1
|
Picard F, Nonaka T, Belotti E, Osseni A, Errazuriz-Cerda E, Jost-Mousseau C, Bernard E, Conjard-Duplany A, Bohl D, Hasegawa M, Raoul C, Galli T, Schaeffer L, Leblanc P. Enhanced secretion of the amyotrophic lateral sclerosis ALS-associated misfolded TDP-43 mediated by the ER-ubiquitin specific peptidase USP19. Cell Mol Life Sci 2025; 82:76. [PMID: 39948244 PMCID: PMC11825969 DOI: 10.1007/s00018-025-05589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025]
Abstract
Proteinopathies, such as amyotrophic lateral sclerosis (ALS), are marked by the accumulation of misfolded proteins that disrupt cellular processes. Eukaryotic cells have developed protein quality control systems to eliminate these aberrant proteins, but these systems often fail to differentiate between normal and misfolded proteins. In ALS, pathological inclusions primarily composed of misfolded TDP-43 are a hallmark of the disease. Recently, a novel unconventional secretion process called misfolding-associated protein secretion (MAPS) has been discovered to selectively export misfolded proteins. USP19, an Endoplasmic Reticulum-associated ubiquitin peptidase, plays a crucial role in this process. In this study, we investigated the impact of ER-anchored USP19 on the secretion of misfolded TDP-43. Here we found that USP19 overexpression significantly promotes the secretion of soluble and aggregated misfolded TDP-43, requiring both ER anchoring and ubiquitin peptidase activity. Characterization of the cellular and molecular mechanisms involved in this process highlighted the importance of early autophagosomal and late endosomal/amphisomal compartments, while lysosomes did not play a key role. By using dominant-negative mutants and small interfering RNAs, we identified that USP19-mediated secretion of misfolded TDP-43 is modulated by key factors involved in cellular trafficking and secretion pathways, such as ATG7, the ESCRT-O HGS/HRS, the Rab GTPases RAB11A, RAB8A, and RAB27A, and the v-SNARE VAMP7. We also confirmed the crucial role of the DNAJC5/CSPα cochaperone. Overall, this study provides new insights into how cells manage the secretion of misfolded TDP-43 proteins and potentially opens new avenues for therapeutic interventions in ALS and related disorders.
Collapse
Affiliation(s)
- Flavien Picard
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Takashi Nonaka
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, 156-8506, Japan
| | - Edwige Belotti
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Alexis Osseni
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | | | - Coline Jost-Mousseau
- Sorbonne Université, Institut du Cerveau-ICM, INSERM, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Paris, France
| | - Emilien Bernard
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
- Lyon ALS Reference Center, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677, Bron, France
| | - Agnès Conjard-Duplany
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau-ICM, INSERM, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Paris, France
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, 156-8506, Japan
| | - Cédric Raoul
- INM, Univ Montpellier, INSERM, Montpellier, France, 34095, Montpellier, France
- ALS reference center, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Laurent Schaeffer
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
- Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Pascal Leblanc
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France.
| |
Collapse
|
2
|
Viramontes KM, Thone MN, DeRogatis JM, Neubert EN, Henriquez ML, De La Torre JJ, Tinoco R. Prion protein modulation of virus-specific T cell differentiation and function during acute viral infection. Immunohorizons 2025; 9:vlae002. [PMID: 39846843 PMCID: PMC11841969 DOI: 10.1093/immhor/vlae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/11/2024] [Indexed: 01/24/2025] Open
Abstract
The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model. Our findings reveal that Prnp-/- mice exhibit a robust expansion of virus-specific CD8+ T cells, with similar activation profiles as wild-type mice during the early stages of infection. However, Prnp-/- mice had higher frequencies and numbers of virus-specific memory CD8+ T cells, along with altered differentiation profiles characterized by increased central and effector memory subsets. Despite similar proliferation rates early during infection, Prnp-/- memory CD8+ T cells had decreased proliferation compared with their wild-type counterparts. Additionally, Prnp-/- mice had higher numbers of cytokine-producing memory CD8+ T cells, indicating a more robust functional response. Furthermore, Prnp-/- mice had increased virus-specific CD4+ T cell responses, suggesting a broader impact of PrPc deficiency on T cell immunity. These results unveil a previously unrecognized role for PrPc in regulating the differentiation, proliferation, and functionality of virus-specific T cells, providing valuable insights into immune system regulation by prion proteins during viral infections.
