1
|
Deng K, Luo R, Chen Y, Liu X, Xi Y, Usman M, Jiang X, Li Z, Zhang J. Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409884. [PMID: 39680745 DOI: 10.1002/advs.202409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Tissue repair and reconstruction are a clinical difficulty. Bioelectricity has been identified as a critical factor in supporting tissue and cell viability during the repair process, presenting substantial potential for clinical application. This review delves into various sources of electrical stimulation and identifies appropriate electrode materials for clinical use. It also highlights the biological mechanisms of electrical stimulation at both the subcellular and cellular levels, elucidating how these interactions facilitate the repair and regeneration processes across different organs. Moreover, specific electrode materials and stimulation sources are outlined, detailing their impact on cellular activity. The future development trends are projected from two perspectives: the optimization of equipment performance and the fulfillment of clinical demands, focusing on the feasibility, safety, and cost-effectiveness of technologies.
Collapse
Affiliation(s)
- Kexin Deng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyin Xi
- A Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Muhammad Usman
- Department of Plastic Surgery and Burn, Central Hospital Affiliated with Chongqing University of Technology, Chongqing, 400054, P.R. China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
2
|
Zhou Q, Dai H, Yan Y, Qin Z, Zhou M, Zhang W, Zhang G, Guo R, Wei X. From Short Circuit to Completed Circuit: Conductive Hydrogel Facilitating Oral Wound Healing. Adv Healthc Mater 2024; 13:e2303143. [PMID: 38306368 DOI: 10.1002/adhm.202303143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
The primary challenges posed by oral mucosal diseases are their high incidence and the difficulty in managing symptoms. Inspired by the ability of bioelectricity to activate cells, accelerate metabolism, and enhance immunity, a conductive polyacrylamide/sodium alginate crosslinked hydrogel composite containing reduced graphene oxide (PAA-SA@rGO) is developed. This composite possesses antibacterial, anti-inflammatory, and antioxidant properties, serving as a bridge to turn the "short circuit" of the injured site into a "completed circuit," thereby prompting fibroblasts in proximity to the wound site to secrete growth factors and expedite tissue regeneration. Simultaneously, the PAA-SA@rGO hydrogel effectively seals wounds to form a barrier, exhibits antibacterial and anti-inflammatory properties, and prevents foreign bacterial invasion. As the electric field of the wound is rebuilt and repaired by the PAA-SA@rGO hydrogel, a 5 × 5 mm2 wound in the full-thickness buccal mucosa of rats can be expeditiously mended within mere 7 days. The theoretical calculations indicate that the PAA-SA@rGO hydrogel can aggregate and express SOX2, PITX1, and PITX2 at the wound site, which has a promoting effect on rapid wound healing. Importantly, this PAA-SA@rGO hydrogel has a fast curative effect and only needs to be applied for the first three days, which significantly improves patient satisfaction during treatment.
Collapse
Affiliation(s)
- Qiangqiang Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Hanqing Dai
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Yukun Yan
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Zhiming Qin
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Mengqi Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Guoqi Zhang
- Electronic Components Technology and Materials, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Ruiqian Guo
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Xiaoling Wei
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| |
Collapse
|
3
|
Zhang Y, Tang J, Fang W, Zhao Q, Lei X, Zhang J, Chen J, Li Y, Zuo Y. Synergetic Effect of Electrical and Topographical Cues in Aniline Trimer-Based Polyurethane Fibrous Scaffolds on Tissue Regeneration. J Funct Biomater 2023; 14:jfb14040185. [PMID: 37103277 PMCID: PMC10146274 DOI: 10.3390/jfb14040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Processibility and biodegradability of conductive polymers are major concerns when they are applied to tissue regeneration. This study synthesizes dissolvable and conductive aniline trimer-based polyurethane copolymers (DCPU) and processes them into scaffolds by using electrospinning with different patterns (random, oriented, and latticed). The effects of topographic cue changes on electrical signal transmission and further regulation of cell behaviors concerning bone tissue are researched. Results show that DCPU fibrous scaffolds possessed good hydrophilicity, swelling capacity, elasticity, and fast biodegradability in enzymatic liquid. In addition, the conductivity and efficiency of electrical signal transmission can be tuned by changing the surface’s topological structure. Among them, oriented DCPU scaffolds (DCPU-O) showed the best conductivity with the lowest ionic resistance value. Furthermore, the viability and proliferation results of bone mesenchymal stem cells (BMSCs) demonstrate a significant increase on three DCPU scaffolds compared to AT-free scaffolds (DPU-R). Especially, DCPU-O scaffolds exhibit superior abilities to promote cell proliferation because of their unique surface topography and excellent electroactivity. Concurrently, the DCPU-O scaffolds can synergistically promote osteogenic differentiation in terms of osteogenic differentiation and gene expression levels when combined with electrical stimulation. Together, these results suggest a promising use of DCPU-O fibrous scaffolds in the application of tissue regeneration.
Collapse
|
4
|
Su Y, Zeng L, Deng R, Ye B, Tang S, Xiong Z, Sun T, Ding Q, Su W, Jing X, Gao Q, Wang X, Qiu Z, Chen K, Quan D, Guo X. Endogenous Electric Field-Coupled PD@BP Biomimetic Periosteum Promotes Bone Regeneration through Sensory Nerve via Fanconi Anemia Signaling Pathway. Adv Healthc Mater 2023; 12:e2203027. [PMID: 36652677 DOI: 10.1002/adhm.202203027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Indexed: 01/20/2023]
Abstract
To treat bone defects, repairing the nerve-rich periosteum is critical for repairing the local electric field. In this study, an endogenous electric field is coupled with 2D black phosphorus electroactive periosteum to explore its role in promoting bone regeneration through nerves. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to characterize the electrically active biomimetic periosteum. Here, the in vitro effects exerted by the electrically active periosteum on the transformation of Schwann cells into the repair phenotype, axon initial segment (AIS) and dense core vesicle (DCV) of sensory neurons, and bone marrow mesenchymal stem cells are assessed using SEM, immunofluorescence, RNA-sequencing, and calcium ion probes. The electrically active periosteum stimulates Schwann cells into a neuroprotective phenotype via the Fanconi anemia pathway, enhances the AIS effect of sensory neurons, regulates DCV transport, and releases neurotransmitters, promoting the osteogenic transformation of bone marrow mesenchymal stem cells. Microcomputed tomography and other in vivo techniques are used to study the effects of the electrically active periosteum on bone regeneration. The results show that the electrically active periosteum promotes nerve-induced osteogenic repair, providing a potential clinical strategy for bone regeneration.
