1
|
Feng G, Zhou X, Fang X, He Y, Lin T, Mu L, Yang H, Wu J. A non-bactericidal glycine-rich peptide enhances cutaneous wound healing in mice via the activation of the TLR4/MAPK/NF-κB pathway. Biochem Pharmacol 2025; 236:116912. [PMID: 40164342 DOI: 10.1016/j.bcp.2025.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Although the antibacterial properties of glycine-rich peptides from prokaryotes to eukaryotes have been well characterized, their role in skin wound healing remains poorly understood, especially non-bactericidal glycine-rich peptides. Herein, a novel glycine-rich (46.5%) peptide (Smaragin, SRGSRGGRGGRGGGGRGGRGRSGSGSSIAGGGSRGSRGGSQYA) was identified from the skin of the tree frog Zhangixalus smaragdinus. Unlike other glycine-rich peptides, Smaragin showed no antimicrobial activity in vitro but significantly enhance wound healing in full-thickness dermal wounds in mice. In comparison with other wound healing-promoting peptides, Smaragin did not directly affect the proliferation and migration of keratinocytes, vascular endothelial cells, and fibroblasts. However, it notably increased phagocytes infiltration at the wound site by 0.5-day post-injury. Smaragin was not a direct chemoattractant for phagocytes, but it stimulated macrophages to secrete chemokines CXCL1 and CXCL2, which indirectly enhanced the migration of phagocytes, keratinocytes and vascular endothelial cells. Moreover, Smaragin promoted the polarization of macrophages from a pro-inflammatory M1-type to an anti-inflammatory M2 phenotype at the wound, which is associated with angiogenic activity. As expected, CD31, the most common analyzed marker of angiogenesis, showed a significant increase in vascular network area. Subsequent studies revealed that Smaragin promoted the chemokine level and polarization of macrophages via the TLR4/MAPK/NF-κB pathway, which enhanced the number of phagocytes and the regeneration of the epidermis and blood vessels at the wound, thereby accelerating skin wound healing in mice. These findings highlight the skin healing properties of non-bactericidal glycine-rich peptides and display the potential of Smaragin as a promising candidate for developing effective wound healing therapies.
Collapse
Affiliation(s)
- Guizhu Feng
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoyan Zhou
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaojie Fang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Yanmei He
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Ting Lin
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Wang H, Wei B, WuLan H, Qu B, Li H, Ren J, Han Y, Guo L. Conditioned medium of engineering macrophages combined with soluble microneedles promote diabetic wound healing. PLoS One 2025; 20:e0316398. [PMID: 40072964 PMCID: PMC11902060 DOI: 10.1371/journal.pone.0316398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025] Open
Abstract
Diabetic wounds have a profound effect on both the physical and psychological health of patients, highlighting the urgent necessity for novel treatment strategies and materials. Macrophages are vital contributors to tissue repair mechanisms. Macrophage conditioned medium contains various proteins and cytokines related to wound healing, indicating its potential to improve recovery from diabetic wound. Engineering macrophages may enable a further improvement in their tissue repair capacity. Fibroblast growth factor 2 (FGF2) is a crucial growth factor that plays an integral role in wound healing process. And in this study, a stable macrophage cell line (engineered macrophages) overexpressing FGF2 was successfully established by engineering modification of macrophages. Proteomic analysis indicated that conditioned medium derived from FGF2 overexpressed macrophages may promote wound healing by enhancing the level of vascularization. Additionally, cellular assays demonstrated that this conditioned medium promotes endothelial cell migration in vitro. For the convenience of drug delivery and wound application, we prepared soluble hyaluronic acid microneedles to load the conditioned medium. These soluble microneedles exhibited excellent mechanical properties and biocompatibility while effectively releasing their contents in vivo. The microneedles significantly accelerated wound healing, leading to a marked increase in vascular proliferation and improved collagen deposition within a full thickness skin defect diabetic mouse model. In summary, we developed a type of hyaluronic acid microneedle loaded with conditioned medium of engineered macrophages. These microneedles have been demonstrated to enhance tissue vascularization and facilitate diabetic wound healing. This might potentially serve as a highly promising therapeutic approach for diabetic wounds.
Collapse
Affiliation(s)
- HongYu Wang
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Burn and Plastic Surgery, PLA No.983 Hospital, Tianjin, China
| | - BaoHua Wei
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hasi WuLan
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bin Qu
- Department of Burn Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - HuiLong Li
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Ren
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Han
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - LingLi Guo
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Lee JH, Kim JH, Hyeon TI, Min KT, Lee SY, Ko HC, Choi HS, Ju KY, Cho YS, Yoon TJ. C24 Ceramide Lipid Nanoparticles for Skin Wound Healing. Pharmaceutics 2025; 17:242. [PMID: 40006608 PMCID: PMC11859193 DOI: 10.3390/pharmaceutics17020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: C24 ceramide plays a crucial role in skin regeneration and wound healing; however, its hydrophobic nature limits its application in therapeutic formulations. This study aims to enhance the bioavailability and efficacy of C24 ceramide by developing ceramide-based lipid nanoparticles (C24-LNP) and evaluate their impact on skin regeneration and wound healing. Methods: C24-LNP was synthesized and characterized for aqueous stability and bioavailability. In vitro experiments were conducted to assess its effects on keratinocyte proliferation and migration. Molecular biological analysis examined key signaling pathways, including AKT and ERK1/2 phosphorylation. Additionally, an in vivo mouse wound model was utilized to evaluate wound healing efficacy, with histological analysis performed to assess epidermal and dermal regeneration. Results: C24-LNP exhibited improved aqueous stability and bioavailability compared to free C24 ceramide. In vitro studies demonstrated that C24-LNP significantly promoted keratinocyte proliferation and migration. Molecular analysis revealed activation of the AKT and ERK1/2 signaling pathways, which are critical for cell growth and skin regeneration. In vivo wound healing experiments showed that C24-LNP accelerated wound closure compared to the control group. Histological analysis confirmed enhanced epidermal and dermal regeneration, leading to improved structural and functional skin repair. Conclusion: The lipid nanoparticle formulation of C24 ceramide effectively increases its bioavailability and enhances its therapeutic efficacy in skin regeneration and wound healing. C24-LNP presents a scalable and cost-effective alternative to traditional growth factor-based therapies, offering significant potential for clinical applications in wound care and dermatological treatments.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea; (J.-H.L.); (J.-H.K.); (T.-I.H.); (K.-T.M.); (S.-Y.L.); (H.-C.K.); (H.-S.C.); (K.-Y.J.)
| | - Jin-Hyun Kim
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea; (J.-H.L.); (J.-H.K.); (T.-I.H.); (K.-T.M.); (S.-Y.L.); (H.-C.K.); (H.-S.C.); (K.-Y.J.)
| | - Tong-Il Hyeon
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea; (J.-H.L.); (J.-H.K.); (T.-I.H.); (K.-T.M.); (S.-Y.L.); (H.-C.K.); (H.-S.C.); (K.-Y.J.)
| | - Khee-Tae Min
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea; (J.-H.L.); (J.-H.K.); (T.-I.H.); (K.-T.M.); (S.-Y.L.); (H.-C.K.); (H.-S.C.); (K.-Y.J.)
| | - Se-Young Lee
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea; (J.-H.L.); (J.-H.K.); (T.-I.H.); (K.-T.M.); (S.-Y.L.); (H.-C.K.); (H.-S.C.); (K.-Y.J.)
| | - Han-Chul Ko
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea; (J.-H.L.); (J.-H.K.); (T.-I.H.); (K.-T.M.); (S.-Y.L.); (H.-C.K.); (H.-S.C.); (K.-Y.J.)
| | - Hong-Seok Choi
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea; (J.-H.L.); (J.-H.K.); (T.-I.H.); (K.-T.M.); (S.-Y.L.); (H.-C.K.); (H.-S.C.); (K.-Y.J.)
| | - Kuk-Youn Ju
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea; (J.-H.L.); (J.-H.K.); (T.-I.H.); (K.-T.M.); (S.-Y.L.); (H.-C.K.); (H.-S.C.); (K.-Y.J.)
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seoul 06591, Republic of Korea
| | - Tae-Jong Yoon
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea; (J.-H.L.); (J.-H.K.); (T.-I.H.); (K.-T.M.); (S.-Y.L.); (H.-C.K.); (H.-S.C.); (K.-Y.J.)
- Research Institute of Pharmaceutical Science and Technology (RIPST), College of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
4
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Recent advances in the role of neuroregulation in skin wound healing. BURNS & TRAUMA 2025; 13:tkae072. [PMID: 39872039 PMCID: PMC11770601 DOI: 10.1093/burnst/tkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 01/29/2025]
Abstract
Neuroregulation during skin wound healing involves complex interactions between the nervous system and intricate tissue repair processes. The skin, the largest organ, depends on a complex system of nerves to manage responses to injury. Recent research has emphasized the crucial role of neuroregulation in maximizing wound healing outcomes. Recently, researchers have also explained the interactive contact between the peripheral nervous system and skin cells during the different phases of wound healing. Neurotransmitters and neuropeptides, once observed as simple signalling molecules, have since been recognized as effective regulators of inflammation, angiogenesis, and cell proliferation. The significance of skin innervation and neuromodulators is underscored by the delayed wound healing observed in patients with diabetes and the regenerative capabilities of foetal skin. Foetal skin regeneration is influenced by the neuroregulatory environment, immature immune system, abundant growth factors, and increased pluripotency of cells. Foetal skin cells exhibit greater flexibility and specialized cell types, and the extracellular matrix composition promotes regeneration. The extracellular matrix composition of foetal skin promotes regeneration, making it more capable than adult skin because neuroregulatory signals affect skin regeneration. The understanding of these systems can facilitate the development of therapeutic strategies to alter the nerve supply to the skin to enhance the process of wound healing. Neuroregulation is being explored as a potential therapeutic strategy for enhancing skin wound repair. Bioelectronic strategies and neuromodulation techniques can manipulate neural signalling, optimize the neuroimmune axis, and modulate inflammation. This review describes the function of skin innervation in wound healing, emphasizing the importance of neuropeptides released by sensory and autonomic nerve fibres. This article discusses significant discoveries related to neuroregulation and its impact on skin wound healing.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
5
|
Ghosh R, Singh P, Pandit AH, Tariq U, Bhunia BK, Kumar A. Emerging Technological Advancement for Chronic Wound Treatment and Their Role in Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:7101-7132. [PMID: 39466167 DOI: 10.1021/acsabm.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies. However, traditional therapies need improvisation and have been advanced through breakthrough technologies. The present review spans traditional therapies and further gives an extensive account of advancements in the treatment of chronic wounds. Cutting edge technologies, such as 3D printing, which includes inkjet printing, fused deposition modeling, digital light processing, extrusion-based printing, microneedle array-based therapies, gene therapy, which includes microRNAs (miRNAs) therapy, and smart wound dressings for real time monitoring of wound conditions through assessment of pH, temperature, oxygen, moisture, metabolites, and their use for planning of better treatment strategies have been discussed in detail. The review further gives the future direction of treatments that will aid in lowering the healthcare burden caused due to chronic wounds.
