, Zhou Y, Alvarez S, Naldrett MJ, Kachman SD, Ro SH, Sun X, Chung S, Jing L, Yu J. Therapeutic potential of garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases. Am J Cancer Res 2021; 11:9311-9330. [PMID: 34646372 PMCID: PMC8490522 DOI: 10.7150/thno.60265] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant activation of the nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome drives the development of many complex inflammatory diseases, such as obesity, Alzheimer's disease, and atherosclerosis. However, no medications specifically targeting the NLRP3 inflammasome have become clinically available. Therefore, we aim to identify new inhibitors of the NLRP3 inflammasome in this study. Methods: Vesicle-like nanoparticles (VLNs) were extracted from garlic chives and other Allium vegetables and their effects on the NLRP3 inflammasome were evaluated in primary macrophages. After garlic chive-derived VLNs (GC-VLNs) were found to exhibit potent anti-NLRP3 inflammasome activity in cell culture, such function was further assessed in a murine acute liver injury disease model, as well as in diet-induced obesity. Finally, GC-VLNs were subjected to omics analysis to identify the active components with anti-NLRP3 inflammasome function. Results: GC-VLNs are membrane-enclosed nanoparticles containing lipids, proteins, and RNAs. They dose-dependently inhibit pathways downstream of NLRP3 inflammasome activation, including caspase-1 autocleavage, cytokine release, and pyroptotic cell death in primary macrophages. The inhibitory effects of GC-VLNs on the NLRP3 inflammasome are specific, considering their marginal impact on activation of other inflammasomes. Local administration of GC-VLNs in mice alleviates NLRP3 inflammasome-mediated inflammation in chemical-induced acute liver injury. When administered orally or intravenously, GC-VLNs accumulate in specific tissues and suppress activation of the NLRP3 inflammasome and chronic inflammation in diet-induced obese mice. The phospholipid 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) in GC-VLNs has been identified to inhibit NLRP3 inflammasome activation. Conclusions: Identification of GC-VLNs and their active component DLPC as potent inflammasome inhibitors provides new therapeutic candidates in the treatment of NLRP3 inflammasome-driven diseases.
Collapse
|
33
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
34
|
Souibgui E, Bruel C, Choquer M, de Vallée A, Dieryckx C, Dupuy JW, Latorse MP, Rascle C, Poussereau N. Clathrin Is Important for Virulence Factors Delivery in the Necrotrophic Fungus Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2021; 12:668937. [PMID: 34220891 PMCID: PMC8244658 DOI: 10.3389/fpls.2021.668937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Fungi are the most prevalent plant pathogens, causing annually important damages. To infect and colonize their hosts, they secrete effectors including hydrolytic enzymes able to kill and macerate plant tissues. These secreted proteins are transported from the Endoplasmic Reticulum and the Golgi apparatus to the extracellular space through intracellular vesicles. In pathogenic fungi, intracellular vesicles were described but their biogenesis and their role in virulence remain unclear. In this study, we report the essential role of clathrin heavy chain (CHC) in the pathogenicity of Botrytis cinerea, the agent of gray mold disease. To investigate the importance of this protein involved in coat vesicles formation in eukaryotic cells, a T-DNA insertional mutant reduced in the expression of the CHC-encoding gene, and a mutant expressing a dominant-negative form of CHC were studied. Both mutants were strongly affected in pathogenicity. Characterization of the mutants revealed altered infection cushions and an important defect in protein secretion. This study demonstrates the essential role of clathrin in the infectious process of a plant pathogenic fungus and more particularly its role in virulence factors delivery.