Collapse
Affiliation(s)
- Yanlin Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Rongli Deng
- PCFM Lab, School of Chemistry and School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
| | - Bing Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shuo Tang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 510127, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qiuyue Ding
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weijie Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qing Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100000, China
| | - Zhiye Qiu
- Allgens Medical Technology Co., Ltd., Beijing, 100000, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daping Quan
- PCFM Lab, School of Chemistry and School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
5
|
Liu Q, Telezhkin V, Jiang W, Gu Y, Wang Y, Hong W, Tian W, Yarova P, Zhang G, Lee SMY, Zhang P, Zhao M, Allen ND, Hirsch E, Penninger J, Song B. Electric field stimulation boosts neuronal differentiation of neural stem cells for spinal cord injury treatment via PI3K/Akt/GSK-3β/β-catenin activation. Cell Biosci 2023; 13:4. [PMID: 36624495 PMCID: PMC9830810 DOI: 10.1186/s13578-023-00954-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Neural stem cells (NSCs) are considered as candidates for cell replacement therapy in many neurological disorders. However, the propensity for their differentiation to proceed more glial rather than neuronal phenotypes in pathological conditions limits positive outcomes of reparative transplantation. Exogenous physical stimulation to favor the neuronal differentiation of NSCs without extra chemical side effect could alleviate the problem, providing a safe and highly efficient cell therapy to accelerate neurological recovery following neuronal injuries. RESULTS With 7-day physiological electric field (EF) stimulation at 100 mV/mm, we recorded the boosted neuronal differentiation of NSCs, comparing to the non-EF treated cells with 2.3-fold higher MAP2 positive cell ratio, 1.6-fold longer neuronal process and 2.4-fold higher cells ratio with neuronal spontaneous action potential. While with the classical medium induction, the neuronal spontaneous potential may only achieve after 21-day induction. Deficiency of either PI3Kγ or β-catenin abolished the above improvement, demonstrating the requirement of the PI3K/Akt/GSK-3β/β-catenin cascade activation in the physiological EF stimulation boosted neuronal differentiation of NSCs. When transplanted into the spinal cord injury (SCI) modelled mice, these EF pre-stimulated NSCs were recorded to develop twofold higher proportion of neurons, comparing to the non-EF treated NSCs. Along with the boosted neuronal differentiation following transplantation, we also recorded the improved neurogenesis in the impacted spinal cord and the significantly benefitted hind limp motor function repair of the SCI mice. CONCLUSIONS In conclusion, we demonstrated physiological EF stimulation as an efficient method to boost the neuronal differentiation of NSCs via the PI3K/Akt/GSK-3β/β-catenin activation. Pre-treatment with the EF stimulation induction before NSCs transplantation would notably improve the therapeutic outcome for neurogenesis and neurofunction recovery of SCI.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.
| | - Vsevolod Telezhkin
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Dental Sciences, Farmington Place, Newcastle University, Newcastle Upon Tyne, NE2 4BW, UK
| | - Wenkai Jiang
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Gu
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Yan Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Hong
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institution, Shenzhen, China
| | - Weiming Tian
- Bio-X Centre, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Polina Yarova
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Dental Sciences, Farmington Place, Newcastle University, Newcastle Upon Tyne, NE2 4BW, UK
| | - Gaofeng Zhang
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peng Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Zhao
- Department of Ophthalmology and Vision Science, University of California at Davis, Sacramento, CA, 95616, USA
| | - Nicholas D Allen
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Josef Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC - Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.
| |
Collapse
|
6
|
Wang L, Yu Y, Zhao X, Zhang Z, Yuan X, Cao J, Meng W, Ye L, Lin W, Wang G. A Biocompatible Self-Powered Piezoelectric Poly(vinyl alcohol)-Based Hydrogel for Diabetic Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46273-46289. [PMID: 36195572 DOI: 10.1021/acsami.2c13026] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Acute and chronic wounds, caused by trauma, tumors, diabetic foot ulcers, etc., are usually difficult to heal, while applying exogenous electrical stimulation to enhance the endogenous electric field in the wound has been proven to significantly accelerate wound healing. However, traditional electrical stimulation devices require an additional external power supply, making them poor in portability and comfort. In this work, a self-powered piezoelectric poly(vinyl alcohol) (PVA)/polyvinylidene fluoride (PVDF) composite hydrogel is constructed by establishing a distinctive preparation process of freezing/thawing-solvent replacement-annealing-swelling. The hydrogen bonding in the hydrogel is remarkably enhanced by the annealing-swelling process, which is stronger between PVA/PVDF molecules than that between PVA molecules, promoting transformation of the α-phase into the electroactive β-phase PVDF and facilitating formation of a much more crystalline structure with high cross-linking density. Hence, an obvious piezoelectric response with high piezoelectric coefficient and electrical signal output with superior stability and sensitivity and excellent mechanical strength and stretchability was achieved for hydrogels. PVA/PVDF composite hydrogels with good cytocompatibility significantly promote proliferation, migration, and secretion of extracellular matrix proteins and growth factors of fibroblasts, possibly through activating the AKT and ERK1/2 signaling pathways. In a wound model of diabetic rats, piezoelectric hydrogels could not only rapidly attract wound exudate and maintain the wet environment of the wound bed but also convert the mechanical energy generated by rats' physical activities into electrical energy, so as to provide local piezoelectric stimulation to the wound bed evenly and symmetrically in real time. Such an effect significantly promotes re-epithelialization and collagen deposition and increases angiogenesis and secretion of growth factors in wound tissue. Besides, it regulates the macrophage phenotype from the M1 subtype (pro-inflammatory subtype) to the M2 subtype (anti-inflammatory subtype) and reduces the expression levels of inflammatory factors, thus accelerating wound healing. The development of such a novel piezoelectric hydrogel provides new therapeutic strategies for chronic wound healing.