Collapse
Affiliation(s)
- Rupita Ghosh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Prerna Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashiq Hussain Pandit
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ubaid Tariq
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Bibhas Kumar Bhunia
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashok Kumar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| |
Collapse
|
6
|
Zhang J, Liu X, Sun Y, Ge Z, Shen J, Yuan J. Quercetin@β-Cyclodextrin Conjugated Keratin/Polyurethane Biocomposite Mats for Infected Diabetic Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23673-23682. [PMID: 39480120 DOI: 10.1021/acs.langmuir.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Chronic diabetic wounds suffer from severe complications caused by long-term high levels of oxidative stress and bacterial infection. Quercetin (Que) has excellent anti-inflammatory, antioxidant, and antibacterial activity, making it a promising drug to address the above issues. To exploit the benefits of Que in a more effective and sustained way to treat diabetic wounds, carboxymethyl β-cyclodextrin (CMCD) was synthesized and conjugated to keratin, then complexed with Que to form Que@Ker-CMCD inclusion, followed by electrospinning with polyurethane (PU) to afford Que@Ker-CMCD/PU mats. The approach significantly enhanced water solubility, bioavailability, and sustained release of Que. Crucially, these mats exhibited robust antioxidant and antibacterial activities. Moreover, the mats fostered an environment conducive to cell proliferation, migration, angiogenesis, and re-epithelialization, pivotal processes in wound healing and remodeling. Consequently, a marked acceleration in remodeling chronic diabetic wounds was observed. In conclusion, this study introduces a novel therapeutic strategy that not only harnesses the multifaceted benefits of Que but also enhances its delivery and performance, offering a promising avenue for the effective treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yu Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhaoyan Ge
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Abdollahi M, Baharian A, Mohamadhoseini M, Hassanpour M, Makvandi P, Habibizadeh M, Jafari B, Nouri R, Mohamadnia Z, Nikfarjam N. Advances in ionic liquid-based antimicrobial wound healing platforms. J Mater Chem B 2024; 12:9478-9507. [PMID: 39206539 DOI: 10.1039/d4tb00841c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wound infections, marked by the proliferation of microorganisms at surgical sites, necessitate the development of innovative wound dressings with potent bactericidal properties to curb microbial growth and prevent bacterial infiltration. This study explores the recent strides in utilizing ionic liquid-based polymers as highly promising antimicrobial agents for advanced wound healing applications. Specifically, cationic polymers containing quaternary ammonium, imidazolium, guanidinium, pyridinium, triazolium, or phosphonium groups have emerged as exceptionally effective antimicrobial compounds. Their mechanism of action involves disrupting bacterial membranes, thereby preventing the development of resistance and minimizing toxicity to mammalian cells. This comprehensive review not only elucidates the intricate dynamics of the skin's immune response and the various stages of wound healing but also delves into the synthesis methodologies of ionic liquid-based polymers. By spotlighting the practical applications of antimicrobial wound dressings, particularly those incorporating ionic liquid-based materials, this review aims to lay the groundwork for future research endeavors in this burgeoning field. Through a nuanced examination of these advancements, this article seeks to contribute to the ongoing progress in developing cutting-edge wound healing platforms that can effectively address the challenges posed by microbial infections in surgical wounds.
Collapse
Affiliation(s)
- Mahin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Aysan Baharian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Masoumeh Mohamadhoseini
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Bahman Jafari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Roya Nouri
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia 29208, SC, USA
| |
Collapse
|
8
|
Saha P, Talwar P. Identification of PPREs and PPRE associated genes in the human genome: insights into related kinases and disease implications. Front Immunol 2024; 15:1457648. [PMID: 39434882 PMCID: PMC11491715 DOI: 10.3389/fimmu.2024.1457648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction "Peroxisome Proliferator-Activated Receptors" (PPARs) belong to the class of transcription factors (TF) identified as Nuclear Receptors (NR). Upon activation by peroxisome proliferators (PPs), PPARs modulate a diverse range of genes, consequently regulating intra-cellular lipid metabolism, glucose uptake, apoptosis, and cell proliferation. Subsequent to the heterodimerization of Retinoid X Receptors (RXR) with PPARs induced by the binding of activators to PPARs, facilitates the binding of the resulting complex to Peroxisome Proliferator-Activated Receptors Response Elements (PPRE), with a consensus sequence 5'AGGTCANAGGTCA-3', and regulate the transcription of the targeted genes. Methods A comprehensive screening of PPRE within the whole human genome was performed using the Genome Workbench and UCSC Genome Browser to find the associated genes. Subsequently, the kinase subset was isolated from the extracted list of PPRE-related genes. Functional enrichment of the kinases was performed using FunRich, ToppGene, and ShinyGO. Network analysis and enrichment studies were then further performed using NDEx to elucidate these identified kinases' connections and significance. Additionally, the disease association of the PPRE kinases was analyzed using DisGeNET data in R studio and the COSMIC dataset. Results A comprehensive analysis of 1002 PPRE sequences within the human genome (T2T), yielded the identification of 660 associated genes, including 29 kinases. The engagement of these kinases in various biological pathways, such as apoptosis, platelet activation, and cytokine pathways, revealed from the functional enrichment analysis, illuminates the multifaceted role of PPAR in the regulation of cellular homeostasis and biological processes. Network analysis reveals the kinases interact with approximately 5.56% of the Human Integrated Protein-Protein Interaction rEference (HIPPIE) network. Disease association analysis using DisGeNET and COSMIC datasets revealed the significant roles of these kinases in cellular processes and disease modulation. Discussion This study elucidates the regulatory role of PPAR-associated genes and their association with numerous biological pathways. The involvement of the kinases with disease-related pathways highlights new potential for the development of therapeutic strategies designed for disease management and intervention.
Collapse
|
9
|
Gu Y, Mu Z, Chen Y, Wu C, Shi J, Bai N. Therapeutic potential of ADSCs in diabetic wounds: a proteomics-based approach. Front Cell Dev Biol 2024; 12:1468220. [PMID: 39345337 PMCID: PMC11427884 DOI: 10.3389/fcell.2024.1468220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background Diabetes mellitus (DM), a chronic metabolic disease characterized by elevated blood sugar, leads to delayed or non-healing wounds, increasing amputation risks, and placing a significant burden on patients and society. While extensive research has been conducted on adipose-derived stem cells (ADSCs) for promoting wound healing, there is a scarcity of studies focusing on diabetic wounds, particularly those employing proteomics and bioinformatics approaches. Objective This study aimed to investigate the mechanisms by which ADSCs promote diabetic wound healing using proteomics and bioinformatics techniques. Methods Healthy rat fat tissue was used to isolate ADSCs. A T2DM rat model with back wounds was established. The experimental group received ADSC injections around the wound, while the control group received PBS injections. Wound healing rates were documented and photographed on days 0, 3, 7, 10, and 14. On day 7, wound tissues were excised for HE and Masson's staining. Additionally, on day 7, tissues were analyzed for protein quantification using 4D-DIA, with subsequent GO and KEGG analyses for differentially expressed proteins (DEPs) and protein-protein interaction (PPI) network analysis using STRING database (String v11.5). Finally, Western blot experiments were performed on day 7 wounds to verify target proteins. Results and Conclusions In all measured days postoperatively, the wound healing rate was significantly higher in the ADSC group than in the PBS group (day 7: p < 0.001, day 10: p = 0.001, day 14: p < 0.01), except on day 3 (p > 0.05). Proteomic analysis identified 474 differentially expressed proteins, with 224 key proteins after PPI analysis (78 upregulated and 146 downregulated in the ADSC group). The main cellular locations of these proteins were "cellular anatomical entity" and "protein-containing complex", while the biological processes were "cellular processes" and "biological regulation". The primary molecular functions were "binding" and "catalytic activity", with GO enrichment focused on "Wnt-protein binding", "neural development", and "collagen-containing extracellular matrix". Further analysis of PPI network nodes using LASSO regression identified Thy1 and Wls proteins, significantly upregulated in the ADSC group, as potentially crucial targets for ADSC application in diabetic wound treatment.
Collapse
Affiliation(s)
- Yuan Gu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Zelan Mu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yuanzheng Chen
- Department of Burns and Plastic Surgery, Emergency General Hospital, Beijing, China
| | - Can Wu
- Medical Cosmetic Plastic Surgery, Linyi People′s Hospital, Linyi, China
| | - Jie Shi
- Plastic and Cosmetic Surgery, People′s Hospital of Liaoning Province, Shenyang, China
| | - Nan Bai
- Medical Cosmetic Plastic Surgery, Linyi People′s Hospital, Linyi, China
| |
Collapse
|
10
|
Chen JL, Liu L, Peng XR, Wang Y, Xiang X, Chen Y, Xu DX, Chen DZ. Role of the GalNAc-galectin pathway in the healing of premature rupture of membranes. Mol Med 2024; 30:138. [PMID: 39232672 PMCID: PMC11375961 DOI: 10.1186/s10020-024-00908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Premature rupture of the membranes (PROM) is a key cause of preterm birth and represents a major cause of neonatal mortality and morbidity. Natural products N-acetyl-d-galactosamine (GalNAc), which are basic building blocks of important polysaccharides in biological cells or tissues, such as chitin, glycoproteins, and glycolipids, may improve possible effects of wound healing. METHODS An in vitro inflammation and oxidative stress model was constructed using tumor necrosis-α (TNF-α) and lipopolysaccharide (LPS) action on WISH cells. Human amniotic epithelial cells (hAECs) were primarily cultured by digestion to construct a wound model. The effects of GalNAc on anti-inflammatory and anti-oxidative stress, migration and proliferation, epithelial-mesenchymal transition (EMT), glycosaminoglycan (GAG)/hyaluronic acid (HA) production, and protein kinase B (Akt) pathway in hAECs and WISH cells were analyzed using the DCFH-DA fluorescent probe, ELISA, CCK-8, scratch, transwell migration, and western blot to determine the mechanism by which GalNAc promotes amniotic wound healing. RESULTS GalNAc decreased IL-6 expression in TNF-α-stimulated WISH cells and ROS expression in LPS-stimulated WISH cells (P < 0.05). GalNAc promoted the expression of Gal-1 and Gal-3 with anti-inflammatory and anti-oxidative stress effects. GalNAc promoted the migration of hAECs (50% vs. 80%) and WISH cells through the Akt signaling pathway, EMT reached the point of promoting fetal membrane healing, and GalNAc did not affect the activity of hAECs and WISH cells (P > 0.05). GalNAc upregulated the expression of sGAG in WISH cells (P < 0.05) but did not affect HA levels (P > 0.05). CONCLUSIONS GalNAc might be a potential target for the prevention and treatment of PROM through the galectin pathway, including (i) inflammation; (ii) epithelial-mesenchymal transition; (iii) proliferation and migration; and (iv) regression, remodeling, and healing.
Collapse
Affiliation(s)
- Jia-Le Chen
- The School of Public Health, Anhui Medical University, Hefei, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Hospital Infection Management Section, Changzhou Wujin Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Lou Liu
- Department of obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Xin-Rui Peng
- The School of Public Health, Anhui Medical University, Hefei, China
| | - Yan Wang
- The School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Xiang
- The School of Public Health, Anhui Medical University, Hefei, China
| | - Yu Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China.
| | - De-Xiang Xu
- The School of Public Health, Anhui Medical University, Hefei, China.
| | - Dao-Zhen Chen
- The School of Public Health, Anhui Medical University, Hefei, China.
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China.
