1
|
Wang Y, Anesi JC, Panicker IS, Cook D, Bista P, Fang Y, Oqueli E. Neuroimmune Interactions and Their Role in Immune Cell Trafficking in Cardiovascular Diseases and Cancer. Int J Mol Sci 2025; 26:2553. [PMID: 40141195 PMCID: PMC11941982 DOI: 10.3390/ijms26062553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Sympathetic nerves innervate bone marrow and various immune organs, where norepinephrine-the primary sympathetic neurotransmitter-directly interacts with immune cells that express adrenergic receptors. This article reviewed the key molecular pathways triggered by sympathetic activation and explored how sympathetic activity influences immune cell migration. Norepinephrine serves as a chemoattractant for monocytes, macrophages, and stem cells, promoting the migration of myeloid cells while inhibiting the migration of lymphocytes at physiological concentrations. We also examined the role of immune cell infiltration in cardiovascular diseases and cancer. Evidence suggests that sympathetic activation increases myeloid cell infiltration into target tissues across various cardiovascular diseases, including atherosclerosis, hypertension, cardiac fibrosis, cardiac hypertrophy, arrhythmia, myocardial infarction, heart failure, and stroke. Conversely, inhibiting sympathetic activity may serve as a potential therapeutic strategy to treat these conditions by reducing macrophage infiltration. Furthermore, sympathetic activation promotes macrophage accumulation in cancer tissues, mirroring its effects in cardiovascular diseases, while suppressing T lymphocyte infiltration into cancerous sites. These changes contribute to increased cancer growth and metastasis. Thus, inhibiting sympathetic activation could help to protect against cancer by enhancing T cell infiltration and reducing macrophage presence in tumors.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Jack C. Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Indu S. Panicker
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Darcy Cook
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Prapti Bista
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Yan Fang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Ernesto Oqueli
- Cardiology Department, Grampians Health Ballarat, Ballarat, VIC 3353, Australia
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3217, Australia
| |
Collapse
|
2
|
Voisey AC, Broadley HD, Broadley KJ, Ford WR. Is there a role for biogenic amine receptors in mediating β-phenylethylamine and RO5256390-induced vascular contraction? Eur J Pharmacol 2024; 981:176895. [PMID: 39153650 DOI: 10.1016/j.ejphar.2024.176895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Substantial evidence indicates trace amines can induce vasoconstriction independently of noradrenaline release. However, the mechanism underlying noradrenaline-independent vasoconstrictor responses to trace amines has not yet been established. This study evaluates the role of trace amine-associated receptor 1 (TAAR1) and other biogenic amine receptors in mediating β-phenylethylamine and the TAAR-1 selective agonist RO5256390-induced vasoconstriction. METHODS Vasoconstrictor responses to β-PEA and the TAAR1-selective agonist, RO5256390 were assessed in vitro in endothelium-denuded aortic rings and third-order mesenteric arteries of male Sprague Dawley rats. RESULTS β-PEA and RO5256390 induced concentration-dependent vasoconstriction of aortic rings but not third-order mesenteric arteries. Vasoconstrictor responses in aortic rings were insensitive to antagonists of 5-HT. The murine-selective TAAR1 antagonist, EPPTB, had no effect on either β-PEA or RO5256390-induced vasoconstriction. The α1-adrenoceptor antagonist, prazosin, and the α2-adrenoceptor antagonist, yohimbine, induced a shift of the β-PEA concentration response curve too small to be ascribed to antagonism of α1-or α2-adrenoceptors, respectively. The α2-adrenoceptor antagonist atipamezole had no effect on β-PEA or RO5256390-induced vasoconstriction. CONCLUSION Vasoconstrictor responses to trace amines are not mediated by classical biogenic amine neurotransmitter receptors. Insensitivity of β-PEA vasoconstrictor responses to EPPTB, may be explained by its low affinity for rat rather than murine TAAR1. Therefore, TAAR1 remains the most likely candidate receptor mediating vasoconstrictor responses to trace amines and that prazosin and yohimbine have low affinity for TAAR1.
Collapse
Affiliation(s)
- Alexander C Voisey
- Medical Pharmacology, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - Harrison D Broadley
- Division of Pharmacology, School of Pharmacy, Cardiff University, Cardiff, United Kingdom
| | - Kenneth J Broadley
- Division of Pharmacology, School of Pharmacy, Cardiff University, Cardiff, United Kingdom
| | - William R Ford
- Division of Pharmacology, School of Pharmacy, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Fan W, Pan M, Zheng C, Shen H, Pi D, Song Q, Liang Z, Zhen J, Pan J, Liu L, Yang Q, Zhang Y. Leonurine Inhibits Hepatic Lipid Synthesis to Ameliorate NAFLD via the ADRA1a/AMPK/SCD1 Axis. Int J Mol Sci 2024; 25:10855. [PMID: 39409181 PMCID: PMC11476755 DOI: 10.3390/ijms251910855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Leonurine is a natural product unique to the Lamiaceae plant Leonurus japonicus Houtt., and it has attracted attention due to its anti-oxidative stress, anti-apoptosis, anti-fibrosis, and metabolic regulation properties. Also, it plays an important role in the prevention and treatment of nonalcoholic fatty liver disease (NAFLD) through a variety of biological mechanisms, but its mechanism of action remains to be elucidated. Therefore, this study aims to preliminarily explore the mechanisms of action of leonurine in NAFLD. Mice were randomly divided into four groups: the normal control (NC) group, the Model (M) group, the leonurine treatment (LH) group, and the fenofibrate treatment (FB) group. The NAFLD model was induced by a high-fat high-sugar diet (HFHSD) for 12 weeks, and liver pathological changes and biochemical indices were observed after 12 weeks. Transcriptomic analysis results indicated that leonurine intervention reversed the high-fat high-sugar diet-induced changes in lipid metabolism-related genes such as stearoyl-CoA desaturase 1 (Scd1), Spermine Synthase (Sms), AP-1 Transcription Factor Subunit (Fos), Oxysterol Binding Protein Like 5 (Osbpl5), and FK506 binding protein 5 (Fkbp5) in liver tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results suggest that leonurine may exert its lipid-lowering effects through the AMP-activated protein kinase (AMPK) signaling pathway. Liver lipidomic analysis showed that leonurine could alter the abundance of lipid molecules related to fatty acyl (FAs) and glycerophospholipids (GPs) such as TxB3, carnitine C12-OH, carnitine C18:1-OH, and LPC (20:3/0:0). Molecular biology experiments and molecular docking techniques verified that leonurine might improve hepatic lipid metabolism through the alpha-1A adrenergic receptor (ADRA1a)/AMPK/SCD1 axis. In summary, the present study explored the mechanism by which leonurine ameliorated NAFLD by inhibiting hepatic lipid synthesis via the ADRA1a/AMPK/SCD1 axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (W.F.); (M.P.); (C.Z.); (H.S.); (D.P.); (Q.S.); (Z.L.); (J.Z.); (J.P.); (L.L.)
| | - Yupei Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (W.F.); (M.P.); (C.Z.); (H.S.); (D.P.); (Q.S.); (Z.L.); (J.Z.); (J.P.); (L.L.)
| |
Collapse
|
4
|
Pinckaers NET, Blankesteijn WM, Mircheva A, Shi X, Opperhuizen A, van Schooten FJ, Vrolijk MF. In Vitro Activation of Human Adrenergic Receptors and Trace Amine-Associated Receptor 1 by Phenethylamine Analogues Present in Food Supplements. Nutrients 2024; 16:1567. [PMID: 38892500 PMCID: PMC11174489 DOI: 10.3390/nu16111567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Pre-workout supplements are popular among sport athletes and overweight individuals. Phenethylamines (PEAs) and alkylamines (AA) are widely present in these supplements. Although the health effects of these analogues are not well understood yet, they are hypothesised to be agonists of adrenergic (ADR) and trace amine-associated receptors (TAARs). Therefore, we aimed to pharmacologically characterise these compounds by investigating their activating properties of ADRs and TAAR1 in vitro. The potency and efficacy of the selected PEAs and AAs was studied by using cell lines overexpressing human ADRα1A/α1B/α1D/α2a/α2B/β1/β2 or TAAR1. Concentration-response relationships are expressed as percentages of the maximal signal obtained by the full ADR agonist adrenaline or the full TAAR1 agonist phenethylamine. Multiple PEAs activated ADRs (EC50 = 34 nM-690 µM; Emax = 8-105%). Almost all PEAs activated TAAR1 (EC50 = 1.8-92 µM; Emax = 40-104%). Our results reveal the pharmacological profile of PEAs and AAs that are often used in food supplements. Several PEAs have strong agonistic properties on multiple receptors and resemble potencies of the endogenous ligands, indicating that they might further stimulate the already activated sympathetic nervous system in exercising athletes via multiple mechanisms. The use of supplements containing one, or a combination of, PEA(s) may pose a health risk for their consumers.
Collapse
Affiliation(s)
- Nicole E. T. Pinckaers
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Anastasiya Mircheva
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Xiao Shi
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, 3540 AA Utrecht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Misha F. Vrolijk
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
5
|
Wu R, Sun F, Zhang W, Ren J, Liu GH. Targeting aging and age-related diseases with vaccines. NATURE AGING 2024; 4:464-482. [PMID: 38622408 DOI: 10.1038/s43587-024-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
Aging is a major risk factor for numerous chronic diseases. Vaccination offers a promising strategy to combat these age-related diseases by targeting specific antigens and inducing immune responses. Here, we provide a comprehensive overview of recent advances in vaccine-based interventions targeting these diseases, including Alzheimer's disease, type II diabetes, hypertension, abdominal aortic aneurysm, atherosclerosis, osteoarthritis, fibrosis and cancer, summarizing current approaches for identifying disease-associated antigens and inducing immune responses against these targets. Further, we reflect on the recent development of vaccines targeting senescent cells, as a strategy for more broadly targeting underlying causes of aging and associated pathologies. In addition to highlighting recent progress in these areas, we discuss important next steps to advance the therapeutic potential of these vaccines, including improving and robustly demonstrating efficacy in human clinical trials, as well as rigorously evaluating the safety and long-term effects of these vaccine strategies.
