1
|
Guajardo-Leiva S, Díez B, Rojas-Fuentes C, Chnaiderman J, Castro-Nallar E, Catril V, Ampuero M, Gaggero A. From sewage to genomes: Expanding our understanding of the urban and semi-urban wastewater RNA virome. ENVIRONMENTAL RESEARCH 2025; 276:121509. [PMID: 40185271 DOI: 10.1016/j.envres.2025.121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Wastewater is a hotspot for viral diversity, harboring various microbial, plant, and animal viruses, including those that infect humans. However, the dynamics, resilience, and ecological roles of viral communities during treatment are largely unknown. In this study, we explored RNA virus ecogenomics using metagenomics from influent and effluent samples across three wastewater catchment areas in Chile, with a population of 7.05 million equivalent inhabitants. We identified 14,212 RNA-dependent RNA polymerase (RdRP)-coding sequences from the Orthornavirae kingdom, clustering into 4989 viral species. Using extensive databases of 14,150 family-level representative sequences, we classified 90 % of our sequences at the family level. Our analysis revealed that treatment reduced viral richness and evenness (Shannon index), but phylogenetic diversity remained unchanged. Effluents showed lower richness and evenness than influents with similar phylogenetic diversity. Species turnover, influenced by catchment area and treatment, accounted for 54 % of sample dissimilarities (Weighted Unifrac). Biomarker analysis indicated that families like Astroviridae and Fiersviridae were more abundant in influents, while Reoviridae and Virgaviridae dominated effluents. This suggests that viral resistance to treatment varies and cannot be solely attributed to genome type, size, or morphology. We traced viral genomes through time and space, identifying sequences like the Pepper Mild Mottle Virus (PMMoV) from the Virgaviridae family over large distances and periods, highlighting its wastewater marker potential. High concentrations of human pathogens, such as Rotavirus (Reoviridae) and Human Astrovirus (Astroviridae), were found in both influents and effluents, stressing the need for continuous monitoring, especially for treated wastewater reuse.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Dirección de Investigación, Vicerrectoría Académica, Universidad de Talca, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile; Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile.
| | - Beatriz Díez
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile; Center for Climate and Resilience Research (CR)2, Chile; Millennium Institute Center for Genome Regulation (CGR), Chile
| | - Cecilia Rojas-Fuentes
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Jonás Chnaiderman
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Eduardo Castro-Nallar
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Valentina Catril
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Manuel Ampuero
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Aldo Gaggero
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
2
|
John L, Dcunha L, Ahmed M, Thomas SD, Raju R, Jayanandan A. A deep learning and molecular modeling approach to repurposing Cangrelor as a potential inhibitor of Nipah virus. Sci Rep 2025; 15:16440. [PMID: 40355437 PMCID: PMC12069662 DOI: 10.1038/s41598-025-00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Deforestation, urbanization, and climate change have significantly increased the risk of zoonotic diseases. Nipah virus (NiV) of Paramyxoviridae family and Henipavirus genus is transmitted by Pteropus bats. Climate-induced changes in bat migration patterns and food availability enhances the virus's adaptability, in turn increasing the potential for transmission and outbreak risk. NiV infection has high human fatality rate. With no antiviral drugs or vaccines available, exploring the complex machinery involved in viral RNA synthesis presents a promising target for therapy. Drug repurposing provides a fast-track approach by identifying existing drugs with potential to target NiV RNA-dependent RNA polymerase (L), bypassing the time-consuming process of developing novel compounds. To facilitate this, we developed an attention-based deep learning model that utilizes pharmacophore properties of the active sites and their binding efficacy with NiV L protein. Around 500 FDA-approved drugs were filtered and assessed for their ability to bind NiV L protein. Compared to the control Remdesivir, we identified Cangrelor, an antiplatelet drug for cardiovascular diseases, with stronger binding affinity to NiV L (glide score of -12.30 kcal/mol). Molecular dynamics simulations further revealed stable binding (RMSD of 3.54 Å) and a post-MD binding energy of -181.84 kcal/mol. The strong binding of Cangrelor is illustrated through trajectory analysis, principal component analysis, and solvent accessible surface area, further confirming the stable interaction with the active site of NiV RdRp. Cangrelor can interact with NiV L protein and may potentially interfere with its replication. These findings suggest that Cangrelor will be a potential drug candidate that can effectively interact with the NiV L protein and potentially disrupt the viral replication. Further in vivo studies are warranted to explore its potential as a repurposable antiviral drug.
Collapse
Affiliation(s)
- Levin John
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, Scotland, EH16 4UU
| | - Leona Dcunha
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Kingdom of Saudi Arabia, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sonet Daniel Thomas
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
| | - Abhithaj Jayanandan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
| |
Collapse
|
3
|
Zhu Y, Raza A, Bai Q, Zou C, Niu J, Guo Z, Wu Q. In-depth analysis of 17,115 rice transcriptomes reveals extensive viral diversity in rice plants. Nat Commun 2025; 16:1559. [PMID: 39939599 PMCID: PMC11822035 DOI: 10.1038/s41467-025-56769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Rice viruses seriously threaten rice cultivation and cause significant economic losses, but they have not yet been systematically identified, with only 20 rice-infecting viruses reported. Here, we perform a large-scale analysis of 17,115 RNA-seq libraries spanning 24 Oryza species across 51 countries. Using de novo assembly and homology-based methods, we identify 810 complete or near-complete viruses, including 276 known viruses and 534 novel viruses. Given the high divergence and atypical genome organizations of novel viruses, more than a half of them are tentatively assigned to 1 new order, 61 new families, and at least 104 new genera. Utilizing homology-independent approaches, we additionally identify 49 divergent RNA-dependent RNA polymerases (RdRPs), which are confirmed by protein structural alignment. Furthermore, we analyze the metadata of related Sequence Read Archive (SRA) libraries and estimated viral abundance in each library, leading to the screening of 427 viruses closely associated with rice plants. Overall, our study vastly expands the viral diversity in rice plants, providing insights for the prevention and control of viral disease.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Ali Raza
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Qing Bai
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jiangshuai Niu
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxin Guo
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingfa Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
4
|
Yan X, Liu Y, Hu T, Huang Z, Li C, Guo L, Liu Y, Li N, Zhang H, Sun Y, Yi L, Wu J, Feng J, Zhang F, Jiang T, Tu C, He B. A compendium of 8,176 bat RNA viral metagenomes reveals ecological drivers and circulation dynamics. Nat Microbiol 2025; 10:554-568. [PMID: 39833544 DOI: 10.1038/s41564-024-01884-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 11/13/2024] [Indexed: 01/22/2025]
Abstract
Bats are natural hosts for many emerging viruses for which spillover to humans is a major risk, but the diversity and ecology of bat viruses is poorly understood. Here we generated 8,176 RNA viral metagenomes by metatranscriptomic sequencing of organ and swab samples from 4,143 bats representing 40 species across 52 locations in China. The resulting database, the BtCN-Virome, expands bat RNA virus diversity by over 3.4-fold. Some viruses in the BtCN-Virome are traced to mammals, birds, arthropods, mollusks and plants. Diet, infection dynamics and environmental parameters such as humidity and forest coverage shape virus distribution. Compared with those in the wild, bats dwelling in human settlements harboured more diverse viruses that also circulated in humans and domestic animals, including Nipah and Lloviu viruses not previously reported in China. The BtCN-Virome provides important insights into the genetic diversity, ecological drivers and circulation dynamics of bat viruses, highlighting the need for surveillance of bats near human settlements.