Collapse
Affiliation(s)
- Limin Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu610065, China
| | - Yaru Yu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610065, China
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610065, China
| | - Zhen Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu610065, China
| | - Xueling Yuan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu610065, China
| | - Jinlong Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610065, China
| | - Weikun Meng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu610065, China
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610065, China
| | - Wei Lin
- West China Women's and Children's Hospital, Chengdu610065, China
| | - Guanglin Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu610065, China
| |
Collapse
|
7
|
Zhao M, Rolandi M, Isseroff RR. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041236. [PMID: 36041786 PMCID: PMC9524286 DOI: 10.1101/cshperspect.a041236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In wound healing, individual cells' behaviors coordinate movement toward the wound center to restore small or large barrier defects. The migration of epithelial cells as a continuous sheet structure is one of the most important processes by which the skin barrier is restored. How such multicellular and tissue level movement is initiated upon injury, coordinated during healing, and stopped when wounds healed has been a research focus for decades. When skin is wounded, the compromised epithelial barrier generates endogenous electric fields (EFs), produced by ion channels and maintained by cell junctions. These EFs are present across wounds, with the cathodal pole at the wound center. Epithelial cells detect minute EFs and migrate directionally in response to electrical signals. It has long been postulated that the naturally occurring EFs facilitate wound healing by guiding cell migration. It is not until recently that experimental evidence has shown that large epithelial sheets of keratinocytes or corneal epithelial cells respond to applied EFs by collective directional migration. Although some of the mechanisms of the collective cell migration are similar to those used by isolated cells, there are unique mechanisms that govern the coordinated movement of the cohesive sheet. We will review the understanding of wound EFs and how epithelial cells and other cells important to wound healing respond to the electric signals individually as well as collectively. Mounting evidence suggests that wound bioelectrical signaling is an important mechanism in healing. Critical understanding and proper exploitation of this mechanism will be important for better wound healing and regeneration.
Collapse
Affiliation(s)
- Min Zhao
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California 95817, USA
- Department of Dermatology, University of California, Davis, California 95616, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, California 95616, USA
| |
Collapse
|
8
|
Direct Current Electric Field Coordinates the Migration of BV2 Microglia via ERK/GSK3β/Cofilin Signaling Pathway. Mol Neurobiol 2022; 59:3665-3677. [PMID: 35362812 DOI: 10.1007/s12035-022-02815-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Direct current electric field (DCEF) steers the migration of various neural cells. Microglia, as macrophage of the central nervous system (CNS), however, have not been reported to engage in electrotaxis. Here, we applied electric fields to an in vitro environment and found directional migration of BV2 microglia toward the cathode, in a DCEF strength-dependent manner. Transcriptome analysis then revealed significant changes in the mitogen-activated protein kinase cascades. In terms of mechanism, DCEF coordinated microglia movement by regulating the ERK/GSK3β/cofilin signaling pathway, and PMA (protein kinase C activator) reversed cell migration through intervention of the ERK/GSK3β/cofilin axis. Meanwhile, LiCl (GSK3β inhibitor) showed similar functions to PMA in the electrotaxis of microglia. Furthermore, pharmacological and genetic suppression of GSK3β or cofilin also modulated microglia directional migration under DCEF. Collectively, we discovered the electrotaxis of BV2 microglia and the essential role of the ERK/GSK3β/cofilin axis in regulating cell migration via modulation of F-actin redistribution. This research highlights new insight toward mediating BV2 directional migration and provides potential direction for novel therapeutic strategies of CNS diseases.
Collapse
|
9
|
Wang J, Lin J, Chen L, Deng L, Cui W. Endogenous Electric-Field-Coupled Electrospun Short Fiber via Collecting Wound Exudation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108325. [PMID: 34902192 DOI: 10.1002/adma.202108325] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Endogenous electric fields (EF) are the basis of bioelectric signal conduction and the priority signal for damaged tissue regeneration. Tissue exudation directly affects the characteristics of endogenous EF. However, current biomaterials lead to passive repair of defect tissue due to limited management of early wound exudates and inability to actively respond to coupled endogenous EF. Herein, the 3D bionic short-fiber scaffold with the functions of early biofluid collection, response to coupled endogenous EF, is constructed by guiding the short fibers into a 3D network structure and subsequent multifunctional modification. The scaffold exhibits rapid reversible water absorption, reaching maximum after only 30 s. The stable and uniform distribution of polydopamine-reduced graphene oxide endows the scaffold with stable electrical and mechanical performances even after long-term immersion. Due to its unique - bionic structure and tissue affinity, the scaffold further acts as an "electronic skin," which transmits endogenous bioelectricity via absorbing wound exudates, promoting the treatment of diabetic wounds. Furthermore, under the endogenous EF, the cascade release of vascular endothelial growth factor accelerates the healing process. Thus, the versatile scaffold is expected to be an ideal candidate for repairing different defect tissues, especially electrosensitive tissues.
Collapse
Affiliation(s)
- Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jiawei Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
10
|
Chang CY, Park JH, Ouh IO, Gu NY, Jeong SY, Lee SA, Lee YH, Hyun BH, Kim KS, Lee J. Novel method to repair articular cartilage by direct reprograming of prechondrogenic mesenchymal stem cells. Eur J Pharmacol 2021; 911:174416. [PMID: 34606836 DOI: 10.1016/j.ejphar.2021.174416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Age-related cartilage loss is worsened by the limited regenerative capacity of chondrocytes. The role of cell-based therapies using mesenchymal stem cells is gaining interest. Adipose tissue-derived mesenchymal stem cells (ADSCs) are an attractive source to generate the optimal number of chondrocytes required to repair a cartilage defect and regenerate hyaline articular cartilage. Here, we report an outstanding technique to prepare chondrocytes for cartilage repair using canine ADSCs. We hypothesized that external electrical fields promote prechondrogenic condensation without requiring genetic modifications or exogenous factors. We analyzed the effect of electrical stimulation (ES) on the differentiation of ADSC micromass into chondrocytes. Highly compact structures were formed within 3 days of ES of canine ADSC micromass. The expression of type I collagen gene was abolished in these cells compared with that in control micromass cultures and monolayer cultures. We further found that ES enhanced the production of proteoglycan, a highly produced extracellular matrix component in chondrocytes. Additionally, single-cell RNA sequencing analysis showed that canine ADSC micromass undergoing ES developed a prechondrogenic cell aggregation, suggesting their metabolic conversion, biogenesis, and calcium ion change. Collectively, our findings demonstrate the capacity of ES to drive the chondrogenesis of ADSCs in the absence of exogenous factors and confirm its commercial potential as a budget-friendly therapy for the repair of cartilage defects.