Collapse
Affiliation(s)
- Ruochen Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Patton GN, Lee HJ. Chemical Insights into Topical Agents in Intraocular Pressure Management: From Glaucoma Etiopathology to Therapeutic Approaches. Pharmaceutics 2024; 16:274. [PMID: 38399328 PMCID: PMC10891530 DOI: 10.3390/pharmaceutics16020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma encompasses a group of optic neuropathies characterized by complex and often elusive etiopathology, involvihttng neurodegeneration of the optic nerve in conjunction with abnormal intraocular pressure (IOP). Currently, there is no cure for glaucoma, and treatment strategies primarily aim to halt disease progression by managing IOP. This review delves into the etiopathology, diagnostic methods, and treatment approaches for glaucoma, with a special focus on IOP management. We discuss a range of active pharmaceutical ingredients used in glaucoma therapy, emphasizing their chemical structure, pharmacological action, therapeutic effectiveness, and safety/tolerability profiles. Notably, most of these therapeutic agents are administered as topical formulations, a critical aspect considering patient compliance and drug delivery efficiency. The classes of glaucoma therapeutics covered in this review include prostaglandin analogs, beta blockers, alpha agonists, carbonic anhydrase inhibitors, Rho kinase inhibitors, and miotic (cholinergic) agents. This comprehensive overview highlights the importance of topical administration in glaucoma treatment, offering insights into the current state and future directions of pharmacological management in glaucoma.
Collapse
Affiliation(s)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
7
|
Yamakawa W, Yasukochi S, Tsurudome Y, Kusunose N, Yamaguchi Y, Tsuruta A, Matsunaga N, Ushijima K, Koyanagi S, Ohdo S. Suppression of neuropathic pain in the circadian clock-deficient Per2m/m mice involves up-regulation of endocannabinoid system. PNAS NEXUS 2024; 3:pgad482. [PMID: 38239754 PMCID: PMC10794166 DOI: 10.1093/pnasnexus/pgad482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Neuropathic pain often results from injuries and diseases that affect the somatosensory system. Disruption of the circadian clock has been implicated in the exacerbation of the neuropathic pain state. However, in this study, we report that mice deficient in a core clock component Period2 (Per2m/m mice) fail to develop tactile pain hypersensitivity even following peripheral nerve injury. Similar to male wild-type mice, partial sciatic nerve ligation (PSL)-Per2m/m male mice showed activation of glial cells in the dorsal horn of the spinal cord and increased expression of pain-related genes. Interestingly, α1D-adrenergic receptor (α1D-AR) expression was up-regulated in the spinal cord of Per2m/m mice, leading to increased production of 2-arachidonoylglycerol (2-AG), an endocannabinoid receptor ligand. This increase in 2-AG suppressed the PSL-induced tactile pain hypersensitivity. Furthermore, intraspinal dorsal horn injection of adeno-associated viral vectors expressing α1D-AR also attenuated pain hypersensitivity in PSL-wild-type male mice by increasing 2-AG production. Our findings reveal an uncovered role of the circadian clock in neuropathic pain disorders and suggest a link between α1D-AR signaling and the endocannabinoid system.
Collapse
Affiliation(s)
- Wakaba Yamakawa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sai Yasukochi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, 756-0884, Japan
| | - Naoki Kusunose
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuta Yamaguchi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, 756-0884, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
8
|
Ruan Y, Buonfiglio F, Gericke A. Adrenoceptors in the Eye - Physiological and Pathophysiological Relevance. Handb Exp Pharmacol 2024; 285:453-505. [PMID: 38082203 DOI: 10.1007/164_2023_702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The autonomic nervous system plays a crucial role in the innervation of the eye. Consequently, it comes as no surprise that catecholamines and their corresponding receptors have been extensively studied and characterized in numerous ocular structures, including the cornea, conjunctiva, lacrimal gland, trabecular meshwork, uvea, and retina. These investigations have unveiled substantial clinical implications, particularly in the context of treating glaucoma, a progressive neurodegenerative disorder responsible for irreversible vision loss on a global scale. The primary therapeutic approaches for glaucoma frequently involve the modulation of α1-, α2-, and β-adrenoceptors, making them pivotal targets. In this chapter, we offer a comprehensive overview of the expression, distribution, and functional roles of adrenoceptors within various components of the eye and its associated structures. Additionally, we delve into the pivotal role of adrenoceptors in the pathophysiology of glaucoma. Furthermore, we provide a concise historical perspective on adrenoceptor research, examine the distinct contributions of individual adrenoceptor subtypes to the treatment of various ocular conditions, and propose potential future avenues of exploration in this field.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Kaczor A, Knutelska J, Kucwaj-Brysz K, Zygmunt M, Żesławska E, Siwek A, Bednarski M, Podlewska S, Jastrzębska-Więsek M, Nitek W, Sapa J, Handzlik J. The Subtype Selectivity in Search of Potent Hypotensive Agents among 5,5-Dimethylhydantoin Derived α 1-Adrenoceptors Antagonists. Int J Mol Sci 2023; 24:16609. [PMID: 38068933 PMCID: PMC10706087 DOI: 10.3390/ijms242316609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
In order to find new hypotensive drugs possessing higher activity and better selectivity, a new series of fifteen 5,5-dimethylhydantoin derivatives (1-15) was designed. Three-step syntheses, consisting of N-alkylations using standard procedures as well as microwaves, were carried out. Crystal structures were determined for compounds 7-9. All of the synthesized 5,5-dimethylhydantoins were tested for their affinity to α1-adrenergic receptors (α1-AR) using both in vitro and in silico methods. Most of them displayed higher affinity (Ki < 127.9 nM) to α1-adrenoceptor than urapidil in radioligand binding assay. Docking to two subtypes of adrenergic receptors, α1A and α1B, was conducted. Selected compounds were tested for their activity towards two α1-AR subtypes. All of them showed intrinsic antagonistic activity. Moreover, for two compounds (1 and 5), which possess o-methoxyphenylpiperazine fragments, strong activity (IC50 < 100 nM) was observed. Some representatives (3 and 5), which contain alkyl linker, proved selectivity towards α1A-AR, while two compounds with 2-hydroxypropyl linker (11 and 13) to α1B-AR. Finally, hypotensive activity was examined in rats. The most active compound (5) proved not only a lower effective dose than urapidil but also a stronger effect than prazosin.
Collapse
Affiliation(s)
- Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| | - Joanna Knutelska
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Ewa Żesławska
- Institute of Biology and Earth Sciences, University of the National Education Commision, Podchorążych 2, 30-084 Krakow, Poland;
| | - Agata Siwek
- Department of Pharmacobiology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland;
| | - Marek Bednarski
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, Smętna 12, 31-343 Krakow, Poland;
| | | | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Jacek Sapa
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| |
Collapse
|
10
|
Matsumoto T, Taguchi K, Kobayashi T. Role of TRPV4 on vascular tone regulation in pathophysiological states. Eur J Pharmacol 2023; 959:176104. [PMID: 37802278 DOI: 10.1016/j.ejphar.2023.176104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
Vascular tone regulation is a key event in controlling blood flow in the body. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) help regulate the vascular tone. Abnormal vascular responsiveness to various stimuli, including constrictors and dilators, has been observed in pathophysiological states although EC and VSMC coordinate to maintain the exquisite balance between contraction and relaxation in vasculatures. Thus, investigating the mechanisms underlying vascular tone abnormality is very important in maintaining vascular health and treating vasculopathy. Increased intracellular free Ca2+ concentration ([Ca2+]i) is one of the major triggers initiating each EC and VSMC response. Transient receptor potential vanilloid family member 4 (TRPV4) is a Ca2+-permeable non-selective ion channel, which is activated by several stimuli, and is presented in both ECs and VSMCs. Therefore, TRPV4 plays an important role in vascular responses. Emerging evidence indicates the role of TRPV4 on the functions of ECs and VSMCs in various pathophysiological states, including hypertension, diabetes, and obesity. This review focused on the link between TRPV4 and the functions of ECs/VSMCs, particularly its role in vascular tone and responsiveness to vasoactive substances.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Pharmaceutical Education and Research, Pharmaceutical Education and Research Center, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| |
Collapse
|
11
|
Wang Y, Anesi J, Maier MC, Myers MA, Oqueli E, Sobey CG, Drummond GR, Denton KM. Sympathetic Nervous System and Atherosclerosis. Int J Mol Sci 2023; 24:13132. [PMID: 37685939 PMCID: PMC10487841 DOI: 10.3390/ijms241713132] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Atherosclerosis is characterized by the narrowing of the arterial lumen due to subendothelial lipid accumulation, with hypercholesterolemia being a major risk factor. Despite the recent advances in effective lipid-lowering therapies, atherosclerosis remains the leading cause of mortality globally, highlighting the need for additional therapeutic strategies. Accumulating evidence suggests that the sympathetic nervous system plays an important role in atherosclerosis. In this article, we reviewed the sympathetic innervation in the vasculature, norepinephrine synthesis and metabolism, sympathetic activity measurement, and common signaling pathways of sympathetic activation. The focus of this paper was to review the effectiveness of pharmacological antagonists or agonists of adrenoceptors (α1, α2, β1, β2, and β3) and renal denervation on atherosclerosis. All five types of adrenoceptors are present in arterial blood vessels. α1 blockers inhibit atherosclerosis but increase the risk of heart failure while α2 agonism may protect against atherosclerosis and newer generations of β blockers and β3 agonists are promising therapies against atherosclerosis; however, new randomized controlled trials are warranted to investigate the effectiveness of these therapies in atherosclerosis inhibition and cardiovascular risk reduction in the future. The role of renal denervation in atherosclerosis inhibition in humans is yet to be established.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Jack Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Michelle C. Maier
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Mark A. Myers
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Ernesto Oqueli
- Cardiology Department, Grampians Health Ballarat, Ballarat, VIC 3350, Australia
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3216, Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Kate M. Denton
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
12
|
Toyoda Y, Zhu A, Kong F, Shan S, Zhao J, Wang N, Sun X, Zhang L, Yan C, Kobilka BK, Liu X. Structural basis of α 1A-adrenergic receptor activation and recognition by an extracellular nanobody. Nat Commun 2023; 14:3655. [PMID: 37339967 DOI: 10.1038/s41467-023-39310-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The α1A-adrenergic receptor (α1AAR) belongs to the family of G protein-coupled receptors that respond to adrenaline and noradrenaline. α1AAR is involved in smooth muscle contraction and cognitive function. Here, we present three cryo-electron microscopy structures of human α1AAR bound to the endogenous agonist noradrenaline, its selective agonist oxymetazoline, and the antagonist tamsulosin, with resolutions range from 2.9 Å to 3.5 Å. Our active and inactive α1AAR structures reveal the activation mechanism and distinct ligand binding modes for noradrenaline compared with other adrenergic receptor subtypes. In addition, we identified a nanobody that preferentially binds to the extracellular vestibule of α1AAR when bound to the selective agonist oxymetazoline. These results should facilitate the design of more selective therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.