- Department of Laboratory, Haidong No.2 People's Hospital, Haidong, China.
| |
Collapse
|
11
|
Cheng X, Li Y, Liang Y, Meng K, Li G, Lu Q, Liu M, Zheng Z. Mechanical biomimetic silk nano fiber-magnesium ion complex/hydroxyethylcellulose/glycerol hydrogel dressing with angiogenic capacity for accelerating scarless diabetic wound healing. J Colloid Interface Sci 2024; 667:624-639. [PMID: 38663278 DOI: 10.1016/j.jcis.2024.03.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024]
Abstract
Quick scarless healing remains a key issue for diabetic wounds. Here, a stretchable elastomeric hydrogel dressing composed of hydroxyethylcellulose (HEC), silk nano fiber-magnesium ion complex (Mg2+-SNF) and glycerol (Gly) was developed to optimize mechanical niche, anti-inflammatory and angiogenic behavior simultaneously. The composite hydrogel dressing exhibited skin-like elasticity (175.1 ± 23.9 %) and modulus (156.7 ± 2.5 KPa) while Mg2+-SNF complex endowed the dressing with angiogenesis, both favoring quick scarless skin regeneration. In vitro cell studies revealed that the hydrogel dressing stimulated fibroblast proliferation, endothelial cell migration and vessel-like tube formation, and also induced anti-inflammatory behavior of macrophages. In vivo results revealed accelerated healing of diabetic wounds. The improved granulation ingrowth and collagen deposition suggested high quality repair. Both thinner epidermal layer and low collagen I/III ratio of the regenerated skin confirmed scarless tissue formation. This bioactive hydrogel dressing has promising potential to address the multifaceted challenges of diabetic wound management.
Collapse
Affiliation(s)
- Xinyu Cheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Yuqi Li
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Yu Liang
- Sanitation & Environment Technology Institute of Soochow University Ltd., No.88, Zhenbei Road, Gaoxin District, Suzhou, Jiangsu 215153, China
| | - Kai Meng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China; State Key Laboratory of Radiation Medicine and Radiation Protection Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China.
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China.
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China.
| |
Collapse
|
12
|
Godoi MM, Reis EM, Koepp J, Ferreira J. Perspective from developers: Tissue-engineered products for skin wound healing. Int J Pharm 2024; 660:124319. [PMID: 38866084 DOI: 10.1016/j.ijpharm.2024.124319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Tissue-engineered products (TEPs) are at the forefront of developmental medicines, precisely where monoclonal antibodies and recombinant cytokines were 30 years ago. TEPs development for treating skin wounds has become a fast-growing field as it offers the potential to find novel therapeutic approaches for treating pathologies that currently have limited or no effective alternatives. This review aims to provide the reader with the process of translating an idea from the laboratory bench to clinical practice, specifically in the context of TEPs designing for skin wound healing. It encompasses historical perspectives, approved therapies, and offers a distinctive insight into the regulatory framework in Brazil. We explore the essential guidelines for quality testing, and nonclinical proof-of-concept considering the Brazilian Network of Experts in Advanced Therapies (RENETA) and International Standards and Guidelines (ICH e ISO). Adopting a multifaceted approach, our discussion incorporates scientific and industrial perspectives, addressing quality, biosafety, non-clinical viability, clinical trial and real-word data for pharmacovigilance demands. This comprehensive analysis presents a panoramic view of the development of skin TEPs, offering insights into the evolving landscape of this dynamic and promising field.
Collapse
Affiliation(s)
- Manuella Machado Godoi
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina- UFSC, Florianópolis, SC, Brazil.
| | - Emily Marques Reis
- Department of Chemical and Food Engineering, Federal University of Santa Catarina- UFSC, Florianópolis, SC, Brazil; Biocelltis Biotecnologia, Florianópolis, SC, Brazil
| | - Janice Koepp
- Biocelltis Biotecnologia, Florianópolis, SC, Brazil
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina- UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
13
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
14
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Hernandez CO, Hsieh HC, Zhu K, Li H, Yang HY, Recendez C, Asefifeyzabadi N, Nguyen T, Tebyani M, Baniya P, Lopez AM, Alhamo MA, Gallegos A, Hsieh C, Barbee A, Orozco J, Soulika AM, Sun YH, Aslankoohi E, Teodorescu M, Gomez M, Norouzi N, Isseroff RR, Zhao M, Rolandi M. A bioelectronic device for electric field treatment of wounds reduces inflammation in an in vivo mouse model. PLoS One 2024; 19:e0303692. [PMID: 38875291 PMCID: PMC11178234 DOI: 10.1371/journal.pone.0303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
Electrical signaling plays a crucial role in the cellular response to tissue injury in wound healing and an external electric field (EF) may expedite the healing process. Here, we have developed a standalone, wearable, and programmable electronic device to administer a well-controlled exogenous EF, aiming to accelerate wound healing in an in vivo mouse model to provide pre-clinical evidence. We monitored the healing process by assessing the re-epithelization rate and the ratio of M1/M2 macrophage phenotypes through histology staining. Following three days of treatment, the M1/M2 macrophage ratio decreased by 30.6% and the re-epithelization in the EF-treated wounds trended towards a non-statically significant 24.2% increase compared to the control. These findings provide point towards the effectiveness of the device in shortening the inflammatory phase by promoting reparative macrophages over inflammatory macrophages, and in speeding up re-epithelialization. Our wearable device supports the rationale for the application of programmed EFs for wound management in vivo and provides an exciting basis for further development of our technology based on the modulation of macrophages and inflammation to better wound healing.
Collapse
Affiliation(s)
- Cristian O Hernandez
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Hao-Chieh Hsieh
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Kan Zhu
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Houpu Li
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Hsin-Ya Yang
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Cynthia Recendez
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Narges Asefifeyzabadi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Maryam Tebyani
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Prabhat Baniya
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Andrea Medina Lopez
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Moyasar A Alhamo
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Anthony Gallegos
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Cathleen Hsieh
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Alexie Barbee
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Jonathan Orozco
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Athena M Soulika
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States of America
| | - Yao-Hui Sun
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Marcella Gomez
- Department of Applied Mathematics, University of California, Santa Cruz, CA, United States of America
| | - Narges Norouzi
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, United States of America
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Dermatology Section, VA Northern California Health Care System, Mather, CA, United States of America
| | - Min Zhao
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| |
Collapse
|
16
|
Tan M, Liu Y, Xu Y, Yan G, Zhou N, Chen H, Jiang Z, Peng L. Plant-Derived Exosomes as Novel Nanotherapeutics Contrive Glycolysis Reprogramming-Mediated Angiogenesis for Diabetic Ulcer Healing. Biomater Res 2024; 28:0035. [PMID: 38840655 PMCID: PMC11151174 DOI: 10.34133/bmr.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Reversal of endothelial cell (EC) dysfunction under high-glucose (HG) conditions to achieve angiogenesis has remained a big challenge in diabetic ulcers. Herein, exosomes derived from medicinal plant ginseng (GExos) were shown as excellent nanotherapeutics with biomimetic cell membrane-like structures to be able to efficiently transfer the encapsulated active substances to ECs, resulting in a marked reprogramming of glycolysis by up-regulating anaerobic glycolysis and down-regulating oxidative stress, which further restore the proliferation, migration, and tubule formation abilities of ECs under HG conditions. In vivo, GExos enhance the angiogenesis and nascent vessel network reconstruction in full-thickness diabetic complicated skin ulcer wounds in mice with high biosafety. GExos were shown as promising nanotherapeutics in stimulating glycolysis reprogramming-mediated angiogenesis in diabetic ulcers, possessing wide application potential for reversing hyperglycemic dysangiogenesis and stimulating vascular regeneration.
Collapse
Affiliation(s)
- Minhong Tan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
- School of Materials Science and Engineering,
Zhejiang University, Hangzhou 310058, PR China
| | - Yuda Liu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
| | - Yang Xu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
| | - Ge Yan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
| | - Nan Zhou
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
| | - Haoran Chen
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine,
Macau University of Science and Technology, Macau, PR China
| | - Lihua Peng
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
- State Key Laboratory of Quality Research in Chinese Medicine,
Macau University of Science and Technology, Macau, PR China
| |
Collapse
|
17
|
Sierra NC, Olsman N, Yi L, Pachter L, Goentoro L, Gold DA. A Novel Approach to Comparative RNA-Seq Does Not Support a Conserved Set of Orthologs Underlying Animal Regeneration. Genome Biol Evol 2024; 16:evae120. [PMID: 38922665 PMCID: PMC11214158 DOI: 10.1093/gbe/evae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Molecular studies of animal regeneration typically focus on conserved genes and signaling pathways that underlie morphogenesis. To date, a holistic analysis of gene expression across animals has not been attempted, as it presents a suite of problems related to differences in experimental design and gene homology. By combining orthology analyses with a novel statistical method for testing gene enrichment across large data sets, we are able to test whether tissue regeneration across animals shares transcriptional regulation. We applied this method to a meta-analysis of six publicly available RNA-Seq data sets from diverse examples of animal regeneration. We recovered 160 conserved orthologous gene clusters, which are enriched in structural genes as opposed to those regulating morphogenesis. A breakdown of gene presence/absence provides limited support for the conservation of pathways typically implicated in regeneration, such as Wnt signaling and cell pluripotency pathways. Such pathways are only conserved if we permit large amounts of paralog switching through evolution. Overall, our analysis does not support the hypothesis that a shared set of ancestral genes underlie regeneration mechanisms in animals. After applying the same method to heat shock studies and getting similar results, we raise broader questions about the ability of comparative RNA-Seq to reveal conserved gene pathways across deep evolutionary relationships.
Collapse
Affiliation(s)
- Noémie C Sierra
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Noah Olsman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lynn Yi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lea Goentoro
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
18
|
Zheng J, Park K, Jang J, Son D, Park J, Kim J, Yoo JE, You S, Kim IY. Utilizing stem cell-secreted molecules as a versatile toolbox for skin regenerative medicine. J Control Release 2024; 370:583-599. [PMID: 38729435 DOI: 10.1016/j.jconrel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Stem cells are recognized as an important target and tool in regenerative engineering. In this study, we explored the feasibility of engineering amniotic fluid-derived mesenchymal stem cell-secreted molecules (afMSC-SMs) as a versatile bioactive material for skin regenerative medicine applications in a time- and cost-efficient and straightforward manner. afMSC-SMs, obtained in powder form through ethanol precipitation, effectively contributed to preserving the self-renewal capacity and differentiation potential of primary human keratinocytes (pKCs) in a xeno-free environment, offering a potential alternative to traditional culture methods for their long-term in vitro expansion, and allowed them to reconstitute a fully stratified epithelium sheet on human dermal fibroblasts. Furthermore, we demonstrated the flexibility of afMSC-SMs in wound healing and hair regrowth through injectable hydrogel and nanogel-mediated transdermal delivery systems, respectively, expanding the pool of regenerative applications. This cell-free approach may offer several potential advantages, including streamlined manufacturing processes, scalability, controlled formulation, longer shelf lives, and mitigation of risks associated with living cell transplantation. Accordingly, afMSC-SMs could serve as a promising therapeutic toolbox for advancing cell-free regenerative medicine, simplifying their broad applicability in various clinical settings.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyoungmin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jihoon Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Daryeon Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junghyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jonggun Kim
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Jeong-Eun Yoo
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - In-Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
19
|
Qian L, Li B, Pi L, Fang B, Meng X. Hypoxic adipose stem cell-derived exosomes carrying high-abundant USP22 facilitate cutaneous wound healing through stabilizing HIF-1α and upregulating lncRNA H19. FASEB J 2024; 38:e23653. [PMID: 38738548 DOI: 10.1096/fj.202301403rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Hypoxic preconditioning has been recognized as a promotive factor for accelerating cutaneous wound healing. Our previous study uncovered that exosomal lncRNA H19, derived from adipose-derived stem cells (ADSCs), plays a crucial role in orchestrating cutaneous wound healing. Herein, we aimed to explore whether there is a connection between hypoxia and ADSC-derived exosomes (ADSCs-exos) in cutaneous wound healing. Exosomes extracted from ADSCs under normoxic and hypoxic conditions were identified using transmission electron microscope (TEM) and particle size analysis. The effects of ADSCs-exos on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by CCK-8, EdU, wound healing, and tube formation assays. Expression patterns of H19, HIF-1α, and USP22 were measured. Co-immunoprecipitation, chromatin immunoprecipitation, ubiquitination, and luciferase reporter assays were conducted to confirm the USP22/HIF-1α/H19 axis, which was further validated in a mice model of skin wound. Exosomes extracted from hypoxia-treated ADSCs (termed as H-ADSCs-exos) significantly increased cell proliferation, migration, and angiogenesis in H2O2-exposed HUVECs, and promoted cutaneous wound healing in vivo. Moreover, H-ADSCs and H-ADSCs-exos, which exhibited higher levels of H19, were found to be transcriptionally activated by HIF-1α. Mechanically, H-ADSCs carrying USP22 accounted for deubiquitinating and stabilizing HIF-1α. Additionally, H-ADSCs-exos improved cell proliferation, migration, and angiogenesis in H2O2-triggered HUVECs by activating USP22/HIF-1α axis and promoting H19 expression, which may provide a new clue for the clinical treatment of cutaneous wound healing.