Collapse
Affiliation(s)
- Chi Young Chang
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea; Youth Bio Global, 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea
| | - Ju Hyun Park
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea; Youth Bio Global, 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea
| | - In-Ohk Ouh
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Na-Yeon Gu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - So Yeon Jeong
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Se-A Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Yoon-Hee Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Ki Suk Kim
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea
| | - Jienny Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea; Division of Regenerative Medicine Safety Control, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Cheongju, Chungcheongbuk-do, 28159, Republic of Korea.
| |
Collapse
|
11
|
Ryan CNM, Doulgkeroglou MN, Zeugolis DI. Electric field stimulation for tissue engineering applications. BMC Biomed Eng 2021; 3:1. [PMID: 33397515 PMCID: PMC7784019 DOI: 10.1186/s42490-020-00046-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023] Open
Abstract
Electric fields are involved in numerous physiological processes, including directional embryonic development and wound healing following injury. To study these processes in vitro and/or to harness electric field stimulation as a biophysical environmental cue for organised tissue engineering strategies various electric field stimulation systems have been developed. These systems are overall similar in design and have been shown to influence morphology, orientation, migration and phenotype of several different cell types. This review discusses different electric field stimulation setups and their effect on cell response.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Meletios N Doulgkeroglou
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland. .,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland. .,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland.
| |
Collapse
|
12
|
Barriga EH, Theveneau E. In vivo Neural Crest Cell Migration Is Controlled by "Mixotaxis". Front Physiol 2020; 11:586432. [PMID: 33324240 PMCID: PMC7723832 DOI: 10.3389/fphys.2020.586432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Directed cell migration is essential all along an individual's life, from embryogenesis to tissue repair and cancer metastasis. Thus, due to its biomedical relevance, directed cell migration is currently under intense research. Directed cell migration has been shown to be driven by an assortment of external biasing cues, ranging from gradients of soluble (chemotaxis) to bound (haptotaxis) molecules. In addition to molecular gradients, gradients of mechanical properties (duro/mechanotaxis), electric fields (electro/galvanotaxis) as well as iterative biases in the environment topology (ratchetaxis) have been shown to be able to direct cell migration. Since cells migrating in vivo are exposed to a challenging environment composed of a convolution of biochemical, biophysical, and topological cues, it is highly unlikely that cell migration would be guided by an individual type of "taxis." This is especially true since numerous molecular players involved in the cellular response to these biasing cues are often recycled, serving as sensor or transducer of both biochemical and biophysical signals. In this review, we confront literature on Xenopus cephalic neural crest cells with that of other cell types to discuss the relevance of the current categorization of cell guidance strategies. Furthermore, we emphasize that while studying individual biasing signals is informative, the hard truth is that cells migrate by performing a sort of "mixotaxis," where they integrate and coordinate multiple inputs through shared molecular effectors to ensure robustness of directed cell motion.
Collapse
Affiliation(s)
- Elias H. Barriga
- Mechanisms of Morphogenesis Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
13
|
Zajdel TJ, Shim G, Wang L, Rossello-Martinez A, Cohen DJ. SCHEEPDOG: Programming Electric Cues to Dynamically Herd Large-Scale Cell Migration. Cell Syst 2020; 10:506-514.e3. [PMID: 32684277 PMCID: PMC7779114 DOI: 10.1016/j.cels.2020.05.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
Directed cell migration is critical across biological processes spanning healing to cancer invasion, yet no existing tools allow real-time interactive guidance over such migration. We present a new bioreactor that harnesses electrotaxis-directed cell migration along electric field gradients-by integrating four independent electrodes under computer control to dynamically program electric field patterns, and hence steer cell migration. Using this platform, we programmed and characterized multiple precise, two-dimensional collective migration maneuvers in renal epithelia and primary skin keratinocyte ensembles. First, we demonstrated on-demand, 90-degree collective turning. Next, we developed a universal electrical stimulation scheme capable of programming arbitrary 2D migration maneuvers such as precise angular turns and migration in a complete circle. Our stimulation scheme proves that cells effectively time-average electric field cues, helping to elucidate the transduction timescales in electrotaxis. Together, this work represents an enabling platform for controlling cell migration with broad utility across many cell types.
Collapse
Affiliation(s)
- Tom J Zajdel
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Gawoon Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Linus Wang
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Alejandro Rossello-Martinez
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
14
|
Keratinocyte electrotaxis induced by physiological pulsed direct current electric fields. Bioelectrochemistry 2019; 127:113-124. [DOI: 10.1016/j.bioelechem.2019.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 02/02/2023]
|
15
|
Banks TA, Luckman PSB, Frith JE, Cooper-White JJ. Effects of electric fields on human mesenchymal stem cell behaviour and morphology using a novel multichannel device. Integr Biol (Camb) 2016; 7:693-712. [PMID: 25988194 DOI: 10.1039/c4ib00297k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intrinsic piezoelectric nature of collagenous-rich tissues, such as bone and cartilage, can result in the production of small, endogenous electric fields (EFs) during applied mechanical stresses. In vivo, these EFs may influence cell migration, a vital component of wound healing. As a result, the application of small external EFs to bone fractures and cutaneous wounds is actively practiced clinically. Due to the significant regenerative potential of stem cells in bone and cartilage healing, and their potential role in the observed improved healing in vivo post applied EFs, using a novel medium throughput device, we investigated the impacts of physiological and aphysiological EFs on human bone marrow-derived mesenchymal stem cells (hBM-MSCs) for up to 15 hours. The applied EFs had significant impacts on hBM-MSC morphology and migration; cells displayed varying degrees of conversion to a highly elongated phenotype dependent on the EF strength, consistent perpendicular alignment to the EF vector, and definitive cathodal migration in response to EF strengths ≥0.5 V cm(-1), with the fastest migration speeds observed at between 1.7 and 3 V cm(-1). We observed variability in hBM-MSC donor-to-donor responses and overall tolerances to applied EFs. This study thus confirms hBM-MSCs are responsive to applied EFs, and their rate of migration towards the cathode is controllable depending on the EF strength, providing new insight into the physiology of hBM-MSCs and possibly a significant opportunity for the utilisation of EFs in directed scaffold colonisation in vitro for tissue engineering applications or in vivo post implantation.