Collapse
Affiliation(s)
- Yosuke Toyoda
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| | - Angqi Zhu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fang Kong
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sisi Shan
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Tsinghua University, Beijing, 100084, China
| | - Jiawei Zhao
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Nan Wang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Linqi Zhang
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Tsinghua University, Beijing, 100084, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Xiangyu Liu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
14
|
Kupka JR, Sagheb K, Al-Nawas B, Schiegnitz E. The Sympathetic Nervous System in Dental Implantology. J Clin Med 2023; 12:jcm12082907. [PMID: 37109243 PMCID: PMC10143978 DOI: 10.3390/jcm12082907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The sympathetic nervous system plays a vital role in various regulatory mechanisms. These include the well-known fight-or-flight response but also, for example, the processing of external stressors. In addition to many other tissues, the sympathetic nervous system influences bone metabolism. This effect could be highly relevant concerning osseointegration, which is responsible for the long-term success of dental implants. Accordingly, this review aims to summarize the current literature on this topic and to reveal future research perspectives. One in vitro study showed differences in mRNA expression of adrenoceptors cultured on implant surfaces. In vivo, sympathectomy impaired osseointegration in mice, while electrical stimulation of the sympathetic nerves promoted it. As expected, the beta-blocker propranolol improves histological implant parameters and micro-CT measurements. Overall, the present data are considered heterogeneous. However, the available publications reveal the potential for future research and development in dental implantology, which helps to introduce new therapeutic strategies and identify risk factors for dental implant failure.
Collapse
Affiliation(s)
- Johannes Raphael Kupka
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Keyvan Sagheb
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
15
|
Komiyama T. Effects of Genetic Mutation Sites in ADR Genes on Modern Chickens Produced and Domesticated by Artificial Selection. BIOLOGY 2023; 12:biology12020169. [PMID: 36829448 PMCID: PMC9952598 DOI: 10.3390/biology12020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Associations between neurotransmitters, adrenergic receptor (ADR) mutations, and behaviors in chickens produced and domesticated by artificial selection remain unclear. This study investigates the association of neurotransmitters and ADR mutations with egg laying and cockfighting-behaviors associated with significantly different breeding backgrounds-in Shaver Brown and Shamo chickens. Accordingly, the whole sequences of nine ADR genes were determined, and nine amino acid-specific mutation sites from five genes (ADRα1A: S365G, ADRα1D: T440N, ADRα2A: D273E, ADRβ1: N443S, S445N, ADRβ3: R342C, Q404L, and P406S) were extracted. Evolutionary analysis showed that these mutations were not ancestrally derived. These results confirm that the mutations at these sites were artificially selected for domestication and are breed specific. NST population analysis confirmed a difference in the degree of genetic differentiation between the two populations in seven genes. The results further confirm differences in the degree of genetic differentiation between the two populations in Shaver Brown (ADRA1B and ADRA1D) and Shamo (ADRA1A and ADRA2B) chickens, indicating that the ADR gene differs between the two breeds. The effects of artificial selection, guided by the human-driven selection of desirable traits, are reflected in adrenaline gene mutations. Furthermore, certain gene mutations may affect domestication, while others may affect other traits in populations or individuals.
Collapse
Affiliation(s)
- Tomoyoshi Komiyama
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
16
|
Wei H, Bi Y, Wang Y, Zhao Q, Zhang R, Li J, Bao J. Serum bone remodeling parameters and transcriptome profiling reveal abnormal bone metabolism associated with keel bone fractures in laying hens. Poult Sci 2022; 102:102438. [PMID: 36780704 PMCID: PMC9947423 DOI: 10.1016/j.psj.2022.102438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Keel bone fractures affect welfare, health, and production performance in laying hens. A total of one hundred and twenty 35-wk-old Hy-line Brown laying hens with normal keel (NK) bone were housed in furnished cages and studied for ten weeks to investigate the underlying mechanism of keel bone fractures. At 45 wk of age, the keel bone state of birds was assessed by palpation and X-ray, and laying hens were recognized as NK and fractured keel (FK) birds according to the presence or absence of fractures in keel bone. The serum samples of 10 NK and 10 FK birds were collected to determine bone metabolism-related indexes and slaughtered to collect keel bones for RNA-sequencing (RNA-seq), Micro-CT, and histopathological staining analyses. The results showed that the concentrations of Ca, phosphorus, calcitonin, 25-hydroxyvitamin D3, and osteocalcin and activities of alkaline phosphatase and tartrate-resistant acid phosphatase (TRAP) in serum samples of FK birds were lower than those of NK birds (P < 0.05), but the concentrations of parathyroid hormone, osteoprotegerin, and corticosterone in serum samples of FK birds were higher than those of NK birds (P < 0.05). TRAP staining displayed that FK bone increased the number of osteoclasts (P < 0.05). Micro-CT analysis indicated that FK bone decreased bone mineral density (P < 0.05). Transcriptome sequencing analysis of NK and FK bones identified 214 differentially expressed genes (DEGs) (|log2FoldChange| > 1, P < 0.05), among which 88 were upregulated and 126 downregulated. Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis indicated that 14 DEGs related to skeletal muscle movement and bone Ca transport (COL6A1, COL6A2, COL6A3, PDGFA, MYLK2, EGF, CAV3, ADRA1D, BDKRB1, CACNA1S, TNN, TNNC1, TNNC2, and RYR3) were enriched in focal adhesion and Ca signaling pathway, regulating bone quality. This study suggests that abnormal bone metabolism related to keel bone fractures is possibly responded to fracture healing in laying hens.
Collapse
Affiliation(s)
- Haidong Wei
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Yanju Bi
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
17
|
Demirel S. Geraniol and β-citronellol participate in the vasorelaxant effects of Rosa damascena Miller essential oil on the rat thoracic aorta. Fitoterapia 2022; 161:105243. [PMID: 35728707 DOI: 10.1016/j.fitote.2022.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/04/2022]
Abstract
AIM This study aimed to investigate the vasoactive effects of Rosa damascena Miller essential oil and its major components, geraniol and β-citronellol, on the rat thoracic aorta. METHODS Isolated tissue bath model and Wistar rats were used to perform the experiments. Two-fold increasing concentrations (20-160 μg/mL) of rose oil were administered to determine its vasoactive effects. Submaximal contractions were induced by PE or KCl in both endothelium-intact and -denuded segments. Time-matched control groups were also formed. To evaluate the role of geraniol and β-citronellol, concentrations in the range of 0.4-3.2 μg/mL and 0.8-6.4 μg/mL were applied respectively. The statistical significance level was considered as p < 0.05. RESULTS All doses of rose oil applied led to vasorelaxation in thoracic aortas precontracted with PE. In precontracted thoracic aortas with KCl, the significant effect of rose oil persisted, albeit slightly diminished. When the endothelium was removed, the relaxant effect of rose oil was partially reduced, but still significant. Besides, although geraniol relaxed aortic segments at all concentrations (0.4 to 3.2 μg/mL), β-citronellol caused vasorelaxation at doses of 1.6, 3.2, and 6.4 μg/mL. CONCLUSION In conclusion, the first findings were obtained that rose oil can cause a vasorelaxant effect in a concentration-dependent manner in rat thoracic aorta. This effect substantially persisted in vascular segments without endothelium or precontracted with KCl. It was further shown for the first time that geraniol and β-citronellol exert vasodilatory effects on the rat thoracic aorta. These results suggest that rose oil exhibits its vasorelaxant effect through geraniol and β-citronellol.
Collapse
Affiliation(s)
- Sadettin Demirel
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey.
| |
Collapse
|
18
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
19
|
Influence of Receptor Polymorphisms on the Response to α-Adrenergic Receptor Blockers in Pheochromocytoma Patients. Biomedicines 2022; 10:biomedicines10040896. [PMID: 35453646 PMCID: PMC9028965 DOI: 10.3390/biomedicines10040896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Presurgical treatment with an α-adrenergic receptor blocker is recommended to antagonize the catecholamine-induced α-adrenergic receptor mediated vasoconstriction in patients with pheochromocytoma or sympathetic paraganglioma (PPGL). There is, however, a considerable interindividual variation in the dose-response relationship regarding the magnitude of blood pressure reduction or the occurrence of side effects. We hypothesized that genetically determined differences in α-adrenergic receptor activity contribute to this variability in dose-response relationship. Methods: Thirty-one single-nucleotide polymorphisms (SNPs) of the α1A, α1B, α1D adrenoreceptor (ADRA1A, ADRA1B, ADRA1D) and α2A, α2B adrenoreceptor (ADRA2A, ADRA2B) genes were genotyped in a group of 116 participants of the PRESCRIPT study. Haplotypes were constructed after determining linkage disequilibrium blocks. Results: The ADRA1B SNP rs10515807 and the ADRA2A SNPs rs553668/rs521674 were associated with higher dosages of α-adrenergic receptor blocker (p < 0.05) and with a higher occurrence of side effects (rs10515807) (p = 0.005). Similar associations were found for haplotype block 6, which is predominantly defined by rs10515807. Conclusions: This study suggests that genetic variability of α-adrenergic receptor genes might be associated with the clinically observed variation in beneficial and adverse therapeutic drug responses to α-adrenergic receptor blockers. Further studies in larger cohorts are needed to confirm our observations.
Collapse
|
20
|
Dias CJ, Costa HA, Alves Dias-Filho CA, Ferreira AC, Rodrigues B, Irigoyen MC, Romão Borges AC, de Andadre Martins V, Branco Vidal FC, Ribeiro RM, Filho NS, Mostarda CT. Carvacrol reduces blood pressure, arterial responsiveness and increases expression of MAS receptors in spontaneously hypertensive rats. Eur J Pharmacol 2022; 917:174717. [PMID: 34953800 DOI: 10.1016/j.ejphar.2021.174717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
AIM To analyze the effect of the use of carvacrol in the cardiovascular system of spontaneously hypertensive rats (SHR). METHODS Methods: Twenty animals were allocated in four groups, one group control Wistar receiving only sorbitol, used as vehicle of administration of the carvacrol (Wistar-Vehicle), one control group SHR, also receive only sorbitol (SHR-Vehicle), a third, treated with losartan (SHR-Losartan/50 mg/kg), and the fourth, treated with carvacrol (SHR - Carvacrol/20 mg/kg). Sorbitol, losartan and carvacrol were administered by oral gavage daily for 30-day. Hemodynamic variables, vascular reactivity, biochemical parameters, and expression of Mas and AT1 receptors in kidney tissues were analyzed. RESULTS SHR- Carvacrol group showed a maximal effect of inhibition of 56% in the curve of norepinephrine. The Emax of the curves with Ca2+ were smaller in the groups SHR-losartan (40.17%) and SHR-carvacrol (35.71%) when compared to the SHR-Vehicle. The carvacrol increased the expression of the MAS receptors in kidney tissue. CONCLUSION Thirty days of treatment with carvacrol showed an antihypertensive effect associated with less peripheral vascular resistance. Also, treatment with carvacrol increased the expression of MAS receptors in kidney tissue.
