1
|
Shang Y, Liang Y, Zhang B, Wu W, Peng Y, Wang J, Zhang M, Niu C. Periostin-mediated activation of NF-κB signaling promotes tumor progression and chemoresistance in glioblastoma. Sci Rep 2025; 15:13955. [PMID: 40263417 PMCID: PMC12015317 DOI: 10.1038/s41598-025-92969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of diffuse glioma, characterized by high lethality. Temozolomide (TMZ)-based chemotherapy is a standard treatment for GBM, but development of chemoresistance poses a significant therapeutic challenge. Despite advances in understanding GBM biology, the mechanisms driving TMZ resistance remain unclear. Identifying vital molecular players involved in this resistance is crucial for developing new therapies. Our results indicated that periostin (POSTN) was significantly upregulated in GBM cell lines and patient samples, correlating with poorer clinical outcomes. POSTN overexpression enhanced GBM cell proliferation, migration, invasion, and chemoresistance, while lentiviral suppression of POSTN significantly reduced these behaviors. In vivo, bioluminescence imaging further confirmed the enhanced tumor growth associated with POSTN overexpression. Bioinformatics analysis was performed to explore the underlying molecular mechanism. The results revealed a strong correlation between POSTN and epithelial-mesenchymal transition (EMT) process and the tumor necrosis factor α (TNFα)-NF-κB signaling pathway. Moreover, exogenous POSTN silencing reduced IκB-kinase α (IKKα) phosphorylation, thereby decreasing NF-κB expression by limiting IκBα degradation. Collectively, our study demonstrated that POSTN-induced activation of NF-κB signaling and EMT processes promoted the malignancy and chemoresistance of GBM, suggesting that POSTN may serve as a reliable prognostic biomarker and potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Yu Shang
- PET-CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yuxia Liang
- Department of Physical Examination, The First Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, 710061, Shaanxi, China
| | - Beichen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yihao Peng
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jin Wang
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Ming Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Chen Niu
- PET-CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- Department of Information, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Lei Y, Zhong C, Zhang J, Zheng Q, Xu Y, Li Z, Huang C, Ren T. Senescent lung fibroblasts in idiopathic pulmonary fibrosis facilitate non-small cell lung cancer progression by secreting exosomal MMP1. Oncogene 2025; 44:769-781. [PMID: 39663393 PMCID: PMC11888990 DOI: 10.1038/s41388-024-03236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Lung cancer is a fatal complication of idiopathic pulmonary fibrosis (IPF) with a poor prognosis. Current treatments are insufficient in improving the prognosis of lung cancer patients with comorbid idiopathic pulmonary fibrosis (IPF-LC). Senescent fibroblasts, as stromal cells in the tumor microenvironment, influence tumor progression via exosomes. With evidence that fibroblast senescence is an important mechanism of IPF, we investigated the impact of senescent IPF lung fibroblast (diseased human lung fibroblasts, DHLF)-derived exosomes on non-small cell lung cancer (NSCLC). We found DHLF expressed significant senescence markers, and promoted NSCLC proliferation, invasion, and epithelial-mesenchymal transition. Specifically, senescent DHLF showed strong secretion of exosomes, and these exosomes enhanced the proliferation and colony-forming ability of cancer cells. Proteomic analysis showed DHLF-derived exosomes exhibited upregulated senescence-associated secretory phenotype (SASP) factors, notably MMP1, which activates the surface receptor PAR1. Knocking down MMP1 or using PAR1 inhibitors reduced the tumor-promoting effects of DHLF-derived exosomes in vivo and in vitro. Mechanistically, MMP1 acted by activating the PI3K-AKT-mTOR pathway. In conclusion, our results suggest that exosomal MMP1 derived from senescent IPF fibroblasts promotes NSCLC proliferation and colony formation by targeting PAR1 and activating the PI3K-AKT-mTOR pathway. These findings provide a novel therapeutic approach for patients with IPF-LC.
Collapse
Affiliation(s)
- Yuqiong Lei
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cheng Zhong
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jingyuan Zhang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qi Zheng
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongle Xu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhoubin Li
- Department of Lung Transplantation and Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Chenwen Huang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Department of Clinical Research Centre, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Stem Cell Center, Shanghai Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
3
|
Krzistetzko J, Géraud C, Dormann C, Riedel A, Leibing T. Phenotypical and biochemical characterization of murine psoriasiform and fibrotic skin disease models in Stabilin-deficient mice. FEBS Open Bio 2024; 14:1455-1470. [PMID: 38946049 PMCID: PMC11492309 DOI: 10.1002/2211-5463.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024] Open
Abstract
Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are scavenger receptors expressed by liver sinusoidal endothelial cells (LSECs). The Stabilin-mediated scavenging function is responsible for regulating the molecular composition of circulating blood in mammals. Stab1 and Stab2 have been shown to influence fibrosis in liver and kidneys and to modulate inflammation in atherosclerosis. In this context, circulating and localized TGFBi and POSTN are differentially controlled by the Stabilins as their receptors. To assess Stab1 and Stab2 functions in inflammatory and fibrotic skin disease, topical Imiquimod (IMQ) was used to induce psoriasis-like skin lesions in mice and Bleomycin (BLM) was applied subcutaneously to induce scleroderma-like effects in the skin. The topical treatment with IMQ, as expected, led to psoriasis-like changes in the skin of mice, including increased epidermal thickness and significant weight loss. Clinical severity was reduced in Stab2-deficient compared to Stab1-deficient mice. We did not observe differential effects in the skin of Stabilin-deficient mice after bleomycin injection. Interestingly, treatment with IMQ led to a significant increase of Stabilin ligand TGFBi plasma levels in Stab2-/- mice, treatment with BLM resulted in a significant decrease in TGFBi levels in Stab1-/- mice. Overall, Stab1 and Stab2 deficiency resulted in minor alterations of the disease phenotypes accompanied by alterations of circulating ligands in the blood in response to the disease models. Stabilin-mediated clearance of TGFBi was altered in these disease processes. Taken together our results suggest that Stabilin deficiency-associated plasma alterations may interfere with preclinical disease severity and treatment responses in patients.
Collapse
Affiliation(s)
- Jessica Krzistetzko
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Christof Dormann
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Anna Riedel
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| |
Collapse
|
4
|
Yadav P, Vengoji R, Jain M, Batra SK, Shonka N. Pathophysiological role of histamine signaling and its implications in glioblastoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189146. [PMID: 38955315 PMCID: PMC11770814 DOI: 10.1016/j.bbcan.2024.189146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Glioblastoma (GBM), an extremely aggressive and prevalent malignant brain tumor, remains a challenge to treat. Despite a multimodality treatment approach, GBM recurrence remains inevitable, particularly with the emergence of temozolomide (TMZ) resistance and limited treatment options. Surprisingly, previous studies show that a history of allergies, atopy, or asthma is inversely associated with GBM risk. Further, the electronic medical record at the University Hospital of Lausanne showed that the GBM patients taking antihistamine during treatment had better survival. Histamine is an essential neurotransmitter in the brain and plays a significant role in regulating sleep, hormonal balance, and cognitive functions. Elevated levels of histamine and increased histamine receptor expression have been found in different tumors and their microenvironments, including GBM. High histamine 1 receptor (HRH1) expression is inversely related to overall and progression-free survival in GBM patients, further emphasizing the role of histamine in disease progression. This review aims to provide insights into the challenges of GBM treatment, the role of histamine in GBM progression, and the rationale for considering antihistamines as targeted therapy. The review concludes by encouraging further investigation into antihistamine mechanisms and their impact on the tumor microenvironment.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-6840, USA.
| |
Collapse
|
5
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| | - Vladimir A. Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| |
Collapse
|
6
|
Wang J, Zhang N, Ding X, Fu C, Li X, Li B, Ding J, Sun T. Targeted nanostrategies eliminate pre-metastatic niche of cancer. NANO RESEARCH 2024; 17:5358-5373. [DOI: 10.1007/s12274-024-6412-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 05/14/2025]
|
7
|
Li J, Shi S, Yan W, Shen Y, Liu C, Xu J, Xu G, Lu L, Song H. Preliminary Mechanism of Glial Maturation Factor β on Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Adv Biol (Weinh) 2024; 8:e2300623. [PMID: 38640923 DOI: 10.1002/adbi.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Recent evidence suggests that glia maturation factor β (GMFβ) is important in the pathogenesis of pulmonary arterial hpertension (PAH), but the underlying mechanism is unknown. To clarify whether GMFβ can be involved in pulmonary vascular remodeling and to explore the role of the IL-6-STAT3 pathway in this process, the expression of GMFβ in PAH rats is examined and the expression of downstream molecules including periostin (POSTN) and interleukin-6 (IL-6) is measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The location and expression of POSTN is also tested in PAH rats using immunofluorescence. It is proved that GMFβ is upregulated in the lungs of PAH rats. Knockout GMFβ alleviated the MCT-PAH by reducing right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and pulmonary vascular remodeling. Moreover, the inflammation of the pulmonary vasculature is ameliorated in PAH rats with GMFβ absent. In addition, the IL-6-STAT3 signaling pathway is activated in PAH; knockout GMFβ reduced POSTN and IL-6 production by inhibiting the IL-6-STAT3 signaling pathway. Taken together, these findings suggest that knockout GMFβ ameliorates PAH in rats by inhibiting the IL-6-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Rehabilitation Medicine, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Muping District, Yantai, 264199, China
| | - Si Shi
- Department of Ophthalmology, Shanghai Tongji Hospital affiliated to Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xincun Rd, Putuo District, Shanghai, 200072, China
| | - Wenwen Yan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| | - Caiying Liu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Jinyuan Xu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Guotong Xu
- Department of Pharmacology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Lixia Lu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Haoming Song
- Department of General Practice, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| |
Collapse
|
8
|
Xu Y, Wang J, He Z, Rao Z, Zhang Z, Zhou J, Zhou T, Wang H. A review on the effect of COX-2-mediated mechanisms on development and progression of gastric cancer induced by nicotine. Biochem Pharmacol 2024; 220:115980. [PMID: 38081368 DOI: 10.1016/j.bcp.2023.115980] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Smoking is a documented risk factor for cancer, e.g., gastric cancer. Nicotine, the principal tobacco alkaloid, would exert its role of contribution to gastric cancer development and progression through nicotinic acetylcholine receptors (nAChRs) and β-adrenergic receptors (β-ARs), which then promote cancer cell proliferation, migration and invasion. As a key isoenzyme in conversion of arachidonic acid to prostaglandins, cyclooxygenase-2 (COX-2) has been demonstrated to have a wide range of effects in carcinogenesis and tumor development. At present, many studies have reported the effect of nicotine on gastric cancer by binding to nAChR, as well as indirectly stimulating β-AR to mediate COX-2-related pathways. This review summarizes these studies, and also proposes more potential COX-2-mediated mechanisms. These events might contribute to the growth and progression of gastric cancer exposed to nicotine through tobacco smoke or cigarette substitutes. Also, this review article has therefore the potential not only to make a significant contribution to the treatment and prognosis of gastric cancer for smokers but also to the clinical application of COX-2 antagonists. In addition, this work also discusses the considerable challenges of this field with special reference to the future perspective of COX-2-mediated mechanisms in development and progression of gastric cancer induced by nicotine.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Juan Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Rao
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
9
|
Takatsu F, Suzawa K, Tomida S, Thu YM, Sakaguchi M, Toji T, Ohki M, Tsudaka S, Date K, Matsuda N, Iwata K, Zhu Y, Nakata K, Shien K, Yamamoto H, Nakayama A, Okazaki M, Sugimoto S, Toyooka S. Periostin secreted by cancer-associated fibroblasts promotes cancer progression and drug resistance in non-small cell lung cancer. J Mol Med (Berl) 2023; 101:1603-1614. [PMID: 37831111 DOI: 10.1007/s00109-023-02384-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are important components in the tumor microenvironment, and we sought to identify effective therapeutic targets in CAFs for non-small cell lung cancer (NSCLC). In this study, we established fibroblast cell lines from the cancerous and non-cancerous parts of surgical lung specimens from patients with NSCLC and evaluated the differences in behaviors towards NSCLC cells. RNA sequencing analysis was performed to investigate the differentially expressed genes between normal fibroblasts (NFs) and CAFs, and we identified that the expression of periostin (POSTN), which is known to be overexpressed in various solid tumors and promote cancer progression, was significantly higher in CAFs than in NFs. POSTN increased cell proliferation via NSCLC cells' ERK pathway activation and induced epithelial-mesenchymal transition (EMT), which improved migration in vitro. In addition, POSTN knockdown in CAFs suppressed these effects, and in vivo experiments demonstrated that the POSTN knockdown improved the sensitivity of EGFR-mutant NSCLC cells for osimertinib treatment. Collectively, our results showed that CAF-derived POSTN is involved in tumor growth, migration, EMT induction, and drug resistance in NSCLC. Targeting CAF-secreted POSTN could be a potential therapeutic strategy for NSCLC. KEY MESSAGES: • POSTN is significantly upregulated in CAFs compared to normal fibroblasts in NCSLC. • POSTN increases cell proliferation via activation of the NSCLC cells' ERK pathway. • POSTN induces EMT in NSCLC cells and improves the migration ability. • POSTN knockdown improves the sensitivity for osimertinib in EGFR-mutant NSCLC cells.