Collapse
Affiliation(s)
- Eytham Souibgui
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Christophe Bruel
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Mathias Choquer
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Amélie de Vallée
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Cindy Dieryckx
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Jean William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de Bordeaux, Bordeaux, France
| | | | - Christine Rascle
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Nathalie Poussereau
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| |
Collapse
|
35
|
Holzheu P, Krebs M, Larasati C, Schumacher K, Kummer U. An integrative view on vacuolar pH homeostasis in Arabidopsis thaliana: Combining mathematical modeling and experimentation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1541-1556. [PMID: 33780094 DOI: 10.1111/tpj.15251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The acidification of plant vacuoles is of great importance for various physiological processes, as a multitude of secondary active transporters utilize the proton gradient established across the vacuolar membrane. Vacuolar-type H+ -translocating ATPases and a pyrophosphatase are thought to enable vacuoles to accumulate protons against their electrochemical potential. However, recent studies pointed to the ATPase located at the trans-Golgi network/early endosome (TGN/EE) to contribute to vacuolar acidification in a manner not understood as of now. Here, we combined experimental data and computational modeling to test different hypotheses for vacuolar acidification mechanisms. For this, we analyzed different models with respect to their ability to describe existing experimental data. To better differentiate between alternative acidification mechanisms, new experimental data have been generated. By fitting the models to the experimental data, we were able to prioritize the hypothesis in which vesicular trafficking of Ca2+ /H+ -antiporters from the TGN/EE to the vacuolar membrane and the activity of ATP-dependent Ca2+ -pumps at the tonoplast might explain the residual acidification observed in Arabidopsis mutants defective in vacuolar proton pump activity. The presented modeling approach provides an integrative perspective on vacuolar pH regulation in Arabidopsis and holds potential to guide further experimental work.
Collapse
Affiliation(s)
- Pascal Holzheu
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - Melanie Krebs
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Catharina Larasati
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Karin Schumacher
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| |
Collapse
|
36
|
Nilsson J, Gobom J, Sjödin S, Brinkmalm G, Ashton NJ, Svensson J, Johansson P, Portelius E, Zetterberg H, Blennow K, Brinkmalm A. Cerebrospinal fluid biomarker panel for synaptic dysfunction in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12179. [PMID: 33969172 PMCID: PMC8087978 DOI: 10.1002/dad2.12179] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Synaptic dysfunction and degeneration is one of the earliest events in Alzheimer's disease (AD) and the best correlate of cognitive decline. Thus, identification and validation of biomarkers reflecting synaptic degeneration to be used as prognostic biomarkers are greatly needed. METHOD Solid-phase extraction and parallel reaction monitoring mass spectrometry were used to quantify 17 synaptic proteins in CSF, in two cross-sectional studies including AD (n = 52) and controls (n = 37). RESULTS Increased concentrations of beta-synuclein, gamma-synuclein, neurogranin, phosphatidylethanolamine-binding protein 1, and 14-3-3 proteins were observed in AD patients compared to controls, while neuronal pentraxin-2 and neuronal pentraxin receptor were decreased. DISCUSSION We have established a method with a novel panel of synaptic proteins as biomarkers of synaptic dysfunction. The results indicate that several of the proteins included in the panel may serve as synaptic biomarkers for AD.
Collapse
Affiliation(s)
- Johanna Nilsson
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Johan Gobom
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Simon Sjödin
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Nicholas J. Ashton
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS FoundationLondonUK
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of MedicineThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Per Johansson
- Department of Internal Medicine and Clinical Nutrition, Institute of MedicineThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Clinical SciencesLund UniversityLundSweden
| | - Erik Portelius
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Ann Brinkmalm
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
37
|
Chen Z, Mino RE, Mettlen M, Michaely P, Bhave M, Reed DK, Schmid SL. Wbox2: A clathrin terminal domain-derived peptide inhibitor of clathrin-mediated endocytosis. J Cell Biol 2021; 219:151850. [PMID: 32520988 PMCID: PMC7480105 DOI: 10.1083/jcb.201908189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/03/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) occurs via the formation of clathrin-coated vesicles from clathrin-coated pits (CCPs). Clathrin is recruited to CCPs through interactions between the AP2 complex and its N-terminal domain, which in turn recruits endocytic accessory proteins. Inhibitors of CME that interfere with clathrin function have been described, but their specificity and mechanisms of action are unclear. Here we show that overexpression of the N-terminal domain with (TDD) or without (TD) the distal leg inhibits CME and CCP dynamics by perturbing clathrin interactions with AP2 and SNX9. TDD overexpression does not affect clathrin-independent endocytosis or, surprisingly, AP1-dependent lysosomal trafficking from the Golgi. We designed small membrane–permeant peptides that encode key functional residues within the four known binding sites on the TD. One peptide, Wbox2, encoding residues along the W-box motif binding surface, binds to SNX9 and AP2 and potently and acutely inhibits CME.