Collapse
Affiliation(s)
- Carlos José Dias
- Northeast Biotechnology Network Postgraduate Program (Renorbio), Federal University of Maranhao, St. Luis /Maranhao, Brazil; Cardiovascular Adaptations to Exercise Laboratory (LACORE), Federal University of Maranhão, St. Luis /Maranhao, Brazil; Cardiorenal Adaptations to Exercise Laboratory (LACE), Federal University of Maranhão, Pinheiro /Maranhao, Brazil
| | - Herikson Araújo Costa
- Health Sciences Graduate Program, Federal University of Maranhao, St. Luis /Maranhao, Brazil
| | - Carlos Alberto Alves Dias-Filho
- Northeast Biotechnology Network Postgraduate Program (Renorbio), Federal University of Maranhao, St. Luis /Maranhao, Brazil; Cardiovascular Adaptations to Exercise Laboratory (LACORE), Federal University of Maranhão, St. Luis /Maranhao, Brazil
| | - Andressa Coelho Ferreira
- Cardiovascular Adaptations to Exercise Laboratory (LACORE), Federal University of Maranhão, St. Luis /Maranhao, Brazil; Graduate Program in Adult Health, Federal University of Maranhao, St. Luis /Maranhao, Brazil
| | - Bruno Rodrigues
- Physical Education College, State University of Campinas, Campinas/St Paul, Brazil
| | - Maria Claudia Irigoyen
- Department of Cardiopneumology, Faculty of Medicine of USP, InCor Experimental Hypertension Laboratory, St Paul/St Paul, Brazil
| | - Antônio Carlos Romão Borges
- Northeast Biotechnology Network Postgraduate Program (Renorbio), Federal University of Maranhao, St. Luis /Maranhao, Brazil; Department of Physiological Sciences, Federal University of Maranhao, St. Luis /Maranhao, Brazil
| | - Vicenilma de Andadre Martins
- Northeast Biotechnology Network Postgraduate Program (Renorbio), Federal University of Maranhao, St. Luis /Maranhao, Brazil
| | | | - Rachel Melo Ribeiro
- Department of Physiological Sciences, Federal University of Maranhao, St. Luis /Maranhao, Brazil
| | - Natalino Salgado Filho
- Health Sciences Graduate Program, Federal University of Maranhao, St. Luis /Maranhao, Brazil
| | - Cristiano T Mostarda
- Northeast Biotechnology Network Postgraduate Program (Renorbio), Federal University of Maranhao, St. Luis /Maranhao, Brazil; Cardiovascular Adaptations to Exercise Laboratory (LACORE), Federal University of Maranhão, St. Luis /Maranhao, Brazil; Postgraduate Program in Physical Education, Federal University of Maranhao, St. Luis /Maranhao, Brazil; Graduate Program in Adult Health, Federal University of Maranhao, St. Luis /Maranhao, Brazil.
| |
Collapse
|
21
|
Zhao W, Liu X. MiR-3682 promotes the progression of hepatocellular carcinoma (HCC) via inactivating AMPK signaling by targeting ADRA1A. Ann Hepatol 2022; 27 Suppl 1:100570. [PMID: 34706275 DOI: 10.1016/j.aohep.2021.100570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES This study aimed to investigate miR-3682 as a biomarker in hepatocellular carcinoma (HCC). MATERIALS AND METHODS MiRNA and RNA profiles of 375 HCC tissues and 50 normal liver samples were downloaded from The Cancer Genome Atlas (TCGA) database. Multivariate Cox regression and Kaplan-Meier analyses were applied to examine the prognostic value of factors. Target genes of miR-3682 were analyzed by TargetScan and dual-luciferase reporter assay. Online Database for Annotation, Visualization, and Integrated Discovery (DAVID) to perform KEGG pathway enrichment. Cell counting kit-8, colony formation and migration and invasion assays were performed to analyze biological behaviors of HCC cells. RESULTS MiR-3682 was identified to be highly expressed in HCC tissues and cell lines. And miR-3682 was negatively and independently associated with the outcome of HCC patients. Inhibition of miR-3682 suppressed HCC cell viability and mobility. ADRA1A, predicted and confirmed as the novel target of miR-3682, was an independent and positive prognostic predictor for HCC. In addition, the knockdown of ADRA1A partially offset the inhibitory effect of miR-3682 inhibitor on the growth and mobility of HCC cells. DAVID enrichment and western blot of key signaling-related proteins analyses revealed that miR-3682 inactivated 5'-AMP-activated protein kinase (AMPK) signaling by negatively regulating ADRA1A. Mechanically, it was partially through suppressing AMPK signaling via targeting ADRA1A that miR-3682 supported the HCC cell malignant phenotype. CONCLUSIONS This study implicates that miR-3682 plays an oncogenetic role in HCC and can be considered a novel therapeutic target and prognostic indicator of HCC.
Collapse
Affiliation(s)
- Wenyue Zhao
- Department of gastrology, Shandong Provincial Third Hospital, Shandong University, Jinan 250031, China
| | - Xueping Liu
- Department of gastrology, Shandong Provincial Third Hospital, Shandong University, Jinan 250031, China.
| |
Collapse
|
22
|
Carnevale D, Carnevale L, Perrotta S, Pallante F, Migliaccio A, Iodice D, Perrotta M, Lembo G. Chronic 3D Vascular-Immune Interface Established by Coculturing Pressurized Resistance Arteries and Immune Cells. Hypertension 2021; 78:1648-1661. [PMID: 34565186 PMCID: PMC8516815 DOI: 10.1161/hypertensionaha.121.17447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Molecular Medicine, "Sapienza University" of Rome, Italy (D.C., S.P., M.P., G.L.).,Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli (IS), Italy (D.C., L.C., F.P., A.M., D.I., G.L.)
| | - Lorenzo Carnevale
- Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli (IS), Italy (D.C., L.C., F.P., A.M., D.I., G.L.)
| | - Sara Perrotta
- Department of Molecular Medicine, "Sapienza University" of Rome, Italy (D.C., S.P., M.P., G.L.)
| | - Fabio Pallante
- Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli (IS), Italy (D.C., L.C., F.P., A.M., D.I., G.L.)
| | - Agnese Migliaccio
- Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli (IS), Italy (D.C., L.C., F.P., A.M., D.I., G.L.)
| | - Daniele Iodice
- Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli (IS), Italy (D.C., L.C., F.P., A.M., D.I., G.L.)
| | - Marialuisa Perrotta
- Department of Molecular Medicine, "Sapienza University" of Rome, Italy (D.C., S.P., M.P., G.L.)
| | - Giuseppe Lembo
- Department of Molecular Medicine, "Sapienza University" of Rome, Italy (D.C., S.P., M.P., G.L.).,Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli (IS), Italy (D.C., L.C., F.P., A.M., D.I., G.L.)
| |
Collapse
|
23
|
Alsufyani HA, Daly C, Docherty JR. Interaction between α 1B - and other α 1 - and α 2 -adrenoceptors in producing contractions of mouse spleen. Basic Clin Pharmacol Toxicol 2021; 129:416-426. [PMID: 34383990 DOI: 10.1111/bcpt.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
We have investigated the interaction of α1 - and α2 -adrenoceptor subtypes in producing isometric contractions to NA in mouse whole spleen. The α1 -adrenoceptor antagonist prazosin (10-8 M) or the α2 -adrenoceptor antagonist yohimbine (10-6 M) alone produced only small shifts in NA potency in wild type (WT) mice, but the combination produced a large shift in NA potency. In spleen from α1A/D -KO mice, the effects of prazosin and the combination of prazosin and yohimbine were similar to their effects in WT mice. Hence, in α1A/D -KO mice, in which the only α1 -adrenoceptor present is the α1B -adrenoceptor, prazosin still antagonized contractions to NA. The α1A -adrenoceptor antagonist RS100329 (3x10-9 M) produced significant shifts in the effects of higher concentrations of NA (EC50 and EC75 levels) and the α1D -adrenoceptor antagonist BMY7378 (3x10-8 M) produced significant shifts in the effects of lower concentrations of NA (EC25 and EC50 levels). The effects of BMY7378 and RS00329 demonstrate α1D -adrenoceptor and α1A -adrenoceptor components, and suggest that the α1B -adrenoceptor interacts with an α1D -adrenoceptor, and to a lesser extent an α1A -adrenoceptor, at low, and an α1A -adrenoceptor at high, NA concentrations. This study demonstrates the complex interaction between α1 - and α2 -adrenoceptor subtypes in producing contractions of mouse spleen and may have general implications for α-adrenoceptor mediated control of smooth muscle.
Collapse
Affiliation(s)
- Hadeel A Alsufyani
- Department of Physiology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Craig Daly
- School of Life Sciences, University of Glasgow, Glasgow, Scotland
| | | |
Collapse
|
24
|
Proudman RGW, Baker JG. The selectivity of α-adrenoceptor agonists for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol Res Perspect 2021; 9:e00799. [PMID: 34355529 PMCID: PMC8343220 DOI: 10.1002/prp2.799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Highly selective drugs offer a way to minimize side-effects. For agonist ligands, this could be through highly selective affinity or highly selective efficacy, but this requires careful measurements of intrinsic efficacy. The α1-adrenoceptors are important clinical targets, and α1-agonists are used to manage hypotension, sedation, attention deficit hypersensitivity disorder (ADHD), and nasal decongestion. With 100 years of drug development, there are many structurally different compounds with which to study agonist selectivity. This study examined 62 α-agonists at the three human α1-adrenoceptor (α1A, α1B, and α1D) stably expressed in CHO cells. Affinity was measured using whole-cell 3 H-prazosin binding, while functional responses were measured for calcium mobilization, ERK1/2-phosphorylation, and cAMP accumulation. Efficacy ratios were used to rank compounds in order of intrinsic efficacy. Adrenaline, noradrenaline, and phenylephrine were highly efficacious α1-agonists at all three receptor subtypes. A61603 was the most selective agonist and its very high α1A-selectivity was due to selective α1A-affinity (>660-fold). There was no evidence of Gq-calcium versus ERK-phosphorylation biased signaling at the α1A, α1B, or α1D-adrenoceptors. There was little evidence for α1A calcium versus cAMP biased signaling, although there were suggestions of calcium versus cAMP bias the α1B-adrenoceptor. Comparisons of the rank order of ligand intrinsic efficacy suggest little evidence for selective intrinsic efficacy between the compounds, with perhaps the exception of dobutamine which may have some α1D-selective efficacy. There seems plenty of scope to develop affinity selective and intrinsic efficacy selective drugs for the α1-adrenoceptors in future.