Collapse
Affiliation(s)
- Xiaomin Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Tingsong Hu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province, China
| | - Zhenglanyi Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin Province, China
| | - Chenxi Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Lei Guo
- Division of Wildlife and Plant Conservation, State Forestry and Grassland Administration, Changchun, Jilin Province, China
| | - Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Hailin Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, Yunnan Province, China
| | - Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Jianmin Wu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin Province, China
| | - Fuqiang Zhang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province, China.
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin Province, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
5
|
Jia X, Jing X, Li M, Gao M, Zhong Y, Li E, Liu Y, Li R, Yao G, Liu Q, Zhou M, Hou Y, An L, Hong Y, Li S, Zhang J, Wang W, Zhang K, Gong P, Chiu S. An adenosine analog shows high antiviral potency against coronavirus and arenavirus mainly through an unusual base pairing mode. Nat Commun 2024; 15:10750. [PMID: 39737930 PMCID: PMC11685483 DOI: 10.1038/s41467-024-54918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses. Importantly, treatment with HNC-1664 demonstrate anti-SARS-CoV-2 efficacy in infected K18-human ACE2 mice, with reduced viral titer and mortality, as well as improved lung injury. Enzymology data demonstrate that HNC-1664 inhibits RNA synthesis mainly at the pre-catalysis stage. The cryo-EM structures of HNC-1664-bound RdRP-RNA complexes from both SARS-CoV-2 and LASV reveal an unusual base pairing mode of HNC-1664 in part due to its base modification, thus revealing its great potency in binding but not catalysis. Under certain circumstances, 1664-TP can be slowly incorporated by RdRP through regular Watson-Crick base pairing, as evidenced by enzymology data and an HNC-1664-incorporated crystal structure of the RdRP-RNA complex. Overall, HNC-1664 achieves broad-spectrum characteristics by favoring an alternative base pairing strategy to non-catalytically block RNA synthesis, providing a novel concept for the rational development of NA drugs.
Collapse
Affiliation(s)
- Xiaoying Jia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Minli Gao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Zhong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Rui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Guoqiang Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiaojie Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Minmin Zhou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxia Hou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linfeng An
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yibao Hong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Wei Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, China.
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China.
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, China.
| |
Collapse
|
6
|
Elshina E, Pitre E, Mendes M, Schweibenz B, Fan RLY, French H, Park JW, Wang W, Poon LLM, Marcotrigiano J, Russell AB, Te Velthuis AJW. Influenza A virus transcription generates capped cRNAs that activate RIG-I. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623191. [PMID: 39605425 PMCID: PMC11601390 DOI: 10.1101/2024.11.12.623191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
During influenza A virus (IAV) infection, host pathogen receptor retinoic acid-inducible gene I (RIG-I) detects the partially complementary, 5'-triphosphorylated ends of the viral genome segments and non-canonical replication products. However, it has also been suggested that innate immune responses may be triggered by viral transcription. In this study, we investigated whether an immunostimulatory RNA is produced during IAV transcription. We show that the IAV RNA polymerase can read though the polyadenylation signal during transcription termination, generating a capped complementary RNA (ccRNA), which contains the 5' cap of an IAV mRNA and the 3' terminus of a cRNA instead of a poly(A) tail. ccRNAs are detectable in vitro and in both ribonucleoprotein reconstitution assays and IAV infections. Mutations that disrupt polyadenylation enhance ccRNA synthesis and increase RIG-I-dependent innate immune activation. Notably, while ccRNA itself is not immunostimulatory, it forms a RIG-I agonist by hybridizing with a complementary negative-sense viral RNA. These findings thus identify a novel non-canonical IAV RNA species and suggest an alternative mechanism for RIG-I activation during IAV infection.
Collapse
|
7
|
Guermonprez P, Nioche P, Renaud L, Battaglini N, Sanaur S, Krejci E, Piro B. CRISPR-Cas Systems Associated with Electrolyte-Gated Graphene-Based Transistors: How They Work and How to Combine Them. BIOSENSORS 2024; 14:541. [PMID: 39590000 PMCID: PMC11592214 DOI: 10.3390/bios14110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
In this review, recent advances in the combination of CRISPR-Cas systems with graphene-based electrolyte-gated transistors are discussed in detail. In the first part, the functioning of CRISPR-Cas systems is briefly explained, as well as the most common ways to convert their molecular activity into measurable signals. Other than optical means, conventional electrochemical transducers are also developed. However, it seems that the incorporation of CRISPR/Cas systems into transistor devices could be extremely powerful, as the former provides molecular amplification, while the latter provides electrical amplification; combined, the two could help to advance in terms of sensitivity and compete with conventional PCR assays. Today, organic transistors suffer from poor stability in biological media, whereas graphene materials perform better by being extremely sensitive to their chemical environment and being stable. The need for fast and inexpensive sensors to detect viral RNA arose on the occasion of the COVID-19 crisis, but many other RNA viruses are of interest, such as dengue, hepatitis C, hepatitis E, West Nile fever, Ebola, and polio, for which detection means are needed.