Collapse
Affiliation(s)
- Fumiaki Takatsu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yin Min Thu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Tomohiro Toji
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Masayoshi Ohki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shimpei Tsudaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keiichi Date
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naoki Matsuda
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuma Iwata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yidan Zhu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kentaro Nakata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akiko Nakayama
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
10
|
Cho A, Jin W, Lee J, Shin N, Lee MS, Li L, Yang SH, Park KS, Yang CW, Kim DK, Oh YK, Lim CS, Lee JP. Periostin deficiency attenuates kidney fibrosis in diabetic nephropathy by improving pancreatic β-cell dysfunction and reducing kidney EMT. Sci Rep 2023; 13:17599. [PMID: 37845302 PMCID: PMC10579313 DOI: 10.1038/s41598-023-44177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with kidney fibrosis. A previous study revealed that periostin (POSTN) contributes to kidney fibrosis. This study examined the role of POSTN in DN. The urinary concentrations of POSTN and TNC increased according to the severity of DN in human samples. Streptozotocin (STZ) was administered after unilateral nephrectomy (UNXSTZ) to induce DN in wild-type and Postn-null mice. Four experimental groups were generated: wild-typeham (WT Sham), wild-type UNXSTZ (WT STZ), Postn-null Sham (KO Sham), and Postn-null UNXSTZ (KO STZ). After 20 weeks, the KO STZ group had lower levels of urine albumin excretion, glomerular sclerosis, and interstitial fibrosis than those of the WT STZ group. Additionally, the KO STZ group had lower expression of fibrosis markers, including TNC. The KO STZ group showed better glucose regulation than the WT STZ model. Furthermore, the KO STZ group exhibited significantly preserved pancreatic islet integrity and insulin expression. HK-2 cells were used to observe the aggravation of fibrosis caused by POSTN under TGF-β conditions. We stimulated INS-1 cells with streptozotocin and evaluated the viability of these cells. The anti-POSTN antibody treatment of INS-1 cells with streptozotocin resulted in higher cell viability than that with treatment with streptozotocin alone. The absence of POSTN in DN contributes to renal fibrosis alleviation by improving pancreatic β-cell function. Additionally, there is an association between POSTN and TNC.
Collapse
Affiliation(s)
- Ara Cho
- Translational Medicine Major, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wencheng Jin
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nayeon Shin
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Myoung Seok Lee
- Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Lilin Li
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Critical Care Medicine, Yanbian University Hospital, Yanji, Jilin, China
| | - Seung Hee Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul Woo Yang
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Translational Medicine Major, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Suzuki M, Ototake Y, Akita A, Asami M, Ikeda N, Watanabe T, Kanaoka M, Yamaguchi Y. Periostin-An inducer of pro-fibrotic phenotype in monocytes and monocyte-derived macrophages in systemic sclerosis. PLoS One 2023; 18:e0281881. [PMID: 37531393 PMCID: PMC10395906 DOI: 10.1371/journal.pone.0281881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/02/2023] [Indexed: 08/04/2023] Open
Abstract
Enhanced circulating blood periostin levels positively correlate with disease severity in patients with systemic sclerosis (SSc). Monocytes/macrophages are predominantly associated with the pathogenesis of SSc, but the effect of periostin on immune cells, particularly monocytes and macrophages, still remains to be elucidated. We examined the effect of periostin on monocytes and monocyte-derived macrophages (MDM) in the pathogenesis of SSc. The modified Rodnan total skin thickness score in patients with dcSSc was positively correlated with the proportion of CD80-CD206+ M2 cells. The proportion of M2 macrophages was significantly reduced in rPn-stimulated MDMs of HCs compared to that of SSc patients. The mRNA expression of pro-fibrotic cytokines, chemokines, and ECM proteins was significantly upregulated in rPn-stimulated monocytes and MDMs as compared to that of control monocytes and MDMs. A similar trend was observed for protein expression in the respective MDMs. In addition, the ratio of migrated cells was significantly higher in rPn-stimulated as compared to control monocytes. These results suggest that periostin promotes inflammation and fibrosis in the pathogenesis of SSc by possible modulation of monocytes/macrophages.
Collapse
Affiliation(s)
- Mao Suzuki
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Ototake
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asami Akita
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miho Asami
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Ikeda
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoya Watanabe
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miwa Kanaoka
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
12
|
Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188869. [PMID: 36842767 DOI: 10.1016/j.bbcan.2023.188869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/28/2023]
Abstract
Pancreatic cancer (PC) is very deadly and difficult to treat. The presence of hypoxia has been shown to increase the probability of cancer developing and spreading. Pancreatic ductal adenocarcinoma (PDAC/PC) has traditionally viewed a highly lethal form of cancer due to its high occurrence of early metastases. Desmoplasia/stroma is often thick and collagenous, with pancreatic stellate cells as the primary source (PSCs). Cancer cells and other stromal cells interact with PSCs, promoting disease development. The hepatocyte growth factor (HGF)/c-MET pathway have been proposed as a growth factor mechanism mediating this interaction. Human growth factor (HGF) is secreted by pancreatic stellate cells (PSCs), and its receptor, c-MET, is generated by pancreatic cancer cells and endothelial cells. Hypoxia is frequent in malignant tumors, particularly pancreatic (PC). Hypoxia results from limitless tumor development and promotes survival, progression, and invasion. Hypoxic is becoming a critical driver and therapeutic target of pancreatic cancer as its hypoxia microenvironment is defined. Recent breakthroughs in cancer biology show that hypoxia promotes tumor proliferation, aggressiveness, and therapeutic resistance. Hypoxia-inducible factors (HIFs) stabilize hypoxia signaling. Hypoxia cMet is a key component of pancreatic tumor microenvironments, which also have a fibrotic response, that hypoxia, promotes and modulates. c-Met is a tyrosine-protein kinase. As describe it simply, the MET gene in humans' codes for a protein called hepatocyte growth factor receptor (HGFR). Most cancerous tumors and pancreatic cancer in particular, suffer from a lack of oxygen (PC). Due to unrestrained tumor development, hypoxia develops, actively contributing to tumor survival, progression, and invasion. As the processes by which hypoxia signaling promotes invasion and metastasis become clear, c-MET has emerged as an important determinant of pancreatic cancer malignancy and a potential pharmacological target. This manuscript provides the most current findings on the role of hypoxia and HGF/c-MET expression in the treatment of pancreatic cancer.
Collapse
|
13
|
Wenhua S, Tsunematsu T, Umeda M, Tawara H, Fujiwara N, Mouri Y, Arakaki R, Ishimaru N, Kudo Y. Cancer cell-derived novel periostin isoform promotes invasion in head and neck squamous cell carcinoma. Cancer Med 2023; 12:8510-8525. [PMID: 36691359 PMCID: PMC10134278 DOI: 10.1002/cam4.5601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
It recently has been reported that partial-epithelial-mesenchymal transition (p-EMT) program is associated with metastasis in head and neck squamous cell carcinoma (HNSCC). We previously have identified POSTN (which encodes periostin) as an invasion-promoting molecule in HNSCC. Interestingly, POSTN expression is frequently observed in cancer cells with higher p-EMT score by using a previous single-cell transcriptomic data of HNSCC cases. Although it is known that POSTN has 11 splicing variants, the role of them has not been determined in HNSCC. Here, we found that HNSCC cells with EMT features expressed POSTN isoforms, Iso3 (lacking exon 17 and 21) and Iso5 (lacking exon 17), whereas fibroblast expressed Iso3 and Iso4 (lacking exon 17, 18, and 21). The expression of POSTN Iso3 and Iso4 are known to be widely observed in various cell types including stromal cells. Therefore, we focused on the role of novel cancer cell-derived POSTN isoform, Iso5, in HNSCC. Single overexpression of POSTN Iso5 as well as Iso3 promoted invasion. Surprisingly, Iso5 synergistically promoted invasion together with Iso3. Notably, Iso5 as well as Iso3 upregulated p-EMT-related genes. We suggest that a novel cancer-specific POSTN isoform lacking exon 17 (Iso5) can be a useful marker for detecting cancer cells undergoing p-EMT. Moreover, a POSTN Iso5 can be a novel target for diagnosis and therapy in HNSCC.