Collapse
Affiliation(s)
- Karla M Viramontes
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Melissa N Thone
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Julia M DeRogatis
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Emily N Neubert
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Monique L Henriquez
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Jamie-Jean De La Torre
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Roberto Tinoco
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Ghosh S, Jana R, Jana S, Basu R, Chatterjee M, Ranawat N, Das Sarma J. Differential expression of cellular prion protein (PrP C) in mouse hepatitis virus induced neuroinflammation. J Neurovirol 2024; 30:215-228. [PMID: 38922550 DOI: 10.1007/s13365-024-01215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
The cellular prion protein (PrPC) is an extracellular cell membrane protein. Due to its diversified roles, a definite role of PrPC has been difficult to establish. During viral infection, PrPC has been reported to play a pleiotropic role. Here, we have attempted to envision the function of PrPC in the neurotropic m-CoV-MHV-RSA59-induced model of neuroinflammation in C57BL/6 mice. A significant upregulation of PrPC at protein and mRNA levels was evident in infected mouse brains during the acute phase of neuroinflammation. Furthermore, investigation of the effect of MHV-RSA59 infection on PrPC expression in specific neuronal, microglial, and astrocytoma cell lines, revealed a differential expression of prion protein during neuroinflammation. Additionally, siRNA-mediated downregulation of prnp transcripts reduced the expression of viral antigen and viral infectivity in these cell lines. Cumulatively, our results suggest that PrPC expression significantly increases during acute MHV-RSA59 infection and that PrPC also assists in viral infectivity and viral replication.
Collapse
Affiliation(s)
- Satavisha Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Rishika Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Soumen Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Optical NeuroImaging Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Rahul Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Madhurima Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Nishtha Ranawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Burke Neurological Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India.
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Hong JM, Munna AN, Moon JH, Kim JH, Seol JW, Eo SK, Park SY. Antiviral activity of prion protein against Japanese encephalitis virus infection in vitro and in vivo. Virus Res 2023; 338:199249. [PMID: 37858731 PMCID: PMC10598702 DOI: 10.1016/j.virusres.2023.199249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Flaviviruses are a major cause of viral diseases worldwide, for which effective treatments have yet to be discovered. The prion protein (PrPc) is abundantly expressed in brain cells and has been shown to play a variety of roles, including neuroprotection, cell homeostasis, and regulation of cellular signaling. However, it is still unclear whether PrPc can protect against flaviviruses. In this study, we investigated the role of PrPc in regulating autophagy flux and its potential antiviral activity during Japanese encephalitis virus (JEV) infection. Our in vivo experiment showed that JEV was more lethal to the PrPc knocked out mice which was further supported by histological analysis, western blot and rtPCR results from infected mice brain samples. Role of PrPc against viral propagation in vitro was verified through cell survival study, protein expression and RNA replication analysis, and adenoviral vector assay by overexpressing PrPc. Further analysis indicated that after virus entry, PrPc inhibited autophagic flux that prevented JEV replication inside the host cell. Our results from in vivo and in vitro investigations demonstrate that prion protein effectively inhibited JEV propagation by regulating autophagy flux which is used by JEV to release its genetic material and replication after entering the host cell, suggesting that prion protein may be a promising therapeutic target for flavivirus infection.
Collapse
Affiliation(s)
- Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Jong-Hoon Kim
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Seong-Kug Eo
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
5
|
Silva De Castro I, Granato A, Mariante RM, Lima MA, Leite ACC, Espindola ODM, Pise-Masison CA, Franchini G, Linden R, Echevarria-Lima J. HTLV-1 p12 modulates the levels of prion protein (PrP C) in CD4 + T cells. Front Microbiol 2023; 14:1175679. [PMID: 37637115 PMCID: PMC10449582 DOI: 10.3389/fmicb.2023.1175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Infection with human T cell lymphotropic virus type 1 (HTLV-1) is endemic in Brazil and is linked with pro-inflammatory conditions including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic neuroinflammatory incapacitating disease that culminates in loss of motor functions. The mechanisms underlying the onset and progression of HAM/TSP are incompletely understood. Previous studies have demonstrated that inflammation and infectious agents can affect the expression of cellular prion protein (PrPC) in immune cells. Methods Here, we investigated whether HTLV-1 infection affected PrPC content in cell lines and primary CD4+cells in vitro using flow cytometry and western blot assays. Results We found that HTLV-1 infection decreased the expression levels of PrPC and HTLV-1 Orf I encoded p12, an endoplasmic reticulum resident protein also known to affect post-transcriptionally cellular proteins such as MHC-class I and the IL-2 receptor. In addition, we observed a reduced percentage of CD4+ T cells from infected individuals expressing PrPC, which was reflected by IFN type II but not IL-17 expression. Discussion These results suggested that PrPC downregulation, linked to both HTLV-1 p12 and IFN-γ expression in CD4+ cells, may play a role in the neuropathogenesis of HTLV-1 infection.