Collapse
Affiliation(s)
- Li Qian
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bo Li
- Department of Plastic & Laser Cosmetic, Hunan Provincial People's Hospital, 1st Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P.R. China
| | - Li Pi
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xianxi Meng
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
20
|
Yu C, Yu S, Liu Z, Xu L, Zhang Z, Wan J, Ji P, Zhang P, Fu Y, Le Y, Hou R. Morroniside promotes skin wound re-epithelialization by facilitating epidermal stem cell proliferation through GLP-1R-mediated upregulation of β-catenin expression. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1072-1084. [PMID: 38779766 PMCID: PMC11322873 DOI: 10.3724/abbs.2024070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 05/25/2024] Open
Abstract
Epidermal stem cells (EpSCs) play a vital role in skin wound healing through re-epithelialization. Identifying chemicals that can promote EpSC proliferation is helpful for treating skin wounds. This study investigates the effect of morroniside on cutaneous wound healing in mice and explores the underlying mechanisms. Application of 10‒50 μg/mL of morroniside to the skin wound promotes wound healing in mice. In vitro studies demonstrate that morroniside stimulates the proliferation of mouse and human EpSCs in a time- and dose-dependent manner. Mechanistic studies reveal that morroniside promotes the proliferation of EpSCs by facilitating the cell cycle transition from the G1 to S phase. Morroniside increases the expression of β-catenin via the glucagon-like peptide-1 receptor (GLP-1R)-mediated PKA, PKA/PI3K/AKT and PKA/ERK signaling pathways, resulting in an increase in cyclin D1 and cyclin E1 expression, either directly or by upregulating c-Myc expression. This process ultimately leads to EpSC proliferation. Administration of morroniside to mouse skin wounds increases the phosphorylation of AKT and ERK, the expressions of β-catenin, c-Myc, cyclin D1, and cyclin E1, as well as the proliferation of EpSCs, in periwound skin tissue, and accelerates wound re-epithelialization. These effects of morroniside are mediated by the GLP-1R. Overall, these results indicate that morroniside promotes skin wound healing by stimulating the proliferation of EpSCs via increasing β-catenin expression and subsequently upregulating c-Myc, cyclin D1, and cyclin E1 expressions through GLP-1R signaling pathways. Morroniside has clinical potential for treating skin wounds.
Collapse
Affiliation(s)
- Chenghao Yu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Siyuan Yu
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| | - Zuohua Liu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Lei Xu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Zhiqiang Zhang
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Jiaming Wan
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| | - Pengxiang Ji
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Ping Zhang
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Yi Fu
- Department of Human AnatomyHistology and EmbryologySchool of Biology and Basic Medical SciencesSuzhou Medical College of Soochow UniversitySuzhou215123China
| | - Yingying Le
- Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Ruixing Hou
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| |
Collapse
|
21
|
Gumede DB, Abrahamse H, Houreld NN. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun Signal 2024; 22:244. [PMID: 38671406 PMCID: PMC11046856 DOI: 10.1186/s12964-024-01623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Wound healing is a tightly regulated process that ensures tissue repair and normal function following injury. It is modulated by activation of pathways such as the transforming growth factor-beta (TGF-β), Notch, and Wnt/β-catenin signaling pathways. Dysregulation of this process causes poor wound healing, which leads to tissue fibrosis and ulcerative wounds. The Wnt/β-catenin pathway is involved in all phases of wound healing, primarily in the proliferative phase for formation of granulation tissue. This review focuses on the role of the Wnt/β-catenin signaling pathway in wound healing, and its transcriptional regulation of target genes. The crosstalk between Wnt/β-catenin, Notch, and the TGF-β signaling pathways, as well as the deregulation of Wnt/β-catenin signaling in chronic wounds are also considered, with a special focus on diabetic ulcers. Lastly, we discuss current and prospective therapies for chronic wounds, with a primary focus on strategies that target the Wnt/β-catenin signaling pathway such as photobiomodulation for healing diabetic ulcers.
Collapse
Affiliation(s)
- Dimakatso B Gumede
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
22
|
Kasprzak-Drozd K, Niziński P, Hawrył A, Gancarz M, Hawrył D, Oliwa W, Pałka M, Markowska J, Oniszczuk A. Potential of Curcumin in the Management of Skin Diseases. Int J Mol Sci 2024; 25:3617. [PMID: 38612433 PMCID: PMC11012053 DOI: 10.3390/ijms25073617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Curcumin is a polyphenolic molecule derived from the rhizoma of Curcuma longa L. This compound has been used for centuries due to its anti-inflammatory, antioxidant, and antimicrobial properties. These make it ideal for preventing and treating skin inflammation, premature skin ageing, psoriasis, and acne. Additionally, it exhibits antiviral, antimutagenic, and antifungal effects. Curcumin provides protection against skin damage caused by prolonged exposure to UVB radiation. It reduces wound healing times and improves collagen deposition. Moreover, it increases fibroblast and vascular density in wounds. This review summarizes the available information on the therapeutic effect of curcumin in treating skin diseases. The results suggest that curcumin may be an inexpensive, well-tolerated, and effective agent for treating skin diseases. However, larger clinical trials are needed to confirm these observations due to limitations in its in vivo use, such as low bioavailability after oral administration and metabolism.
Collapse
Affiliation(s)
- Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.H.)
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Anna Hawrył
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.H.)
| | - Marek Gancarz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
| | | | - Weronika Oliwa
- Science Circle of the Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.O.); (M.P.); (J.M.)
| | - Magdalena Pałka
- Science Circle of the Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.O.); (M.P.); (J.M.)
| | - Julia Markowska
- Science Circle of the Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.O.); (M.P.); (J.M.)
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.H.)
| |
Collapse
|
23
|
Mao Y, Sun Y, Yang C. Compound Microalgae-Type Biofunctional Hydrogel for Wound Repair during Full-Thickness Skin Injuries. Polymers (Basel) 2024; 16:692. [PMID: 38475375 DOI: 10.3390/polym16050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
A dual biofunctional hydrogel (HQCS-SP) wound dressing, offering antibacterial properties and a biological response, was innovatively designed and developed to repair full-layer skin defects. The HQCS-SP hydrogel creates an artificial matrix that facilitates cell recruitment, extracellular matrix deposition, exhibiting exceptional tissue affinity, robust self-healing, effective hemostatic capabilities and accelerates wound healing. It is synthesized by crosslinking modified chitosan (HQCS) with spirulina protein (SP) and Fe3+. The HQCS provides antibacterial, antioxidant, good tissue affinity and excellent hemostasis performance. The incorporation of SP not only reinforces the antioxidant, antibacterial, anti-inflammatory, and pro-angiogenesis effects but also participates in the regulation of signal pathways and promotes wound healing. Therefore, this study offers a new visual angle for the design of advanced functional trauma dressings with great application potential in the bio-medical field.
Collapse
Affiliation(s)
- Yi Mao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yajuan Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Wu SH, Rethi L, Pan WY, Nguyen HT, Chuang AEY. Emerging horizons and prospects of polysaccharide-constructed gels in the realm of wound healing. Colloids Surf B Biointerfaces 2024; 235:113759. [PMID: 38280240 DOI: 10.1016/j.colsurfb.2024.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
Polysaccharides, with the abundant availability, biodegradability, and inherent safety, offer a vast array of promising applications. Leveraging the remarkable attributes of polysaccharides, biomimetic and multifunctional hydrogels have emerged as a compelling avenue for efficacious wound dressing. The gels emulate the innate extracellular biomatrix as well as foster cellular proliferation. The distinctive structural compositions and profusion of functional groups within polysaccharides confer excellent physical/chemical traits as well as distinct restorative involvements. Gels crafted from polysaccharide matrixes serve as a robust defense against bacterial threats, effectively shielding wounds from harm. This comprehensive review delves into wound physiology, accentuating the significance of numerous polysaccharide-based gels in the wound healing context. The discourse encompasses an exploration of polysaccharide hydrogels tailored for diverse wound types, along with an examination of various therapeutic agents encapsulated within hydrogels to facilitate wound repair, incorporating recent patent developments. Within the scope of this manuscript, the perspective of these captivating gels for promoting optimal healing of wounds is vividly depicted. Nevertheless, the pursuit of knowledge remains ongoing, as further research is warranted to bioengineer progressive polysaccharide gels imbued with adaptable features. Such endeavors hold the promise of unlocking substantial potential within the realm of wound healing, propelling us toward multifaceted and sophisticated solutions.