Collapse
Affiliation(s)
- Shao Wenhua
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takaaki Tsunematsu
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaaki Umeda
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroaki Tawara
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Natsumi Fujiwara
- Department of Oral Healthcare Promotion, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasuhiro Mouri
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
14
|
Lin SC, Liao YC, Chen PM, Yang YY, Wang YH, Tung SL, Chuang CM, Sung YW, Jang TH, Chuang SE, Wang LH. Periostin promotes ovarian cancer metastasis by enhancing M2 macrophages and cancer-associated fibroblasts via integrin-mediated NF-κB and TGF-β2 signaling. J Biomed Sci 2022; 29:109. [PMID: 36550569 PMCID: PMC9784270 DOI: 10.1186/s12929-022-00888-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ovarian cancer has the highest mortality among gynecological cancers due to late diagnosis and lack of effective targeted therapy. Although the study of interplay between cancer cells with their microenvironment is emerging, how ovarian cancer triggers signaling that coordinates with immune cells to promote metastasis is still elusive. METHODS Microarray and bioinformatics analysis of low and highly invasive ovarian cancer cell lines were used to reveal periostin (POSTN), a matrix protein with multifunctions in cancer, with elevated expression in the highly invasive cells. Anchorage independent assay, Western blot, RNA interference, confocal analysis and neutralizing antibody treatment were performed to analyze the effects of POSTN on tumor promotion and to explore the underlying mechanism. Chemotaxis, flow cytometry and cytokine array analyses were undertaken to analyze the involvement of POSTN in cancer-associated fibroblast (CAF) and macrophage modulation. Correlations between POSTN expression levels and clinical characteristics were analyzed using the Oncomine, commercial ovarian cancer cDNA and China Medical University Hospital patient cohort. In vivo effect of POSTN on metastasis was studied using a mouse xenograft model. RESULTS Expression of POSTN was found to be elevated in highly invasive ovarian cancer cells. We observed that POSTN was co-localized with integrin β3 and integrin β5, which was important for POSTN-mediated activation of ERK and NF-κB. Ectopic expression of POSTN enhanced whereas knockdown of POSTN decreased cancer cell migration and invasion in vitro, as well as tumor growth and metastasis in vivo. POSTN enhanced integrin/ERK/NF-κB signaling through an autocrine effect on cancer cells to produce macrophage attracting and mobilizing cytokines including MIP-1β, MCP-1, TNFα and RANTES resulting in increased chemotaxis of THP-1 monocytes and their polarization to M2 macrophages in vitro. In agreement, tumors derived from POSTN-overexpressing SKOV3 harbored more tumor-associated macrophages than the control tumors. POSTN induced TGF-β2 expression from ovarian cancer cells to promote activation of adipose-derived stromal cells to become CAF-like cells expressing alpha smooth muscle actin and fibroblast activation protein alpha. Consistently, increased CAFs were observed in POSTN overexpressing SKOV3 cells-derived metastatic tumors. In clinical relevance, we found that expression of POSTN was positively correlated with advanced-stage diseases and poor overall survival of patients. CONCLUSIONS Our study revealed a POSTN-integrin-NF-κB-mediated signaling and its involvement in enhancing M2 macrophages and CAFs, which could potentially participate in promoting tumor growth. Our results suggest that POSTN could be a useful prognosis marker and potential therapeutic target.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine and Chinese Medicine Research Center, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Chu Liao
- grid.59784.370000000406229172Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Ming Chen
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine and Chinese Medicine Research Center, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.452796.b0000 0004 0634 3637Research Assistant Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Ya-Yu Yang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Hsiang Wang
- grid.59784.370000000406229172Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Shiao-Lin Tung
- Department of Hematology and Oncology, Ton-Yen General Hospital, Hsinchu, Taiwan ,Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Chi-Mu Chuang
- grid.278247.c0000 0004 0604 5314Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Wen Sung
- grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,grid.411508.90000 0004 0572 9415Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Te-Hsuan Jang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Shuang-En Chuang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Lu-Hai Wang
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine and Chinese Medicine Research Center, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.59784.370000000406229172Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
15
|
Hosen SMZ, Uddin MN, Xu Z, Buckley BJ, Perera C, Pang TCY, Mekapogu AR, Moni MA, Notta F, Gallinger S, Pirola R, Wilson J, Ranson M, Goldstein D, Apte M. Metastatic phenotype and immunosuppressive tumour microenvironment in pancreatic ductal adenocarcinoma: Key role of the urokinase plasminogen activator (PLAU). Front Immunol 2022; 13:1060957. [PMID: 36591282 PMCID: PMC9794594 DOI: 10.3389/fimmu.2022.1060957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Previous studies have revealed the role of dysregulated urokinase plasminogen activator (encoded by PLAU) expression and activity in several pathways associated with cancer progression. However, systematic investigation into the association of PLAU expression with factors that modulate PDAC (pancreatic ductal adenocarcinoma) progression is lacking, such as those affecting stromal (pancreatic stellate cell, PSC)-cancer cell interactions, tumour immunity, PDAC subtypes and clinical outcomes from potential PLAU inhibition. METHODS This study used an integrated bioinformatics approach to identify prognostic markers correlated with PLAU expression using different transcriptomics, proteomics, and clinical data sets. We then determined the association of dysregulated PLAU and correlated signatures with oncogenic pathways, metastatic phenotypes, stroma, immunosuppressive tumour microenvironment (TME) and clinical outcome. Finally, using an in vivo orthotopic model of pancreatic cancer, we confirmed the predicted effect of inhibiting PLAU on tumour growth and metastasis. RESULTS Our analyses revealed that PLAU upregulation is not only associated with numerous other prognostic markers but also associated with the activation of various oncogenic signalling pathways, aggressive phenotypes relevant to PDAC growth and metastasis, such as proliferation, epithelial-mesenchymal transition (EMT), stemness, hypoxia, extracellular cell matrix (ECM) degradation, upregulation of stromal signatures, and immune suppression in the tumour microenvironment (TME). Moreover, the upregulation of PLAU was directly connected with signalling pathways known to mediate PSC-cancer cell interactions. Furthermore, PLAU upregulation was associated with the aggressive basal/squamous phenotype of PDAC and significantly reduced overall survival, indicating that this subset of patients may benefit from therapeutic interventions to inhibit PLAU activity. Our studies with a clinically relevant orthotopic pancreatic model showed that even short-term PLAU inhibition is sufficient to significantly halt tumour growth and, importantly, eliminate visible metastasis. CONCLUSION Elevated PLAU correlates with increased aggressive phenotypes, stromal score, and immune suppression in PDAC. PLAU upregulation is also closely associated with the basal subtype type of PDAC; patients with this subtype are at high risk of mortality from the disease and may benefit from therapeutic targeting of PLAU.
Collapse
Affiliation(s)
- S. M. Zahid Hosen
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Zhihong Xu
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Benjamin J. Buckley
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Chamini Perera
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Tony C. Y. Pang
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, The University of Sydney, Sydney, NSW, Australia
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ron Pirola
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jeremy Wilson
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Marie Ranson
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Minoti Apte
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
16
|
Pană N, Căpușă C. Periostin as a Biomarker in the Setting of Glomerular Diseases-A Review of the Current Literature. Biomedicines 2022; 10:biomedicines10123211. [PMID: 36551967 PMCID: PMC9775428 DOI: 10.3390/biomedicines10123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is a highly prevalent and potential progressive condition with life-threatening consequences. Glomerular diseases (glomerulopathies) are causes of CKD that are potentially amenable by specific therapies. Significant resources have been invested in the identification of novel biomarkers of CKD progression and new targets for treatment. By using experimental models of kidney diseases, periostin has been identified amongst the most represented matricellular proteins that are commonly involved in the inflammation and fibrosis that characterize progressive kidney diseases. Periostin is highly expressed during organogenesis, with scarce expression in mature healthy tissues, but it is upregulated in multiple disease settings characterized by tissue injury and remodeling. Periostin was the most highly expressed matriceal protein in both animal models and in patients with glomerulopathies. Given that periostin is readily secreted from injury sites, and the variations in its humoral levels compared to the normal state were easily detectable, its potential role as a biomarker is suggested. Moreover, periostin expression was correlated with the degree of histological damage and with kidney function decline in patients with CKD secondary to both inflammatory (IgA nephropathy) and non-inflammatory (membranous nephropathy) glomerulopathies, while also displaying variability secondary to treatment response. The scope of this review is to summarize the existing evidence that supports the role of periostin as a novel biomarker in glomerulopathies.
Collapse
Affiliation(s)
- Nicolae Pană
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Diaverum Morarilor Clinic of Nephrology and Dialysis, 022452 Bucharest, Romania
| | - Cristina Căpușă
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- "Dr Carol Davila" Teaching Hospital of Nephrology, 010731 Bucharest, Romania
| |
Collapse
|
17
|
Toledo B, Picon-Ruiz M, Marchal JA, Perán M. Dual Role of Fibroblasts Educated by Tumour in Cancer Behavior and Therapeutic Perspectives. Int J Mol Sci 2022; 23:15576. [PMID: 36555218 PMCID: PMC9778751 DOI: 10.3390/ijms232415576] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Tumours are complex systems with dynamic interactions between tumour cells, non-tumour cells, and extracellular components that comprise the tumour microenvironment (TME). The majority of TME's cells are cancer-associated fibroblasts (CAFs), which are crucial in extracellular matrix (ECM) construction, tumour metabolism, immunology, adaptive chemoresistance, and tumour cell motility. CAF subtypes have been identified based on the expression of protein markers. CAFs may act as promoters or suppressors in tumour cells depending on a variety of factors, including cancer stage. Indeed, CAFs have been shown to promote tumour growth, survival and spread, and secretome changes, but they can also slow tumourigenesis at an early stage through mechanisms that are still poorly understood. Stromal-cancer interactions are governed by a variety of soluble factors that determine the outcome of the tumourigenic process. Cancer cells release factors that enhance the ability of fibroblasts to secrete multiple tumour-promoting chemokines, acting on malignant cells to promote proliferation, migration, and invasion. This crosstalk between CAFs and tumour cells has given new prominence to the stromal cells, from being considered as mere physical support to becoming key players in the tumour process. Here, we focus on the concept of cancer as a non-healing wound and the relevance of chronic inflammation to tumour initiation. In addition, we review CAFs heterogeneous origins and markers together with the potential therapeutic implications of CAFs "re-education" and/or targeting tumour progression inhibition.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
| | - Manuel Picon-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| |
Collapse
|
18
|
Dorafshan S, Razmi M, Safaei S, Gentilin E, Madjd Z, Ghods R. Periostin: biology and function in cancer. Cancer Cell Int 2022; 22:315. [PMID: 36224629 PMCID: PMC9555118 DOI: 10.1186/s12935-022-02714-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Periostin (POSTN), a member of the matricellular protein family, is a secreted adhesion-related protein produced in the periosteum and periodontal ligaments. Matricellular proteins are a nonstructural family of extracellular matrix (ECM) proteins that regulate a wide range of biological processes in both normal and pathological conditions. Recent studies have demonstrated the key roles of these ECM proteins in the tumor microenvironment. Furthermore, periostin is an essential regulator of bone and tooth formation and maintenance, as well as cardiac development. Also, periostin interacts with multiple cell-surface receptors, especially integrins, and triggers signals that promote tumor growth. According to recent studies, these signals are implicated in cancer cell survival, epithelial-mesenchymal transition (EMT), invasion, and metastasis. In this review, we will summarize the most current data regarding periostin, its structure and isoforms, expressions, functions, and regulation in normal and cancerous tissues. Emphasis is placed on its association with cancer progression, and also future potential for periostin-targeted therapeutic approaches will be explored.