Collapse
Affiliation(s)
- Pierre Guermonprez
- ITODYS, CNRS, Université Paris Cité, F-75006 Paris, France; (P.G.); (N.B.)
| | - Pierre Nioche
- INSERM US 36|CNRS UAR 2009, Structural and Molecular Analysis Platform, Université Paris Cité, F-75006 Paris, France;
- INSERM U1124, Université Paris Cité, F-75006 Paris, France
| | - Louis Renaud
- Institut des Nanotechnologies de Lyon INL-UMR5270, Université Lyon 1, F-69622 Villeurbanne, France;
| | - Nicolas Battaglini
- ITODYS, CNRS, Université Paris Cité, F-75006 Paris, France; (P.G.); (N.B.)
| | - Sébastien Sanaur
- Department of Flexible Electronics, Institut Mines-Telecom, Mines Saint-Étienne, F-13541 Gardanne, France;
| | - Eric Krejci
- CNRS, ENS Paris Saclay, Centre Borelli UMR 9010, Université Paris Cité, F-75006 Paris, France;
| | - Benoît Piro
- ITODYS, CNRS, Université Paris Cité, F-75006 Paris, France; (P.G.); (N.B.)
| |
Collapse
|
8
|
Rahmani D, Jafari A, Kesharwani P, Sahebkar A. Molecular targets in SARS-CoV-2 infection: An update on repurposed drug candidates. Pathol Res Pract 2024; 263:155589. [PMID: 39276508 DOI: 10.1016/j.prp.2024.155589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
The 2019 widespread contagion of the human coronavirus novel type (SARS-CoV-2) led to a pandemic declaration by the World Health Organization. A daily increase in patient numbers has formed an urgent necessity to find suitable targets and treatment options for the novel coronavirus (COVID-19). Despite scientists' struggles to discover quick treatment solutions, few effective specific drugs are approved to control SARS-CoV-2 infections thoroughly. Drug repositioning or Drug repurposing and target-based approaches are promising strategies for facilitating the drug discovery process. Here, we review current in silico, in vitro, in vivo, and clinical updates regarding proposed drugs for prospective treatment options for COVID-19. Drug targets that can direct pharmaceutical sciences efforts to discover new drugs against SARS-CoV-2 are divided into two categories: Virus-based targets, for example, Spike glycoprotein and Nucleocapsid Protein, and host-based targets, for instance, inflammatory cytokines and cell receptors through which the virus infects the cell. A broad spectrum of drugs has been found to show anti-SARS-CoV-2 potential, including antiviral drugs and monoclonal antibodies, statins, anti-inflammatory agents, and herbal products.
Collapse
Affiliation(s)
- Dibachehr Rahmani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Latimer-Smith M, Salgado PS, Forsyth I, Makeyev E, Poranen MM, Stuart DI, Grimes JM, El Omari K. Structure of the RNA-dependent RNA polymerase P2 from the cystovirus φ8. Sci Rep 2024; 14:23540. [PMID: 39384884 PMCID: PMC11464883 DOI: 10.1038/s41598-024-75213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
The replication of RNA viruses relies on the activity of RNA-dependent RNA polymerases (RdRps). Despite large variations in their genomic sequences, viral RdRps share a common architecture generally known as a closed right hand. The P2 polymerase of cystovirus φ6 is currently among the best characterized viral RdRps. This polymerase is responsible for carrying out both replication and transcription of the viral double-stranded RNA genome using de novo initiation. Despite the extensive biochemical and structural studies conducted on φ6 P2, further structural information on other cystoviral RdRps is crucial to elucidate the structural and functional diversity of viral RdRps. Here, we have determined the atomic X-ray structure of the RdRp P2 from the φ6-related cystovirus φ8 at 3Å resolution. This structure completes the existing set of structural information on the φ8 polymerase complex and sheds light on the difference and similarities with related cystoviral RdRps.
Collapse
Affiliation(s)
- Merlyn Latimer-Smith
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX110DE, UK
| | - Paula S Salgado
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ismay Forsyth
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX110DE, UK
| | - Eugene Makeyev
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dave I Stuart
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX110DE, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX110DE, UK.
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, OX11 0FA, UK.
| |
Collapse
|
10
|
Yang G, Wang D, Liu B. Structure of the Nipah virus polymerase phosphoprotein complex. Nat Commun 2024; 15:8673. [PMID: 39375338 PMCID: PMC11458586 DOI: 10.1038/s41467-024-52701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
The Nipah virus (NiV), a member of the Paramyxoviridae family, is notorious for its high fatality rate in humans. The RNA polymerase machinery of NiV, comprising the large protein L and the phosphoprotein P, is essential for viral replication. This study presents the 2.9-Å cryo-electron microscopy structure of the NiV L-P complex, shedding light on its assembly and functionality. The structure not only demonstrates the molecular details of the conserved N-terminal domain, RNA-dependent RNA polymerase (RdRp), and GDP polyribonucleotidyltransferase of the L protein, but also the intact central oligomerization domain and the C-terminal X domain of the P protein. The P protein interacts extensively with the L protein, forming an antiparallel β-sheet among the P protomers and with the fingers subdomain of RdRp. The flexible linker domain of one P promoter extends its contact with the fingers subdomain to reach near the nascent RNA exit, highlighting the distinct characteristic of the NiV L-P interface. This distinctive tetrameric organization of the P protein and its interaction with the L protein provide crucial molecular insights into the replication and transcription mechanisms of NiV polymerase, ultimately contributing to the development of effective treatments and preventive measures against this Paramyxoviridae family deadly pathogen.
Collapse
Affiliation(s)
- Ge Yang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Dong Wang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
11
|
Almohaimeed HM, Abdulfattah AM, Alsulaimani F, Alshammary A, Almohaini MO, Almehiny KA, Hershan AA, Alkhamiss AS, Alghsham RS, Ghabban H, Soliman MH, Alorabi JA, Abdulmonem WA. Prediction of promiscuous multiepitope-based peptide vaccine against RdRp of rotavirus using immunoinformatics studies. Rev Inst Med Trop Sao Paulo 2024; 66:e55. [PMID: 39258658 PMCID: PMC11385075 DOI: 10.1590/s1678-9946202466055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 09/12/2024] Open
Abstract
Rotavirus, a dsRNA virus in the Reoviridae family, shows a segmented genome. The VP1 gene encodes the RNA-dependent RNA polymerase (RdRp). This study aims to develop a multiepitope-based vaccine targeting RdRp using immunoinformatic approaches. In this study, 100 available nucleotide sequences of VP1-Rotavirus belonging to different strains across the world were retrieved from NCBI database. The selected sequences were aligned, and a global consensus sequence was developed by using CLC work bench. The study involved immunoinformatic approaches and molecular docking studies to reveal the promiscuous epitopes that can be eventually used as active vaccine candidates for Rotavirus. In total, 27 highly immunogenic, antigenic, and non-allergenic T-cell and B-cell epitopes were predicted for the Multiepitope vaccine (MEV) against rotavirus. It was also observed that MEV can prove to be effective worldwide due to its high population coverage, demonstrating the consistency of this vaccine. Moreover, there is a high docking interaction and immunological response with a binding score of -50.2 kcal/mol, suggesting the vaccine's efficacy. Toll-like receptors (TLRs) also suggest that the vaccine is physiologically and immunologically effective. Collectively, our data point to an effective MEV against rotavirus that can effectively reduce viral infections and improve the health status worldwide.