Collapse
Affiliation(s)
- T A Banks
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Qld 4072, Australia.
| | | | | | | |
Collapse
|
16
|
Cao L, Pu J, Scott RH, Ching J, McCaig CD. Physiological electrical signals promote chain migration of neuroblasts by up-regulating P2Y1 purinergic receptors and enhancing cell adhesion. Stem Cell Rev Rep 2015; 11:75-86. [PMID: 25096637 PMCID: PMC4333314 DOI: 10.1007/s12015-014-9524-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuroblasts migrate as directed chains of cells during development and following brain damage. A fuller understanding of the mechanisms driving this will help define its developmental significance and in the refinement of strategies for brain repair using transplanted stem cells. Recently, we reported that in adult mouse there are ionic gradients within the extracellular spaces that create an electrical field (EF) within the rostral migratory stream (RMS), and that this acts as a guidance cue for neuroblast migration. Here, we demonstrate an endogenous EF in brain slices and show that mimicking this by applying an EF of physiological strength, switches on chain migration in mouse neurospheres and in the SH-SY5Y neuroblastoma cell line. Firstly, we detected a substantial endogenous EF of 31.8 ± 4.5 mV/mm using microelectrode recordings from explants of the subventricular zone (SVZ). Pharmacological inhibition of this EF, effectively blocked chain migration in 3D cultures of SVZ explants. To mimic this EF, we applied a physiological EF and found that this increased the expression of N-cadherin and β-catenin, both of which promote cell-cell adhesion. Intriguingly, we found that the EF up-regulated P2Y purinoceptor 1 (P2Y1) to contribute to chain migration of neuroblasts through regulating the expression of N-cadherin, β-catenin and the activation of PKC. Our results indicate that the naturally occurring EF in brain serves as a novel stimulant and directional guidance cue for neuronal chain migration, via up-regulation of P2Y1.
Collapse
Affiliation(s)
- Lin Cao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Jin Pu
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Roderick H. Scott
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Jared Ching
- Department of Neurosurgery, Aberdeen Royal Infirmary, Aberdeen, AB25 2ZD UK
| | - Colin D. McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| |
Collapse
|
17
|
Pai VP, Martyniuk CJ, Echeverri K, Sundelacruz S, Kaplan DL, Levin M. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation. ACTA ACUST UNITED AC 2015; 3:3-25. [PMID: 27499876 PMCID: PMC4857752 DOI: 10.1002/reg2.48] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
Endogenous bioelectric signaling via changes in cellular resting potential (Vmem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of Vmem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re‐specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome‐wide transcriptional responses to Vmem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to Vmem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of Vmem change, and also revealed important (well‐conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that Vmem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Biology Department and Center for Regenerative and Developmental Biology Tufts University Medford Massachusetts 02155 USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology and Department of Physiological Sciences UF Genetics Institute, University of Florida Gainesville Florida 32611 USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development University of Minnesota Minneapolis Minnesota 55455 USA
| | - Sarah Sundelacruz
- Department of Biomedical Engineering Tufts University Medford Massachusetts 02155 USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University Medford Massachusetts 02155 USA
| | - Michael Levin
- Biology Department and Center for Regenerative and Developmental Biology Tufts University Medford Massachusetts 02155 USA
| |
Collapse
|
18
|
Hammerschlag R, Levin M, McCraty R, Bat N, Ives JA, Lutgendorf SK, Oschman JL. Biofield Physiology: A Framework for an Emerging Discipline. Glob Adv Health Med 2015; 4:35-41. [PMID: 26665040 PMCID: PMC4654783 DOI: 10.7453/gahmj.2015.015.suppl] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed.
Collapse
Affiliation(s)
- Richard Hammerschlag
- The Institute for Integrative Health, Baltimore, Maryland; Consciousness and Healing Initiative, San Diego, California; Oregon College of Oriental Medicine, Portland (Dr Hammerschlag)
| | - Michael Levin
- Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts (Dr Levin)
| | - Rollin McCraty
- Institute of HeartMath, Boulder Creek, California (Dr McCraty)
| | - Namuun Bat
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, Virginia (Ms Bat)
| | - John A Ives
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, Virginia (Dr Ives)
| | - Susan K Lutgendorf
- Departments of Psychology, Obstetrics and Gynecology, and Urology, University of Iowa, Iowa City (Dr Lutgendorf)
| | - James L Oschman
- Nature's Own Research Association, Dover, New Hampshire (Dr Oschman)
| |
Collapse
|
19
|
Pu J, Cao L, McCaig CD. Physiological extracellular electrical signals guide and orient the polarity of gut epithelial cells. Tissue Barriers 2015; 3:e1037417. [PMID: 26451341 PMCID: PMC4574889 DOI: 10.1080/21688370.2015.1037417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 01/09/2023] Open
Abstract
Apical-basal polarity in epithelial cells is a fundamental process in the morphogenesis of many tissues. But how epithelial cells become oriented with functionally specialized luminal and serosal facing membranes is not understood fully. Cell-cell and cell-substrate contacts induce the asymmetric distribution of Na+/K+-ATPase pumps on basal membrane and are essential for apical-basal polarity formation. Inhibition of the Na+/K+-ATPase pump abolished apical formation completely. But it is unclear how this pump regulated the apical polarity. We discovered that the transepithelial potential difference (TEP) which is dependent on the basal Na+/K+-ATPase distribution acts as an essential coordinating signal for apical membrane formation through Ror2/ERK1/2/LKB1 signaling. A similar concept applies to all other ion-transporting epithelial and endothelial tissues and this raises the possibility of regulating the TEP as a therapeutic intervention for disorders in which epithelial function is compromised by faulty electrical signaling.