Collapse
Affiliation(s)
- Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Erica Gentilin
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129, Padua, Italy
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
19
|
Wasik A, Ratajczak-Wielgomas K, Badzinski A, Dziegiel P, Podhorska-Okolow M. The Role of Periostin in Angiogenesis and Lymphangiogenesis in Tumors. Cancers (Basel) 2022; 14:cancers14174225. [PMID: 36077762 PMCID: PMC9454705 DOI: 10.3390/cancers14174225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancers are common diseases that affect people of all ages worldwide. For this reason, continuous attempts are being made to improve current therapeutic options. The formation of metastases significantly decreases patient survival. Therefore, understanding the mechanisms that are involved in this process seems to be crucial for effective cancer therapy. Cancer dissemination occurs mainly through blood and lymphatic vessels. As a result, many scientists have conducted a number of studies on the formation of new vessels. Many studies have shown that proangiogenic factors and the extracellular matrix protein, i.e., periostin, may be important in tumor angio- and lymphangiogenesis, thus contributing to metastasis formation and worsening of the prognosis. Abstract Periostin (POSTN) is a protein that is part of the extracellular matrix (ECM) and which significantly affects the control of intracellular signaling pathways (PI3K-AKT, FAK) through binding integrin receptors (αvβ3, αvβ5, α6β4). In addition, increased POSTN expression enhances the expression of VEGF family growth factors and promotes Erk phosphorylation. As a result, this glycoprotein controls the Erk/VEGF pathway. Therefore, it plays a crucial role in the formation of new blood and lymphatic vessels, which may be significant in the process of metastasis. Moreover, POSTN is involved in the proliferation, progression, migration and epithelial-mesenchymal transition (EMT) of tumor cells. Its increased expression has been detected in many cancers, including breast cancer, ovarian cancer, non-small cell lung carcinoma and glioblastoma. Many studies have shown that this protein may be an independent prognostic and predictive factor in many cancers, which may influence the choice of optimal therapy.
Collapse
Affiliation(s)
- Adrian Wasik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Arkadiusz Badzinski
- Silesian Nanomicroscopy Center, Silesia LabMed: Research and Implementation Center, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Marzenna Podhorska-Okolow
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Department of Ultrastructural Research, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
20
|
Yang J, Guo W, Lu M. Recent Perspectives on the Mechanism of Recurrence After Ablation of Hepatocellular Carcinoma: A Mini-Review. Front Oncol 2022; 12:895678. [PMID: 36081558 PMCID: PMC9445307 DOI: 10.3389/fonc.2022.895678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Hepatectomy, liver transplantation, and ablation are the three radical treatments for early-stage hepatocellular carcinoma (ESHCC), but not all patients are fit for or can tolerate surgery; moreover, liver donors are limited. Therefore, ablation plays an important role in the treatment of ESHCC. However, some studies have shown that ablation has a higher local recurrence (LR) rate than hepatectomy and liver transplantation. The specific mechanism is unknown. The latest perspectives on the mechanism of recurrence after ablation of HCC were described and summarized. In this review, we discussed the possible mechanisms of recurrence after ablation of HCC, including epithelial–mesenchymal transition (EMT), activating autophagy, changes in non-coding RNA, and changes in the tumor microenvironment. A systematic and comprehensive understanding of the mechanism will contribute to the research and development of related treatment, combined with ablation to improve the therapeutic effect in patients with ESHCC.
Collapse
Affiliation(s)
- Jianquan Yang
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen Guo
- Institute of Materia Medica, North Sichuan Medical College, Nanchong, China
| | - Man Lu
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Man Lu,
| |
Collapse
|
21
|
Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver cancer. Biomark Res 2022; 10:59. [PMID: 35971182 PMCID: PMC9380339 DOI: 10.1186/s40364-022-00406-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors worldwide, it is ranked sixth in incidence and fourth in mortality. According to the distinct origin of malignant tumor cells, liver cancer is mainly divided into hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Since most cases are diagnosed at an advanced stage, the prognosis of liver cancer is poor. Tumor growth depends on the dynamic interaction of various cellular components in the tumor microenvironment (TME). As the most abundant components of tumor stroma, cancer-associated fibroblasts (CAFs) have been involved in the progression of liver cancer. The interplay between CAFs and tumor cells, immune cells, or vascular endothelial cells in the TME through direct cell-to-cell contact or indirect paracrine interaction, affects the initiation and development of tumors. Additionally, CAFs are not a homogeneous cell population in liver cancer. Recently, single-cell sequencing technology has been used to help better understand the diversity of CAFs in liver cancer. In this review, we mainly update the knowledge of CAFs both in HCC and CCA, including their cell origins, chemoresistance, tumor stemness induction, tumor immune microenvironment formation, and the role of tumor cells on CAFs. Understanding the context-dependent role of different CAFs subsets provides new strategies for precise liver cancer treatment.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Erwei Zhu
- The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang, 222006, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
22
|
Miyai K, Kawamura K, Ito K, Matsukuma S, Tsuda H. Prognostic impact of stromal periostin expression in upper urinary tract urothelial carcinoma. BMC Cancer 2022; 22:787. [PMID: 35850759 PMCID: PMC9290244 DOI: 10.1186/s12885-022-09893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Periostin is an extracellular matrix protein that has been known to be implicated in fibrillogenesis and cell migration, including cancer metastasis. Periostin overexpression in cancer cells and/or intervening stroma is usually related to tumor progression and poor patient outcomes in various human cancers; however, its role in urothelial carcinoma, especially upper urinary tract urothelial carcinomas (UTUCs), remains inconclusive. Methods Samples from 126 consecutive cases of invasive UTUC (69 renal pelvic cancers and 57 ureteral cancers) were histologically reviewed and analyzed for periostin expression using immunohistochemistry. The intensities of immunoreactivity and the fraction of positive cancer cells and stroma (i.e., epithelial and stromal expression, respectively) were classified into four categories each (intensity, 0–3; fraction, 0–25% = 1; 26–50% = 2; 51–75% = 3; and > 75% = 4). The overall score was determined by multiplying both scores, and overall scores ≥ 6 were considered to indicate high periostin expression. Results Among 126 UTUCs, 55 (44%; 27 renal pelvic and 28 ureteral cancers) showed high stromal periostin expression. None of the cases were considered to have high epithelial periostin expression. High stromal periostin expression was associated with non-papillary gross findings, higher pathological T category, lymphovascular invasion, concomitant carcinoma in situ, subtype histology, lymph node metastasis, positive surgical margins, high tumor budding, and high tumor-associated immune cell status. Multivariate analysis revealed that high stromal periostin expression was an independent predictor of overall survival (p = 0.00072, hazard ratio = 3.62), and lymphovascular invasion and high stromal periostin expression were independent predictors of cancer-specific survival (p = 0.032 and 0.020, hazard ratio = 2.61 and 3.07, respectively). Conclusions Stromal periostin expression was often observed in invasive UTUCs with adverse clinicopathological factors and may be a useful predictor of patient outcomes.
Collapse
Affiliation(s)
- Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan. .,Department of Laboratory Medicine, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan.
| | - Kazuki Kawamura
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan
| | - Keiichi Ito
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan
| | - Susumu Matsukuma
- Department of Laboratory Medicine, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
23
|
Li J, Hou W, Yang Y, Deng Q, Fu H, Yin Y, Duan K, Feng B, Guo T, Weng J. Micro/nano-topography promotes osteogenic differentiation of bone marrow stem cells by regulating periostin expression. Colloids Surf B Biointerfaces 2022; 218:112700. [PMID: 35907353 DOI: 10.1016/j.colsurfb.2022.112700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022]
Abstract
Micro/nano-topography (MNT) is an important factor affecting cell response. Earlier studies using titania (TiO2) nanotube as a model of MNT found that they mediated the differentiation of BMSCs into osteoblasts, but the mechanisms are not fully understood. Surprisingly, Periostin (Postn), a secreted protein involved in extracellular matrix (ECM) construction and promoting osteogenic differentiation of bone marrow stem cells (BMSCs), was previously observed to significantly up-regulated on TiO2 nanotube. We proposed that Postn may act as a MNT signal transduction role. In this study, we investigated the effect of MNT on Postn, and the influence of Postn on osteogenic differentiation-related genes through focal adhesion and downstream signals. It was found that, titanium (Ti) plates carrying TiO2 nanotubes with diameters of ∼100 nm (TNT-100) significantly up-regulated the expression of Postn compared with flat Ti. Furthermore, Postn activated the downstream focal adhesion kinase (FAK) signal pathway and β-catenin into the nucleus by interacting with integrin αV. Surprisingly, TNT-100 up-regulated the transcription level of Wnt3a, which was independent of the up-regulation of Postn. This new Postn signaling pathway may provide more insights into the signal transduction mechanism of MNT and development of biomaterials with improved osteogenic properties.
Collapse
Affiliation(s)
- Jinsheng Li
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenqing Hou
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yali Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qing Deng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Hong Fu
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yiran Yin
- Sichuan Provincial Lab of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ke Duan
- Sichuan Provincial Lab of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bo Feng
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Weng
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China; College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
24
|
Tony SR, Haque N, Siddique AE, Khatun M, Rahman M, Islam Z, Islam MS, Islam J, Hossain S, Hoque MA, Saud ZA, Sumi D, Wahed AS, Barchowsky A, Himeno S, Hossain K. Elevated serum periostin levels among arsenic-exposed individuals and their associations with the features of asthma. CHEMOSPHERE 2022; 298:134277. [PMID: 35278445 PMCID: PMC9081271 DOI: 10.1016/j.chemosphere.2022.134277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 05/14/2023]
Abstract
Chronic exposure to arsenic via drinking water is a serious public health issue in many countries. Arsenic causes not only cancers but also non-malignant diseases, including asthma. We have previously reported that arsenic exposure increases the risk of Th2-mediated allergic asthma. The serum level of periostin, an extracellular matrix protein activated by Th2 cytokines, is recognized as a biomarker for Th2-mediated eosinophilic asthma and contributes to enhanced airway inflammation and remodeling. However, the role of periostin in arsenic-related asthma is unknown. Therefore, this study was designed to explore the associations of serum periostin levels with arsenic exposure and the features of asthma in 442 individuals in Bangladesh who participated in our previous study. Exposure levels of the participants were determined by measuring the arsenic concentrations in drinking water, hair, and nails through inductively coupled plasma mass spectroscopy. Periostin levels in serum were assessed by immunoassay. In this study, we found that serum periostin levels of the participants were increased with increasing exposure to arsenic. Notably, even the participants with 10.1-50 μg/L arsenic in drinking water had significantly higher levels of periostin than participants with <10 μg/L of water arsenic. Elevated serum periostin levels were positively associated with serum levels of Th2 mediators, such as interleukin (IL)-4, IL-5, IL-13, and eotaxin. Each log increase in periostin levels was associated with approximately eight- and three-fold increases in the odds ratios (ORs) for reversible airway obstruction (RAO) and asthma symptoms, respectively. Additionally, causal mediation analyses revealed that arsenic exposure metrics had both direct and indirect (periostin-mediated) effects on the risk of RAO and asthma symptoms. Thus, the results suggested that periostin may be involved in the arsenic-related pathogenesis of Th2-mediated asthma. The elevated serum periostin levels may predict the greater risk of asthma among the people living in arsenic-endemic areas.