Collapse
Affiliation(s)
- Shen-Han Wu
- Taipei Medical University Hospital, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan; Ph.D Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
25
|
Xu L, Wang X, Wu Y, Zhang Z, Li X, Zhang J. Effectiveness of APG and Honey Gauze in Pressure Injury of Elderly: A Randomized Control Trial. INT J LOW EXTR WOUND 2024:15347346241234420. [PMID: 38403980 DOI: 10.1177/15347346241234420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
This study was designed to evaluate the efficiency of the combination of autologous platelet-rich plasma gel (APG) and Manuka honey gauze in the treatment of Stages 3-4 pressure injury of older adults. Patients were divided into four groups: Manuka honey gauze and APG (M + A), Manuka honey gauze (M), APG (A), and a control group (C). Different treatments were given, then wound bed coverage with granulation tissue, wound size reduction, and Pressure Ulcer Scale for Healing (PUSH) score were examined. Paraffin-embedded sections of wound tissues were analyzed and wound swab cultures were assessed. Kruskal-Wallis test and Mann-Whitney U test were performed in statistical analysis at a 5% significance level. A total of 42 patients were accepted. Significant increase of wound bed coverage with granulation tissue (51.24%, P = .004, Kruskal-Wallis test) and decrease of PUSH score (-5) were observed in the M + A group at the end of the observation (P = .032, Mann-Whitney U test). The hematoxylin-eosin staining of wound tissues showed that typical squamous epithelium was seen in wound bed of patient in M + A group. Manuka honey gauze and APG were proved to be superior treatments for pressure injury of old patient. Increase of granulation tissue coverage, reduction of PUSH score, and improved growth of epithelium were observed in M + A group. There was no side-effect, and the treatment would not cause infection.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
| | - Xinmeng Wang
- Chinese Academy of Sciences, Chongqing Medical University & Chongqing Institute of Green and Intelligent Technology, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Yongmei Wu
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
| | - Zhen Zhang
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
| | - Xiafei Li
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
| | - Jie Zhang
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
- Graduate School, Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Yang J, Zhang L, Sun S, Zhang S, Ding Q, Chai G, Yu W, Zhao T, Shen L, Gao Y, Liu W, Ding C. A dihydromyricetin-loaded phellinus igniarius polysaccharide/l-arginine modified chitosan-based hydrogel for promoting wound recovery in diabetic mice via JNK and TGF-β/Smad signaling pathway. Int J Biol Macromol 2024; 259:129124. [PMID: 38176509 DOI: 10.1016/j.ijbiomac.2023.129124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The wound of diabetes has long-term excessive inflammation leading to wound fibrosis and scar formation. In the process of diabetic wound healing, good wound dressing is required for intervention. In this study, we designed a dihydromyricetin-loaded hydrogel (PCD) based on phellinus igniarius polysaccharide and l-arginine modified chitosan as an alternative material to promote diabetes wound healing. PCD had a uniform porous structure, good thermal stability, excellent mechanical properties, high water absorption, excellent antioxidant and anti-inflammatory activities and good biocompatibility and biodegradability. In addition, in the full-thickness skin trauma model of diabetes, PCD significantly inhibited the JNK signaling pathway to reduce inflammatory response, and significantly down-regulated the expression of TGF-β1, Smad2, Smad3 and Smad4 to directly inhibit the TGF-β/Smad signaling pathway to accelerate wound healing and slow down scar formation in diabetes mice. Therefore, PCD has a broad application prospect in promoting diabetes wound healing.
Collapse
Affiliation(s)
- Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chai
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Weimin Yu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Liqian Shen
- Jilin Province Jianwei Natural Biotechnology Co., Ltd., Baishan 134600, China
| | - Yang Gao
- Jilin Province Jianwei Natural Biotechnology Co., Ltd., Baishan 134600, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| |
Collapse
|
27
|
Fani N, Moradi M, Zavari R, Parvizpour F, Soltani A, Arabpour Z, Jafarian A. Current Advances in Wound Healing and Regenerative Medicine. Curr Stem Cell Res Ther 2024; 19:277-291. [PMID: 36856176 DOI: 10.2174/1574888x18666230301140659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 03/02/2023]
Abstract
Treating chronic wounds is a common and costly challenge worldwide. More advanced treatments are needed to improve wound healing and prevent severe complications such as infection and amputation. Like other medical fields, there have been advances in new technologies promoting wound healing potential. Regenerative medicine as a new method has aroused hope in treating chronic wounds. The technology improving wound healing includes using customizable matrices based on synthetic and natural polymers, different types of autologous and allogeneic cells at different differentiation phases, small molecules, peptides, and proteins as a growth factor, RNA interference, and gene therapy. In the last decade, various types of wound dressings have been designed. Emerging dressings include a variety of interactive/ bioactive dressings and tissue-engineering skin options. However, there is still no suitable and effective dressing to treat all chronic wounds. This article reviews different wounds and common treatments, advanced technologies and wound dressings, the advanced wound care market, and some interactive/bioactive wound dressings in the market.
Collapse
Affiliation(s)
- Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Moradi
- MD-MPH Iran University of Medical Sciences, Tehran, Iran
| | - Roxana Zavari
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Adele Soltani
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Zohreh Arabpour
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Jafarian
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Li J, Zhao Q, Gao X, Dai T, Bai Z, Sheng J, Tian Y, Bai Z. Dendrobium officinale Kinura et Migo glycoprotein promotes skin wound healing by regulating extracellular matrix secretion and fibroblast proliferation on the proliferation phase. Wound Repair Regen 2024; 32:55-66. [PMID: 38113346 DOI: 10.1111/wrr.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 12/21/2023]
Abstract
Dendrobium officinale Kinura et Migo (DOKM) has a variety of medicinal applications; however, its ability to promote wound healing has not been previously reported. The purpose of this study is to investigate the proliferative phase of the wound-healing effect of DOKM glycoprotein (DOKMG) in rats and to elucidate its mechanism of action in vitro. In the present study, the ointment mixture containing DOKMG was applied to the dorsal skin wounds of the full-thickness skin excision rat model, and the results showed that the wound healing speed was faster in the proliferative phase than vaseline. Histological analysis demonstrates that DOKMG promoted the re-epithelialization of wound skin. Immunofluorescence staining and quantitative polymerase chain reaction assays revealed that DOKMG promotes the secretion of Fibronectin and inhibits the secretion of Collagen IV during the granulation tissue formation period, indicating that DOKMG could accelerate the formation of granulation tissue by precisely regulating extracellular matrix (ECM) secretion. In addition, we demonstrated that DOKMG enhanced the migration and proliferation of fibroblast (3T6 cell) in two-dimensional trauma by regulating the secretion of ECM, via a mechanism that may implicate the AKT and JAK/STAT pathways under the control of epidermal growth factor receptor (EGFR) signalling. In summary, we have demonstrated that DOKMG promotes wound healing during the proliferative phase. Therefore, we suggest that DOKMG may have a potential therapeutic application for the treatment and management of cutaneous wounds.
Collapse
Affiliation(s)
- Jia Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Qian Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaoyu Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Tianyi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zilin Bai
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zhongbin Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
29
|
Zheng HH, Ben XY, Wang YR, Tian MS, Meng QW, Li DX, Wen SL, Ni PL, Hao JW, Zhang QP, Yang J, Liu QB, Li QF, Yi XN. Experimental study on the effect and mechanism of adipose stem cell-derived exosomes combined with botulinum toxin A on skin trauma in rats. J Cosmet Dermatol 2024; 23:271-283. [PMID: 37464738 DOI: 10.1111/jocd.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Adipose stem cell-derived exosomes (ADSC-EXO) and botulinum toxin type A (BTX-A) individually showed a therapeutic effect on skin wound repair. AIMS This study investigated their synergistic effect on promoting skin wound healing in vitro and in vivo and the underlying molecular events. METHODS ADSCs were isolated from Sprague-Dawley (SD) rats to obtain ADSC-EXO by ultrafiltration and ultracentrifugation and were confirmed using nanoparticle tracking analysis and transmission electron microscopy. Human skin fibroblasts (HSF) were cultured and treated with or without ADSC-EXO, BTX-A, or their combination. Changes in cell phenotypes and protein expression were analyzed using different in vitro assays, and a rat skin wound model was used to assess their in vivo effects. RESULTS The isolated ADSC-EXO from primarily cultured ADSCs had a circular vesicle shape with a 30-180 nm diameter. Treatment of HSF with ADSC-EXO and/or BTX-A significantly accelerated HSF migration in vitro and skin wound healing in a rat model. Moreover, ADSC-EXO plus BTX-A treatment dramatically induced VEGFA expression but reduced COL III and COL I levels in vivo. ADSC-EXO and/or BTX-A treatment significantly upregulated TGF-β3 expression on Day 16 after surgery but downregulated TGF-β1 expression, suggesting that ADSC-EXO plus BTX-A promoted skin wound healing and reduced inflammatory cell infiltration. CONCLUSIONS The ADSC-EXO plus BTX-A treatment demonstrated a synergistic effect on skin wound healing through upregulation of VEGF expression and the TGF-β3/TGF-β1 and COL III/COL I ratio.
Collapse
Affiliation(s)
- Hui-Hui Zheng
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xin-Yu Ben
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Neuromedicine Center of The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ya-Ru Wang
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Meng-Si Tian
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Qing-Wen Meng
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Neuromedicine Center of The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - De-Xian Li
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shi-Lei Wen
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Pan-Li Ni
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jing-Wen Hao
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Quan-Peng Zhang
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Juan Yang
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Qi-Bing Liu
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Neuromedicine Center of The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qi-Fu Li
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xi-Nan Yi
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Neuromedicine Center of The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
30
|
Lu W, Du X, Zou S, Fang Q, Wu M, Li H, Shi B. IFN-γ enhances the therapeutic efficacy of MSCs-derived exosome via miR-126-3p in diabetic wound healing by targeting SPRED1. J Diabetes 2024; 16:e13465. [PMID: 37646268 PMCID: PMC10809290 DOI: 10.1111/1753-0407.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND AND AIMS The traditional treatment of diabetic wounds is unsatisfactory. Exosomes isolated from bone marrow mesenchymal stem cells (BMSCs) promote the healing of diabetic wounds. However, whether the exosomes secreted by interferon (IFN)-γ-pretreated BMSCs have an enhanced therapeutic effect on diabetic wound healing and the relevant mechanisms remain unclear. METHODS In this study, we isolated exosomes from the corresponding supernatants of BMSCs with (IExos) or without IFN-γ treatment (NExos). Human umbilical vein endothelial cells (HUVECs) were used to investigate the proliferation, migration, and tube formation under different treatments in vitro. Diabetic mice were induced by intraperitoneal administration of streptozotocin, and a circular full-thickness dermal defect was then made on the back of each mouse, followed by a multisite subcutaneous injection of phosphate buffered saline or exosomes. Hematoxylin-eosin (H&E) staining, Masson's trichrome staining, and histological analysis were performed to assess the speed and quality of wound healing. RESULTS NExos treatment accelerated the healing of diabetic wounds by promoting angiogenesis in vivo and in vitro, and IExos exhibited superior therapeutic efficiency. MicroRNA (miR)-126-3p was significantly increased in IExos, and exosomal miR-126-3p promoted angiogenesis and diabetic wound healing via its transfer to HUVECs. miR-126-3p regulates SPRED1 by directly targeting the 3'-UTR. Mechanistically, IFN-γ-pretreated BMSCs secreted miR-126-3p-enriched exosomes, which enhanced the function of HUVECs and promoted angiogenesis via the SPRED1/Ras/Erk pathway. CONCLUSION Exosomal miR-126-3p secreted from IFN-γ-pretreated BMSCs exhibited higher therapeutic efficacy than NExos in diabetic wound healing by promoting angiogenesis via the SPRED1/Ras/Erk axis.
Collapse
Affiliation(s)
- Wen Lu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuan Du
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shengyi Zou
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qionglei Fang
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mengjiao Wu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Huijuan Li
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bimin Shi
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
31
|
Zarei N, Hassanzadeh-Tabrizi SA. Alginate/hyaluronic acid-based systems as a new generation of wound dressings: A review. Int J Biol Macromol 2023; 253:127249. [PMID: 37802435 DOI: 10.1016/j.ijbiomac.2023.127249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Skin is the largest organ of the human body, which acts as a protective barrier against pathogens. Therefore, a lot of research has been carried out on wound care and healing. Creating an ideal environment for wound healing and optimizing the local and systemic conditions of the patient play critical roles in successful wound care. Many products have been developed for improving the wound environment and providing a protected and moist area for fast healing. However, there is still high demand for new systems with high efficiency. The first generation of wound dressings merely covered the wound, while the subsequent/last generations covered it and aided in healing it in different ways. In modern wound dressings, the kind of used materials and their complexity play a crucial role in the healing process. These new systems support wound healing by lowering inflammation, exudate, slough, and bacteria. This study addresses a review of alginate/hyaluronic acid-based wound dressings developed so far as well as binary and ternary systems and their role in wound healing. Our review corroborates that these systems can open up a new horizon for wounds that do not respond to usual treatments and have a long curing period.