Collapse
Affiliation(s)
- Zhiming Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Rosa E Mino
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Madhura Bhave
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Dana Kim Reed
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| |
Collapse
|
38
|
Padgitt-Cobb LK, Kingan SB, Wells J, Elser J, Kronmiller B, Moore D, Concepcion G, Peluso P, Rank D, Jaiswal P, Henning J, Hendrix DA. A draft phased assembly of the diploid Cascade hop (Humulus lupulus) genome. THE PLANT GENOME 2021; 14:e20072. [PMID: 33605092 DOI: 10.1002/tpg2.20072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/03/2020] [Indexed: 05/25/2023]
Abstract
Hop (Humulus lupulus L. var Lupulus) is a diploid, dioecious plant with a history of cultivation spanning more than one thousand years. Hop cones are valued for their use in brewing and contain compounds of therapeutic interest including xanthohumol. Efforts to determine how biochemical pathways responsible for desirable traits are regulated have been challenged by the large (2.8 Gb), repetitive, and heterozygous genome of hop. We present a draft haplotype-phased assembly of the Cascade cultivar genome. Our draft assembly and annotation of the Cascade genome is the most extensive representation of the hop genome to date. PacBio long-read sequences from hop were assembled with FALCON and partially phased with FALCON-Unzip. Comparative analysis of haplotype sequences provides insight into selective pressures that have driven evolution in hop. We discovered genes with greater sequence divergence enriched for stress-response, growth, and flowering functions in the draft phased assembly. With improved resolution of long terminal retrotransposons (LTRs) due to long-read sequencing, we found that hop is over 70% repetitive. We identified a homolog of cannabidiolic acid synthase (CBDAS) that is expressed in multiple tissues. The approaches we developed to analyze the draft phased assembly serve to deepen our understanding of the genomic landscape of hop and may have broader applicability to the study of other large, complex genomes.
Collapse
Affiliation(s)
- Lillian K Padgitt-Cobb
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Sarah B Kingan
- Pacific Biosciences of California, Menlo Park, CA, 94025, USA
| | - Jackson Wells
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Brent Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | | | | | - Paul Peluso
- Pacific Biosciences of California, Menlo Park, CA, 94025, USA
| | - David Rank
- Pacific Biosciences of California, Menlo Park, CA, 94025, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | | | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
39
|
Chen X, Liu B, Li X, An TT, Zhou Y, Li G, Wu‐Smart J, Alvarez S, Naldrett MJ, Eudy J, Kubik G, Wilson RA, Kachman SD, Cui J, Yu J. Identification of anti-inflammatory vesicle-like nanoparticles in honey. J Extracell Vesicles 2021; 10:e12069. [PMID: 33613874 PMCID: PMC7879699 DOI: 10.1002/jev2.12069] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 01/05/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
Honey has been used as a nutrient, an ointment, and a medicine worldwide for many centuries. Modern research has demonstrated that honey has many medicinal properties, reflected in its anti-microbial, anti-oxidant, and anti-inflammatory bioactivities. Honey is composed of sugars, water and a myriad of minor components, including minerals, vitamins, proteins and polyphenols. Here, we report a new bioactive component‒vesicle-like nanoparticles‒in honey (H-VLNs). These H-VLNs are membrane-bound nano-scale particles that contain lipids, proteins and small-sized RNAs. The presence of plant-originated plasma transmembrane proteins and plasma membrane-associated proteins suggests the potential vesicle-like nature of these particles. H-VLNs impede the formation and activation of the nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome, which is a crucial inflammatory signalling platform in the innate immune system. Intraperitoneal administration of H-VLNs in mice alleviates inflammation and liver damage in the experimentally induced acute liver injury. miR-4057 in H-VLNs was identified in inhibiting NLRP3 inflammasome activation. Together, our studies have identified anti-inflammatory VLNs as a new bioactive agent in honey.