Collapse
Affiliation(s)
- Jin Pu
- School of Medical Sciences; Institute of Medical Sciences; University of Aberdeen ; Aberdeen, UK
| | - Lin Cao
- School of Medical Sciences; Institute of Medical Sciences; University of Aberdeen ; Aberdeen, UK
| | - Colin D McCaig
- School of Medical Sciences; Institute of Medical Sciences; University of Aberdeen ; Aberdeen, UK
| |
Collapse
|
20
|
Levin M. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell 2015; 25:3835-50. [PMID: 25425556 PMCID: PMC4244194 DOI: 10.1091/mbc.e13-12-0708] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In addition to biochemical gradients and transcriptional networks, cell behavior is regulated by endogenous bioelectrical cues originating in the activity of ion channels and pumps, operating in a wide variety of cell types. Instructive signals mediated by changes in resting potential control proliferation, differentiation, cell shape, and apoptosis of stem, progenitor, and somatic cells. Of importance, however, cells are regulated not only by their own Vmem but also by the Vmem of their neighbors, forming networks via electrical synapses known as gap junctions. Spatiotemporal changes in Vmem distribution among nonneural somatic tissues regulate pattern formation and serve as signals that trigger limb regeneration, induce eye formation, set polarity of whole-body anatomical axes, and orchestrate craniofacial patterning. New tools for tracking and functionally altering Vmem gradients in vivo have identified novel roles for bioelectrical signaling and revealed the molecular pathways by which Vmem changes are transduced into cascades of downstream gene expression. Because channels and gap junctions are gated posttranslationally, bioelectrical networks have their own characteristic dynamics that do not reduce to molecular profiling of channel expression (although they couple functionally to transcriptional networks). The recent data provide an exciting opportunity to crack the bioelectric code, and learn to program cellular activity at the level of organs, not only cell types. The understanding of how patterning information is encoded in bioelectrical networks, which may require concepts from computational neuroscience, will have transformative implications for embryogenesis, regeneration, cancer, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155-4243
| |
Collapse
|
21
|
Kim MS, Lee MH, Kwon BJ, Seo HJ, Koo MA, You KE, Kim D, Park JC. Control of neonatal human dermal fibroblast migration on poly(lactic-co-glycolic acid)-coated surfaces by electrotaxis. J Tissue Eng Regen Med 2015; 11:862-868. [PMID: 25627750 DOI: 10.1002/term.1986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/23/2014] [Accepted: 12/09/2014] [Indexed: 01/03/2023]
Abstract
Many types of cells respond to applied direct current electric fields (dcEFs) by directional cell migration, a phenomenon called galvanotaxis or electrotaxis. In this study, electrotaxis was used to control cell migration. We designed a new electrotaxis incubator and chamber system to facilitate long-term (> 12 h) observation and to allow for alterations to the direction of the current. Poly(lactic-co-glycolic acid) (PLGA) was coated onto surfaces to mimic a commonly used tissue-engineering scaffolding environment. Neonatal human dermal fibroblasts (nHDFs) were grown on PLGA-coated surfaces and exposed to EFs at increasing currents in the range 0-1 V/cm. These cells migrated toward the cathode during 3 h of dcEF stimulation; however, the migration speed decreased with increasing electric fields. Cells exposed to dcEFs in the range 1-2 V/cm showed no changes to migration speed or x forward migration indices (xFMIs) and the cells continued to move toward the cathode. nHDFs showed directional migration towards the cathode in direct current (dc) EFs (1 V/cm) and they moved in the opposite direction when the polarity of the dcEF was reversed. Reorganization of the actin cytoskeleton and polarization of the Golgi apparatus were evaluated by immunostaining, which showed that the actin cytoskeleton elongated towards the cathode and the Golgi apparatus polarized in the direction of the dcEF. This study revealed that cell migration could potentially be controlled on PLGA scaffolds through electrotaxis. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Min Sung Kim
- Cell Biocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Hee Lee
- Cell Biocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| | - Byeong-Ju Kwon
- Cell Biocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyok Jin Seo
- Cell Biocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Ah Koo
- Cell Biocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Eun You
- Cell Biocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Dohyun Kim
- Cell Biocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Chul Park
- Cell Biocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Levin M. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Physiol 2015; 592:2295-305. [PMID: 24882814 DOI: 10.1113/jphysiol.2014.271940] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pattern formation, as occurs during embryogenesis or regeneration, is the crucial link between genotype and the functions upon which selection operates. Even cancer and aging can be seen as challenges to the continuous physiological processes that orchestrate individual cell activities toward the anatomical needs of an organism. Thus, the origin and maintenance of complex biological shape is a fundamental question for cell, developmental, and evolutionary biology, as well as for biomedicine. It has long been recognized that slow bioelectrical gradients can control cell behaviors and morphogenesis. Here, I review recent molecular data that implicate endogenous spatio-temporal patterns of resting potentials among non-excitable cells as instructive cues in embryogenesis, regeneration, and cancer. Functional data have implicated gradients of resting potential in processes such as limb regeneration, eye induction, craniofacial patterning, and head-tail polarity, as well as in metastatic transformation and tumorigenesis. The genome is tightly linked to bioelectric signaling, via ion channel proteins that shape the gradients, downstream genes whose transcription is regulated by voltage, and transduction machinery that converts changes in bioelectric state to second-messenger cascades. However, the data clearly indicate that bioelectric signaling is an autonomous layer of control not reducible to a biochemical or genetic account of cell state. The real-time dynamics of bioelectric communication among cells are not fully captured by transcriptomic or proteomic analyses, and the necessary-and-sufficient triggers for specific changes in growth and form can be physiological states, while the underlying gene loci are free to diverge. The next steps in this exciting new field include the development of novel conceptual tools for understanding the anatomical semantics encoded in non-neural bioelectrical networks, and of improved biophysical tools for reading and writing electrical state information into somatic tissues. Cracking the bioelectric code will have transformative implications for developmental biology, regenerative medicine, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
23
|
Liu Q, Song B. Electric field regulated signaling pathways. Int J Biochem Cell Biol 2014; 55:264-8. [DOI: 10.1016/j.biocel.2014.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 02/01/2023]
|
24
|