Collapse
Affiliation(s)
- Nazanin Zarei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
32
|
Hajishoreh NK, Jamalpoor Z, Rasouli R, Asl AN, Sheervalilou R, Akbarzadeh A. The recent development of carbon-based nanoparticles as a novel approach to skin tissue care and management - A review. Exp Cell Res 2023; 433:113821. [PMID: 37858837 DOI: 10.1016/j.yexcr.2023.113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Since the skin is the first barrier of the body's defense against pathogens, delays in the healing process are affected by infections. Therefore, applying advanced substitute assistance improves the patient's quality of life. Carbon-based nanomaterials show better capabilities than conventional methods for managing skin wound infections. Due to their physicochemical properties such as small size, large surface area, great surface-to-volume ratio, and excellent ability to communicate with the cells and tissue, carbon-based nanoparticles have been considered in regenerative medicine. moreover, the carbon nano family offers attractive potential in wound healing via the improvement of angiogenesis and antibacterial compared to traditional approaches become one of the particular research interests in the field of skin tissue engineering. This review emphasizes the wound-healing process and the role of carbon-based nanoparticles in wound care management interaction with tissue engineering technology.
Collapse
Affiliation(s)
| | - Zahra Jamalpoor
- Trauma research center, Aja University of Medical Sciences, Tehran, Iran.
| | - Ramin Rasouli
- Health Research Center Chamran Hospital, Tehran, Iran.
| | - Amir Nezami Asl
- Health Research Center Chamran Hospital, Tehran, Iran; Trauma research center, Aja University of Medical Sciences, Tehran, Iran.
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Urban L, Čoma M, Lacina L, Szabo P, Sabová J, Urban T, Šuca H, Lukačín Š, Zajíček R, Smetana K, Gál P. Heterogeneous response to TGF-β1/3 isoforms in fibroblasts of different origins: implications for wound healing and tumorigenesis. Histochem Cell Biol 2023; 160:541-554. [PMID: 37707642 DOI: 10.1007/s00418-023-02221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 09/15/2023]
Abstract
Identification of therapeutic targets for treating fibrotic diseases and cancer remains challenging. Our study aimed to investigate the effects of TGF-β1 and TGF-β3 on myofibroblast differentiation and extracellular matrix deposition in different types of fibroblasts, including normal/dermal, cancer-associated, and scar-derived fibroblasts. When comparing the phenotype and signaling pathways activation we observed extreme heterogeneity of studied markers across different fibroblast populations, even within those isolated from the same tissue. Specifically, the presence of myofibroblast and deposition of extracellular matrix were dependent on the origin of the fibroblasts and the type of treatment they received (TGF-β1 vs. TGF-β3). In parallel, we detected activation of canonical signaling (pSMAD2/3) across all studied fibroblasts, albeit to various extents. Treatment with TGF-β1 and TGF-β3 resulted in the activation of canonical and several non-canonical pathways, including AKT, ERK, and ROCK. Among studied cells, cancer-associated fibroblasts displayed the most heterogenic response to TGF-β1/3 treatments. In general, TGF-β1 demonstrated a more potent activation of signaling pathways compared to TGF-β3, whereas TGF-β3 exhibited rather an inhibitory effect in keloid- and hypertrophic scar-derived fibroblasts suggesting its clinical potential for scar treatment. In summary, our study has implications for comprehending the role of TGF-β signaling in fibroblast biology, fibrotic diseases, and cancer. Future research should focus on unraveling the mechanisms beyond differential fibroblast responses to TGF-β isomers considering inherent fibroblast heterogeneity.
Collapse
Affiliation(s)
- Lukáš Urban
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic
| | - Matúš Čoma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 128 08, Prague, Czech Republic
| | - Pavol Szabo
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Jana Sabová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
| | - Tomáš Urban
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Hubert Šuca
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Štefan Lukačín
- Department of Heart Surgery, East-Slovak Institute of Cardiovascular Diseases Inc, 040 11, Košice, Slovak Republic
| | - Robert Zajíček
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic.
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic.
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic.
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic.
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, 832 32, Bratislava, Slovak Republic.
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, 040 01, Košice, Slovak Republic.
| |
Collapse
|
34
|
Bai R, Guo Y, Liu W, Song Y, Yu Z, Ma X. The Roles of WNT Signaling Pathways in Skin Development and Mechanical-Stretch-Induced Skin Regeneration. Biomolecules 2023; 13:1702. [PMID: 38136575 PMCID: PMC10741662 DOI: 10.3390/biom13121702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
The WNT signaling pathway plays a critical role in a variety of biological processes, including development, adult tissue homeostasis maintenance, and stem cell regulation. Variations in skin conditions can influence the expression of the WNT signaling pathway. In light of the above, a deeper understanding of the specific mechanisms of the WNT signaling pathway in different physiological and pathological states of the skin holds the potential to significantly advance clinical treatments of skin-related diseases. In this review, we present a comprehensive analysis of the molecular and cellular mechanisms of the WNT signaling pathway in skin development, wound healing, and mechanical stretching. Our review sheds new light on the crucial role of the WNT signaling pathway in the regulation of skin physiology and pathology.
Collapse
Affiliation(s)
- Ruoxue Bai
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yaotao Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of The Cadet Team 6, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
35
|
Ji W, Sun Z, Yang Y, Hu M, Zhang Q, Fu J, Chen J, Huang Y, Cheng Y. Downregulation of RUNX1-Activated Osteopontin Facilitates Burn Wound Healing by Activating the MAPK Pathways. J Burn Care Res 2023; 44:1371-1381. [PMID: 36913234 DOI: 10.1093/jbcr/irad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 03/14/2023]
Abstract
Burn wounds require intervention to ensure timely progression to reduce morbidity and mortality. The migrative and proliferative capabilities of keratinocytes are impaired in wounds. Matrix metalloproteinases (MMPs) can degrade the extracellular matrix (ECM), allowing epithelial cells to migrate. As reported, osteopontin can regulate cell migration, cell adhesion, and ECM invasion in endothelial and epithelial cells, and its expression is significantly increased in chronic wounds. Therefore, this study investigates the biological functions of osteopontin and its related mechanisms involved in burn wounds. We established cellular and animal models of burn injury. Levels of osteopontin, RUNX1, MMPs, collagen I, CK19, PCNA, and pathway-associated proteins were measured by RT-qPCR, western blotting, and immunofluorescence staining. Cell viability and migration were examined by CCK-8 and wound scratch assays. Histological changes were analyzed by hematoxylin and eosin staining and Masson's trichrome staining. For in vitro analysis, osteopontin silencing facilitated the growth and migration of HaCaT cells and promoted ECM degradation in HaCaT cells. Mechanistically, RUNX1 bound to osteopontin promoter, and RUNX1 upregulation attenuated the promoting efficacy of osteopontin silencing on cell growth and migration and ECM degradation. Additionally, RUNX1-activated osteopontin inactivated the MAPK signaling pathway. For in vivo analysis, osteopontin depletion facilitated burn wound healing by promoting reepithelialization and ECM degradation. In conclusion, RUNX1 activates the osteopontin expression at the transcriptional level and osteopontin depletion facilitates the recovery of burn wounds by promoting the migration of keratinocytes and reepithelization and ECM degradation by activating the MAPK pathway.
Collapse
Affiliation(s)
- Wei Ji
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhibo Sun
- Department of Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqing Yang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Meng Hu
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Qian Zhang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Jie Fu
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - JunWei Chen
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yan Huang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yanyang Cheng
- Department of Paediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
36
|
Rauchenwald T, Handle F, Connolly CE, Degen A, Seifarth C, Hermann M, Tripp CH, Wilflingseder D, Lobenwein S, Savic D, Pölzl L, Morandi EM, Wolfram D, Skvortsova II, Stoitzner P, Haybaeck J, Konschake M, Pierer G, Ploner C. Preadipocytes in human granulation tissue: role in wound healing and response to macrophage polarization. Inflamm Regen 2023; 43:53. [PMID: 37904253 PMCID: PMC10617061 DOI: 10.1186/s41232-023-00302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Chronic non-healing wounds pose a global health challenge. Under optimized conditions, skin wounds heal by the formation of scar tissue. However, deregulated cell activation leads to persistent inflammation and the formation of granulation tissue, a type of premature scar tissue without epithelialization. Regenerative cells from the wound periphery contribute to the healing process, but little is known about their cellular fate in an inflammatory, macrophage-dominated wound microenvironment. METHODS We examined CD45-/CD31-/CD34+ preadipocytes and CD68+ macrophages in human granulation tissue from pressure ulcers (n=6) using immunofluorescence, immunohistochemistry, and flow cytometry. In vitro, we studied macrophage-preadipocyte interactions using primary human adipose-derived stem cells (ASCs) exposed to conditioned medium harvested from IFNG/LPS (M1)- or IL4/IL13 (M2)-activated macrophages. Macrophages were derived from THP1 cells or CD14+ monocytes. In addition to confocal microscopy and flow cytometry, ASCs were analyzed for metabolic (OXPHOS, glycolysis), morphological (cytoskeleton), and mitochondrial (ATP production, membrane potential) changes. Angiogenic properties of ASCs were determined by HUVEC-based angiogenesis assay. Protein and mRNA levels were assessed by immunoblotting and quantitative RT-PCR. RESULTS CD45-/CD31-/CD34+ preadipocytes were observed with a prevalence of up to 1.5% of total viable cells in human granulation tissue. Immunofluorescence staining suggested a spatial proximity of these cells to CD68+ macrophages in vivo. In vitro, ASCs exposed to M1, but not to M2 macrophage secretome showed a pro-fibrotic response characterized by stress fiber formation, elevated alpha smooth muscle actin (SMA), and increased expression of integrins ITGA5 and ITGAV. Macrophage-secreted IL1B and TGFB1 mediated this response via the PI3K/AKT and p38-MAPK pathways. In addition, ASCs exposed to M1-inflammatory stress demonstrated reduced migration, switched to a glycolysis-dominated metabolism with reduced ATP production, and increased levels of inflammatory cytokines such as IL1B, IL8, and MCP1. Notably, M1 but not M2 macrophages enhanced the angiogenic potential of ASCs. CONCLUSION Preadipocyte fate in wound tissue is influenced by macrophage polarization. Pro-inflammatory M1 macrophages induce a pro-fibrotic response in ASCs through IL1B and TGFB1 signaling, while anti-inflammatory M2 macrophages have limited effects. These findings shed light on cellular interactions in chronic wounds and provide important information for the potential therapeutic use of ASCs in human wound healing.