Collapse
Affiliation(s)
- Selim Reza Tony
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abu Eabrahim Siddique
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mizanur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zohurul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Shofikul Islam
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Ashraful Hoque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Daigo Sumi
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Abdus S Wahed
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan; Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
25
|
Sun D, Gai Z, Wu J, Chen Q. Prognostic Impact of the Angiogenic Gene POSTN and Its Related Genes on Lung Adenocarcinoma. Front Oncol 2022; 12:699824. [PMID: 35832544 PMCID: PMC9271775 DOI: 10.3389/fonc.2022.699824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background The function of angiogenesis-related genes (ARGs) in lung adenocarcinoma (LUAD) remains poorly documented. This study was designed to reveal ARGs in LUAD and related networks. Methods We worked with sequencing data and clinical information pertaining to LUAD from public databases. ARGs were retrieved from the HALLMARK_ANGIOGENESIS gene set. Differential analysis and Kaplan–Meier (K–M) analysis were performed to authenticate the ARGs associated with LUAD. Weighted gene correlation network analysis was performed on the mining hub genes linked to the abovementioned genes, and functional enrichment analysis was done. Subsequently, Cox regression analyses were used to construct the prognostic gene. POSTN and microvessel density were detected using immunohistochemistry. Results POSTN, an ARG that was highly expressed in patients with LUAD and was closely associated with their weak overall survival was identified. Differentially expressed genes associated with POSTN were mainly enriched in entries related to the tubulointerstitial system, immune response, and epithelial cells. A positive correlation was demonstrated between POSTN expression and tumor microvessel density in LUAD. Subsequently, a prognostic gene signature was constructed and revealed that 4 genes may predict the survival of LUAD patients. Furthermore, the ESTIMATE and CIBERSORT analyses suggested that our risk scoring system may be implicated in altering the immune microenvironment of patients with LUAD. Finally, a ceRNA network was constructed based on the prognostic genes, and the regulatory networks were examined. Conclusion POSTN, a novel prognostic gene signature associated with ARGs, was constructed for the prognosis of patients with LUAD. This signature may alter the immune microenvironment by modulating the activation of the tubulointerstitial system, epithelial cells, and immune cells, ultimately affecting patient survival.
Collapse
Affiliation(s)
- Dongfeng Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Emergency Medicine, Shandong Lung Cancer Institute, Shandong Institute of Respiratory Diseases, Jinan, China
- *Correspondence: Dongfeng Sun, ;Qingfa Chen,
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingfa Chen
- Institute of Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Dongfeng Sun, ;Qingfa Chen,
| |
Collapse
|
26
|
Breton TS, Murray CA, Huff SR, Phaneuf AM, Tripp BM, Patuel SJ, Martyniuk CJ, DiMaggio MA. Phoenixin-14 alters transcriptome and steroid profiles in female green-spotted puffer (Dichotomyctere nigroviridis). Sci Rep 2022; 12:9454. [PMID: 35676522 PMCID: PMC9177834 DOI: 10.1038/s41598-022-13695-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
Phoenixin (PNX) is a highly conserved, novel hormone with diverse functions, including hypothalamic control of reproduction, appetite modulation, and regulation of energy metabolism and inflammation. While some functions appear conserved across vertebrates, additional research is required to fully characterize these complex pleiotropic effects. For instance, very little is known about transcriptome level changes associated with PNX exposure, including responses in the hypothalamic-pituitary-gonadal (HPG) axis, which is critical in vertebrate reproduction. In addition, the PNX system may be especially complex in fish, where an additional receptor is likely present in some species. The purpose of this study was to assess hypothalamic and ovarian transcriptomes after PNX-14 administration in female vitellogenic green-spotted puffer (Dichotomyctere nigroviridis). Steroid-related changes were also assessed in the liver and blood plasma. Hypothalamic responses included pro-inflammatory signals such as interleukin 1β, possibly related to gut-brain axis functions, as well as suppression of cell proliferation. Ovarian responses were more widely downregulated across all identified pathways, which may reflect progression to a less transcriptionally active state in oocytes. Both organs shared regulation in transforming growth factor-β and extracellular matrix remodeling (periostin) pathways. Reproductive processes were in general downregulated, but both inhibiting (bone morphogenetic protein 15 and follistatin) and promoting (17-hydroxyprogesterone) factors for oocyte maturation were identified. Select genes involved in reproduction (vitellogenins, estrogen receptors) in the liver were unresponsive to PNX-14 and higher doses may be needed to induce reproductive effects in D. nigroviridis. These results reinforce the complexity of PNX actions in diverse tissues and highlight important roles for this hormone in regulating the immune response, energy metabolism, and cell growth.
Collapse
Affiliation(s)
- Timothy S. Breton
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Casey A. Murray
- grid.15276.370000 0004 1936 8091Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570 USA
| | - Sierra R. Huff
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Anyssa M. Phaneuf
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Bethany M. Tripp
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Sarah J. Patuel
- grid.15276.370000 0004 1936 8091Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611 USA
| | - Christopher J. Martyniuk
- grid.15276.370000 0004 1936 8091Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611 USA
| | - Matthew A. DiMaggio
- grid.15276.370000 0004 1936 8091Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570 USA
| |
Collapse
|
27
|
Gül D, Schweitzer A, Khamis A, Knauer SK, Ding GB, Freudelsperger L, Karampinis I, Strieth S, Hagemann J, Stauber RH. Impact of Secretion-Active Osteoblast-Specific Factor 2 in Promoting Progression and Metastasis of Head and Neck Cancer. Cancers (Basel) 2022; 14:2337. [PMID: 35565465 PMCID: PMC9106029 DOI: 10.3390/cancers14092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment success of head and neck cancer (HNC) is still hampered by tumor relapse due to metastases. Our study aimed to identify biomarkers by exploiting transcriptomics profiles of patient-matched metastases, primary tumors, and normal tissue mucosa as well as the TCGA HNC cohort data sets. Analyses identified osteoblast-specific factor 2 (OSF-2) as significantly overexpressed in lymph node metastases and primary tumors compared to normal tissue. High OSF-2 levels correlate with metastatic disease and reduced overall survival of predominantly HPV-negative HNC patients. No significant correlation was observed with tumor localization or therapy response. These findings were supported by the fact that OSF-2 expression was not elevated in cisplatin-resistant HNC cell lines. OSF-2 was strongly expressed in tumor-associated fibroblasts, suggesting a tumor microenvironment-promoting function. Molecular cloning and expression studies of OSF-2 variants from patients identified an evolutionary conserved bona fide protein secretion signal (1MIPFLPMFSLLLLLIVNPINA21). OSF-2 enhanced cell migration and cellular survival under stress conditions, which could be mimicked by the extracellular administration of recombinant protein. Here, OSF-2 executes its functions via ß1 integrin, resulting in the phosphorylation of PI3K and activation of the Akt/PKB signaling pathway. Collectively, we suggest OSF-2 as a potential prognostic biomarker and drug target, promoting metastases by supporting the tumor microenvironment and lymph node metastases survival rather than by enhancing primary tumor proliferation or therapy resistance.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Andrea Schweitzer
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Aya Khamis
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, El Azareta, Alexandria, Egypt
| | - Shirley K. Knauer
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Universitätsstraße, 45117 Essen, Germany;
| | - Guo-Bin Ding
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| | - Laura Freudelsperger
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Ioannis Karampinis
- Academic Thoracic Center, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany;
| | - Jan Hagemann
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| |
Collapse
|
28
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
29
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
30
|
Ratajczak-Wielgomas K, Kmiecik A, Dziegiel P. Role of Periostin Expression in Non-Small Cell Lung Cancer: Periostin Silencing Inhibits the Migration and Invasion of Lung Cancer Cells via Regulation of MMP-2 Expression. Int J Mol Sci 2022; 23:ijms23031240. [PMID: 35163164 PMCID: PMC8835752 DOI: 10.3390/ijms23031240] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
The involvement of periostin (POSTN) in non-small-cell lung cancer (NSCLC) migration, invasion, and its underlying mechanisms has not been well established. The present study aims to determine epithelial POSTN expression in NSCLC and to assess associations with clinicopathological factors and prognosis as well as to explore the effects of POSTN knockdown on tumor microenvironment and the migration and invasion of lung cancer cells. Immunohistochemistry was used to evaluate epithelial POSTN expression in NSCLC. POSTN mRNA expression in the dissected lung cancer cells was confirmed by laser capture microdissection and real-time PCR. A549 cells were used for transfecting shRNA-POSTN lentiviral particles. Wound healing and Transwell invasion assays were used to assess the migratory and invasive abilities of A549 cells transfected with POSTN-specific short hairpin (sh)RNA. The results demonstrated significantly higher cytoplasmic POSTN expression in the whole NSCLC group compared to non-malignant lung tissue (NMLT). POSTN expression in cancer cells may be considered to be an independent prognostic factor for survival in NSCLC. POSTN knockdown significantly inhibited A549 cell migration and invasion capabilities in vitro. The activity and the expression level of matrix metalloproteinase-2 (MMP-2) were significantly decreased in A549.shRNA compared to control cells. In summary, POSTN may regulate lung cancer cell invasiveness by modulating the expression of MMP-2 and may represent a potential target for novel therapeutic intervention for NSCLC.