Collapse
Affiliation(s)
- Hailah M Almohaimeed
- Princess Nourah bint Abdulrahman University, College of Medicine, Department of Basic Science, Riyadh, Saudi Arabia
| | - Ahmed M Abdulfattah
- King Abdulaziz University, Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jeddah, Saudi Arabia
| | - Fayez Alsulaimani
- King Abdulaziz University, Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jeddah, Saudi Arabia
| | - Aisha Alshammary
- Alyamamah Hospital, Pediatric Infectious Department, Riyadh, Saudi Arabia
| | | | - Khowlah Abdulrahman Almehiny
- Alyamamah Hospital-Riyadh, Second Health Cluster, Registrars Preventive Medicine and Public Health, Infection Control Department, Riyadh, Saudi Arabia
| | - Almonther Abdullah Hershan
- University of Jeddah, College of Medicine, Department of Medical Microbiology and Parasitology, Jeddah, Saudi Arabia
| | | | - Ruqaih S Alghsham
- Qassim University, College of Medicine, Department of Medical Microbiology and Immunology, Qassim, Saudi Arabia
| | - Hanaa Ghabban
- University of Tabuk, Faculty of Science, Department of Biology, Tabuk, Saudi Arabia
| | - Mona H Soliman
- Cairo University, Faculty of Science, Botany and Microbiology Department, Giza, Egypt
- Taibah University, Faculty of Science, Biology Department, Al-Sharm, Yanbu El-Bahr, Kingdom of Saudi
| | - Jamal A Alorabi
- Taif University, College of Science, Department of Biology, Taif, Saudi Arabia
| | - Waleed Al Abdulmonem
- Qassim University, College of Medicine, Department of Pathology, Buraidah, Saudi Arabia
| |
Collapse
|
12
|
Tian Z, Hu T, Holmes EC, Ji J, Shi W. Analysis of the genetic diversity in RNA-directed RNA polymerase sequences: implications for an automated RNA virus classification system. Virus Evol 2024; 10:veae059. [PMID: 39119135 PMCID: PMC11306317 DOI: 10.1093/ve/veae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
RNA viruses are characterized by a broad host range and high levels of genetic diversity. Despite a recent expansion in the known virosphere following metagenomic sequencing, our knowledge of the species rank genetic diversity of RNA viruses, and how often they are misassigned and misclassified, is limited. We performed a clustering analysis of 7801 RNA-directed RNA polymerase (RdRp) sequences representing 1897 established RNA virus species. From this, we identified substantial genetic divergence within some virus species and inconsistency in RNA virus assignment between the GenBank database and The International Committee on Taxonomy of Viruses (ICTV). In particular, 27.57% virus species comprised multiple virus operational taxonomic units (vOTUs), including Alphainfluenzavirus influenzae, Mammarenavirus lassaense, Apple stem pitting virus, and Rotavirus A, with each having over 100 vOTUs. In addition, the distribution of average amino acid identity between vOTUs within single assigned species showed a relatively low threshold: <90% and sometimes <50%. However, when only exemplar sequences from virus species were analyzed, 1889 of the ICTV-designated RNA virus species (99.58%) were clustered into a single vOTU. Clustering of the RdRp sequences from different virus species also revealed that 17 vOTUs contained two distinct virus species. These potential misassignments were confirmed by phylogenetic analysis. A further analysis of average nucleotide identity (ANI) values ranging from 70% to 97.5% revealed that at an ANI of 82.5%, 1559 (82.18%) of the 1897 virus species could be correctly clustered into one single vOTU. However, at ANI values >82.5%, an increasing number of species were clustered into two or more vOTUs. In sum, we have identified some inconsistency and misassignment of the RNA virus species based on the analysis of RdRp sequences alone, which has important implications for the development of an automated RNA virus classification system.
Collapse
Affiliation(s)
- Zhongshuai Tian
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699 Qingdao Road, Ji’nan 250117, China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqingnanlu, Shanghai 200025, China
| | - Tao Hu
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699 Qingdao Road, Ji’nan 250117, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Laboratory of Data Discovery for Health Limited, 19 Science Park West Avenue, Hong Kong 999077, China
| | - Jingkai Ji
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, Taian 271000, China
| | - Weifeng Shi
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqingnanlu, Shanghai 200025, China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijinerlu, Shanghai 200025, China
| |
Collapse
|
13
|
Ruan T, Xiang ZR, Zhang YW, Fan SR, Ren J, Zhao Q, Sun XL, Wu SL, Xu LL, Qiao M, Jing CX, Hao XJ, Chen DZ. Diterpenoids target SARS-CoV-2 RdRp from the roots of Euphorbia fischeriana Steud. FRONTIERS IN PLANT SCIENCE 2024; 15:1425759. [PMID: 39119497 PMCID: PMC11306077 DOI: 10.3389/fpls.2024.1425759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Introduction Currently, the development of new antiviral drugs against COVID-19 remains of significant importance. In traditional Chinese medicine, the herb Euphorbia fischeriana Steud is often used for antiviral treatment, yet its therapeutic effect against the COVID-19 has been scarcely studied. Therefore, this study focuses on the roots of E. fischeriana Steud, exploring its chemical composition, antiviral activity against COVID-19, and the underlying basis of its antiviral activity. Methods Isolation and purification of phytochemicals from E. fischeriana Steud. The elucidation of their configurations was achieved through a comprehensive suite of 1D and 2D NMR spectroscopic analyses as well as X-ray diffraction. Performed cytopathic effect assays of SARS-CoV-2 using Vero E6 cells. Used molecular docking to screen for small molecule ligands with binding to SARS-CoV-2 RdRp. Microscale thermophoresis (MST) was used to determine the dissociation constant Kd. Results Ultimately, nine new ent-atisane-type diterpenoid compounds were isolated from E. fischeriana Steud, named Eupfisenoids A-I (compounds 1-9). The compound of 1 was established as a C-19-degraded ent-atisane-type diterpenoid. During the evaluation of these compounds for their antiviral activity against COVID-19, compound 1 exhibited significant antiviral activity. Furthermore, with the aid of computer virtual screening and microscale thermophoresis (MST) technology, it was found that this compound could directly bind to the RNA-dependent RNA polymerase (RdRp, NSP12) of the COVID-19, a key enzyme in virus replication. This suggests that the compound inhibits virus replication by targeting RdRp. Discussion Through this research, not only has our understanding of the antiviral components and material basis of E. fischeriana Steud been enriched, but also the potential of atisane-type diterpenoid compounds as antiviral agents against COVID-19 has been discovered. The findings mentioned above will provide valuable insights for the development of drugs against COVID-19.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zheng-Rui Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yun-Wu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, China