Collapse
Affiliation(s)
- Richard G. W. Proudman
- Cell Signalling Research GroupDivision of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesC Floor Medical SchoolQueen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Jillian G. Baker
- Cell Signalling Research GroupDivision of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesC Floor Medical SchoolQueen’s Medical CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
25
|
Docherty JR, Alsufyani HA. Cardiovascular and temperature adverse actions of stimulants. Br J Pharmacol 2021; 178:2551-2568. [PMID: 33786822 DOI: 10.1111/bph.15465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The vast majority of illicit stimulants act at monoaminergic systems, causing both psychostimulant and adverse effects. Stimulants can interact as substrates or antagonists at the nerve terminal monoamine transporter that mediates the reuptake of monoamines across the nerve synaptic membrane and at the vesicular monoamine transporter (VMAT-2) that mediates storage of monoamines in vesicles. Stimulants can act directly at presynaptic or postsynaptic receptors for monoamines or have indirect monoamine-mimetic actions due to the release of monoamines. Cocaine and other stimulants can acutely increase the risk of sudden cardiac death. Stimulants, particularly MDMA, in hot conditions, such as that occurring at a "rave," have caused fatalities from the consequences of hyperthermia, often compounding cardiac adverse actions. This review examines the pharmacology of the cardiovascular and temperature adverse actions of stimulants.
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hadeel A Alsufyani
- Department of Physiology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Chmielarz P, Kuśmierczyk J, Rafa-Zabłocka K, Chorązka K, Kowalska M, Satała G, Nalepa I. Antidepressants Differentially Regulate Intracellular Signaling from α1-Adrenergic Receptor Subtypes In Vitro. Int J Mol Sci 2021; 22:ijms22094817. [PMID: 34062902 PMCID: PMC8124549 DOI: 10.3390/ijms22094817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Currently utilized antidepressants have limited effectiveness and frequently incur undesired effects. Most antidepressants are thought to act via the inhibition of monoamine reuptake; however, direct binding to monoaminergic receptors has been proposed to contribute to both their clinical effectiveness and their side effects, or lack thereof. Among the target receptors of antidepressants, α1‑adrenergic receptors (ARs) have been implicated in depression etiology, antidepressant action, and side effects. However, differences in the direct effects of antidepressants on signaling from the three subtypes of α1-ARs, namely, α1A-, α1B- and α1D‑ARs, have been little explored. We utilized cell lines overexpressing α1A-, α1B- or α1D-ARs to investigate the effects of the antidepressants imipramine (IMI), desipramine (DMI), mianserin (MIA), reboxetine (REB), citalopram (CIT) and fluoxetine (FLU) on noradrenaline-induced second messenger generation by those receptors. We found similar orders of inhibition at α1A-AR (IMI < DMI < CIT < MIA < REB) and α1D‑AR (IMI = DMI < CIT < MIA), while the α1B-AR subtype was the least engaged subtype and was inhibited with low potency by three drugs (MIA < IMI = DMI). In contrast to their direct antagonistic effects, prolonged incubation with IMI and DMI increased the maximal response of the α1B-AR subtype, and the CIT of both the α1A- and the α1B-ARs. Our data demonstrate a complex, subtype-specific modulation of α1-ARs by antidepressants of different groups.
Collapse
Affiliation(s)
- Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.C.); (J.K.); (K.R.-Z.); (K.C.); (M.K.)
| | - Justyna Kuśmierczyk
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.C.); (J.K.); (K.R.-Z.); (K.C.); (M.K.)
| | - Katarzyna Rafa-Zabłocka
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.C.); (J.K.); (K.R.-Z.); (K.C.); (M.K.)
| | - Katarzyna Chorązka
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.C.); (J.K.); (K.R.-Z.); (K.C.); (M.K.)
| | - Marta Kowalska
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.C.); (J.K.); (K.R.-Z.); (K.C.); (M.K.)
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland;
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.C.); (J.K.); (K.R.-Z.); (K.C.); (M.K.)
- Correspondence: ; Tel.: +48-12-6623225
| |
Collapse
|
27
|
Ma Z, Du L, Li M. Discovery of the Environment-Sensitive Near-Infrared (NIR) Fluorogenic Ligand for α 1-Adrenergic Receptors Imaging In Vivo. Methods Mol Biol 2021; 2274:181-192. [PMID: 34050472 DOI: 10.1007/978-1-0716-1258-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Fluorescent ligands have emerged as powerful tools for noninvasive research of G protein-coupled receptors (GPCRs), since they could provide the invaluable information regarding GPCRs' structure and function in vitro. However, the in vivo applications of thus tools are hampered owing to their short-wavelength spectra and lack of fluorogenic switch. Here, we describe the experimental details of discovery of the environment-sensitive near-infrared (NIR) fluorogenic ligand for in vivo imaging of α1-adrenergic receptor (α1-AR).
Collapse
Affiliation(s)
- Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
28
|
Moore CL, Henry DS, McClenahan SJ, Ball KK, Rusch NJ, Rhee SW. Metoprolol Impairs β1-Adrenergic Receptor-Mediated Vasodilation in Rat Cerebral Arteries: Implications for β-Blocker Therapy. J Pharmacol Exp Ther 2021; 376:127-135. [PMID: 33100271 PMCID: PMC7788352 DOI: 10.1124/jpet.120.000176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022] Open
Abstract
The practice of prescribing β-blockers to lower blood pressure and mitigate perioperative cardiovascular events has been questioned because of reports of an increased risk of stroke. The benefit of β-blocker therapy primarily relies on preventing activation of cardiac β1-adrenergic receptors (ARs). However, we reported that β1ARs also mediate vasodilator responses of rat cerebral arteries (CAs), implying that β-blockers may impair cerebral blood flow under some conditions. Here, we defined the impact of metoprolol (MET), a widely prescribed β1AR-selective antagonist, on adrenergic-elicited diameter responses of rat CAs ex vivo and in vivo. MET (1-10 µmol/l) prevented β1AR-mediated increases in diameter elicited by dobutamine in cannulated rat CAs. The β1AR-mediated dilation elicited by the endogenous adrenergic agonist norepinephrine (NE) was reversed to a sustained constriction by MET. Acute oral administration of MET (30 mg/kg) to rats in doses that attenuated resting heart rate and dobutamine-induced tachycardia also blunted β1AR-mediated dilation of CAs. In the same animals, NE-induced dilation of CAs was reversed to sustained constriction. Administration of MET for 2 weeks in drinking water (2 mg/ml) or subcutaneously (15 mg/kg per day) also resulted in NE-induced constriction of CAs in vivo. Thus, doses of MET that protect the heart from adrenergic stimulation also prevent β1AR-mediated dilation of CAs and favor anomalous adrenergic constriction. Our findings raise the possibility that the increased risk of ischemic stroke in patients on β-blockers relates in part to adrenergic dysregulation of cerebrovascular tone. SIGNIFICANCE STATEMENT: β-Blocker therapy using second-generation, cardioselective β-blockers is associated with an increased risk of stroke, but the responsible mechanisms are unclear. Here, we report that either acute or chronic systemic administration of a cardioselective β-blocker, metoprolol, mitigates adrenergic stimulation of the heart as an intended beneficial action. However, metoprolol concomitantly eliminates vasodilator responses to adrenergic stimuli of rat cerebral arteries in vivo as a potential cause of dysregulated cerebral blood flow predisposing to ischemic stroke.
Collapse
Affiliation(s)
- Christopher L Moore
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - David S Henry
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Samantha J McClenahan
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kelly K Ball
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
29
|
Chen M, Singh AK, Repasky EA. Highlighting the Potential for Chronic Stress to Minimize Therapeutic Responses to Radiotherapy through Increased Immunosuppression and Radiation Resistance. Cancers (Basel) 2020; 12:3853. [PMID: 33419318 PMCID: PMC7767049 DOI: 10.3390/cancers12123853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation has been used in the treatment of cancer for more than 100 years. While often very effective, there is still a great effort in place to improve the efficacy of radiation therapy for controlling the progression and recurrence of tumors. Recent research has revealed the close interaction between nerves and tumor progression, especially nerves of the autonomic nervous system that are activated by a variety of stressful stimuli including anxiety, pain, sleep loss or depression, each of which is likely to be increased in cancer patients. A growing literature now points to a negative effect of chronic stressful stimuli in tumor progression. In this review article, we present data on the potential for adrenergic stress to influence the efficacy of radiation and in particular, its potential to influence the anti-tumor immune response, and the frequency of an "abscopal effect" or the shrinkage of tumors which are outside an irradiated field. We conclude that chronic stress can be a major impediment to more effective radiation therapy through mechanisms involving immunosuppression and increased resistance to radiation-induced tumor cell death. Overall, these data highlight the potential value of stress reduction strategies to improve the outcome of radiation therapy. At the same time, objective biomarkers that can accurately and objectively reflect the degree of stress in patients over prolonged periods of time, and whether it is influencing immunosuppression and radiation resistance, are also critically needed.
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Anurag K. Singh
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
30
|
New small molecule fluorescent probes for G protein-coupled receptors: valuable tools for drug discovery. Future Med Chem 2020; 13:63-90. [PMID: 33319586 DOI: 10.4155/fmc-2019-0327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are essential signaling proteins and tractable therapeutic targets. To develop new drug candidates, GPCR drug discovery programs require versatile, sensitive pharmacological tools for ligand binding and compound screening. With the availability of new imaging modalities and proximity-based ligand binding technologies, fluorescent ligands offer many advantages and are increasingly being used, yet labeling small molecules remains considerably more challenging relative to peptides. Focusing on recent fluorescent small molecule studies for family A GPCRs, this review addresses some of the key challenges, synthesis approaches and structure-activity relationship considerations, and discusses advantages of using high-resolution GPCR structures to inform conjugation strategies. While no single approach guarantees successful labeling without loss of affinity or selectivity, the choice of fluorophore, linker type and site of attachment have proved to be critical factors that can significantly affect their utility in drug discovery programs, and as discussed, can sometimes lead to very unexpected results.
Collapse
|
31
|
The Role of Adrenoceptors in the Retina. Cells 2020; 9:cells9122594. [PMID: 33287335 PMCID: PMC7761662 DOI: 10.3390/cells9122594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
The retina is a part of the central nervous system, a thin multilayer with neuronal lamination, responsible for detecting, preprocessing, and sending visual information to the brain. Many retinal diseases are characterized by hemodynamic perturbations and neurodegeneration leading to vision loss and reduced quality of life. Since catecholamines and respective bindings sites have been characterized in the retina, we systematically reviewed the literature with regard to retinal expression, distribution and function of alpha1 (α1)-, alpha2 (α2)-, and beta (β)-adrenoceptors (ARs). Moreover, we discuss the role of the individual adrenoceptors as targets for the treatment of retinal diseases.