Collapse
Affiliation(s)
- Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
- Correspondence: ; Tel.: +48-7-1784-1365; Fax: +48-7-1784-0082
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
- Department of Human Biology, Faculty of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
31
|
Kawaguchi Y, Kitajima I, Yasuda T, Seki S, Suzuki K, Makino H, Ujihara Y, Ueno T, Canh Tung NT, Yahara Y. Serum Periostin Level Reflects Progression of Ossification of the Posterior Longitudinal Ligament. JB JS Open Access 2022; 7:e21.00111. [PMID: 35136852 PMCID: PMC8816374 DOI: 10.2106/jbjs.oa.21.00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
UNLABELLED Ossification of the posterior longitudinal ligament (OPLL), characterized by ectopic new bone formation in the spinal ligament, causes neurological impairment due to narrowing of the spinal canal. However, the etiology has not been fully elucidated yet. Several biomarkers may be related to the pathogenesis of OPLL. The present study focused on the serum level of periostin, which is recognized as an important bone formation regulator. METHODS This study included 92 patients with OPLL and 54 control patients without OPLL. For the case-control analysis, 54 age and sex-matched patients were randomly included in the OPLL group. The serum fibroblast growth factor-23 (FGF-23), creatinine, inorganic phosphate, calcium, alkaline phosphatase, and periostin levels were assessed. Furthermore, the calcium, creatinine, and inorganic phosphate levels in urine and the percentage of tubular reabsorption of phosphate were also analyzed. Moreover, the relationship between the biomarkers and the extent of OPLL was analyzed. The data were compared between patients with OPLL progression (the progression group) and without OPLL progression (the non-progression group). RESULTS The mean serum FGF-23 and periostin levels in the OPLL group were higher than that in the control group. The serum inorganic phosphate level in the OPLL group was lower than that in the control group. No correlation was found between any of the biomarkers and the extent of ossification. The serum periostin level in the progression group was higher than that in the non-progression group. No significant difference in the serum FGF-23 level was noted between the progression and non-progression groups. Moreover, no correlation was found between serum periostin and FGF-23 levels. CONCLUSIONS The serum periostin level is related to OPLL progression. LEVEL OF EVIDENCE Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
| | - Isao Kitajima
- Clinical Laboratory Center, Toyama University Hospital, Toyama, Japan
| | - Taketoshi Yasuda
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Shoji Seki
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Kayo Suzuki
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Hiroto Makino
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Yasuhiro Ujihara
- Clinical Laboratory Center, Toyama University Hospital, Toyama, Japan
| | - Tomohiro Ueno
- Clinical Laboratory Center, Toyama University Hospital, Toyama, Japan
| | | | - Yasuhito Yahara
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| |
Collapse
|
32
|
Hassanein SS, Abdel-Mawgood AL, Ibrahim SA. EGFR-Dependent Extracellular Matrix Protein Interactions Might Light a Candle in Cell Behavior of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:766659. [PMID: 34976811 PMCID: PMC8714827 DOI: 10.3389/fonc.2021.766659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death and is associated with a poor prognosis. Lung cancer is divided into 2 main types: the major in incidence is non-small cell lung cancer (NSCLC) and the minor is small cell lung cancer (SCLC). Although NSCLC progression depends on driver mutations, it is also affected by the extracellular matrix (ECM) interactions that activate their corresponding signaling molecules in concert with integrins and matrix metalloproteinases (MMPs). These signaling molecules include cytoplasmic kinases, small GTPases, adapter proteins, and receptor tyrosine kinases (RTKs), particularly the epidermal growth factor receptor (EGFR). In NSCLC, the interplay between ECM and EGFR regulates ECM stiffness, angiogenesis, survival, adhesion, migration, and metastasis. Furthermore, some tumor-promoting ECM components (e.g., glycoproteins and proteoglycans) enhance activation of EGFR and loss of PTEN. On the other hand, other tumor-suppressing glycoproteins and -proteoglycans can inhibit EGFR activation, suppressing cell invasion and migration. Therefore, deciphering the molecular mechanisms underlying EGFR and ECM interactions might provide a better understanding of disease pathobiology and aid in developing therapeutic strategies. This review critically discusses the crosstalk between EGFR and ECM affecting cell behavior of NSCLC, as well as the involvement of ECM components in developing resistance to EGFR inhibition.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | | |
Collapse
|
33
|
Saliba W, Bental T, Shapira Y, Schwartzenberg S, Sagie A, Vaturi M, Adawi S, Fuks A, Aronheim A, Shiran A. Increased risk of non-hematological cancer in young patients with aortic stenosis: a retrospective cohort study. CARDIO-ONCOLOGY 2021; 7:37. [PMID: 34696798 PMCID: PMC8547104 DOI: 10.1186/s40959-021-00123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022]
Abstract
Background We have previously reported an increased risk for non-hematological malignancies in young patients with moderate or severe aortic stenosis (AS). These findings were the result of a post-hoc analysis from a large echocardiography database and needed verification. Our aim was to determine, using a different study population, whether young patients with AS are at increased risk for cancer. Methods A large echocardiographic database was used to identify patients (age ≥ 20 years) with moderate or severe AS (study group) and patients without aortic stenosis (comparative group). The new occurrence of non-hematological malignancies was determined after the index date (first echo with moderate or severe AS or first recorded echo in the control group). Results The final study group included 7013 patients with AS and 98,884 without AS. During a median follow-up of 6.9 years (3.0–11.1) there were 10,705 new cases of non-hematological cancer. The crude incidence rate of cancer was higher in AS compared to non-AS patients (22.3 vs. 13.7 per 1000 patient-year, crude HR 1.58 (95%CI 1.46–1.71). After adjustment for relevant covariates, there was no difference between groups (HR 0.93, 95% CI 0.86–1.01). Only patients in the lowest age quartile (20–49.7 years), had an increased adjusted risk of cancer (HR 1.91, 95%CI 1.08–3.39). The HR for the risk of cancer associated with AS was inversely proportional to age (P < 0.001 for the interaction between AS and age). Conclusions Young patients with moderate or severe AS may have an increased risk for cancer. Cancer surveillance should be considered for young patients with AS.
Collapse
Affiliation(s)
- Walid Saliba
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tamir Bental
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel
| | - Yaron Shapira
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel
| | | | - Alex Sagie
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel
| | - Moti Vaturi
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel
| | - Salim Adawi
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Cardiology, Lady Davis Carmel Medical Center, 7 Michal Street, 3436212, Haifa, Israel
| | - Alexander Fuks
- Department of Cardiology, Lady Davis Carmel Medical Center, 7 Michal Street, 3436212, Haifa, Israel
| | - Ami Aronheim
- Cell Biology and Cancer Science, Technion, Israel Institute of Technology, Haifa, Israel
| | - Avinoam Shiran
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel. .,Department of Cardiology, Lady Davis Carmel Medical Center, 7 Michal Street, 3436212, Haifa, Israel.
| |
Collapse
|
34
|
Iwamoto R, Tanoue S, Nagata S, Tabata K, Fukuoka J, Koganemaru M, Sumi A, Chikasue T, Abe T, Murakami D, Takamori S, Ishii H, Ohshima K, Ohta S, Izuhara K, Fujimoto K. T1 invasive lung adenocarcinoma: Thin-section CT solid score and histological periostin expression predict tumor recurrence. Mol Clin Oncol 2021; 15:228. [PMID: 34650799 PMCID: PMC8506662 DOI: 10.3892/mco.2021.2391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/12/2021] [Indexed: 11/06/2022] Open
Abstract
Adenocarcinoma is the most common histological type of non-small cell lung cancer (NSCLC), and various biomarkers for predicting its prognosis after surgical resection have been suggested, particularly in early-stage lung adenocarcinoma. Periostin (also referred to as POSTN, PN or osteoblast-specific factor) is an extracellular matrix protein, the expression of which is associated with tumor invasiveness in patients with NSCLC. In the present study, the novel approach, in which the thin-section CT findings prior to surgical resection and periostin expression of resected specimens were analyzed in combination, was undertaken to assess whether the findings could be a biomarker for predicting the outcomes following resection of T1 invasive lung adenocarcinoma. A total of 73 patients who underwent surgical resection between January 2000 and December 2009 were enrolled. A total of seven parameters were assessed in the thin-section CT scans: i) Contour; ii) part-solid ground-glass nodule or solid nodule; iii) percentage of solid component (the CT solid score); iv) presence of air-bronchogram and/or bubble-like lucencies; v) number of involved vessels; vi) shape linear strands between the nodule and the visceral pleura; and vii) number of linear strands between the nodule and the visceral pleura. Two chest radiologists independently assessed the parameters. Periostin expression was evaluated on the basis of the strength and extent of staining. Univariate and multivariate analyses were subsequently performed using the Cox proportional hazards model. There was a substantial to almost perfect agreement between the two observers with regard to classification of the seven thin-section CT parameters (κ=0.64-0.85). In the univariate analysis, a CT solid score >80%, pathological lymphatic invasion, tumor and lymph node status and high periostin expression were significantly associated with recurrence (all P<0.05). Multivariate analysis demonstrated that a CT solid score >80% and high periostin expression were risk factors for recurrence (P=0.002 and P=0.011, respectively). The cumulative recurrence rates among the three groups (both negative, CT solid score >80% or high periostin expression, or both positive) were significantly different (log-rank test, P<0.001). Although the solid component is already known to be a major predictor of outcome in lung adenocarcinomas according to previous studies, the combined analysis of CT solid score and periostin expression might predict the likelihood of tumor recurrence more precisely.
Collapse
Affiliation(s)
- Ryoji Iwamoto
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Shuichi Tanoue
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Shuji Nagata
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Kazuhiro Tabata
- Department of Pathology, Nagasaki Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Masamichi Koganemaru
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Akiko Sumi
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Tomonori Chikasue
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Toshi Abe
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Daigo Murakami
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Shinzo Takamori
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hidenobu Ishii
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Shoichiro Ohta
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Kiminori Fujimoto
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
35
|
Abstract
Periostin, an extracelluar matrix protein belonging to the fasciclin family, has been reported to play a key role in the process of Th2-inflammation disease. As eoshinophilic chronic rhinosinusitis has a higher incident rate, studies show that periostin has participated in the process of inflammation and remodeling. This review mainly to summarize researches of periostin in ECRS and to investigate the clinical significance and expression of periostin.
Collapse
Affiliation(s)
- Lei Yu
- Weihai Municipal Hospital, Weihai, China
| | | | - Kai Liu
- Weihai Municipal Hospital, Weihai, China
| |
Collapse
|
36
|
Borecka P, Ciaputa R, Janus I, Bubak J, Piotrowska A, Ratajczak-Wielgomas K, Podhorska-OkolÓw M, DziĘgiel P, Nowak M. Expression of Periostin in Mammary Cancer Cells of Female Dogs. In Vivo 2021; 34:3255-3262. [PMID: 33144431 DOI: 10.21873/invivo.12162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND/AIM Periostin (POSTN) has a significant role in proliferation and migration of tumour cells as well as tumour progression. This study aimed to determinate POSTN expression in cancer cells in malignant and benign tumours of the mammary gland in female dogs. MATERIALS AND METHODS All together 83 cancers, 24 adenomas and 7 unchanged fragments of the mammary glands of bitches were investigated. Immunohistochemistry was performed using anti-POSTN, Ki-67 and HER2 antibodies. RESULTS POSTN expression was observed in cancer cells in 31.3% of malignancies and 12.5% of benign tumours. A significantly positive correlation between expression of POSTN in cancer cells and the degree of histological malignancy, expression of Ki-67 antigen and expression of POSTN in CAFs was found. CONCLUSION The obtained results suggest the possible participation of POSTN in the process of carcinogenesis and progression of mammary tumors in bitches.
Collapse
Affiliation(s)
- Paulina Borecka
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Rafal Ciaputa
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Izabela Janus
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Bubak
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | | | | | - Piotr DziĘgiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland.,Department of Physiotherapy, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Marcin Nowak
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
37
|
Mishra SK, Wheeler JJ, Pitake S, Ding H, Jiang C, Fukuyama T, Paps JS, Ralph P, Coyne J, Parkington M, DeBrecht J, Ehrhardt-Humbert LC, Cruse GP, Bäumer W, Ji RR, Ko MC, Olivry T. Periostin Activation of Integrin Receptors on Sensory Neurons Induces Allergic Itch. Cell Rep 2021; 31:107472. [PMID: 32268102 PMCID: PMC9210348 DOI: 10.1016/j.celrep.2020.03.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic allergic itch is a common symptom affecting millions of people and animals, but its pathogenesis is not fully explained. Herein, we show that periostin, abundantly expressed in the skin of patients with atopic dermatitis (AD), induces itch in mice, dogs, and monkeys. We identify the integrin αVβ3 expressed on a subset of sensory neurons as the periostin receptor. Using pharmacological and genetic approaches, we inhibited the function of neuronal integrin αVβ3, which significantly reduces periostin-induced itch in mice. Furthermore, we show that the cytokine TSLP, the application of AD-causing MC903 (calcipotriol), and house dust mites all induce periostin secretion. Finally, we establish that the JAK/STAT pathway is a key regulator of periostin secretion in keratinocytes. Altogether, our results identify a TSLP-periostin reciprocal activation loop that links the skin to the spinal cord via peripheral sensory neurons, and we characterize the non-canonical functional role of an integrin in itch. Mishra et al. demonstrate periostin-induced itch in mice, dogs, and monkeys and identify the integrin αVβ3 as the periostin neuronal receptor. They find that keratinocytes release periostin in response to TSLP, thus identifying a possible reciprocal vicious circle implicating the cytokine TSLP and periostin in chronic allergic itch.