Collapse
Affiliation(s)
- Isabela Silva De Castro
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Alessandra Granato
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rafael Meyer Mariante
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marco Antonio Lima
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Claudia Celestino Leite
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Otávio de Melo Espindola
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Rafael Linden
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Baude J, Bastien S, Gillet Y, Leblanc P, Itzek A, Tristan A, Bes M, Duguez S, Moreau K, Diep BA, Norrby-Teglund A, Henry T, Vandenesch F. Necrotizing Soft Tissue Infection Staphylococcus aureus but not S. pyogenes Isolates Display High Rates of Internalization and Cytotoxicity Toward Human Myoblasts. J Infect Dis 2020; 220:710-719. [PMID: 31001627 DOI: 10.1093/infdis/jiz167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Necrotizing soft tissue infections (NSTIs) caused by group A Streptococcus (GAS) and occasionally by Staphylococcus aureus (SA) frequently involve the deep fascia and often lead to muscle necrosis. METHODS To assess the pathogenicity of GAS and S. aureus for muscles in comparison to keratinocytes, adhesion and invasion of NSTI-GAS and NSTI-SA isolates were assessed in these cells. Bloodstream infections (BSI-SA) and noninvasive coagulase-negative staphylococci (CNS) isolates were used as controls. RESULTS NSTI-SA and BSI-SA exhibited stronger internalization into human keratinocytes and myoblasts than NSTI-GAS or CNS. S. aureus internalization reached over 30% in human myoblasts due to a higher percentage of infected myoblasts (>11%) as compared to keratinocytes (<3%). Higher cytotoxicity for myoblasts of NSTI-SA as compared to BSI-SA was attributed to higher levels of psmα and RNAIII transcripts in NSTI-SA. However, the 2 groups were not discriminated at the genomic level. The cellular basis of high internalization rate in myoblasts was attributed to higher expression of α5β1 integrin in myoblasts. Major contribution of FnbpAB-integrin α5β1 pathway to internalization was confirmed by isogenic mutants. CONCLUSIONS Our findings suggest a factor in NSTI-SA severity is the strong invasiveness of S. aureus in muscle cells, a property not shared by NSTI-GAS isolates.