Collapse
|
32
|
Sivakumar L, Chellappan DR, Sriramavaratharajan V, Murugan R. Root essential oil of Chrysopogon zizanioides relaxes rat isolated thoracic aorta - an ex vivo approach. ACTA ACUST UNITED AC 2020; 76:161-168. [PMID: 33048838 DOI: 10.1515/znc-2020-0143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023]
Abstract
Root of Chrysopogon zizanioides (L.) Roberty has been used in Siddha system of medicine to treat hypertension. The present study was therefore to investigate the vasorelaxation effect of root essential oil of C. zizanioides using rat isolated thoracic aortic rings. Chemical characterization of root essential oil was carried out using Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS). Essential oil nanoemulsion (EONE) was prepared and characterized. Vasorelaxant effect of EONE in endothelium-intact aortic rings precontracted with phenylephrine (PE) (1 µM) or KCl (80 mM) was investigated. Role of Ca2+, nitric oxide and K+ channels in precontracted aortic rings were investigated to elucidate the mechanism of action of the essential oil. Further, the role of muscarinic and prostacyclin receptors in EONE induced relaxation was studied. The EONE significantly induced relaxation (Emax 77.1 ± 4.87%) in PE precontracted aortic rings. The nitric oxide synthase, and cyclooxygenase inhibitors and potassium channel blockers have not significantly inhibited the vasorelaxation induced by EONE. However, EONE induced relaxation in precontracted endothelium-intact aortic rings was significantly inhibited by muscarinic receptor and calcium channel. The root essential oil of C. zizanioides possesses vasorelaxant effect through muscarinic pathway as well as acts as calcium channel blocker.
Collapse
Affiliation(s)
- Lekha Sivakumar
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur613 401, Tamil Nadu, India
| | - David Raj Chellappan
- Central Animal Facility, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur613 401, Tamil Nadu, India
| | - Venkatraman Sriramavaratharajan
- Central Animal Facility, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur613 401, Tamil Nadu, India
| | - Ramar Murugan
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi626 124, Tamil Nadu, India
| |
Collapse
|
33
|
Li Z, Lin Y, Song H, Qin X, Yu Z, Zhang Z, Dong G, Li X, Shi X, Du L, Zhao W, Li M. First small-molecule PROTACs for G protein-coupled receptors: inducing α 1A-adrenergic receptor degradation. Acta Pharm Sin B 2020; 10:1669-1679. [PMID: 33088687 PMCID: PMC7563999 DOI: 10.1016/j.apsb.2020.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/18/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are dual-functional hybrid molecules that can selectively recruit an E3 ubiquitin ligase to a target protein to direct the protein into the ubiquitin-proteasome system (UPS), thereby selectively reducing the target protein level by the ubiquitin-proteasome pathway. Nowadays, small-molecule PROTACs are gaining popularity as tools to degrade pathogenic protein. Herein, we present the first small-molecule PROTACs that can induce the α1A-adrenergic receptor (α1A-AR) degradation, which is also the first small-molecule PROTACs for G protein-coupled receptors (GPCRs) to our knowledge. These degradation inducers were developed through conjugation of known α1-adrenergic receptors (α1-ARs) inhibitor prazosin and cereblon (CRBN) ligand pomalidomide through the different linkers. The representative compound 9c is proved to inhibit the proliferation of PC-3 cells and result in tumor growth regression, which highlighted the potential of our study as a new therapeutic strategy for prostate cancer.
Collapse
Key Words
- BPH, benign prostatic hyperplasia
- CRBN, cereblon
- DCM, dichloromethane
- DMF, dimethylformamide
- DMSO, dimethylsulfoxide
- Degradation
- GPCR, G-protein-coupled receptor
- HPLC, high-performance liquid chromatography
- LUTS, lower urinary tract symptoms
- PROTACs, proteolysis targeting chimeras
- Prostate cancer
- Small-molecule PROTACs
- TEA, triethylamine
- THF, tetrahydrofuran
- Ubiquitylation
- hPCE, human prostate cancer epithelial
- α1-ARs, α1-adrenergic receptors
- α1A-AR, α1A-adrenergic receptor
- α1A-Adrenergic receptor
- α1B-AR, α1B-adrenergic receptor
- α1D-AR, α1D-adrenergic receptor
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Yuxing Lin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Hui Song
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Zhongxia Yu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Zheng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Wei Zhao
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
- Corresponding author. Tel./fax: +86 531 88382076.
| |
Collapse
|
34
|
Yano Y, Viera AJ, Hinderliter AL, Watkins LL, Blumenthal JA, Johnson KS, Hill LK, Sherwood A. Vascular α1-Adrenergic Receptor Responsiveness in Masked Hypertension. Am J Hypertens 2020; 33:713-717. [PMID: 32128568 PMCID: PMC7402222 DOI: 10.1093/ajh/hpaa032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Masked hypertension (nonhypertensive in the clinic setting but hypertensive outside the clinic during wakefulness) is characterized by increased blood pressure in response to physical and emotional stressors that activate the sympathetic nervous system (SNS). However, no studies have assessed vascular reactivity to a pharmacological SNS challenge in individuals with masked hypertension. METHODS We analyzed data from 161 adults aged 25 to 45 years (mean ± standard deviation age 33 ± 6 years; 48% were African American and 43% were female). Participants completed ambulatory blood pressure monitoring, and a standardized α 1-adrenergic agonist phenylephrine test that determines the dose of phenylephrine required to increase a participant's mean arterial pressure by 25 mm Hg (PD25). RESULTS Twenty-one participants were considered to have masked hypertension (clinic systolic blood pressure (SBP) <140 and diastolic blood pressure (DBP) <90 mm Hg but awake SBP ≥135 or DBP ≥85 mm Hg), 28 had sustained hypertension (clinic SBP ≥140 or DBP ≥90 mm Hg and awake SBP ≥135 or DBP ≥85 mm Hg), and 106 had sustained normotension (clinic SBP <140 and DBP <90 mm Hg and awake SBP <135 and DBP <85 mm Hg). After multivariable adjustment, the mean (±SE) PD25 was less in participants with masked hypertension compared with their counterparts with sustained normotension (222.1 ± 33.2 vs. 328.7 ± 15.0; P = 0.012), but similar to that observed in subjects with sustained hypertension (254.8 ± 31.0; P =0.12). CONCLUSIONS Among young and middle-aged adults, masked hypertension is associated with increased vascular reactivity to a SNS challenge, which may contribute to elevated awake BPs as well as to increased cardiovascular disease risk.
Collapse
Affiliation(s)
- Yuichiro Yano
- Department of Family Medicine and Community Health, Duke University Medical Center, Durham, NC, USA
| | - Anthony J Viera
- Department of Family Medicine and Community Health, Duke University Medical Center, Durham, NC, USA
| | - Alan L Hinderliter
- Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lana L Watkins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - James A Blumenthal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Kristy S Johnson
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - LaBarron K Hill
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Andrew Sherwood
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
35
|
Proudman RGW, Pupo AS, Baker JG. The affinity and selectivity of α-adrenoceptor antagonists, antidepressants, and antipsychotics for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol Res Perspect 2020; 8:e00602. [PMID: 32608144 PMCID: PMC7327383 DOI: 10.1002/prp2.602] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/26/2022] Open
Abstract
α1-adrenoceptor antagonists are widely used for hypertension (eg, doxazosin) and benign prostatic hypertrophy (BPH, eg, tamsulosin). Some antidepressants and antipsychotics have been reported to have α1 affinity. This study examined 101 clinical drugs and laboratory compounds to build a comprehensive understanding of α1-adrenoceptor subtype affinity and selectivity. [3H]prazosin whole-cell binding was conducted in CHO cells stably expressing either the full-length human α1A, α1B, or α1D-adrenoceptor. As expected, doxazosin was a high-affinity nonselective α1-antagonist although other compounds (eg, cyclazosin, 3-MPPI, and ARC239) had higher affinities. Several highly α1A-selective antagonists were confirmed (SNAP5089 had over 1700-fold α1A selectivity). Despite all compounds demonstrating α1 affinity, only BMY7378 had α1D selectivity and no α1B-selective compounds were identified. Phenoxybenzamine (used in pheochromocytoma) and dibenamine had two-component-binding inhibition curves at all three receptors. Incubation with sodium thiosulfate abolished the high-affinity component suggesting this part is receptor mediated. Drugs used for hypertension and BPH had very similar α1A/α1B/α1D-adrenoceptor pharmacological profiles. Selective serotonin reuptake inhibitors (antidepressants) had poor α1-adrenoceptor affinity. Several tricyclic antidepressants (eg, amitriptyline) and antipsychotics (eg, chlorpromazine and risperidone) had high α1-adrenoceptor affinities, similar to, or higher than, α blockers prescribed for hypertension and BPH, whereas others had poor α1 affinity (eg, protriptyline, sulpiride, amisulpiride, and olanzapine). The addition of α blockers for the management of hypertension or BPH in people already taking tricyclic antidepressants and certain antipsychotics may not be beneficial. Awareness of the α-blocking potential of different antipsychotics may affect the choice of drug for those with delirium where additional hypotension (eg, in sepsis) may be detrimental.
Collapse
Affiliation(s)
- Richard G. W. Proudman
- Cell Signalling Research GroupDivision of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesC Floor Medical SchoolQueen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Andre S. Pupo
- Department of PharmacologyInstitute of BiosciencesSão Paulo State UniversityBotucatu‐São PauloBrazil
| | - Jillian G. Baker
- Cell Signalling Research GroupDivision of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesC Floor Medical SchoolQueen’s Medical CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
36
|
Antidepressant efficacy of a selective organic cation transporter blocker in a mouse model of depression. Mol Psychiatry 2020; 25:1245-1259. [PMID: 31619760 DOI: 10.1038/s41380-019-0548-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
Abstract
Current antidepressants act principally by blocking monoamine reuptake by high-affinity transporters in the brain. However, these antidepressants show important shortcomings such as slow action onset and limited efficacy in nearly a third of patients with major depression disorder. Here, we report the development of a prodrug targeting organic cation transporters (OCT), atypical monoamine transporters recently implicated in the regulation of mood. Using molecular modeling, we designed a selective OCT2 blocker, which was modified to increase brain penetration. This compound, H2-cyanome, was tested in a rodent model of chronic depression induced by 7-week corticosterone exposure. In male mice, prolonged administration of H2-cyanome induced positive effects on several behaviors mimicking symptoms of depression, including anhedonia, anxiety, social withdrawal, and memory impairment. Importantly, in this validated model, H2-cyanome compared favorably with the classical antidepressant fluoxetine, with a faster action on anhedonia and better anxiolytic effects. Integrated Z-scoring across these depression-like variables revealed a lower depression score for mice treated with H2-cyanome than for mice treated with fluoxetine for 3 weeks. Repeated H2-cyanome administration increased ventral tegmental area dopaminergic neuron firing, which may underlie its rapid action on anhedonia. H2-cyanome, like fluoxetine, also modulated several intracellular signaling pathways previously involved in antidepressant response. Our findings provide proof-of-concept of antidepressant efficacy of an OCT blocker, and a mechanistic framework for the development of new classes of antidepressants and therapeutic alternatives for resistant depression and other psychiatric disturbances such as anxiety.