Collapse
Affiliation(s)
- Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; The WM Keck Behavioral Center, North Carolina State University, Raleigh, NC, USA; Program in Genetics, North Carolina State University, Raleigh, NC, USA.
| | - Joshua J Wheeler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Saumitra Pitake
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Tomoki Fukuyama
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Judy S Paps
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Patrick Ralph
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jacob Coyne
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michelle Parkington
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jennifer DeBrecht
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lauren C Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Glenn P Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thierry Olivry
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
38
|
Huizer K, Zhu C, Chirifi I, Krist B, Zorgman D, van der Weiden M, van den Bosch TPP, Dumas J, Cheng C, Kros JM, Mustafa DA. Periostin Is Expressed by Pericytes and Is Crucial for Angiogenesis in Glioma. J Neuropathol Exp Neurol 2021; 79:863-872. [PMID: 32647861 DOI: 10.1093/jnen/nlaa067] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
The expression of the matricellular protein periostin has been associated with glioma progression. In previous work we found an association of periostin with glioma angiogenesis. Here, we screen gliomas for POSTN expression and identify the cells that express periostin in human gliomas. In addition, we study the role of periostin in an in vitro model for angiogenesis. The expression of periostin was investigated by RT-PCR and by immunohistochemistry. In addition, we used double labeling and in situ RNA techniques to identify the expressing cells. To investigate the function of periostin, we silenced POSTN in a 3D in vitro angiogenesis model. Periostin expression was elevated in pilocytic astrocytoma and glioblastoma, but not in grade II/III astrocytomas and oligodendrogliomas. The expression of periostin colocalized with PDGFRβ+ cells, but not with OLIG2+/SOX2+ glioma stem cells. Silencing of periostin in pericytes in coculture experiments resulted in attenuation of the numbers and the length of the vessels formation and in a decrease in endothelial junction formation. We conclude that pericytes are the main source of periostin in human gliomas and that periostin plays an essential role in the growth and branching of blood vessels. Therefore, periostin should be explored as a novel target for developing anti-angiogenic therapy for glioma.
Collapse
Affiliation(s)
- Karin Huizer
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Changbin Zhu
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ihsan Chirifi
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart Krist
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Denise Zorgman
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel van der Weiden
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jasper Dumas
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline Cheng
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A Mustafa
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Lincoln V, Chao L, Woodley DT, Murrell D, Kim M, O'Toole EA, Ly A, Cogan J, Mosallaei D, Wysong A, Chen M. Over-expression of stromal periostin correlates with poor prognosis of cutaneous squamous cell carcinomas. Exp Dermatol 2021; 30:698-704. [PMID: 33450077 DOI: 10.1111/exd.14281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Periostin, an extracellular matrix macromolecule implicated in tumorigenesis, serves as a prognostic marker for many cancer types. However, there are no data on periostin expression in cutaneous squamous cell carcinoma (cSCC). This study examined periostin expression in patients with cSCC and explored its clincopathological relationship and prognosis. Using immunohistochemistry and ImageJ analysis, we compared periostin expression in 95 cSCCs across a spectrum of cSCC aggressiveness: cSCC in situ (SCCIS) (n = 25), low-risk cSCC (LR-cSCC) (n = 26), high-risk cSCC (HR-cSCC) (n = 38), and cSCC in recessive dystrophic epidermolysis bullosa patients (RDEB cSCC) (n = 6). Immunohistochemistry demonstrated periostin expression within the intra-tumoral stroma but not within tumor cells. Periostin levels significantly (P < 0.001) increased from SCCIS, LR-cSCC, HR-cSCC to RDEB SCC. The stroma of most of the cSCCs we evaluated contained cancer-associated fibroblasts with a myofibroblastic (α -SMA-positive) phenotype. Co-localization of periostin with α-SMA, evidence of fibroblast periostin expression, and absence of keratinocyte or tumor cell periostin expression suggest that, in cSCC, periostin is a product of the peritumoral microenvironment and not the tumor cells themselves. Our data indicate that fibroblast periostin expression is highly correlated with the aggressiveness of cSCC, and may thereby provide a molecular marker that will be useful for subtyping and diagnosing cSCCs according to their biological nature.
Collapse
Affiliation(s)
- Vadim Lincoln
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lyu Chao
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David T Woodley
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Minhee Kim
- University of New South Wales, Sydney, Australia
| | - Edel A O'Toole
- Barts and the London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Alexandre Ly
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jon Cogan
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Mosallaei
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ashley Wysong
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mei Chen
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
40
|
A Novel Nanoproteomic Approach for the Identification of Molecular Targets Associated with Thyroid Tumors. NANOMATERIALS 2020; 10:nano10122370. [PMID: 33260544 PMCID: PMC7761166 DOI: 10.3390/nano10122370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
A thyroid nodule is the most common presentation of thyroid cancer; thus, it is extremely important to differentiate benign from malignant nodules. Within malignant lesions, classification of a thyroid tumor is the primary step in the assessment of the prognosis and selection of treatment. Currently, fine-needle aspiration biopsy (FNAB) is the preoperative test most commonly used for the initial thyroid nodule diagnosis. However, due to some limitations of FNAB, different high-throughput “omics” approaches have emerged that could further support diagnosis based on histopathological patterns. In the present work, formalin-fixed paraffin-embedded (FFPE) tissue specimens from normal (non-neoplastic) thyroid (normal controls (NCs)), benign tumors (follicular thyroid adenomas (FTAs)), and some common types of well-differentiated thyroid carcinoma (follicular thyroid carcinomas (FTCs), conventional or classical papillary thyroid carcinomas (CV-PTCs), and the follicular variant of papillary thyroid carcinomas (FV-PTCs)) were analyzed. For the first time, FFPE thyroid samples were deparaffinized using an easy, fast, and non-toxic method. Protein extracts from thyroid tissue samples were analyzed using a nanoparticle-assisted proteomics approach combined with shotgun LC-MS/MS. The differentially regulated proteins found to be specific for the FTA, FTC, CV-PTC, and FV-PTC subtypes were analyzed with the bioinformatic tools STRING and PANTHER showing a profile of proteins implicated in the thyroid cancer metabolic reprogramming, cancer progression, and metastasis. These proteins represent a new source of potential molecular targets related to thyroid tumors.
Collapse
|
41
|
Thongchot S, Singsuksawat E, Sumransub N, Pongpaibul A, Trakarnsanga A, Thuwajit P, Thuwajit C. Periostin regulates autophagy through integrin α5β1 or α6β4 and an AKT-dependent pathway in colorectal cancer cell migration. J Cell Mol Med 2020; 24:12421-12432. [PMID: 32990415 PMCID: PMC7686974 DOI: 10.1111/jcmm.15756] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most fatal cancers with highly invasive properties. The progression of CRC is determined by the driving force of periostin (PN) from cancer‐associated fibroblasts (CAFs) in the tumour microenvironment. This present work aims to investigate autophagy‐mediated CRC invasion via the receptor integrin (ITG) by PN. The level of PN in 410 clinical CRC tissues was found increased and was an independent poor prognosis marker (HR = 2.578, 95% CI = 1.218‐5.457, P‐value = .013) with a significant correlation with overall survival time (P‐value < .001). PN activated proliferation, migration and invasion of CRC cells, but with reduced autophagy. Interestingly, the reduction of LC3 autophagic protein corresponded to the increased ability of CRC cell migration. The siITGα5‐treated HT‐29 and siITGβ4‐treated HCT‐116 CRC cells attenuated epithelial‐to‐mesenchymal transitions (EMT)‐related genes and pAKT compared with those in siITG‐untreated cells. The reduction of pAKT by a PI3K inhibitor significantly restored autophagy in CRC cells. These evidences confirmed the effect of PN through either ITGα5β1 or ITGα6β4 and the AKT‐dependent pathway to control autophagy‐regulated cell migration. In conclusion, these results exhibited the impact of PN activation of ITGα5β1 or ITGα6β4 through pAKT in autophagy‐mediated EMT and migration in CRC cells.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence for Cancer Immunotherapy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekapot Singsuksawat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuttavut Sumransub
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Attaporn Trakarnsanga
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
42
|
Prognostic Significance of Stromal Periostin Expression in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:ijms21197025. [PMID: 32987711 PMCID: PMC7582720 DOI: 10.3390/ijms21197025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The microenvironment of solid tumours is significant in cancer development and progression. The aim of this study was to determine periostin (POSTN) expression by cancer-associated fibroblasts (CAFs) in non-small-cell lung cancer (NSCLC), as well as to assess associations with clinicopathological factors and prognosis. Materials and Methods: Immunohistochemical analysis of POSTN expression was performed on NSCLC (N = 700) and non-malignant lung tissue (NMLT) (N = 110) using tissue microarrays. Laser capture microdissection (LCM) for isolation of stromal and cancer cells of NSCLC was employed, and subsequently, POSTN mRNA expression was detected by real-time PCR. Immunofluorescence reaction and colocalisation analysis were performed by confocal microscopy. Results: Expression of POSTN in CAFs was significantly higher in NSCLC and in the adenocarcinoma (AC) and squamous cell carcinoma (SCC) subtypes compared to NMLT. POSTN expression in CAFs increased with clinical cancer stage, grades (G) of malignancy, and lymph node involvement in NSCLC. Higher POSTN expression in CAFs was an independent prognostic factor for overall survival (OS). LCM confirmed significantly higher POSTN mRNA expression in the stromal cells (CAFs) compared to the lung cancer cells. Conclusions: POSTN produced by CAFs might be crucial for NSCLC progression and can be an independent negative prognostic factor in NSCLC.
Collapse
|
43
|
Khurshid Z, Mali M, Adanir N, Zafar MS, Khan RS, Latif M. Periostin: Immunomodulatory Effects on Oral Diseases. Eur J Dent 2020; 14:462-466. [PMID: 32688410 PMCID: PMC7440953 DOI: 10.1055/s-0040-1714037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Periostin is a microcellular adapter protein. It plays a wide range of essential roles during the development and in immunomodulation. Periostin is a prominent contributor during the process of angiogenesis, tumorigenesis, and cardiac repair. It is expressed in periodontal ligaments, tendons, skin, adipose tissues, muscle, and bone. This is a protein-based biomolecule that has the diagnostic and monitoring capability and can potentially be used as a biomarker to detect physiological and pathological conditions. The aim of the present review was to explore the periostin morphology and associated structural features. Additionally, periostin’s immunomodulatory effects and associated biomarkers in context of oral diseases have been discussed.