Collapse
Affiliation(s)
- Jessica Baude
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France
| | - Sylvère Bastien
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France
| | - Yves Gillet
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France.,Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, France
| | - Pascal Leblanc
- NeuroMyoGene Institute, Université de Lyon, CNRS UMR5310, INSERM U1217, France
| | - Andreas Itzek
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Anne Tristan
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France.,Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, France
| | - Michèle Bes
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France.,Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, France
| | - Stephanie Duguez
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, United Kingdom
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France
| | - Binh An Diep
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Thomas Henry
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France.,Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, France
| | | |
Collapse
|
7
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
8
|
Coudert L, Nonaka T, Bernard E, Hasegawa M, Schaeffer L, Leblanc P. Phosphorylated and aggregated TDP-43 with seeding properties are induced upon mutant Huntingtin (mHtt) polyglutamine expression in human cellular models. Cell Mol Life Sci 2019; 76:2615-2632. [PMID: 30863908 PMCID: PMC11105362 DOI: 10.1007/s00018-019-03059-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/06/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
The Tar DNA-Binding Protein 43 (TDP-43) and its phosphorylated isoform (pTDP-43) are the major components associated with ubiquitin positive/Tau-negative inclusions found in neurons and glial cells of patients suffering of amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration-TDP-43 (FTLD-TDP). Many studies have revealed that TDP-43 is also in the protein inclusions associated with neurodegenerative conditions other than ALS and FTLD-TDP, thus suggesting that this protein may be involved in the pathogenesis of a variety of neurological disorders. In brains of Huntington-affected patients, pTDP-43 aggregates were shown to co-localize with mutant Huntingtin (mHtt) inclusions. Here, we show that expression of mHtt carrying 80-97 polyglutamines repeats in human cell cultures induces the aggregation and the phosphorylation of endogenous TDP-43, whereas non-pathological Htt with 25 polyglutamines repeats has no effect. Mutant Htt aggregation precedes accumulation of pTDP-43 and pTDP-43 co-localizes with mHtt inclusions reminding what it was previously described in brains of Huntington-affected patients. Detergent-insoluble fractions from cells expressing mHtt and containing mHtt-pTDP-43 co-aggregates can function as seeds for further TDP-43 aggregation in human cell culture. The human cellular prion protein PrPC was previously identified as a negative modulator of mHtt aggregation; here, we show that PrPC-mediated reduction of mHtt aggregation is tightly correlated with a decrease of TDP-43 aggregation and phosphorylation, thus confirming the close relationships between TDP-43 and mHtt.
Collapse
Affiliation(s)
- Laurent Coudert
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Emilien Bernard
- Hospices Civils de Lyon, Hôpital Neurologique Pierre-Wertheimer, Service de Neurologie C et Centre SLA de Lyon, Bron, France
- Université de Lyon, Faculté de Médecine Lyon Sud Charles Mérieux, Lyon, France
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Laurent Schaeffer
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Pascal Leblanc
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
9
|
Toro-Ascuy D, Rojas-Araya B, García-de-Gracia F, Rojas-Fuentes C, Pereira-Montecinos C, Gaete-Argel A, Valiente-Echeverría F, Ohlmann T, Soto-Rifo R. A Rev-CBP80-eIF4AI complex drives Gag synthesis from the HIV-1 unspliced mRNA. Nucleic Acids Res 2019; 46:11539-11552. [PMID: 30239828 PMCID: PMC6265489 DOI: 10.1093/nar/gky851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Gag synthesis from the full-length unspliced mRNA is critical for the production of the viral progeny during human immunodeficiency virus type-1 (HIV-1) replication. While most spliced mRNAs follow the canonical gene expression pathway in which the recruitment of the nuclear cap-binding complex (CBC) and the exon junction complex (EJC) largely stimulates the rates of nuclear export and translation, the unspliced mRNA relies on the viral protein Rev to reach the cytoplasm and recruit the host translational machinery. Here, we confirm that Rev ensures high levels of Gag synthesis by driving nuclear export and translation of the unspliced mRNA. These functions of Rev are supported by the CBC subunit CBP80, which binds Rev and the unspliced mRNA in the nucleus and the cytoplasm. We also demonstrate that Rev interacts with the DEAD-box RNA helicase eIF4AI, which translocates to the nucleus and cooperates with the viral protein to promote Gag synthesis. Finally, we show that the Rev/RRE axis is important for the assembly of a CBP80-eIF4AI complex onto the unspliced mRNA. Together, our results provide further evidence towards the understanding of the molecular mechanisms by which Rev drives Gag synthesis from the unspliced mRNA during HIV-1 replication.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Bárbara Rojas-Araya