Collapse
Affiliation(s)
- Xingyi Chen
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Baolong Liu
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Xingzhi Li
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Thuy T. An
- Department of Computer Science and EngineeringUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - You Zhou
- Center for BiotechnologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Gang Li
- Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Judy Wu‐Smart
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Sophie Alvarez
- Nebraska Center for Biotechnology, University of Nebraska‐LincolnProteomics and Metabolomics FacilityNebraskaUSA
| | - Michael J. Naldrett
- Nebraska Center for Biotechnology, University of Nebraska‐LincolnProteomics and Metabolomics FacilityNebraskaUSA
| | - James Eudy
- Department of Genetics Cell Biology and AnatomyUniversity of Nebraska Medical Center, 985915 Nebraska Medical CenterOmahaNebraskaUSA
| | - Gregory Kubik
- Genomics Core Facility, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Richard A. Wilson
- Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Stephen D. Kachman
- Department of StatisticsUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Juan Cui
- Department of Computer Science and EngineeringUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Jiujiu Yu
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
40
|
Gu C, Zhang T, Lv C, Liu Y, Wang Y, Zhao G. His-Mediated Reversible Self-Assembly of Ferritin Nanocages through Two Different Switches for Encapsulation of Cargo Molecules. ACS NANO 2020; 14:17080-17090. [PMID: 33197176 DOI: 10.1021/acsnano.0c06670] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein nanocages represent a class of nanovehicles for a variety of applications. However, precise manipulation of self-assembly behavior of these protein nanocages in response to multiple external stimuli for custom-tailored applications remains challenging. Herein, we established a simple but effective strategy for controlling protein nanocage self-assembly that combines a dual property of His motifs (their significantly pH-dependent protonation state and their capacity to coordinate with transition metals) with its high symmetry. With this strategy, we enabled two different ferritin nanocages to disassemble into protein tetramers under neutral solution by introducing His6 motifs at the 4-fold channel interfaces. Notably, these tetramers are able to self-assemble into ferritin-like protein nanocages in response to multiple external stimuli such as transition metal ions and pH, and vice versa, indicative of a reversible self-assembly process. Furthermore, such His-mediated reversible protein self-assembly has been explored for encapsulation of bioactive cargo molecules within these reconstituted protein nanocages with higher loading efficiency under milder conditions as compared to the reported acid denaturation encapsulation method for ferritin.
Collapse
Affiliation(s)
- Chunkai Gu
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Yu Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Yingjie Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| |
Collapse
|
41
|
Rajwar A, Morya V, Kharbanda S, Bhatia D. DNA Nanodevices to Probe and Program Membrane Organization, Dynamics, and Applications. J Membr Biol 2020; 253:577-587. [DOI: 10.1007/s00232-020-00154-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
|
42
|
Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, Cruz JC. Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1816. [PMID: 32932957 PMCID: PMC7559083 DOI: 10.3390/nano10091816] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Iron oxide nanoparticles (IONs) have been widely explored for biomedical applications due to their high biocompatibility, surface-coating versatility, and superparamagnetic properties. Upon exposure to an external magnetic field, IONs can be precisely directed to a region of interest and serve as exceptional delivery vehicles and cellular markers. However, the design of nanocarriers that achieve an efficient endocytic uptake, escape lysosomal degradation, and perform precise intracellular functions is still a challenge for their application in translational medicine. This review highlights several aspects that mediate the activation of the endosomal pathways, as well as the different properties that govern endosomal escape and nuclear transfection of magnetic IONs. In particular, we review a variety of ION surface modification alternatives that have emerged for facilitating their endocytic uptake and their timely escape from endosomes, with special emphasis on how these can be manipulated for the rational design of cell-penetrating vehicles. Moreover, additional modifications for enhancing nuclear transfection are also included in the design of therapeutic vehicles that must overcome this barrier. Understanding these mechanisms opens new perspectives in the strategic development of vehicles for cell tracking, cell imaging and the targeted intracellular delivery of drugs and gene therapy sequences and vectors.