Collapse
Affiliation(s)
- Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Handle
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Catherine E Connolly
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonia Degen
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christof Seifarth
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Lobenwein
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dragana Savic
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Evi M Morandi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Marko Konschake
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
37
|
Romero-Olid MDN, Bucataru E, Ramos-García P, González-Moles MÁ. Efficacy of Chlorhexidine after Oral Surgery Procedures on Wound Healing: Systematic Review and Meta-Analysis. Antibiotics (Basel) 2023; 12:1552. [PMID: 37887254 PMCID: PMC10604691 DOI: 10.3390/antibiotics12101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Our objective was to evaluate qualitatively and quantitatively, through a systematic review and meta-analysis, available evidence on the efficacy of chlorhexidine (CHX) when applied after oral surgery on wound healing and related clinical parameters. MEDLINE/PubMed, Embase, CENTRAL, Web of Science, and Scopus were searched for studies published before January 2023. The quality of the methodology used in primary-level studies was assessed using the RoB2 tool; meta-analyses were performed jointly with heterogeneity and small-study effect analyses. Thirty-three studies and 4766 cases were included. The results point out that the application of CHX was significantly more effective, compared to controls where CHX was not employed, providing better wound healing after oral surgery (RR = 0.66, 95% CI = 0.55-0.80, p < 0.001). Stratified meta-analyses confirmed the higher efficacy of 0.20% CHX gel vs. other vehicles and concentrations (p < 0.001, respectively). Likewise, the addition of chitosan to CHX significantly increased the efficacy of surgical wound healing (p < 0.001). The use of CHX has also been significantly beneficial in the prevention of alveolar osteitis after any type of dental extraction (RR = 0.46, 95% CI = 0.39-0.53, p < 0.001) and has also been effective when applied as a gel for a reduction in pain after the surgical extraction of third molars (MD = -0.97, 95% CI = -1.26 to -0.68, p < 0.001). In conclusion, this systematic review and meta-analysis demonstrate on the basis of evidence that the application of CHX exerts a beneficial effect on wound healing after oral surgical procedures, significantly decreasing the patient's risk of developing surgical complications and/or poor wound healing. This benefit was greater when CHX was used at 0.20% in gel form with the addition of chitosan.
Collapse
Affiliation(s)
- María de Nuria Romero-Olid
- School of Dentistry, University of Granada, 18071 Granada, Spain; (M.d.N.R.-O.); (E.B.); (M.Á.G.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Elena Bucataru
- School of Dentistry, University of Granada, 18071 Granada, Spain; (M.d.N.R.-O.); (E.B.); (M.Á.G.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18071 Granada, Spain; (M.d.N.R.-O.); (E.B.); (M.Á.G.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18071 Granada, Spain; (M.d.N.R.-O.); (E.B.); (M.Á.G.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
38
|
Wang S, Song G, Barkestani MN, Tobiasova Z, Wang Q, Jiang Q, Lopez R, Adelekan-Kamara Y, Fan M, Pober JS, Tellides G, Jane-wit D. Hedgehog costimulation during ischemia-reperfusion injury potentiates cytokine and homing responses of CD4 + T cells. Front Immunol 2023; 14:1248027. [PMID: 37915586 PMCID: PMC10616247 DOI: 10.3389/fimmu.2023.1248027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Ischemia reperfusion injury (IRI) confers worsened outcomes and is an increasing clinical problem in solid organ transplantation. Previously, we identified a "PtchHi" T-cell subset that selectively received costimulatory signals from endothelial cell-derived Hedgehog (Hh) morphogens to mediate IRI-induced vascular inflammation. Methods Here, we used multi-omics approaches and developed a humanized mouse model to resolve functional and migratory heterogeneity within the PtchHi population. Results Hh-mediated costimulation induced oligoclonal and polyclonal expansion of clones within the PtchHi population, and we visualized three distinct subsets within inflamed, IRI-treated human skin xenografts exhibiting polyfunctional cytokine responses. One of these PtchHi subsets displayed features resembling recently described T peripheral helper cells, including elaboration of IFN-y and IL-21, expression of ICOS and PD-1, and upregulation of positioning molecules conferring recruitment and retention within peripheral but not lymphoid tissues. PtchHi T cells selectively homed to IRI-treated human skin xenografts to cause accelerated allograft loss, and Hh signaling was sufficient for this process to occur. Discussion Our studies define functional heterogeneity among a PtchHi T-cell population implicated in IRI.
Collapse
Affiliation(s)
- Shaoxun Wang
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Guiyu Song
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mahsa Nouri Barkestani
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Zuzana Tobiasova
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Qianxun Wang
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Quan Jiang
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Roberto Lopez
- Yale College, Yale University, New Haven, CT, United States
| | | | - Matthew Fan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Jordan S. Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Dan Jane-wit
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
39
|
Sharma A, Sharma D, Zhao F. Updates on Recent Clinical Assessment of Commercial Chronic Wound Care Products. Adv Healthc Mater 2023; 12:e2300556. [PMID: 37306401 PMCID: PMC11932735 DOI: 10.1002/adhm.202300556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Impaired wound healing after trauma, disorders, and surgeries impact millions of people globally every year. Dysregulation in orchestrated healing mechanisms and underlying medical complications make chronic wound management extremely challenging. Besides standard-of-care treatments including broad spectrum antibiotics and wound-debridement, novel adjuvant therapies are clinically tested and commercialized. These include topical agents, skin substitutes, growth factor delivery, and stem cell therapies. With a goal to overcome factors playing pivotal role in delayed wound healing, researchers are exploring novel approaches to elicit desirable healing outcomes in chronic wounds. Although recent innovations in wound care products, therapies, and devices are extensively reviewed in past, a comprehensive review summarizing their clinical outcomes is surprisingly lacking. Herein, this work reviews the commercially available wound care products and their performance in clinical trials to provide a statistically comprehensive understanding of their safety and efficacy. The performance and suitability of various commercial wound care platforms, including xenogeneic and allogenic products, wound care devices, and novel biomaterials, are discussed for chronic wounds. The current clinical evaluation will provide a comprehensive understanding of the benefits and drawbacks of the most-recent approaches and will enable researchers and healthcare providers to develop next-generation technologies for chronic wound management.
Collapse
Affiliation(s)
- Archita Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| |
Collapse
|
40
|
WU J, DENG L, YIN L, MAO Z, GAO X. Curcumin promotes skin wound healing by activating Nrf2 signaling pathways and inducing apoptosis in mice. Turk J Med Sci 2023; 53:1127-1135. [PMID: 38812993 PMCID: PMC10763766 DOI: 10.55730/1300-0144.5678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/26/2023] [Accepted: 09/17/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Curcumin may have potential as a therapy for wound healing, but the underlying mechanism remains unclear. It is not known whether curcumin can promote wound healing by activating Nrf2 signaling pathway and inducing apoptosis. This study determined the role of Nrf2 signaling pathway and apoptosis in curcumin-promoting skin wound healing. Materials and methods The full-thickness skin defect model of mice was made and randomly divided into a control group and a curcumin group. The mice in the curcumin group and in the control group received respectively a daily topical treatment of Vaseline cream with or without 5 mg curcumin. The wound healing of mice was observed daily. The mice in two groups were killed respectively on postinjury days 3, 7, and 14, and the wound tissues were collected, with 5 mice in each group. Pathological change and formation of collagen fibers were observed by HE and Masson staining respectively. The expression of caspase-3 was observed by immunohistochemistry. Western blot was used to examine the protein levels of Nrf2 and HO-1, and ELISA assay and colorimetry assay were used to check the contents of ROS, MDA, SOD, and GSH. Results The wound healing rates of curcumin group were higher than those of control group (p < 0.05), and the pathological changes were also significantly better than those in the control group (p < 0.05). Collagen fiber synthesis in curcumin group was higher than that in control group (p < 0.05). Moreover, the expression of caspase-3 in curcumin group was higher than that in control group on 7th day post wound (p < 0.05). Furthermore, the levels of ROS and MDA in curcumin were lower than those in control group (p < 0.05), and the level of Nrf2, HO-1, SOD and GSH were higher than those in control group (p < 0.05). Conclusion Curcumin improves skin wound healing by activating the Nrf2 signaling pathway and inducing apoptosis in mice.
Collapse
Affiliation(s)
- Junli WU
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan,
China
| | - Li DENG
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan,
China
| | - Ling YIN
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan,
China
| | - Zhirong MAO
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan,
China
| | - Xiaoqing GAO
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan,
China
| |
Collapse
|
41
|
Zhang S, Liu H, Li W, Liu X, Ma L, Zhao T, Ding Q, Ding C, Liu W. Polysaccharide-based hydrogel promotes skin wound repair and research progress on its repair mechanism. Int J Biol Macromol 2023; 248:125949. [PMID: 37494997 DOI: 10.1016/j.ijbiomac.2023.125949] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Polysaccharides, being a natural, active, and biodegradable polymer, have garnered significant attention due to their exceptional properties. These properties make them ideal for creating multifunctional hydrogels that can be used as wound dressings for skin injuries. Polysaccharide hydrogel has the ability to both simulate the natural extracellular matrix, promote cell proliferation, and provide a suitable environment for wound healing while protecting it from bacterial invasion. Polysaccharide hydrogels offer a promising solution for repairing damaged skin. This review provides an overview of the mechanisms involved in skin damage repair and emphasizes the potential of polysaccharide hydrogels in this regard. For different skin injuries, polysaccharide hydrogels can play a role in promoting wound healing. However, we still need to conduct more research on polysaccharide hydrogels to provide more possibilities for skin damage repair.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Hongyuan Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lina Ma
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Ting Zhao
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China.
| |
Collapse
|
42
|
Hwang JH, Kang Y, Park HJ, Kim S, Lee SH, Kim H, Nam SJ, Lim KM. Skin wound healing effects of (+)-syringaresinol from ginseng berry. J Ginseng Res 2023; 47:654-661. [PMID: 37720576 PMCID: PMC10499580 DOI: 10.1016/j.jgr.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/22/2023] [Accepted: 04/09/2023] [Indexed: 09/19/2023] Open
Abstract
Background Ginseng has been used as a traditional medicine and functional cosmetic ingredients for many years. Recent studies have focused on the potential biological effects of the ginseng berry and its ingredients. (+)-Syringaresinol (SYR) is enriched in ginseng berry and its beneficial effects on the skin have been recently reported. However, little is known about the its effects on the wound healing process of skin. Methods Here, we evaluated the skin wound healing effect of (+)-SYR using the human fibroblast Hs68 cell and ex vivo pig and human skin tissue model. Scratch wound test and hydrogen peroxide (HPO) induce chemical wound model were employed. Results (+)-SYR promoted the migration and proliferation of Hs68 cells without significant cytotoxicity at the tested concentrations. Especially, in ex vivo pig and human skin tissue, HPO-induced chemical wound was recovered almost completely by (+)-SYR. In line with the finding in Hs68, the protein expression levels of TGF-β and PCNA, a proliferation marker were increased, demonstrating the beneficial effects of (+)-SYR on skin wound repair. Conclusion Collectively, we demonstrated that (+)-SYR from ginseng berry, can enhance the wound healing effect by accelerating cell proliferation and skin regeneration, suggesting the potential utility of (+)-SYR for skin wound repair.
Collapse
Affiliation(s)
- Jee-hyun Hwang
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Yeonsoo Kang
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Heui-Jin Park
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | | | | | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Kim E, Seo SH, Hwang Y, Ryu YC, Kim H, Lee KM, Lee JW, Park KH, Choi KY. Inhibiting the cytosolic function of CXXC5 accelerates diabetic wound healing by enhancing angiogenesis and skin repair. Exp Mol Med 2023; 55:1770-1782. [PMID: 37524876 PMCID: PMC10474114 DOI: 10.1038/s12276-023-01064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 08/02/2023] Open
Abstract
Diabetic wound healing, including diabetic foot ulcer (DFU), is a serious complication of diabetes. Considering the complexity of DFU development, the identification of a factor that mediates multiple pathogeneses is important for treatment. In this study, we found that CXXC-type zinc finger protein 5 (CXXC5), a negative regulator of the Wnt/β-catenin pathway, was overexpressed with suppression of the Wnt/β-catenin pathway and its target genes involved in wound healing and angiogenesis in the wound tissues of DFU patients and diabetes-induced model mice. KY19334, a small molecule that activates the Wnt/β-catenin pathway by inhibiting the CXXC5-Dvl interaction, accelerated wound healing in diabetic mice. The enhancement of diabetic wound healing could be achieved by restoring the suppressed Wnt/β-catenin signaling and subsequently inducing its target genes. Moreover, KY19334 induced angiogenesis in hindlimb ischemia model mice. Overall, these findings revealed that restorative activation of Wnt/β-catenin signaling by inhibiting the function of cytosolic CXXC5 could be a therapeutic approach for treating DFUs.