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco García-de-Gracia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Rojas-Fuentes
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Camila Pereira-Montecinos
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Théophile Ohlmann
- INSERM U1111, CIRI, Lyon F-69364, France.,Ecole Normale Supérieure de Lyon, Lyon F-69364, France
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Abstract
The normal cellular prion protein, designated PrPC, is a membrane glycoprotein expressed most abundantly in brains, particularly by neurons, and to a lesser extent in non-neuronal tissues including lungs. Conformational conversion of PrPC into the amyloidogenic isoform is a key pathogenic event in prion diseases. We recently found that PrPC has a protective role against infection with influenza A viruses (IAVs) in mice by reducing reactive oxygen species in the lungs after infection with IAVs. The antioxidative activity of PrPC is probably attributable to its function to activate antioxidative enzyme Cu/Zn-superoxide dismutase, or SOD1, through regulating Cu content in lungs infected with IAVs. Oxidative stress could play a pivotal role in the pathogenesis of a wide range of viral infections. Here, we introduce our and others' studies on the role of PrPC in viral infections, and raise the attractive possibility that PrPC might be a novel target molecule for development of antioxidative therapeutics against not only IAV infection but also other viral infections.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University , Tokushima, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University , Tokushima, Japan
| |
Collapse
|
11
|
Chida J, Hara H, Yano M, Uchiyama K, Das NR, Takahashi E, Miyata H, Tomioka Y, Ito T, Kido H, Sakaguchi S. Prion protein protects mice from lethal infection with influenza A viruses. PLoS Pathog 2018; 14:e1007049. [PMID: 29723291 PMCID: PMC5953499 DOI: 10.1371/journal.ppat.1007049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 05/15/2018] [Accepted: 04/23/2018] [Indexed: 11/18/2022] Open
Abstract
The cellular prion protein, designated PrPC, is a membrane glycoprotein expressed abundantly in brains and to a lesser extent in other tissues. Conformational conversion of PrPC into the amyloidogenic isoform is a key pathogenic event in prion diseases. However, the physiological functions of PrPC remain largely unknown, particularly in non-neuronal tissues. Here, we show that PrPC is expressed in lung epithelial cells, including alveolar type 1 and 2 cells and bronchiolar Clara cells. Compared with wild-type (WT) mice, PrPC-null mice (Prnp0/0) were highly susceptible to influenza A viruses (IAVs), with higher mortality. Infected Prnp0/0 lungs were severely injured, with higher inflammation and higher apoptosis of epithelial cells, and contained higher reactive oxygen species (ROS) than control WT lungs. Treatment with a ROS scavenger or an inhibitor of xanthine oxidase (XO), a major ROS-generating enzyme in IAV-infected lungs, rescued Prnp0/0 mice from the lethal infection with IAV. Moreover, Prnp0/0 mice transgenic for PrP with a deletion of the Cu-binding octapeptide repeat (OR) region, Tg(PrPΔOR)/Prnp0/0 mice, were also highly susceptible to IAV infection. These results indicate that PrPC has a protective role against lethal infection with IAVs through the Cu-binding OR region by reducing ROS in infected lungs. Cu content and the activity of anti-oxidant enzyme Cu/Zn-dependent superoxide dismutase, SOD1, were lower in Prnp0/0 and Tg(PrPΔOR)/Prnp0/0 lungs than in WT lungs. It is thus conceivable that PrPC functions to maintain Cu content and regulate SOD1 through the OR region in lungs, thereby reducing ROS in IAV-infected lungs and eventually protecting them from lethal infection with IAVs. Our current results highlight the role of PrPC in protection against IAV infection, and suggest that PrPC might be a novel target molecule for anti-influenza therapeutics. Influenza A virus (IAV) is an enveloped, negative sense, single-stranded RNA virus, causing seasonal epidemic outbreaks of influenza. Anti-influenza agents targeting viral molecules, such as neuraminidase inhibitors, are currently available. However, these agents have accelerated emergence of mutant IAVs that are resistant to these agents among human populations. Development of new types of anti-influenza agents is awaited. We show that the cellular prion protein PrPC has a protective role against lethal infection with IAVs through the octapeptide repeat (OR) region by abrogating lung epithelial cell apoptosis induced by reactive oxygen species (ROS) in infected lungs. We also show that PrPC could reduce ROS in IAV-infected lungs through the OR region by maintaining Cu ion homeostasis and thereby activating Cu/Zn-dependent superoxide dismutase, SOD1. These results highlight the protective role of PrPC in IAV infection. Elucidation of the exact mechanism underlying the PrPC-mediated protection against IAV infection would be important for further understanding the pathogenesis of IAV infection and could be useful for development of new types of anti-influenza therapeutics.