- Department of Chemical Science and Engineering, Yunnan University, Kunming, China
| | - Shi-Rui Fan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Juan Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Department of Chemical Science and Engineering, Yunnan University, Kunming, China
| | - Qian Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xiao-Long Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Shi-Li Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Li-Li Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Miao Qiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Chen-Xu Jing
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, China
| | - Duo-Zhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, China
| |
Collapse
|
14
|
Lu H, Wang P, Sun J, Yin Y, Yang G, Huang B. A novel betapartitivirus isolated from Cordyceps militaris, an edible-medicinal mushroom. Arch Virol 2024; 169:159. [PMID: 38972922 DOI: 10.1007/s00705-024-06085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024]
Abstract
In this study, we identified a novel partitivirus, named "Cordyceps militaris partitivirus 1" (CmPV1), in Cordyceps militaris strain RCEF7506. The complete genome of CmPV1 comprises two segments, dsRNA1 and dsRNA2, each encoding a single protein. dsRNA1 (2,206 bp) encodes an RNA-dependent RNA polymerase (RdRp), and dsRNA2 (2,256 bp) encodes a coat protein (CP). Sequence analysis revealed that dsRNA1 has the highest similarity to that of Bipolaris maydis partitivirus 2 (BmPV2), whereas dsRNA2 shows the highest similarity to human blood-associated partitivirus (HuBPV). Phylogenetic analysis based on RdRp sequences suggests that CmPV1 is a new member of the genus Betapartitivirus of the family Partitiviridae. This is the first documentation of a betapartitivirus infecting the entomopathogenic fungus C. militaris.
Collapse
Affiliation(s)
- Hanwen Lu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Sun
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Yin
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
15
|
Gao X, Bian T, Gao P, Ge X, Zhang Y, Han J, Guo X, Zhou L, Yang H. Fidelity Characterization of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and NADC30-like Strain. Viruses 2024; 16:797. [PMID: 38793678 PMCID: PMC11125636 DOI: 10.3390/v16050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) has significantly impacted the global pork industry for over three decades. Its high mutation rates and frequent recombination greatly intensifies its epidemic and threat. To explore the fidelity characterization of Chinese highly pathogenic PRRSV JXwn06 and the NADC30-like strain CHsx1401, self-recombination and mutation in PAMs, MARC-145 cells, and pigs were assessed. In vitro, CHsx1401 displayed a higher frequency of recombination junctions and a greater diversity of junction types than JXwn06. In vivo, CHsx1401 exhibited fewer junction types yet maintained a higher junction frequency. Notably, JXwn06 showed more accumulation of mutations. To pinpoint the genomic regions influencing their fidelity, chimeric viruses were constructed, with the exchanged nsp9-10 regions between JXwn06 and CHsx1401. The SJn9n10 strain, which incorporates JXwn06's nsp9-10 into the CHsx1401 genome, demonstrated reduced sensitivity to nucleotide analogs compared to CHsx1401. Conversely, compared with JXwn06, the JSn9n10 strain showed increased sensitivity to these inhibitors. The swapped nsp9-10 also influences the junction frequency and accumulated mutations as their donor strains. The results indicate a propensity for different types of genetic variations between these two strains and further highlight the nsp9-10 region as a critical determinant of their fidelity.
Collapse
Affiliation(s)
- Xiang Gao
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Ting Bian
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Peng Gao
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| |
Collapse
|
16
|
Holubovska O, Babich P, Mironenko A, Milde J, Lebed Y, Stammer H, Mueller L, te Velthuis AJW, Margitich V, Goy A. RNA Polymerase Inhibitor Enisamium for Treatment of Moderate COVID-19 Patients: A Randomized, Placebo-Controlled, Multicenter, Double-Blind Phase 3 Clinical Trial. Adv Respir Med 2024; 92:202-217. [PMID: 38804439 PMCID: PMC11130936 DOI: 10.3390/arm92030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Enisamium is an orally available therapeutic that inhibits influenza A virus and SARS-CoV-2 replication. We evaluated the clinical efficacy of enisamium treatment combined with standard care in adult, hospitalized patients with moderate COVID-19 requiring external oxygen. Hospitalized patients with laboratory-confirmed SARS-CoV-2 infection were randomly assigned to receive either enisamium (500 mg per dose, four times a day) or a placebo. The primary outcome was an improvement of at least two points on an eight-point severity rating (SR) scale within 29 days of randomization. We initially set out to study the effect of enisamium on patients with a baseline SR of 4 or 5. However, because the study was started early in the COVID-19 pandemic, and COVID-19 had been insufficiently studied at the start of our study, an interim analysis was performed alongside a conditional power analysis in order to ensure patient safety and assess whether the treatment was likely to be beneficial for one or both groups. Following this analysis, a beneficial effect was observed for patients with an SR of 4 only, i.e., patients with moderate COVID-19 requiring supplementary oxygen. The study was continued for these COVID-19 patients. Overall, a total of 592 patients were enrolled and randomized between May 2020 and March 2021. Patients with a baseline SR of 4 were divided into two groups: 142 (49.8%) were assigned to the enisamium group and 143 (50.2%) to the placebo group. An analysis of the population showed that if patients were treated within 4 days of the onset of COVID-19 symptoms (n = 33), the median time to improvement was 8 days for the enisamium group and 13 days for the placebo group (p = 0.005). For patients treated within 10 days of the onset of COVID-19 symptoms (n = 154), the median time to improvement was 10 days for the enisamium group and 12 days for the placebo group (p = 0.002). Our findings suggest that enisamium is safe to use with COVID-19 patients, and that the observed clinical benefit of enisamium is worth reporting and studying in detail.