Collapse
|
37
|
Janezic EM, Lauer SML, Williams RG, Chungyoun M, Lee KS, Navaluna E, Lau HT, Ong SE, Hague C. N-glycosylation of α 1D-adrenergic receptor N-terminal domain is required for correct trafficking, function, and biogenesis. Sci Rep 2020; 10:7209. [PMID: 32350295 PMCID: PMC7190626 DOI: 10.1038/s41598-020-64102-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/09/2020] [Indexed: 01/21/2023] Open
Abstract
G protein-coupled receptor (GPCR) biogenesis, trafficking, and function are regulated by post-translational modifications, including N-glycosylation of asparagine residues. α1D-adrenergic receptors (α1D-ARs) - key regulators of central and autonomic nervous system function - contain two putative N-glycosylation sites within the large N-terminal domain at N65 and N82. However, determining the glycosylation state of this receptor has proven challenging. Towards understanding the role of these putative glycosylation sites, site-directed mutagenesis and lectin affinity purification identified N65 and N82 as bona fide acceptors for N-glycans. Surprisingly, we also report that simultaneously mutating N65 and N82 causes early termination of α1D-AR between transmembrane domain 2 and 3. Label-free dynamic mass redistribution and cell surface trafficking assays revealed that single and double glycosylation deficient mutants display limited function with impaired plasma membrane expression. Confocal microscopy imaging analysis and SNAP-tag sucrose density fractionation assays revealed the dual glycosylation mutant α1D-AR is widely distributed throughout the cytosol and nucleus. Based on these novel findings, we propose α1D-AR transmembrane domain 2 acts as an ER localization signal during active protein biogenesis, and that α1D-AR N-terminal glycosylation is required for complete translation of nascent, functional receptor.
Collapse
Affiliation(s)
- Eric M Janezic
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Sophia My-Linh Lauer
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Robert George Williams
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Michael Chungyoun
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Kyung-Soon Lee
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Edelmar Navaluna
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Ho-Tak Lau
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Shao-En Ong
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Chris Hague
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA.
| |
Collapse
|
38
|
Dux M, Babes A, Manchen J, Sertel-Nakajima J, Vogler B, Schramm J, Messlinger K. High-dose phenylephrine increases meningeal blood flow through TRPV1 receptor activation and release of calcitonin gene-related peptide. Eur J Pain 2019; 24:383-397. [PMID: 31661581 DOI: 10.1002/ejp.1495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND The α1 -adrenoceptor agonist, phenylephrine, is used at high concentrations as a mydriatic agent and for the treatment of nasal congestion. Among its adverse side-effects transient burning sensations are reported indicating activation of the trigeminal nociceptive system. METHODS Neuropeptide release, calcium imaging and meningeal blood flow recordings were applied in rodent models of meningeal nociception to clarify possible receptor mechanisms underlying these pain phenomena. RESULTS Phenylephrine above 10 mM dose-dependently released calcitonin gene-related peptide (CGRP) from the dura mater and isolated trigeminal ganglia, whereas hyperosmotic mannitol at 90 mM was ineffective. The phenylephrine-evoked release was blocked by the transient receptor potential vanilloid 1 (TRPV1) antagonist BCTC and did not occur in trigeminal ganglia of TRPV1-deficient mice. Phenylephrine at 30 mM caused calcium transients in cultured trigeminal ganglion neurons responding to the TRPV1 agonist capsaicin and in HEK293T cells expressing human TRPV1. Local application of phenylephrine at micromolar concentrations to the exposed rat dura mater reduced meningeal blood flow, whereas concentrations above 10 mM caused increased meningeal blood flow. The flow increase was abolished by pre-application of the CGRP receptor antagonist CGRP8-37 or the TRPV1 antagonist BCTC. CONCLUSIONS Phenylephrine at high millimolar concentrations activates TRPV1 receptor channels of perivascular afferents and, upon calcium inflow, releases CGRP, which increases meningeal blood flow. Activation of TRPV1 receptors may underlie trigeminal nociception leading to cranial pain such as local burning sensations or headaches caused by administration of high doses of phenylephrine. SIGNIFICANCE Phenylephrine is used at high concentrations as a mydriaticum and for treating nasal congestion. As adverse side-effects burning sensations and headaches have been described. Phenylephrine at high concentrations causes calcium transients in trigeminal afferents, CGRP release and increased meningeal blood flow upon activation of TRPV1 receptor channels, which is likely underlying the reported pain phenomena.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Alexandru Babes
- Department of Anatomy, Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Jessica Manchen
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Julika Sertel-Nakajima
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Jana Schramm
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| |
Collapse
|
39
|
Li C, Yan X, Wu D, Zhang K, Liang X, Pan Y, Zhou Y, Chen F, Chen X, Yang S, Zhou Z, Wei Y, Liao Y, Qiu Z. Vaccine Targeted Alpha 1D-Adrenergic Receptor for Hypertension. Hypertension 2019; 74:1551-1562. [PMID: 31607175 DOI: 10.1161/hypertensionaha.119.13700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The α1-AR (α1 adrenergic receptor) blockers currently on the market cannot meet clinical needs because of low-selectivity for subtypes of α1-ARs, short half-life, and uncertain role in cardiovascular end point events. The study sought to find a vaccine specifically against α1D-AR (α1D-adrenergic receptor) for treating hypertension. A short peptide ADR-004 (cgiteeagy) belonging to α1D-AR was screened, and the ADRQβ-004 vaccine was produced and injected into spontaneously hypertensive rats model (including a short-term study, 10 weeks, and a long-term observation study, 39 weeks) and NG-nitro-l-arginine methyl ester + spontaneously hypertensive rats model (15 weeks). The antihypertensive effect and target organ protection of the ADRQβ-004 vaccine were carefully evaluated. The possible immune-mediated damage was detected in normal vaccinated Sprague Dawley rats. The ADR-004 peptide has perfect immunogenicity, and the ADRQβ-004 vaccine could induce strong antibody production. In the short-term study, the ADRQβ-004 vaccine averagely decreased the systolic blood pressure of spontaneously hypertensive rats up to 15 mm Hg and that of NG-nitro-l-arginine methyl ester+spontaneously hypertensive rats up to 29 mm Hg. In the long-term observation model, the antihypertensive effect of the ADRQβ-004 vaccine was quite stable, and the average decline of systolic blood pressure was 22 mm Hg. The ADRQβ-004 vaccine effectively prevented vascular structural remodeling, cardiac hypertrophy and fibrosis, and renal injury of hypertensive animals, superior to prazosin at renal level. Moreover, the ADRQβ-004 vaccine obviously downregulated the expression of α1D-AR, but not α1A-AR. Additionally, no significant immune-mediated damage was detected in immunized animals. The present results demonstrate that the ADRQβ-004 vaccine may provide a novel and promising method for the treatment of hypertension.
Collapse
Affiliation(s)
- Chang Li
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaole Yan
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyu Wu
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhang
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liang
- Medical Statistics Office, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L.)
| | - Yajie Pan
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanzhao Zhou
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Chen
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Chen
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijun Yang
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumiao Wei
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhua Liao
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Qiu
- From the Department of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education (C.L., X.Y., D.W., K.Z., Y.P., Y.Z., F.C., X.C., S.Y., Z.Z., Y.W., Y.L., Z.Q.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Effects of isocorynoxeine, from Uncaria, on lower urinary tract dysfunction caused by benign prostatic hyperplasia via antagonism of α1A-adrenoceptors. Toxicol Appl Pharmacol 2019; 376:95-106. [DOI: 10.1016/j.taap.2019.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022]
|
41
|
Wang T, Qin Y, Lai H, Wei W, Li Z, Yang Y, Huang M, Chen J. The prognostic value of ADRA1 subfamily genes in gastric carcinoma. Oncol Lett 2019; 18:3150-3158. [PMID: 31452791 PMCID: PMC6704286 DOI: 10.3892/ol.2019.10660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/04/2019] [Indexed: 01/05/2023] Open
Abstract
Adrenergic receptor α1 (ADRA1) subfamily members, including ADRA1A, ADRA1B and ADRA1D, are understood to participate in cardiac disease and benign prostatic hyperplasia. In addition, adrenergic signals in cell pathways can promote the development of cancer. However, little is understood regarding the associations between ADRA1 subfamily members and gastric carcinoma (GC). The present study investigated the prognostic value of the ADRA1 subfamily genes in GC. Data from a total of 379 patients with GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. Kaplan-Meier analysis and Cox regression analysis were used to determine associations with overall survival (OS) and to evaluate the median survival time using hazard ratios (HRs) and 95% confidence intervals (CIs). Multivariate survival analysis revealed that low expression levels of ADRA1A (HR, 0.595; 95% CI, 0.426–0.831; adjusted P=0.002) ADRA1B (HR, 0.576; 95% CI, 0.412–0.805; adjusted P=0.001) and ADRA1D (HR, 0.559; 95% CI, 0.398–0.787; adjusted P=0.001) were associated with a favourable OS. Joint-effects analysis demonstrated that combinations of low expression levels of ARDA1A, ARDA1B and ARDA1D were significantly associated with a favourable OS. Overall, the current results suggested that the mRNA expression levels of ARDA1 subfamily members may serve as potential prognostic markers for GC.