Collapse
Affiliation(s)
- Laura Rueda-Gensini
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Javier Cifuentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Maria Claudia Castellanos
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Julian A. Serna
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
43
|
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 2020; 157:179-207. [PMID: 32378740 DOI: 10.1111/jnc.15035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Kang D, Jung SH, Lee GH, Lee S, Park HJ, Ko YG, Kim YN, Lee JS. Sulfated syndecan 1 is critical to preventing cellular senescence by modulating fibroblast growth factor receptor endocytosis. FASEB J 2020; 34:10316-10328. [PMID: 32530114 DOI: 10.1096/fj.201902714r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence can be triggered by various intrinsic and extrinsic stimuli. We previously reported that silencing of 3'-phosphoadenosine 5'-phosphosulfate synthetase 2 (PAPSS2) induces cellular senescence through augmented fibroblast growth factor receptor 1 (FGFR1) signaling. However, the exact molecular mechanism connecting heparan sulfation and cellular senescence remains unclear. Here, we investigated the potential involvement of heparan sulfate proteoglycans (HSPGs) in augmented FGFR1 signaling and cellular senescence. Depletion of several types of HSPGs revealed that cells depleted of syndecan 1 (SDC1) exhibited typical senescence phenotypes, and those depleted of PAPSS2-, SDC1-, or heparan sulfate 2-O sulfotransferase 1 (HS2ST1) showed decreased FGFR1 internalization along with hyperresponsiveness to and prolonged activation of fibroblast growth factor 2 (FGF2)-stimulated FGFR1- v-akt murine thymoma viral oncogene homolog (AKT) signaling. Clathrin- and caveolin-mediated FGFR1 endocytosis contributed to cellular senescence through the FGFR1-AKT-p53-p21 signaling pathway. Dynasore treatment triggered senescence phenotypes, augmented FGFR1-AKT-p53-p21 signaling, and decreased SDC1 expression. Finally, the replicatively and prematurely senescent cells were characterized by decreases of SDC1 expression and FGFR1 internalization, and an increase in FGFR1-AKT-p53-p21 signaling. Together, our results demonstrate that properly sulfated SDC1 plays a critical role in preventing cellular senescence through the regulation of FGFR1 endocytosis.
Collapse
Affiliation(s)
- Donghee Kang
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Seung Hee Jung
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Gun-Hee Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Seongju Lee
- Medical Research Center, Inha University College of Medicine, Incheon, Korea.,Department of Anatomy, Inha University College of Medicine, Incheon, Korea
| | - Heon Joo Park
- Medical Research Center, Inha University College of Medicine, Incheon, Korea.,Department of Microbiology, Inha University College of Medicine, Incheon, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Yong-Nyun Kim
- Division of Translational Science, National Cancer Center, Goyang, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
45
|
Baba K, Kuwada S, Nakao A, Li X, Okuda N, Nishida A, Mitsuda S, Fukuoka N, Kakeya H, Kataoka T. Different localization of lysosomal-associated membrane protein 1 (LAMP1) in mammalian cultured cell lines. Histochem Cell Biol 2020; 153:199-213. [PMID: 31907597 DOI: 10.1007/s00418-019-01842-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Lysosomal-associated membrane protein 1 (LAMP1) mainly localizes to lysosomes and late endosomes. We herein investigated the intracellular localization of lysosomal membrane proteins in five mammalian cultured cell lines. Rat LAMP1 fused to enhanced green fluorescent protein (EGFP) mostly accumulated at a particular cytoplasmic area and barely co-localized with LysoTracker® Red DND-99 in golden hamster kidney BHK-21 cells and Chinese hamster ovary CHO-K1 cells. Golden hamster, Chinese hamster, and human LAMP1-EGFP showed a similar intracellular distribution to rat LAMP1-EGFP in BHK-21 cells. Endogenous LAMP1 was also detected in a perinuclear area in BHK-21 cells and CHO-K1 cells, and co-localized with rat CD63-EGFP in BHK-21 cells. Moreover, rat LAMP1-DsRed-Monomer co-localized well with the human trans-Golgi network protein 2-EGFP in BHK-21 cells. These results reveal that LAMP1 predominantly localizes to the trans-Golgi network in BHK-21 cells.
Collapse
Affiliation(s)
- Kosuke Baba
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Sara Kuwada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ayaka Nakao
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Xuebing Li
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Naoaki Okuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ai Nishida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Satoshi Mitsuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Natsuki Fukuoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
- The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
46
|
Integrated Transcriptomics, Proteomics, and Glycomics Reveals the Association between Up-regulation of Sialylated N-glycans/Integrin and Breast Cancer Brain Metastasis. Sci Rep 2019; 9:17361. [PMID: 31758065 PMCID: PMC6874669 DOI: 10.1038/s41598-019-53984-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer brain metastasis has been recognized as one of the central issues in breast cancer research. The elucidation of the processes and pathways that mediate this step will provide important clues for a better understanding of breast cancer metastasis. Increasing evidence suggests that aberrant glycosylation patterns greatly contribute to cell invasion and cancer metastasis. Herein, we combined next-generation RNA sequencing with liquid chromatography-tandem mass spectrometry-based proteomic and N-glycomic analysis from five breast cancer cell lines and one brain cancer cell line to investigate the possible mechanisms of breast cancer brain metastasis. The genes/proteins associated with cell movement were highlighted in breast cancer brain metastasis. The integrin signaling pathway and the up-regulation of α-integrin (ITGA2, ITGA3) were associated with the brain metastatic process. 12 glycogenes showed unique expression in 231BR, which could result in an increase of sialylation during brain metastasis. In agreement with the changes of glycogenes, 60 out of 63 N-glycans that were identified exhibited differential expression among cell lines. The correlation between glycogenes and glycans revealed the importance of sialylation and sialylated glycans in breast cancer brain metastasis. Highly sialylated N-glycans, which were up-regulated in brain-seeking cell line 231BR, likely play a role in brain metastasis.