Collapse
Affiliation(s)
- Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al Ahsa, Saudi Arabia
| | - Maria Mali
- Department of Orthodontics, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al Ahsa, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al-Munawarah, Madinah, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Rabia Sannam Khan
- Department of Bioengineering, Lancaster University, Lancaster, United Kingdom
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases, College of Medicine, Taibah University, Madinah Al-Munawarah, Madinah, Saudi Arabia
| |
Collapse
|
44
|
Zhou Y, Yang W, Ao M, Höti N, Gabrielson E, Chan DW, Zhang H, Li QK. Proteomic Analysis of the Air-Way Fluid in Lung Cancer. Detection of Periostin in Bronchoalveolar Lavage (BAL). Front Oncol 2020; 10:1072. [PMID: 32719746 PMCID: PMC7350406 DOI: 10.3389/fonc.2020.01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Bronchoalveolar lavage (BAL) is a specific type of air-way fluid. It is a commonly used clinical specimen for the diagnosis of benign diseases and cancers of the lung. Although previous studies have identified several disease-associated proteins in the BAL, the potential utility of BAL in lung cancer is still not well-studied. Based upon the fact that the majority of secreted proteins are glycoproteins, we have profiled N-glycoproteins in BAL collected from lung cancers, and investigated the expression of glycoproteins such as the matrix N-glycoprotein, periostin, in lung cancers. Methods: BAL specimens (n = 16) were collected from lung cancer patients, and analyzed using mass spectrometry-based quantitative N-glycoproteomic technique. Additional BAL specimens (n = 39) were independently collected to further evaluate the expression of periostin by using an enzyme-linked immunosorbent assay (ELISA). Results: A total of 462 glycoproteins were identified in BAL samples using N-glycoproteomic technique, including 290 in lung adenocarcinoma (ADC, n = 5), 376 in squamous cell carcinoma (SQCC, n = 4), 309 in small cell lung carcinoma (SCLC, n = 4), and 316 in benign lung disease (n = 3). The expressions of several glycoproteins were elevated, including 8 in ADC, 12 in SQCC, and 17 in SCLC, compared to benign BALs. The expression of periostin was detected in all subtypes of lung cancers. To further investigate the expression of periostin, an ELISA assay was performed using additional independently collected BALs (n = 39) The normalized levels of periostin in benign disease, ADC, SQCC, and SCLC were 255 ± 104 (mean ± SE) and 4,002 ± 2,181, 3,496 ± 1,765, and 1,772 ± 1,119 ng/mg of total BAL proteins. Conclusion: Our findings demonstrate that proteomic analysis of BAL can be used for the study of cancer-associated extracellular proteins in air-way fluid from lung cancer patients.
Collapse
Affiliation(s)
- Yangying Zhou
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Weiming Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Minghui Ao
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Naseruddin Höti
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
45
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
46
|
Shafee T, Bacic A, Johnson K. Evolution of Sequence-Diverse Disordered Regions in a Protein Family: Order within the Chaos. Mol Biol Evol 2020; 37:2155-2172. [DOI: 10.1093/molbev/msaa096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Approaches for studying the evolution of globular proteins are now well established yet are unsuitable for disordered sequences. Our understanding of the evolution of proteins containing disordered regions therefore lags that of globular proteins, limiting our capacity to estimate their evolutionary history, classify paralogs, and identify potential sequence–function relationships. Here, we overcome these limitations by using new analytical approaches that project representations of sequence space to dissect the evolution of proteins with both ordered and disordered regions, and the correlated changes between these. We use the fasciclin-like arabinogalactan proteins (FLAs) as a model family, since they contain a variable number of globular fasciclin domains as well as several distinct types of disordered regions: proline (Pro)-rich arabinogalactan (AG) regions and longer Pro-depleted regions.
Sequence space projections of fasciclin domains from 2019 FLAs from 78 species identified distinct clusters corresponding to different types of fasciclin domains. Clusters can be similarly identified in the seemingly random Pro-rich AG and Pro-depleted disordered regions. Sequence features of the globular and disordered regions clearly correlate with one another, implying coevolution of these distinct regions, as well as with the N-linked and O-linked glycosylation motifs. We reconstruct the overall evolutionary history of the FLAs, annotated with the changing domain architectures, glycosylation motifs, number and length of AG regions, and disordered region sequence features. Mapping these features onto the functionally characterized FLAs therefore enables their sequence–function relationships to be interrogated. These findings will inform research on the abundant disordered regions in protein families from all kingdoms of life.
Collapse
Affiliation(s)
- Thomas Shafee
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, China
| | - Kim Johnson
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, China
| |
Collapse
|
47
|
Rachner TD, Göbel A, Hoffmann O, Erdmann K, Kasimir-Bauer S, Breining D, Kimmig R, Hofbauer LC, Bittner AK. High serum levels of periostin are associated with a poor survival in breast cancer. Breast Cancer Res Treat 2020; 180:515-524. [PMID: 32040688 DOI: 10.1007/s10549-020-05570-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Periostin is a secreted extracellular matrix protein, which was originally described in osteoblasts. It supports osteoblastic differentiation and bone formation and has been implicated in the pathogenesis of several human malignancies, including breast cancer. However, little is known about the prognostic value of serum periostin levels in breast cancer. METHODS In this study, we analyzed serum levels of periostin in a cohort of 509 primary, non-metastatic breast cancer patients. Disseminated tumor cell (DTC) status was determined using bone marrow aspirates obtained from the anterior iliac crests. Periostin levels were stratified according to several clinical parameters and Pearson correlation analyses were performed. Kaplan-Meier survival curves were assessed by using the log-rank (Mantel-Cox) test. To identify prognostic factors, multivariate Cox regression analyses were used. RESULTS Mean serum levels of periostin were 505 ± 179 pmol/l. In older patients (> 60 years), periostin serum levels were significantly increased compared to younger patients (540 ± 184 pmol/l vs. 469 ± 167 pmol/l; p < 0.0001) and age was positively correlated with periostin expression (p < 0.0001). When stratifying the cohort according to periostin serum concentrations, the overall and breast cancer-specific mortality were significantly higher in those patients with high serum periostin (above median) compared to those with low periostin during a mean follow-up of 8.5 years (17.7% vs. 11.4% breast cancer-specific death; p = 0.03; hazard ratio 1.65). Periostin was confirmed to be an independent prognostic marker for breast cancer-specific survival (p = 0.017; hazard ratio 1.79). No significant differences in serum periostin were observed when stratifying the patients according to their DTC status. CONCLUSIONS Our findings emphasize the relevance of periostin in breast cancer and reveal serum periostin as a potential marker for disease prediction, independent on the presence of micrometastases.
Collapse
Affiliation(s)
- Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andy Göbel
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany. .,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany. .,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kati Erdmann
- Department of Urology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dorit Breining
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
48
|
Yoshida H, Koodie L, Jacobsen K, Hanzawa K, Miyamoto Y, Yamamoto M. B4GALNT1 induces angiogenesis, anchorage independence growth and motility, and promotes tumorigenesis in melanoma by induction of ganglioside GM2/GD2. Sci Rep 2020; 10:1199. [PMID: 31988291 PMCID: PMC6985110 DOI: 10.1038/s41598-019-57130-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
β-1,4-N-Acetyl-Galactosaminyltransferase 1 (B4GALNT1) encodes the key enzyme B4GALNT1 to generate gangliosides GM2/GD2. GM2/GD2 gangliosides are surface glycolipids mainly found on brain neurons as well as peripheral nerves and skin melanocytes and are reported to exacerbate the malignant potential of melanomas. In order to elucidate the mechanism, we performed functional analyses of B4GALNT1-overexpressing cells. We analyzed ganglioside pattern on four melanoma and two neuroblastoma cell lines by high performance liquid chromatography (HPLC). We overexpressed B4GALNT1 in GM2/GD2-negative human melanoma cell line (SH4) and confirmed production of GM2/GD2 by HPLC. They showed higher anchorage independence growth (AIG) in colony formation assay, and exhibited augmented motility. In vitro, cell proliferation was not affected by GM2/GD2 expression. In vivo, GM2/GD2-positive SH4 clones showed significantly higher tumorigenesis in NOD/Scid/IL2Rγ-null mice, and immunostaining of mouse CD31 revealed that GM2/GD2 induced remarkable angiogenesis. No differences were seen in melanoma stem cell and Epithelial-Mesenchymal Transition markers between GM2/GD2-positive and -negative SH4 cells. We therefore concluded that B4GALNT1, and consequently GM2/GD2, enhanced tumorigenesis via induction of angiogenesis, AIG, and cell motility. RNA-Seq suggested periostin as a potential key factor for angiogenesis and AIG. These findings may lead to development of novel therapy for refractory melanoma.
Collapse
Affiliation(s)
- Hideki Yoshida
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lisa Koodie
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ken Hanzawa
- Department of Molecular Biology, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuhide Miyamoto
- Department of Molecular Biology, Osaka International Cancer Institute, Osaka, Japan
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
49
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
50
|
Akaiwa M, Fukui E, Matsumoto H. Tubulointerstitial nephritis antigen-like 1 deficiency alleviates age-dependent depressed ovulation associated with ovarian collagen deposition in mice. Reprod Med Biol 2020; 19:50-57. [PMID: 31956285 PMCID: PMC6955583 DOI: 10.1002/rmb2.12301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/16/2019] [Accepted: 09/01/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This study aimed to examine whether the Tinagl1 might be associated with ovulation in aged females and reproductive age-associated fibrosis in the stroma of the ovary. METHODS To address the ovulatory ability and quality of ovulated oocytes, we induced ovulation by treatment with equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) followed by in vitro fertilization. We also performed Picrosirius Red (PSR) staining to evaluate ovarian collagen deposition. RESULTS As compared to ovulation in 8- to 9-month-old Tinagl1flox/flox mice, the number of ovulated oocytes from Tinagl1flox/flox mice decreased in an age-dependent manner in mice more than 10-11 months old, whereas the ovulated oocyte numbers in Tinagl1 -/- mice decreased significantly at 14-15 months. In vitro fertilization followed by embryo culture demonstrated the normal developmental potential of Tinagl1-null embryos during the preimplantation period. PSR staining indicated that collagen was found throughout the ovarian stroma in an age-dependent manner in Tinagl1flox/flox females, whereas those distributions were delayed to 14-15 months in Tinagl1 -/- females. This timing was consistent with the delayed timing of age-related decline of ovulation in Tinagl1 -/- females. CONCLUSIONS The alleviation of age-associated depression of ovulation was caused by delayed ovarian collagen deposition in Tinagl1-null female mice.
Collapse
Affiliation(s)
- Masato Akaiwa
- Laboratory of Animal Breeding and ReproductionDivision of Animal ScienceSchool of AgricultureUtsunomiya UniversityUtsunomiyaJapan
| | - Emiko Fukui
- Laboratory of Animal Breeding and ReproductionDivision of Animal ScienceSchool of AgricultureUtsunomiya UniversityUtsunomiyaJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaJapan
| | - Hiromichi Matsumoto
- Laboratory of Animal Breeding and ReproductionDivision of Animal ScienceSchool of AgricultureUtsunomiya UniversityUtsunomiyaJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaJapan
| |
Collapse
|