Collapse
Affiliation(s)
- Olga Holubovska
- Department of Infectious Diseases, O.O. Bogomolets National Medical University, T. Shevchenko Blvd. 13, 01601 Kyiv, Ukraine;
| | - Pavlo Babich
- State Expert Center, Smolenska Str. 10, 03057 Kyiv, Ukraine;
| | - Alla Mironenko
- Department of Respiratory and Other Viral Infections, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of the NAMS of Ukraine, Amosova Str. 5a, 03083 Kyiv, Ukraine;
| | - Jens Milde
- Pharmalog Institut für Klinische Forschung GmbH, Oskar-Messter-Str. 29, 85737 Ismaning, Germany; (J.M.); (H.S.)
| | - Yuriy Lebed
- Pharmaxi LLC, Filatova Str. 10A, 01042 Kyiv, Ukraine;
| | - Holger Stammer
- Pharmalog Institut für Klinische Forschung GmbH, Oskar-Messter-Str. 29, 85737 Ismaning, Germany; (J.M.); (H.S.)
| | - Lutz Mueller
- Regenold GmbH, Zöllinplatz 4, 79410 Badenweiler, Germany;
| | - Aartjan J. W. te Velthuis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Division of Virology, Department of Pathology, University of Cambridge Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Victor Margitich
- Farmak Joint Stock Company, Kyrylivska Str., 04080 Kyiv, Ukraine
| | - Andrew Goy
- Farmak Joint Stock Company, Kyrylivska Str., 04080 Kyiv, Ukraine
| |
Collapse
|
17
|
Francis SM, Pattar Kadavan S, Natesh R. Oligomerization states of the Mycobacterium tuberculosis RNA polymerase core and holoenzymes. Arch Microbiol 2024; 206:230. [PMID: 38649511 DOI: 10.1007/s00203-024-03955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
During the past few decades, a wealth of knowledge has been made available for the transcription machinery in bacteria from the structural, functional and mechanistic point of view. However, comparatively little is known about the homooligomerization of the multisubunit M. tuberculosis RNA polymerase (RNAP) enzyme and its functional relevance. While E. coli RNAP has been extensively studied, many aspects of RNAP of the deadly pathogenic M. tuberculosis are still unclear. We used biophysical and biochemical methods to study the oligomerization states of the core and holoenzymes of M. tuberculosis RNAP. By size exclusion chromatography and negative staining Transmission Electron Microscopy (TEM) studies and quantitative analysis of the TEM images, we demonstrate that the in vivo reconstituted RNAP core enzyme (α2ββ'ω) can also exist as dimers in vitro. Using similar methods, we also show that the holoenzyme (core + σA) does not dimerize in vitro and exist mostly as monomers. It is tempting to suggest that the oligomeric changes that we see in presence of σA factor might have functional relevance in the cellular process. Although reported previously in E. coli, to our knowledge we report here for the first time the study of oligomeric nature of M. tuberculosis RNAP in presence and absence of σA factor.
Collapse
Affiliation(s)
- Sandrea Maureen Francis
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Shehna Pattar Kadavan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, India.
| |
Collapse
|
18
|
Xie J, Ouizougun-Oubari M, Wang L, Zhai G, Wu D, Lin Z, Wang M, Ludeke B, Yan X, Nilsson T, Gao L, Huang X, Fearns R, Chen S. Structural basis for dimerization of a paramyxovirus polymerase complex. Nat Commun 2024; 15:3163. [PMID: 38605025 PMCID: PMC11009304 DOI: 10.1038/s41467-024-47470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The transcription and replication processes of non-segmented, negative-strand RNA viruses (nsNSVs) are catalyzed by a multi-functional polymerase complex composed of the large protein (L) and a cofactor protein, such as phosphoprotein (P). Previous studies have shown that the nsNSV polymerase can adopt a dimeric form, however, the structure of the dimer and its function are poorly understood. Here we determine a 2.7 Å cryo-EM structure of human parainfluenza virus type 3 (hPIV3) L-P complex with the connector domain (CD') of a second L built, while reconstruction of the rest of the second L-P obtains a low-resolution map of the ring-like L core region. This study reveals detailed atomic features of nsNSV polymerase active site and distinct conformation of hPIV3 L with a unique β-strand latch. Furthermore, we report the structural basis of L-L dimerization, with CD' located at the putative template entry of the adjoining L. Disruption of the L-L interface causes a defect in RNA replication that can be overcome by complementation, demonstrating that L dimerization is necessary for hPIV3 genome replication. These findings provide further insight into how nsNSV polymerases perform their functions, and suggest a new avenue for rational drug design.
Collapse
Affiliation(s)
- Jin Xie
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Mohamed Ouizougun-Oubari
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Li Wang
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Guanglei Zhai
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Daitze Wu
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Zhaohu Lin
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Manfu Wang
- Wuxi Biortus Biosciences Co. Ltd., 214437, Jiangyin, Jiangsu, China
| | - Barbara Ludeke
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Xiaodong Yan
- Wuxi Biortus Biosciences Co. Ltd., 214437, Jiangyin, Jiangsu, China
| | - Tobias Nilsson
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Basel, Basel, 4070, Switzerland
| | - Lu Gao
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Shanghai, 201203, Shanghai, China.
| | - Xinyi Huang
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China.
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
| | - Shuai Chen
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China.
| |
Collapse
|
19
|
Ohta K, Saka N, Nishi Y, Nishio M. Nairovirus polymerase mutations associated with the establishment of persistent infection in human cells. J Virol 2024; 98:e0169823. [PMID: 38358288 PMCID: PMC10949423 DOI: 10.1128/jvi.01698-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne virus of the Orthonairovirus genus, persistently infects tick cells. It has been reported to establish persistent infection in non-human primates, but virological analysis has not yet been performed in human cells. Here, we investigated whether and how nairoviruses persistently infect human cells using Hazara orthonairovirus (HAZV), a surrogate model for CCHFV. We established a human cell line that was persistently infected with HAZV. Surprisingly, virions of persistently infected HAZV (HAZVpi) were not observed in the culture supernatants. There were five mutations (mut1, mut2, mut3, mut4, and mut5) in L protein of HAZVpi. Mutations in L protein of HAZVpi contribute to non-detection of virion in the supernatants. Lmut4 was found to cause low viral growth rate, despite its high polymerase activity. The low growth rate was restored by Lmut2, Lmut3, and Lmut5. The polymerase activity of Lmut1 was extremely low, and recombinant HAZV carrying Lmut1 (rHAZV/Lmut1) was not released into the supernatants. However, genomes of rHAZV/Lmut1 were retained in the infected cells. All mutations (Lmut1-5) found in L protein of HAZVpi were required for experimental reproduction of HAZVpi, and only Lmut1 and Lmut4 were insufficient. We demonstrated that point mutations in viral polymerase contribute to the establishment of persistent HAZV infection. Furthermore, innate immunity was found to be suppressed in HAZVpi-infected cells, which also potentially contributes to viral persistence. This is the first presentation of a possible mechanism behind how nairoviruses establish persistent infection in human cells. IMPORTANCE We investigated whether and how nairoviruses persistently infect human cells, using Hazara orthonairovirus (HAZV), a surrogate model for Crimean-Congo hemorrhagic fever virus. We established a human cell line that was persistently infected with HAZV. Five mutations were found in L protein of persistently infected HAZV (HAZVpi): mut1, mut2, mut3, mut4, and mut5. Among them, Lmut1 and Lmut4 restricted viral growth by low polymerase activity and low growth rate, respectively, leading to inhibition of viral overgrowth. The restriction of viral growth caused by Lmut1 and Lmut4 was compensated by other mutations, including Lmut2, Lmut3, and Lmut5. Each of the mutations found in L protein of HAZVpi was concluded to cooperatively modulate viral growth, which facilitates the establishment of persistent infection. Suppression of innate immunity also potentially contributes to virus persistence. This is the first presentation of a possible mechanism behind how nairoviruses establish persistent infection in human cells.