Liu J, Zhu B, Zhang G, Wang J, Tian W, Ju G, Wei X, Song B. Electric signals regulate directional migration of ventral midbrain derived dopaminergic neural progenitor cells via Wnt/GSK3β signaling. Exp Neurol 2014; 263:113-21. [PMID: 25265211 DOI: 10.1016/j.expneurol.2014.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/16/2014] [Accepted: 09/16/2014] [Indexed: 01/19/2023]
Abstract
Neural progenitor cell (NPC) replacement therapy is a promising treatment for neurodegenerative disorders including Parkinson's disease (PD). It requires a controlled directional migration and integration of NPCs, for example dopaminergic (DA) progenitor cells, into the damaged host brain tissue. There is, however, only limited understanding of how to regulate the directed migration of NPCs to the diseased or damaged brain tissues for repair and regeneration. The aims of this study are to explore the possibility of using a physiological level of electrical stimulation to regulate the directed migration of ventral midbrain NPCs (NPCs(vm)), and to investigate their potential regulation via GSK3β and associated downstream effectors. We tested the effects of direct-current (DC) electric fields (EFs) on the migration behavior of the NPCs(vm). A DC EF induced directional cell migration toward the cathode, namely electrotaxis. Reversal of the EF polarity triggered a sharp reversal of the NPC(vm) electrotaxis. The electrotactic response was both time and EF voltage dependent. Pharmacologically inhibiting the canonical Wnt/GSK3β pathway significantly reduced the electrotactic response of NPCs(vm), which is associated with the down-regulation of GSK3β phosphorylation, β-catenin activation and CLASP2 expression. This was further proved by RNA interference of GSK3β, which also showed a significantly reduced electrotactic response in association with reduced β-catenin activation and CLASP2 expression. In comparison, RNA interference of β-catenin slightly reduced electrotactic response and CLASP2 expression. Both pharmacological inhibition of Wnt/GSK3β and RNA interference of GSK3β/β-catenin clearly reduced the asymmetric redistribution of CLASP2 and its co-localization with α-tubulin. These results suggest that Wnt/GSK3β signaling contributes to the electrotactic response of NPCs(vm) through the coordination of GSK3β phosphorylation, β-catenin activation, CLASP2 expression and asymmetric redistribution to the leading edge of the migrating cells.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory Animal Center, China Medical University, Shenyang, 110001, China; School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Bangfu Zhu
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Gaofeng Zhang
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Jian Wang
- Institute of Neurosciences, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, China
| | - Weiming Tian
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Gong Ju
- Institute of Neurosciences, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, China
| | - Xiaoqing Wei
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Bing Song
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK; Department of Dermatology, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
25
|
Cao L, McCaig CD, Scott RH, Zhao S, Milne G, Clevers H, Zhao M, Pu J. Polarizing intestinal epithelial cells electrically through Ror2. J Cell Sci 2014; 127:3233-9. [PMID: 24928904 PMCID: PMC4117229 DOI: 10.1242/jcs.146357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The apicobasal polarity of enterocytes determines where the brush border membrane (apical membrane) will form, but how this apical membrane faces the lumen is not well understood. The electrical signal across the epithelium could serve as a coordinating cue, orienting and polarizing enterocytes. Here, we show that applying a physiological electric field to intestinal epithelial cells, to mimic the natural electric field created by the transepithelial potential difference, polarized phosphorylation of the actin-binding protein ezrin, increased expression of intestinal alkaline phosphatase (ALPI, a differentiation marker) and remodeled the actin cytoskeleton selectively on the cathode side. In addition, an applied electric field also activated ERK1/2 and LKB1 (also known as STK11), key molecules in apical membrane formation. Disruption of the tyrosine protein kinase transmembrane receptor Ror2 suppressed activation of ERK1/2 and LKB1 significantly, and subsequently inhibited apical membrane formation in enterocytes. Our findings indicate that the endogenous electric field created by the transepithelial potential difference might act as an essential coordinating signal for apical membrane formation at a tissue level, through activation of LKB1 mediated by Ror2–ERK signaling.
Collapse
Affiliation(s)
- Lin Cao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK Department of Dermatology, Department of Ophthalmology, Institute of Regenerative Cures, University of California, Davis, CA 95616, USA
| | - Colin D McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Roderick H Scott
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Siwei Zhao
- Department of Bioengineering, University of California, Davis, CA 95616, USA
| | - Gillian Milne
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | - Min Zhao
- Department of Dermatology, Department of Ophthalmology, Institute of Regenerative Cures, University of California, Davis, CA 95616, USA
| | - Jin Pu
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
26
|
Phospho-NHE3 forms membrane patches and interacts with beta-actin to sense and maintain constant direction during cell migration. Exp Cell Res 2014; 324:13-29. [PMID: 24657527 DOI: 10.1016/j.yexcr.2014.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 01/14/2023]
Abstract
The Na(+)/H(+) exchanger NHE3 colocalizes with beta-actin at the leading edge of directionally migrating cells. Using human osteosarcoma cells (SaOS-2), rat osteoblasts (calvaria), and human embryonic kidney (HEK) cells, we identified a novel role for NHE3 via beta-actin in anode and cathode directed motility, during electrotaxis. NHE3 knockdown by RNAi revealed that NHE3 expression is required to achieve constant directionality and polarity in migrating cells. Phosphorylated NHE3 (pNHE3) and beta-actin complex formation was impaired by the NHE3 inhibitor S3226 (IC50 0.02µM). Fluorescence cross-correlation spectroscopy (FCCS) revealed that the molecular interactions between NHE3 and beta-actin in membrane protrusions increased 1.7-fold in the presence of a directional cue and decreased 3.3-fold in the presence of cytochalasin D. Data from flow cytometric analysis showed that membrane potential of cells (Vmem) decreases in directionally migrating, NHE3-deficient osteoblasts and osteosarcoma cells whereas only Vmem of wild type osteoblasts is affected during directional migration. These findings suggest that pNHE3 has a mechanical function via beta-actin that is dependent on its physiological activity and Vmem. Furthermore, phosphatidylinositol 3,4,5-trisphosphate (PIP3) levels increase while PIP2 remains stable when cells have persistent directionality. Both PI3 kinase (PI3K) and Akt expression levels change proportionally to NHE3 levels. Interestingly, however, the content of pNHE3 level does not change when PI3K/Akt is inhibited. Therefore, we conclude that NHE3 can act as a direction sensor for cells and that NHE3 phosphorylation in persistent directional cell migration does not involve PI3K/Akt during electrotaxis.