Collapse
Affiliation(s)
- Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Hideyuki Hara
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Masashi Yano
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Keiji Uchiyama
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Nandita Rani Das
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hironori Miyata
- Animal Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yukiko Tomioka
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Koyama-cho, Tottori, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Koyama-cho, Tottori, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| |
Collapse
|
12
|
Lathe R, Darlix JL. Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection. J Alzheimers Dis Rep 2017; 1:263-275. [PMID: 30480243 PMCID: PMC6159716 DOI: 10.3233/adr-170037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/25/2022] Open
Abstract
The prion protein PRNP has been centrally implicated in the transmissible spongiform encephalopathies (TSEs), but its normal physiological role remains obscure. We highlight emerging evidence that PRNP displays antimicrobial activity, inhibiting the replication of multiple viruses, and also interacts directly with Alzheimer's disease (AD) amyloid-β (Aβ) peptide whose own antimicrobial role is now increasingly secure. PRNP and Aβ share share membrane-penetrating, nucleic acid binding, and antiviral properties with classical antimicrobial peptides such as LL-37. We discuss findings that binding of abnormal nucleic acids to PRNP leads to oligomerization of the protein, and suggest that this may be an entrapment and sequestration process that contributes to its antimicrobial activity. Some antimicrobial peptides are known to be exploited by infectious agents, and we cover evidence that PRNP is usurped by herpes simplex virus (HSV-1) that has evolved a virus-encoded 'anti-PRNP'.unction. These findings suggest that PRNP, like LL-37 and Aβ, is likely to be a component of the innate immune system, with implications for the pathoetiology of both AD and TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Unité 7213, Université de Strasbourg, Illkirch, France
| |
Collapse
|
13
|
Zhang H, Gao S, Pei R, Chen X, Li C. Hepatitis C virus-induced prion protein expression facilitates hepatitis C virus replication. Virol Sin 2017; 32:503-510. [PMID: 29076011 DOI: 10.1007/s12250-017-4039-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infects approximately 180 million people worldwide. Significant progress has been made since the establishment of in vitro HCV infection models in cells. However, the replication of HCV is complex and not completely understood. Here, we found that the expression of host prion protein (PrP) was induced in an HCV replication cell model. We then showed that increased PrP expression facilitated HCV genomic replication. Finally, we demonstrated that the KKRPK motif on the N-terminus of PrP bound nucleic acids and facilitated HCV genomic replication. Our results provided important insights into how viruses may harness cellular protein to achieve propagation.
Collapse
Affiliation(s)
- Huixia Zhang
- State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Center for Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100000, China
| | - Shanshan Gao
- State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Center for Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100000, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Center for Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Center for Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Center for Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
14
|
Rahimian P, He JJ. HIV/neuroAIDS biomarkers. Prog Neurobiol 2017; 157:117-132. [PMID: 27084354 PMCID: PMC5705228 DOI: 10.1016/j.pneurobio.2016.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
HIV infection often causes neurological symptoms including cognitive and motor dysfunction, which have been collectively termed HIV/neuroAIDS. Neuropsychological assessment and clinical symptoms have been the primary diagnostic criteria for HIV/neuroAIDS, even for the mild cognitive and motor disorder, the most prevalent form of HIV/neuroAIDS in the era of combination antiretroviral therapy. Those performance-based assessments and symptoms are generally descriptive and do not have the sensitivity and specificity to monitor the diagnosis, progression, and treatment response of the disease when compared to objective and quantitative laboratory-based biological markers, or biomarkers. In addition, effects of demographics and comorbidities such as substance abuse, psychiatric disease, nutritional deficiencies, and co-infection on HIV/neuroAIDS could be more readily determined using biomarkers than using neuropsychological assessment and clinical symptoms. Thus, there have been great efforts in identification of HIV/neuroAIDS biomarkers over the past two decades. The need for reliable biomarkers of HIV/neuroAIDS is expected to increase as the HIV-infected population ages and their vulnerability to neurodegenerative diseases, particularly Alzheimer's disease increases. Currently, three classes of HIV/neuroAIDS biomarkers are being pursued to establish objective laboratory-based definitions of HIV-associated neurologic injury: cerebrospinal fluid biomarkers, blood biomarkers, and neuroimaging biomarkers. In this review, we will focus on the current knowledge in the field of HIV/neuroAIDS biomarker discovery.