Collapse
Affiliation(s)
- Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naoki Saka
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuzuha Nishi
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
20
|
Wang J, Ni Y, Zhao H, Liu X, Qiu R, Li S, Liu H. Complete genome sequence of a novel dsRNA virus from the phytopathogenic fungus Fusarium oxysporum. Arch Virol 2024; 169:75. [PMID: 38492088 DOI: 10.1007/s00705-024-05976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 03/18/2024]
Abstract
Fusarium oxysporum is a widespread plant pathogen that causes fusarium wilt and fusarium root rot in many economically significant crops. Here, a novel dsRNA virus tentatively named "Fusarium oxysporum virus 1" (FoV1) was identified in F. oxysporum strain 3S-18. The genome of FoV1 is 2,944 nucleotides (nt) in length and contains two non-overlapping open reading frames (ORF1 and 2). The larger of these, ORF2, encodes an RNA-dependent RNA polymerase (RdRp) of 590 amino acids with a molecular mass of 67.52 kDa. ORF1 encodes a putative nucleocapsid protein consisting of 134 amino acids with a molecular mass of 34.25 kDa. The RdRp domain of FoV1 shares 60.00% to 84.24% sequence identity with non-segmented dsRNA viruses. Phylogenetic analysis further suggested that FoV1 is a new member of the proposed genus "Unirnavirus" accommodating unclassified monopartite dsRNA viruses.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Yunxia Ni
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Hui Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Xintao Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Rui Qiu
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Shujun Li
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Zhengzhou, 450002, Henan Province, People's Republic of China.
| | - Hongyan Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan Province, People's Republic of China.
| |
Collapse
|
21
|
Durieux Trouilleton Q, Housset D, Tarillon P, Arragain B, Malet H. Structural characterization of the oligomerization of full-length Hantaan virus polymerase into symmetric dimers and hexamers. Nat Commun 2024; 15:2256. [PMID: 38480734 PMCID: PMC10937945 DOI: 10.1038/s41467-024-46601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Hantaan virus is a dangerous human pathogen whose segmented negative-stranded RNA genome is replicated and transcribed by a virally-encoded multi-functional polymerase. Here we describe the complete cryo-electron microscopy structure of Hantaan virus polymerase in several oligomeric forms. Apo polymerase protomers can adopt two drastically different conformations, which assemble into two distinct symmetric homodimers, that can themselves gather to form hexamers. Polymerase dimerization induces the stabilization of most polymerase domains, including the C-terminal domain that contributes the most to dimer's interface, along with a lariat region that participates to the polymerase steadying. Binding to viral RNA induces significant conformational changes resulting in symmetric oligomer disruption and polymerase activation, suggesting the possible involvement of apo multimers as protecting systems that would stabilize the otherwise flexible C-terminal domains. Overall, these results provide insights into the multimerization capability of Hantavirus polymerase and may help to define antiviral compounds to counteract these life-threatening viruses.
Collapse
Affiliation(s)
| | - Dominique Housset
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Paco Tarillon
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Benoît Arragain
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France.
- European Molecular Biology Laboratory (EMBL), Grenoble, France.
| | - Hélène Malet
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
22
|
Schiwek S, Slonka M, Alhussein M, Knierim D, Margaria P, Rose H, Richert-Pöggeler KR, Rostás M, Karlovsky P. Mycoviruses Increase the Attractiveness of Fusarium graminearum for Fungivores and Suppress Production of the Mycotoxin Deoxynivalenol. Toxins (Basel) 2024; 16:131. [PMID: 38535797 PMCID: PMC10975473 DOI: 10.3390/toxins16030131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/25/2025] Open
Abstract
RNA viruses of the genera Ambivirus, Mitovirus, Sclerotimonavirus, and Partitivirus were found in a single isolate of Fusarium graminearum. The genomes of the mitovirus, sclerotimonavirus, and partitivirus were assigned to previously described viruses, whereas the ambivirus genome putatively represents a new species, named Fusarium graminearum ambivirus 1 (FgAV1). To investigate the effect of mycoviruses on the fungal phenotype, the spontaneous loss of mycoviruses during meiosis and the transmission of mycoviruses into a new strain via anastomosis were used to obtain isogenic F. graminearum strains both with and without mycoviruses. Notable effects observed in mycovirus-harboring strains were (i) the suppression of the synthesis of trichothecene mycotoxins and their precursor trichodiene, (ii) the suppression of the synthesis of the defense compound aurofusarin, (iii) the stimulation of the emission of 2-methyl-1-butanol and 3-methyl-1-butanol, and (iv) the increased attractiveness of fungal mycelia for fungivorous collembolans. The increased attractiveness of mycovirus-infected filamentous fungi to animal predators opens new perspectives on the ecological implications of the infection of fungi with viruses.