Collapse
|
27
|
Jahanshahi A, Schönfeld LM, Lemmens E, Hendrix S, Temel Y. In vitro and in vivo neuronal electrotaxis: a potential mechanism for restoration? Mol Neurobiol 2013; 49:1005-16. [PMID: 24243342 DOI: 10.1007/s12035-013-8575-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/21/2013] [Indexed: 01/19/2023]
Abstract
Electrical brain stimulation used to treat a variety of neurological and psychiatric diseases is entering a new period. The technique is well established and the potential complications are well known and generally manageable. Recent studies demonstrated that electrical fields (EFs) can enhance neuroplasticity-related processes. EFs applied in the physiological range induce migration of different neural cell types from different species in vitro. There are some evidences that also the speed and directedness of cell migration are enhanced by EFs. However, it is still unclear how electrical signals from the extracellular space are translated into intracellular actions resulting in the so-called electrotaxis phenomenon. Here, we aim to provide a comprehensive review of the data on responses of cells to electrical stimulation and the relation to functional recovery.
Collapse
Affiliation(s)
- Ali Jahanshahi
- Department of Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands,
| | | | | | | | | |
Collapse
|
28
|
Lara Rodriguez L, Schneider IC. Directed cell migration in multi-cue environments. Integr Biol (Camb) 2013; 5:1306-23. [DOI: 10.1039/c3ib40137e] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ian C. Schneider
- Department of Chemical and Biological Engineering, Iowa State University, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, USA
| |
Collapse
|
29
|
Endogenous electric currents might guide rostral migration of neuroblasts. EMBO Rep 2013; 14:184-90. [PMID: 23328740 DOI: 10.1038/embor.2012.215] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 01/19/2023] Open
Abstract
Mechanisms that guide directional migration of neuroblasts from the subventricular zone (SVZ) are not well understood. We report here that endogenous electric currents serve as a guidance cue for neuroblast migration. We identify the existence of naturally occurring electric currents (1.5±0.6 μA/cm(2), average field strength of ∼3 mV/mm) along the rostral migration path in adult mouse brain. Electric fields of similar strength direct migration of neuroblasts from the SVZ in culture and in brain slices. The purinergic receptor P2Y1 mediates this migration. The results indicate that naturally occurring electric currents serve as a new guidance mechanism for rostral neuronal migration.
Collapse
|
30
|
Levin M. Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. Bioessays 2012; 34:205-17. [PMID: 22237730 DOI: 10.1002/bies.201100136] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant progress in the molecular investigation of endogenous bioelectric signals during pattern formation in growing tissues has been enabled by recently developed techniques. Ion flows and voltage gradients produced by ion channels and pumps are key regulators of cell proliferation, migration, and differentiation. Now, instructive roles for bioelectrical gradients in embryogenesis, regeneration, and neoplasm are being revealed through the use of fluorescent voltage reporters and functional experiments using well-characterized channel mutants. Transmembrane voltage gradients (V(mem) ) determine anatomical polarity and function as master regulators during appendage regeneration and embryonic left-right patterning. A state-of-the-art recent study reveals that they can also serve as prepatterns for gene expression domains during craniofacial patterning. Continued development of novel tools and better ways to think about physical controls of cell-cell interactions will lead to mastery of the morphogenetic information stored in physiological networks. This will enable fundamental advances in basic understanding of growth and form, as well as transformative biomedical applications in regenerative medicine.
Collapse
Affiliation(s)
- Michael Levin
- Center for Regenerative and Developmental Biology, Department of Biology, Tufts University, Medford, MA, USA.
| |
Collapse
|
31
|
Zhao M, Chalmers L, Cao L, Vieira AC, Mannis M, Reid B. Electrical signaling in control of ocular cell behaviors. Prog Retin Eye Res 2012; 31:65-88. [PMID: 22020127 PMCID: PMC3242826 DOI: 10.1016/j.preteyeres.2011.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 12/13/2022]
Abstract
Epithelia of the cornea, lens and retina contain a vast array of ion channels and pumps. Together they produce a polarized flow of ions in and out of cells, as well as across the epithelia. These naturally occurring ion fluxes are essential to the hydration and metabolism of the ocular tissues, especially for the avascular cornea and lens. The directional transport of ions generates electric fields and currents in those tissues. Applied electric fields affect migration, division and proliferation of ocular cells which are important in homeostasis and healing of the ocular tissues. Abnormalities in any of those aspects may underlie many ocular diseases, for example chronic corneal ulcers, posterior capsule opacity after cataract surgery, and retinopathies. Electric field-inducing cellular responses, termed electrical signaling here, therefore may be an unexpected yet powerful mechanism in regulating ocular cell behavior. Both endogenous electric fields and applied electric fields could be exploited to regulate ocular cells. We aim to briefly describe the physiology of the naturally occurring electrical activities in the corneal, lens, and retinal epithelia, to provide experimental evidence of the effects of electric fields on ocular cell behaviors, and to suggest possible clinical implications.
Collapse
Affiliation(s)
- Min Zhao
- Department of Dermatology, UC Davis School of Medicine, 2921 Stockton Blvd., Sacramento, CA 95817, USA.
| | | | | | | | | | | |
Collapse
|