Collapse
Affiliation(s)
- Eunhwan Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seol Hwa Seo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yumi Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeong Chan Ryu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Heejene Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
- CK Regeon Inc, Engineering Research Park, 50 Yonsei Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
44
|
Zarrintaj P, Seidi F, Youssefi Azarfam M, Khodadadi Yazdi M, Erfani A, Barani M, Chauhan NPS, Rabiee N, Kuang T, Kucinska-Lipka J, Saeb MR, Mozafari M. Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. COMPOSITES PART B: ENGINEERING 2023; 258:110701. [DOI: 10.1016/j.compositesb.2023.110701] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
45
|
Flynn K, Mahmoud NN, Sharifi S, Gould LJ, Mahmoudi M. Chronic Wound Healing Models. ACS Pharmacol Transl Sci 2023; 6:783-801. [PMID: 37200810 PMCID: PMC10186367 DOI: 10.1021/acsptsci.3c00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 05/20/2023]
Abstract
In this paper, we review and analyze the commonly available wound healing models reported in the literature and discuss their advantages and issues, considering their relevance and translational potential to humans. Our analysis includes different in vitro and in silico as well as in vivo models and experimental techniques. We further explore the new technologies in the study of wound healing to provide an all encompassing review of the most efficient ways to proceed with wound healing experiments. We revealed that there is not one model of wound healing that is superior and can give translatable results to human research. Rather, there are many different models that have specific uses for studying certain processes or stages of wound healing. Our analysis suggests that when performing an experiment to assess stages of wound healing or different therapies to enhance healing, one must consider not only the species that will be used but also the type of model and how this can best replicate the physiology or pathophysiology in humans.
Collapse
Affiliation(s)
- Kiley Flynn
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shahriar Sharifi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Lisa J. Gould
- Department
of Surgery, South Shore Hospital, South Weymouth, Massachusetts 02190, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| |
Collapse
|
46
|
Humayun S, Premarathna AD, Rjabovs V, Howlader MM, Darko CNS, Mok IK, Tuvikene R. Biochemical Characteristics and Potential Biomedical Applications of Hydrolyzed Carrageenans. Mar Drugs 2023; 21:md21050269. [PMID: 37233463 DOI: 10.3390/md21050269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/27/2023] Open
Abstract
Seaweed contains a variety of bioactive compounds; the most abundant of them are polysaccharides, which have significant biological and chemical importance. Although algal polysaccharides, especially the sulfated polysaccharides, have great potential in the pharmaceutical, medical and cosmeceutical sectors, the large molecular size often limits their industrial applications. The current study aims to determine the bioactivities of degraded red algal polysaccharides by several in vitro experiments. The molecular weight was determined by size-exclusion chromatography (SEC), and the structure was confirmed by FTIR and NMR. In comparison to the original furcellaran, the furcellaran with lower molecular weight had higher OH scavenging activities. The reduction in molecular weight of the sulfated polysaccharides resulted in a significant decrease in anticoagulant activities. Tyrosinase inhibition improved 2.5 times for hydrolyzed furcellaran. The alamarBlue assay was used to determine the effects of different Mw of furcellaran, κ-carrageenan and ι-carrageenan on the cell viability of RAW264.7, HDF and HaCaT cell lines. It was found that hydrolyzed κ-carrageenan and ι-carrageenan enhanced cell proliferation and improved wound healing, whereas hydrolyzed furcellaran did not affect cell proliferation in any of the cell lines. Nitric oxide (NO) production decreased sequentially as the Mw of the polysaccharides decreased, which indicates that hydrolyzed κ-Carrageenan, ι-carrageenan and furcellaran have the potential to treat inflammatory disease. These findings suggested that the bioactivities of polysaccharides were highly dependent on their Mw, and the hydrolyzed carrageenans could be used in new drug development as well as cosmeceutical applications.
Collapse
Affiliation(s)
- Sanjida Humayun
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| | - Amal D Premarathna
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| | - Vitalijs Rjabovs
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Institute of Technology of Organic Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Md Musa Howlader
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| | | | - Il-Kyoon Mok
- Green-bio Research Facility Center, Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun 25354, Gangwon-do, Republic of Korea
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| |
Collapse
|
47
|
Dzierżyńska M, Sawicka J, Deptuła M, Sosnowski P, Sass P, Peplińska B, Pietralik-Molińska Z, Fularczyk M, Kasprzykowski F, Zieliński J, Kozak M, Sachadyn P, Pikuła M, Rodziewicz-Motowidło S. Release systems based on self-assembling RADA16-I hydrogels with a signal sequence which improves wound healing processes. Sci Rep 2023; 13:6273. [PMID: 37072464 PMCID: PMC10113214 DOI: 10.1038/s41598-023-33464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Self-assembling peptides can be used for the regeneration of severely damaged skin. They can act as scaffolds for skin cells and as a reservoir of active compounds, to accelerate scarless wound healing. To overcome repeated administration of peptides which accelerate healing, we report development of three new peptide biomaterials based on the RADA16-I hydrogel functionalized with a sequence (AAPV) cleaved by human neutrophil elastase and short biologically active peptide motifs, namely GHK, KGHK and RDKVYR. The peptide hybrids were investigated for their structural aspects using circular dichroism, thioflavin T assay, transmission electron microscopy, and atomic force microscopy, as well as their rheological properties and stability in different fluids such as water or plasma, and their susceptibility to digestion by enzymes present in the wound environment. In addition, the morphology of the RADA-peptide hydrogels was examined with a unique technique called scanning electron cryomicroscopy. These experiments enabled us to verify if the designed peptides increased the bioactivity of the gel without disturbing its gelling processes. We demonstrate that the physicochemical properties of the designed hybrids were similar to those of the original RADA16-I. The materials behaved as expected, leaving the active motif free when treated with elastase. XTT and LDH tests on fibroblasts and keratinocytes were performed to assess the cytotoxicity of the RADA16-I hybrids, while the viability of cells treated with RADA16-I hybrids was evaluated in a model of human dermal fibroblasts. The hybrid peptides revealed no cytotoxicity; the cells grew and proliferated better than after treatment with RADA16-I alone. Improved wound healing following topical delivery of RADA-GHK and RADA-KGHK was demonstrated using a model of dorsal skin injury in mice and histological analyses. The presented results indicate further research is warranted into the engineered peptides as scaffolds for wound healing and tissue engineering.
Collapse
Affiliation(s)
- Maria Dzierżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Justyna Sawicka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | | | - Martyna Fularczyk
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Jacek Zieliński
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
48
|
Hu F, Gao Q, Liu J, Chen W, Zheng C, Bai Q, Sun N, Zhang W, Zhang Y, Lu T. Smart microneedle patches for wound healing and management. J Mater Chem B 2023; 11:2830-2851. [PMID: 36916631 DOI: 10.1039/d2tb02596e] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The number of patients with non-healing wounds is generally increasing globally, placing a huge social and economic burden on every country. The complexity of the wound-healing process remains a major health challenge despite the numerous studies that have been reported on conventional wound dressings. Therefore, a therapeutic system that combines diagnostic and therapeutic modalities is essential to monitor wound-related biomarkers and facilitate wound healing in real time. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. Their advantages are mainly reflected in painless transdermal drug delivery, good biocompatibility, and ease of self-administration. In this work, we review recent advances in the use of microneedle patches for wound healing and monitoring. The paper first provides a brief overview of the skin structure and the wound healing process, and then discusses the current state of research and prospects for the development of wound-related biomarkers and their real-time monitoring based on microneedle sensors. It summarizes the current state of research based on the unique design of microneedle patches, including biomimetic, conductive, and environmentally responsive, to achieve wound healing. It further summarizes the prospects for the application of different microneedle-based drug delivery modalities and drug delivery substances for wound healing, due to their superior transdermal drug delivery advantages. It concludes with challenges and expectations for the use of smart microneedle patches for wound healing and management.
Collapse
Affiliation(s)
- Fangfang Hu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Qian Gao
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Jinxi Liu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenting Chen
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Que Bai
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Na Sun
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenhui Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| |
Collapse
|
49
|
Cao Y, Cong H, Yu B, Shen Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J Mater Chem B 2023; 11:2801-2829. [PMID: 36916313 DOI: 10.1039/d2tb02808e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Convenient and low-cost dressings can reduce the difficulty of wound treatment. Alginate gel dressings have the advantages of low cost and safe usage, and they have obvious potential for development in biomedical materials. Alginate gel dressings are currently a research area of great interest owing to their versatility, intelligent, and their application attempts in treating complex wounds. We present a detailed summary of the preparation of alginate hydrogels and a study of their performance improvement. Herein, we summarize the various applications of alginate hydrogels. The research focuses in this area mainly include designing multifunctional dressings for the treatment of various wounds and fabricating specialized dressings to assist physicians in the treatment of complex wounds (TOC). This review gives an outlook for future directions in the field of alginate hydrogel dressings. We hope to attract more research interest and studies in alginate hydrogel dressings, thus contributing to the creation of low-cost and highly effective wound treatment materials.
Collapse
Affiliation(s)
- Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
50
|
Rennolds CW, Bely AE. Integrative biology of injury in animals. Biol Rev Camb Philos Soc 2023; 98:34-62. [PMID: 36176189 PMCID: PMC10087827 DOI: 10.1111/brv.12894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Mechanical injury is a prevalent challenge in the lives of animals with myriad potential consequences for organisms, including reduced fitness and death. Research on animal injury has focused on many aspects, including the frequency and severity of wounding in wild populations, the short- and long-term consequences of injury at different biological scales, and the variation in the response to injury within or among individuals, species, ontogenies, and environmental contexts. However, relevant research is scattered across diverse biological subdisciplines, and the study of the effects of injury has lacked synthesis and coherence. Furthermore, the depth of knowledge across injury biology is highly uneven in terms of scope and taxonomic coverage: much injury research is biomedical in focus, using mammalian model systems and investigating cellular and molecular processes, while research at organismal and higher scales, research that is explicitly comparative, and research on invertebrate and non-mammalian vertebrate species is less common and often less well integrated into the core body of knowledge about injury. The current state of injury research presents an opportunity to unify conceptually work focusing on a range of relevant questions, to synthesize progress to date, and to identify fruitful avenues for future research. The central aim of this review is to synthesize research concerning the broad range of effects of mechanical injury in animals. We organize reviewed work by four broad and loosely defined levels of biological organization: molecular and cellular effects, physiological and organismal effects, behavioural effects, and ecological and evolutionary effects of injury. Throughout, we highlight the diversity of injury consequences within and among taxonomic groups while emphasizing the gaps in taxonomic coverage, causal understanding, and biological endpoints considered. We additionally discuss the importance of integrating knowledge within and across biological levels, including how initial, localized responses to injury can lead to long-term consequences at the scale of the individual animal and beyond. We also suggest important avenues for future injury biology research, including distinguishing better between related yet distinct injury phenomena, expanding the subjects of injury research to include a greater variety of species, and testing how intrinsic and extrinsic conditions affect the scope and sensitivity of injury responses. It is our hope that this review will not only strengthen understanding of animal injury but will contribute to building a foundation for a more cohesive field of 'injury biology'.
Collapse
|