Collapse
|
47
|
Rópolo AS, Feliziani C, Touz MC. Unusual proteins in Giardia duodenalis and their role in survival. ADVANCES IN PARASITOLOGY 2019; 106:1-50. [PMID: 31630755 DOI: 10.1016/bs.apar.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The capacity of the parasite Giardia duodenalis to perform complex functions with minimal amounts of proteins and organelles has attracted increasing numbers of scientists worldwide, trying to explain how this parasite adapts to internal and external changes to survive. One explanation could be that G. duodenalis evolved from a structurally complex ancestor by reductive evolution, resulting in adaptation to its parasitic lifestyle. Reductive evolution involves the loss of genes, organelles, and functions that commonly occur in many parasites, by which the host renders some structures and functions redundant. However, there is increasing data that Giardia possesses proteins able to perform more than one function. During recent decades, the concept of moonlighting was described for multitasking proteins, which involves only proteins with an extra independent function(s). In this chapter, we provide an overview of unusual proteins in Giardia that present multifunctional properties depending on the location and/or parasite requirement. We also discuss experimental evidence that may allow some giardial proteins to be classified as moonlighting proteins by examining the properties of moonlighting proteins in general. Up to date, Giardia does not seem to require the numerous redundant proteins present in other organisms to accomplish its normal functions, and thus this parasite may be an appropriate model for understanding different aspects of moonlighting proteins, which may be helpful in the design of drug targets.
Collapse
Affiliation(s)
- Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
48
|
Le NQK, Huynh TT, Yapp EKY, Yeh HY. Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 177:81-88. [PMID: 31319963 DOI: 10.1016/j.cmpb.2019.05.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Clathrin is an adaptor protein that serves as the principal element of the vesicle-coating complex and is important for the membrane cleavage to dispense the invaginated vesicle from the plasma membrane. The functional loss of clathrins has been tied to a lot of human diseases, i.e., neurodegenerative disorders, cancer, Alzheimer's diseases, and so on. Therefore, creating a precise model to identify its functions is a crucial step towards understanding human diseases and designing drug targets. METHODS We present a deep learning model using a two-dimensional convolutional neural network (CNN) and position-specific scoring matrix (PSSM) profiles to identify clathrin proteins from high throughput sequences. Traditionally, the 2D CNNs take images as an input so we treated the PSSM profile with a 20 × 20 matrix as an image of 20 × 20 pixels. The input PSSM profile was then connected to our 2D CNN in which we set a variety of parameters to improve the performance of the model. Based on the 10-fold cross-validation results, hyper-parameter optimization process was employed to find the best model for our dataset. Finally, an independent dataset was used to assess the predictive ability of the current model. RESULTS Our model could identify clathrin proteins with sensitivity of 92.2%, specificity of 91.2%, accuracy of 91.8%, and MCC of 0.83 in the independent dataset. Compared to state-of-the-art traditional neural networks, our method achieved a significant improvement in all typical measurement metrics. CONCLUSIONS Throughout the proposed study, we provide an effective tool for investigating clathrin proteins and our achievement could promote the use of deep learning in biomedical research. We also provide source codes and dataset freely at https://www.github.com/khanhlee/deep-clathrin/.