Collapse
Affiliation(s)
- Tingan Wang
- Department of Gastrointestinal Surgery, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuzhou Qin
- Department of Gastrointestinal Surgery, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hao Lai
- Department of Gastrointestinal Surgery, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Weiyuan Wei
- Department of Gastrointestinal Surgery, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhao Li
- Department of Gastrointestinal Surgery, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yang Yang
- Department of Gastrointestinal Surgery, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Mingwei Huang
- Department of Gastrointestinal Surgery, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiansi Chen
- Department of Gastrointestinal Surgery, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
42
|
Qin X, Ma Z, Yang X, Hu S, Chen X, Liang D, Lin Y, Shi X, Du L, Li M. Discovery of Environment-Sensitive Fluorescent Agonists for α1-Adrenergic Receptors. Anal Chem 2019; 91:12173-12180. [DOI: 10.1021/acs.analchem.9b01059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817, United States
| | - Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Shilong Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Xinxin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Dong Liang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yuxing Lin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
43
|
Akinaga J, García‐Sáinz JA, S. Pupo A. Updates in the function and regulation of α 1 -adrenoceptors. Br J Pharmacol 2019; 176:2343-2357. [PMID: 30740663 PMCID: PMC6592863 DOI: 10.1111/bph.14617] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
α1 -Adrenoceptors are seven transmembrane domain GPCRs involved in numerous physiological functions controlled by the endogenous catecholamines, noradrenaline and adrenaline, and targeted by drugs useful in therapeutics. Three separate genes, whose products are named α1A -, α1B -, and α1D - adrenoceptors, encode these receptors. Although the existence of multiple α1 -adrenoceptors has been acknowledged for almost 25 years, the specific functions regulated by each subtype are still largely unknown. Despite the limited comprehension, the identification of a single class of subtype-selective ligands for the α1A - adrenoceptors, the so-called α-blockers for prostate dysfunction, has led to major improvement in therapeutics, demonstrating the need for continued efforts in the field. This review article surveys the tissue distribution of the three α1 -adrenoceptor subtypes in the cardiovascular system, genitourinary system, and CNS, highlighting the functions already identified as mediated by the predominant activation of specific subtypes. In addition, this review covers the recent advances in the understanding of the molecular mechanisms involved in the regulation of each of the α1 -adrenoceptor subtypes by phosphorylation and interaction with proteins involved in their desensitization and internalization. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Juliana Akinaga
- Department of PharmacologyInstituto de Biociências, UNESPBotucatuBrazil
| | - J. Adolfo García‐Sáinz
- Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - André S. Pupo
- Department of PharmacologyInstituto de Biociências, UNESPBotucatuBrazil
| |
Collapse
|
44
|
Docherty JR. The pharmacology of α 1-adrenoceptor subtypes. Eur J Pharmacol 2019; 855:305-320. [PMID: 31067439 DOI: 10.1016/j.ejphar.2019.04.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 01/30/2023]
Abstract
This review examines the functions of α1-adrenoceptor subtypes, particularly in terms of contraction of smooth muscle. There are 3 subtypes of α1-adrenoceptor, α1A- α1B- and α1D-adrenoceptors. Evidence is presented that the postulated α1L-adrenoceptor is simply the native α1A-adrenoceptor at which prazosin has low potency. In most isolated tissue studies, smooth muscle contractions to exogenous agonists are mediated particularly by α1A-, with a lesser role for α1D-adrenoceptors, but α1B-adrenoceptors are clearly involved in contractions of some tissues, for example, the spleen. However, nerve-evoked responses are the most crucial physiologically, so that these studies of exogenous agonists may overestimate the importance of α1A-adrenoceptors. The major α1-adrenoceptors involved in blood pressure control by sympathetic nerves are the α1D- and the α1A-adrenoceptors, mediating peripheral vasoconstrictor actions. As noradrenaline has high potency at α1D-adrenceptors, these receptors mediate the fastest response and seem to be targets for neurally released noradrenaline especially to low frequency stimulation, with α1A-adrenoceptors being more important at high frequencies of stimulation. This is true in rodent vas deferens and may be true in vasopressor nerves controlling peripheral resistance and tissue blood flow. The αlA-adrenoceptor may act mainly through Ca2+ entry through L-type channels, whereas the α1D-adrenoceptor may act mainly through T-type channels and exhaustable Ca2+ stores. α1-Adrenoceptors may also act through non-G-protein linked second messenger systems. In many tissues, multiple subtypes of α-adrenoceptor are present, and this may be regarded as the norm rather than exception, although one receptor subtype is usually predominant.
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
45
|
White CW, da Silva Junior ED, Lim L, Ventura S. What makes the α 1A -adrenoceptor gene product assume an α 1L -adrenoceptor phenotype? Br J Pharmacol 2019; 176:2358-2365. [PMID: 30719698 DOI: 10.1111/bph.14599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/19/2018] [Accepted: 01/05/2019] [Indexed: 02/05/2023] Open
Abstract
The α1A -adrenoceptor is abundantly expressed in the lower urinary tract and is the principal therapeutic target for the symptomatic treatment of lower urinary tract symptoms in men. Prazosin has a lower affinity for the lower urinary tract α1A -adrenoceptor than α1A -adrenoceptors found in other parts of the body. This has led to the lower urinary tract α1A -adrenoceptor being subclassified as an α1L -adrenoceptor. It was demonstrated that this pharmacologically distinct α1L -adrenoceptor is a product of the α1A -adrenoceptor gene, but the mechanism by which this altered phenotype is achieved remains a mystery. Hypotheses for this altered pharmacology include the presence of an interacting protein such as cysteine-rich with EGF-like domain (CRELD) 1 or other GPCRs such as the CXCR2 chemokine or 5-HT1B receptor. Alternatively, the influence of breast cancer resistance protein (BCRP) efflux transporters on the pharmacology of α1A -adrenoceptors has also been investigated. These and other hypotheses will be described and discussed in this review. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Carl W White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Linzi Lim
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sabatino Ventura
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
46
|
Micucci M, Chiarini A, Budriesi R. Neutral/negative α1-AR antagonists and calcium channel blockers at comparison in functional tests on guinea-pig smooth muscle and myocardium. Pharmacol Rep 2019; 71:128-132. [DOI: 10.1016/j.pharep.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 10/10/2018] [Indexed: 01/30/2023]
|
47
|
Ordóñez JE, Ordóñez A, Osorio UM. Cost-effectiveness analysis of iStent trabecular micro-bypass stent for patients with open-angle glaucoma in Colombia. Curr Med Res Opin 2019; 35:329-340. [PMID: 30049226 DOI: 10.1080/03007995.2018.1506022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To estimate the cost-effectiveness of trabecular micro bypass stent vs laser trabeculoplasty or medications only, for patients with open-angle glaucoma in a setting of the Colombian System Health. METHODS This is a cost-effectiveness analysis that based its assumptions in external data sources, used to extrapolate the quality-of-life related to health, survival, and costs. A Markov model, with stages from 0 (ocular hypertension without glaucoma) to 5 and bilateral blindness, was developed inclusive of Colombians older than 40 years in 2018, from a societal perspective, comparing trabecular micro-bypass stents vs laser trabeculoplasty, timolol + dorzolamide + brimonidine, timolol + dorzolamide + latanoprost, or timolol + dorzolamide + brimatoprost, in terms of clinical and economic outcomes over a lifetime horizon. Both costs and health outcomes had an annual rate discount of 5%. Health outcomes were evaluated in terms of QALYs related with loss of visual acuity. Trabecular micro-bypass costs include the joint use of timolol, and the costs of laser trabeculoplasty include the combined use of timolol + dorzolamide. RESULTS Trabecular micro-bypass stents were estimated to have 127,971 more discounted QALYs vs laser trabeculoplasty; 405,982 vs timolol + dorzolamide + brimonidine; and 378,287 vs timolol + dorzolamide + latanoprost or timolol + dorzolamide + brimatoprost. Cumulative costs with trabecular micro-bypass stents at 40 years was $13,252,318 lower than laser trabeculoplasty; $6,403,534, lower than timolol + dorzolamide + brimonidine; $22,311,064, lower than timolol + dorzolamide + latanoprost; and $29,156,113 lower than timolol + dorzolamide + brimatoprost. CONCLUSIONS The trabecular micro-bypass stent is a highly cost-saving strategy due to more QALYs related to a lower rate of the population with loss of visual acuity in the long-term, and because the costs associated with additional medications and complications are lower with trabecular micro-bypass stents.
Collapse
|
48
|
Zhang N, Qu K, Wang M, Yin Q, Wang W, Xue L, Fu H, Zhu H, Li Z. Identification of higenamine as a novel α1
-adrenergic receptor antagonist. Phytother Res 2019; 33:708-717. [DOI: 10.1002/ptr.6261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/21/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Nana Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Kai Qu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Minjie Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
- School of Basic Medical Sciences; Inner Mongolia Medical University, Jinshan Development District; Hohhot PR China
| | - Qian Yin
- Department of Cardiology and Institute of Vascular Medicine; Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Wenjing Wang
- Department of Cardiology and Institute of Vascular Medicine; Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Lixiang Xue
- Medical Research Center; Peking University Third Hospital; Beijing China
| | - Haian Fu
- Department of Pharmacology; Emory University School of Medicine; Atlanta Georgia
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine; Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| |
Collapse
|
49
|
Ishida H, Saito SY, Ishikawa T. α1A-Adrenoceptors, but not α1B- or α1D-adrenoceptors, contribute to enhanced contractile response to phenylephrine in cooling conditions in the rat tail artery. Eur J Pharmacol 2018; 838:120-128. [DOI: 10.1016/j.ejphar.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/24/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
|
50
|
Huang JJ, Zhang ZH, He F, Liu XW, Xu XJ, Dai LJ, Liu QM, Yuan M. Novel naftopidil derivatives containing methyl phenylacetate and their blocking effects on α 1D/1A-adrenoreceptor subtypes. Bioorg Med Chem Lett 2018; 28:547-551. [PMID: 29422390 DOI: 10.1016/j.bmcl.2018.01.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 01/19/2023]
Abstract
α1-Adrenoceptor (α1-AR) antagonists are considered to be the most effective monotherapy agents for lower urinary tract symptoms associated with benign prostatic hyperplasia (LUTS/BPH). In this study, we synthesized compounds 2-17, which are novel piperazine derivatives that contain methyl phenylacetate. We then evaluated the vasodilatory activities of these compounds. Among them, we found that compounds 2, 7, 12, which contain 2-OCH3, 2-CH3 or 2, 5-CH3, respectively, exhibited potent α1-blocking activity similar to protype drug naftopidil (1). The antagonistic effects of 2, 7, and 12 on the (-)-noradrenaline-induced contractile response of isolated rat prostatic vas deferens (α1A), spleen (α1B) and thoracic aorta (α1D) were further characterized to assess the sub receptor selectivity. Compared with naftopidil (1) and terazosin, compound 12 showed the most desirable α1D/1A subtype selectivity, especially improved α1A subtype selectivity, and the ratios pA2 (α1D)/pA2 (α1B) and pA2 (α1A)/pA2 (α1B) were 17.0- and 19.5-fold, respectively, indicating less cardiovascular side effects when used to treat LUTS/BPH. Finally, we investigated the chiral pharmacology of 12. We found, however, that the activity of enantiomers (R)-12 and (S)-12 are not significantly different from that of rac-12.
Collapse
Affiliation(s)
- Jun-Jun Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong 511436, PR China.
| | - Zhi-Han Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, PR China
| | - Fei He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, PR China
| | - Xia-Wen Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong 511436, PR China
| | - Xing-Jie Xu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong 511436, PR China
| | - Li-Jun Dai
- Laboratory Animal Center, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Qi-Meng Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong 511436, PR China; Laboratory Animal Center, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Mu Yuan
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong 511436, PR China
| |
Collapse
|