Collapse
Affiliation(s)
- Pejman Rahimian
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
15
|
Hartmann A, Muth C, Dabrowski O, Krasemann S, Glatzel M. Exosomes and the Prion Protein: More than One Truth. Front Neurosci 2017; 11:194. [PMID: 28469550 PMCID: PMC5395619 DOI: 10.3389/fnins.2017.00194] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 01/01/2023] Open
Abstract
Exosomes are involved in the progression of neurodegenerative diseases. The cellular prion protein (PrPC) is highly expressed on exosomes. In neurodegenerative diseases, PrPC has at least two functions: It is the substrate for the generation of pathological prion protein (PrPSc), a key player in the pathophysiology of prion diseases. On the other hand, it binds neurotoxic amyloid-beta (Aß) oligomers, which are associated with initiation and progression of Alzheimer's disease (AD). This has direct consequences for the role of exosomal expressed PrPC. In prion diseases, exosomal PrP leads to efficient dissemination of pathological prion protein, thus promoting spreading and transmission of the disease. In AD, exosomal PrPC can bind and detoxify Aß oligomers thus acting protective. In both scenarios, assessment of the state of PrPC on exosomes derived from blood or cerebrospinal fluid (CSF) may be useful for diagnostic workup of these diseases. This review sums up current knowledge of the role of exosomal PrPC on different aspects of Alzheimer's and prion disease.
Collapse
Affiliation(s)
- Alexander Hartmann
- Center of Diagnostics, Institute of Neuropathology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Christiane Muth
- Center of Diagnostics, Institute of Neuropathology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | | | - Susanne Krasemann
- Center of Diagnostics, Institute of Neuropathology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Markus Glatzel
- Center of Diagnostics, Institute of Neuropathology, University Medical Center Hamburg-EppendorfHamburg, Germany
| |
Collapse
|
16
|
Cellular Prion Protein Combined with Galectin-3 and -6 Affects the Infectivity Titer of an Endogenous Retrovirus Assayed in Hippocampal Neuronal Cells. PLoS One 2016; 11:e0167293. [PMID: 27936017 PMCID: PMC5147886 DOI: 10.1371/journal.pone.0167293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/11/2016] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are infectious and fatal neurodegenerative diseases which require the cellular prion protein, PrPC, for development of diseases. The current study shows that the PrPC augments infectivity and plaque formation of a mouse endogenous retrovirus, MuLV. We have established four neuronal cell lines expressing mouse PrPC, PrP+/+; two express wild type PrPC (MoPrPwild) and the other two express mutant PrPC (MoPrPmut). Infection of neuronal cells from various PrP+/+ and PrP-/- (MoPrPKO) lines with MuLV yielded at least three times as many plaques in PrP+/+ than in PrP-/-. Furthermore, among the four PrP+/+ lines, one mutant line, P101L, had at least 2.5 times as many plaques as the other three PrP+/+ lines. Plaques in P101L were four times larger than those in other PrP+/+ lines. Colocalization of PrP and CAgag was seen in MuLV-infected PrP+/+ cells. In the PrP-MuLV interaction, the involvement of galectin-3 and -6 was observed by immunoprecipitation with antibody to PrPC. These results suggest that PrPC combined with galectin-3 and -6 can act as a receptor for MuLV. P101L, the disease form of mutant PrPC results suggest the genetic mutant form of PrPC may be more susceptible to viral infection.
Collapse
|
17
|
Vilette D, Laulagnier K, Huor A, Alais S, Simoes S, Maryse R, Provansal M, Lehmann S, Andreoletti O, Schaeffer L, Raposo G, Leblanc P. Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway. Cell Mol Life Sci 2015; 72:4409-27. [PMID: 26047659 PMCID: PMC11113226 DOI: 10.1007/s00018-015-1945-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/06/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.
Collapse
Affiliation(s)
- Didier Vilette
- UMR INRA/ENVT 1225, Interactions Hôte Agent Pathogène, Toulouse, France.
| | - Karine Laulagnier
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France
- Inserm, U836, Neurodégénérescence et Plasticité, Institute of Neuroscience, Grenoble, France
| | - Alvina Huor
- UMR INRA/ENVT 1225, Interactions Hôte Agent Pathogène, Toulouse, France
| | - Sandrine Alais
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, UCBL, ENS Lyon, Lyon, France
| | - Sabrina Simoes
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Romao Maryse
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Monique Provansal
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives, INSERM Université Montpellier 1 U1040 CHU de Montpellier, Université Montpellier 1, Montpellier, France
| | - Sylvain Lehmann
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives, INSERM Université Montpellier 1 U1040 CHU de Montpellier, Université Montpellier 1, Montpellier, France
| | | | - Laurent Schaeffer
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France
| | - Graça Raposo
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Pascal Leblanc
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France.