Collapse
Affiliation(s)
- Nguyen Quoc Khanh Le
- Medical Humanities Research Cluster, School of Humanities, Nanyang Technological University, 48 Nanyang Ave, 639798 Singapore.
| | - Tuan-Tu Huynh
- Department of Electrical Electronic and Mechanical Engineering, Lac Hong University, No. 10 Huynh Van Nghe Road, Bien Hoa, Dong Nai, Vietnam
| | - Edward Kien Yee Yapp
- Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, #08-04, Innovis, 138634 Singapore
| | - Hui-Yuan Yeh
- Medical Humanities Research Cluster, School of Humanities, Nanyang Technological University, 48 Nanyang Ave, 639798 Singapore.
| |
Collapse
|
49
|
Zang J, Zheng B, Zhang X, Arosio P, Zhao G. Design and site-directed compartmentalization of gold nanoclusters within the intrasubunit interfaces of ferritin nanocage. J Nanobiotechnology 2019; 17:79. [PMID: 31277668 PMCID: PMC6612197 DOI: 10.1186/s12951-019-0512-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/26/2019] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Protein nanocages have emerged as popular nanocarriers for either drug delivery or biotemplates for the preparation of nanomaterials. However, only three interfaces, namely exterior surface, intersubunit and inner cavity, have been used as reaction sites for the above purposes with all known protein nanocages. On the other hand, how to control the site of Au NCs formed within a targeted protein template while maintaining the functionality of protein itself remains challenging. RESULTS In this work, inspired by compartmentalization in living systems, we firstly come up with the conception of "intrasubunit interfaces", located within subunit of protein nanocage. We built a new, specific compartment for fabrication of gold nanoclusters by genetic modification of the inherent ferroxidase center located within four-α-helix bundle of each ferritin subunit. This newly built compartment not only realizes the site-directed synthesis of gold nanoclusters but also has no effect on the functionality of ferritin itself such as encapsulation by its inner cavity. These redesigned composites can be further applied as fluorescent imaging agent and carriers for preparation of hybrid nanomaterials. CONCLUSIONS The designing strategy of intrasubunit interfaces opens a new way for future applications of cage-like proteins.
Collapse
Affiliation(s)
- Jiachen Zang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, 100083, China
| | - Bowen Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, 100083, China
| | - Xiuqing Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, 100083, China
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Guanghua Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
50
|
Piras IS, Krate J, Delvaux E, Nolz J, De Both MD, Mastroeni DF, Serrano GE, Sue LI, Beach TG, Coleman PD, Huentelman MJ. Association of AEBP1 and NRN1 RNA expression with Alzheimer's disease and neurofibrillary tangle density in middle temporal gyrus. Brain Res 2019; 1719:217-224. [PMID: 31176712 DOI: 10.1016/j.brainres.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
We explored RNA expression changes in the middle temporal gyrus (MTG) of Alzheimer's Disease patients (AD) by RNA sequencing the whole transcriptome of 8 AD and 8 Non-Demented (ND) controls. We used three additional expression datasets from related brain regions to validate the findings. The results highlighted the upregulation of AEBP1 and downregulation of NRN1 in AD, as well as their association with Braak staging and neurofibrillary tangles density. Furthermore, more than 400 protein-coding RNAs enriched for "Clathrin-mediated endocytosis" were validated in independent datasets from the same brain region. Finally, using in silico prediction analysis we found a signature of 52 non-protein coding RNAs that perturb key pathways involved in GABAergic transmission and peptide chain elongation. The association of AEBP1 in our data confirmed other published work examining gene expression in the hippocampus of AD patients. NRN1 is involved in neurite outgrowth, and in previous studies it has been shown to reverse synaptic defects and cognitive function impairment in Tg2576 mice. Finally, our results on non-protein coding RNAs suggest a role of these transcripts in altering synaptic and amyloid-β associated pathways.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA.
| | - Jonida Krate
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Elaine Delvaux
- Biodesign Institute, Neurodegenerative Disease Research Center, ASU, Tempe, AZ 85287, USA.
| | - Jennifer Nolz
- Biodesign Institute, Neurodegenerative Disease Research Center, ASU, Tempe, AZ 85287, USA.
| | - Matthew D De Both
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA.
| | - Diego F Mastroeni
- Biodesign Institute, Neurodegenerative Disease Research Center, ASU, Tempe, AZ 85287, USA.
| | - Geidy E Serrano
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ 85351, USA.
| | - Lucia I Sue
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ 85351, USA.
| | - Thomas G Beach
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ 85351, USA.
| | - Paul D Coleman
- Biodesign Institute, Neurodegenerative Disease Research Center, ASU, Tempe, AZ 85287, USA.
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA.
| |
Collapse
|