| |
Collapse
|
18
|
A proautophagic antiviral role for the cellular prion protein identified by infection with a herpes simplex virus 1 ICP34.5 mutant. J Virol 2013; 87:5882-94. [PMID: 23487467 DOI: 10.1128/jvi.02559-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cellular prion protein (PrP) often plays a cytoprotective role by regulating autophagy in response to cell stress. The stress of infection with intracellular pathogens can stimulate autophagy, and autophagic degradation of pathogens can reduce their replication and thus help protect the infected cells. PrP also restricts replication of several viruses, but whether this activity is related to an effect on autophagy is not known. Herpes simplex virus 1 (HSV-1) effectively counteracts autophagy through binding of its ICP34.5 protein to the cellular proautophagy protein beclin-1. Autophagy can reduce replication of an HSV-1 mutant, Δ68H, which is incapable of binding beclin-1. We found that deletion of PrP in mice complements the attenuation of Δ68H, restoring its capacity to replicate in the central nervous system (CNS) to wild-type virus levels after intracranial or corneal infection. Cultured primary astrocytes but not neurons derived from PrP(-/-) mice also complemented the attenuation of Δ68H, enabling Δ68H to replicate at levels equivalent to wild-type virus. Ultrastructural analysis showed that normal astrocytes exhibited an increase in the number of autophagosomes after infection with Δ68H compared with wild-type virus, but PrP(-/-) astrocytes failed to induce autophagy in response to Δ68H infection. Redistribution of EGFP-LC3 into punctae occurred more frequently in normal astrocytes infected with Δ68H than with wild-type virus, but not in PrP(-/-) astrocytes, corroborating the ultrastructural analysis results. Our results demonstrate that PrP is critical for inducing autophagy in astrocytes in response to HSV-1 infection and suggest that PrP positively regulates autophagy in the mouse CNS.
Collapse
|
19
|
Miyazawa K, Kipkorir T, Tittman S, Manuelidis L. Continuous production of prions after infectious particles are eliminated: implications for Alzheimer's disease. PLoS One 2012; 7:e35471. [PMID: 22509412 PMCID: PMC3324552 DOI: 10.1371/journal.pone.0035471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/17/2012] [Indexed: 11/19/2022] Open
Abstract
Rat septal cells, induced to enter a terminal differentiation-like state by temperature shift, produce prion protein (PrP) levels 7x higher than their proliferative counterparts. Host PrP accumulates on the plasma membrane, newly elaborated nanotubes, and cell-to-cell junctions, important conduits for viral spread. To find if elevated PrP increased susceptibility to FU-CJD infection, we determined agent titers under both proliferating and arresting conditions. A short 5 day arrest and a prolonged 140 day arrest increased infectivity by 5x and 122x (>2 logs) respectively as compared to proliferating cells. Total PrP rapidly increased 7x and was even more elevated in proliferating cells that escaped chronic arrest conditions. Amyloid generating PrP (PrP-res), the “infectious prion” form, present at ∼100,000 copies per infectious particle, also increased proportionately by 140 days. However, when these highly infectious cells were switched back to proliferative conditions for 60 days, abundant PrP-res continued to be generated even though 4 logs of titer was lost. An identical 4 log loss was found with maximal PrP and PrP-res production in parallel cells under arresting conditions. While host PrP is essential for TSE agent spread and replication, excessive production of all forms of PrP can be inappropriately perpetuated by living cells, even after the initiating infectious agent is eliminated. Host PrP changes can start as a protective innate immune response that ultimately escapes control. A subset of other neurodegenerative and amyloid diseases, including non-transmissible AD, may be initiated by environmental infectious agents that are no longer present.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Section of Neuropathology, Department of Surgery, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Terry Kipkorir
- Section of Neuropathology, Department of Surgery, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Sarah Tittman
- Section of Neuropathology, Department of Surgery, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Laura Manuelidis
- Section of Neuropathology, Department of Surgery, Yale University Medical School, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|