Collapse
Affiliation(s)
- Simon Schiwek
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| | - Matthäus Slonka
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Dennis Knierim
- Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Brunswick, Germany; (D.K.); (P.M.)
| | - Paolo Margaria
- Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Brunswick, Germany; (D.K.); (P.M.)
| | - Hanna Rose
- Institute of Horticultural Production Systems, University of Hannover, 30419 Hannover, Germany
| | - Katja R. Richert-Pöggeler
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Michael Rostás
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Urayama SI, Fukudome A, Hirai M, Okumura T, Nishimura Y, Takaki Y, Kurosawa N, Koonin EV, Krupovic M, Nunoura T. Double-stranded RNA sequencing reveals distinct riboviruses associated with thermoacidophilic bacteria from hot springs in Japan. Nat Microbiol 2024; 9:514-523. [PMID: 38233646 PMCID: PMC10847044 DOI: 10.1038/s41564-023-01579-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Metatranscriptome sequencing expanded the known diversity of the bacterial RNA virome, suggesting that additional riboviruses infecting bacterial hosts remain to be discovered. Here we employed double-stranded RNA sequencing to recover complete genome sequences of two ribovirus groups from acidic hot springs in Japan. One group, denoted hot spring riboviruses (HsRV), consists of viruses with distinct RNA-directed RNA polymerases (RdRPs) that seem to be intermediates between typical ribovirus RdRPs and viral reverse transcriptases. This group forms a distinct phylum, Artimaviricota, or even kingdom within the realm Riboviria. We identified viruses encoding HsRV-like RdRPs in marine water, river sediments and salt marshes, indicating that this group is widespread beyond extreme ecosystems. The second group, denoted hot spring partiti-like viruses (HsPV), forms a distinct branch within the family Partitiviridae. The genome architectures of HsRV and HsPV and their identification in bacteria-dominated habitats suggest that these viruses infect thermoacidophilic bacteria.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, Tsukuba, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan.
| | - Akihito Fukudome
- Howard Hughes Medical Institute, Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Tomoyo Okumura
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Yosuke Nishimura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, Yokosuka, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Norio Kurosawa
- Faculty of Science and Engineering, Soka University, Hachioji, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, Yokosuka, Japan
| |
Collapse
|
24
|
Mohanty P, Panda P, Acharya RK, Pande B, Bhaskar LVKS, Verma HK. Emerging perspectives on RNA virus-mediated infections: from pathogenesis to therapeutic interventions. World J Virol 2023; 12:242-255. [PMID: 38187500 PMCID: PMC10768389 DOI: 10.5501/wjv.v12.i5.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023] Open
Abstract
RNA viruses continue to pose significant threats to global public health, necessitating a profound understanding of their pathogenic mechanisms and the development of effective therapeutic interventions. This manuscript provides a comprehensive overview of emerging perspectives on RNA virus-mediated infections, spanning from the intricate intricacies of viral pathogenesis to the forefront of innovative therapeutic strategies. A critical exploration of antiviral drugs sets the stage, highlighting the diverse classes of compounds that target various stages of the viral life cycle, underscoring the ongoing efforts to combat viral infections. Central to this discussion is the exploration of RNA-based therapeutics, with a spotlight on messenger RNA (mRNA)-based approaches that have revolutionized the landscape of antiviral interventions. Furthermore, the manuscript delves into the intricate world of delivery systems, exploring inno-vative technologies designed to enhance the efficiency and safety of mRNA vaccines. By analyzing the challenges and advancements in delivery mechanisms, this review offers a roadmap for future research and development in this critical area. Beyond conventional infectious diseases, the document explores the expanding applications of mRNA vaccines, including their promising roles in cancer immunotherapy and personalized medicine approaches. This manuscript serves as a valuable resource for researchers, clinicians, and policymakers alike, offering a nuanced perspective on RNA virus pathogenesis and the cutting-edge therapeutic interventions. By synthesizing the latest advancements and challenges, this review contributes significantly to the ongoing discourse in the field, driving the development of novel strategies to combat RNA virus-mediated infections effectively.
Collapse
Affiliation(s)
- Pratik Mohanty
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Poojarani Panda
- Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rakesh Kumar Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Bilaspur 495009, Chhattisgarh, India
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur 492001, chhattisgarh, India
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Bilaspur 495009, Chhattisgarh, India
| | - Henu Kumar Verma
- Lung Health and Immunity, Helmholtz Zentrum Munich, Munich 85764, Bayren, Germany
| |
Collapse
|
25
|
Shehzadi K, Yu M, Liang J. De Novo Potent Peptide Nucleic Acid Antisense Oligomer Inhibitors Targeting SARS-CoV-2 RNA-Dependent RNA Polymerase via Structure-Guided Drug Design. Int J Mol Sci 2023; 24:17473. [PMID: 38139312 PMCID: PMC10744289 DOI: 10.3390/ijms242417473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Global reports of novel SARS-CoV-2 variants and recurrence cases continue despite substantial vaccination campaigns, raising severe concerns about COVID-19. While repurposed drugs offer some treatment options for COVID-19, notably, nucleoside inhibitors like Remdesivir stand out as curative therapies for COVID-19 that are approved by the US Food and Drug Administration (FDA). The emergence of highly contagious SARS-CoV-2 variants underscores the imperative for antiviral drugs adaptable to evolving viral mutations. RNA-dependent RNA polymerase (RdRp) plays a key role in viral genome replication. Currently, inhibiting viral RdRp function remains a pivotal strategy to tackle the notorious virus. Peptide nucleic acid (PNA) therapy shows promise by effectively targeting specific genome regions, reducing viral replication, and inhibiting infection. In our study, we designed PNA antisense oligomers conjugated with cell-penetrating peptides (CPP) aiming to evaluate their antiviral effects against RdRp target using structure-guided drug design, which involves molecular docking simulations, drug likeliness and pharmacokinetic evaluations, molecular dynamics simulations, and computing binding free energy. The in silico analysis predicts that chemically modified PNAs might act as antisense molecules in order to disrupt ribosome assembly at RdRp's translation start site, and their chemically stable and neutral backbone might enhance sequence-specific RNA binding interaction. Notably, our findings demonstrate that PNA-peptide conjugates might be the most promising inhibitors of SARS-CoV-2 RdRp, with superior binding free energy compared to Remdesivir in the current COVID-19 medication. Specifically, PNA-CPP-1 could bind simultaneously to the active site residues of RdRp protein and sequence-specific RdRp-RNA target in order to control viral replication.
Collapse
Affiliation(s)
| | - Mingjia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| | - Jianhua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| |
Collapse
|
26
|
Uemura K, Nobori H, Sato A, Toba S, Kusakabe S, Sasaki M, Tabata K, Matsuno K, Maeda N, Ito S, Tanaka M, Anraku Y, Kita S, Ishii M, Kanamitsu K, Orba Y, Matsuura Y, Hall WW, Sawa H, Kida H, Matsuda A, Maenaka K. 2-thiouridine is a broad-spectrum antiviral nucleoside analogue against positive-strand RNA viruses. Proc Natl Acad Sci U S A 2023; 120:e2304139120. [PMID: 37831739 PMCID: PMC10589713 DOI: 10.1073/pnas.2304139120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are causing significant morbidity and mortality worldwide. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these or many other viruses have been approved, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral ribonucleoside analogue that exhibited antiviral activity against several positive-sense single-stranded RNA (ssRNA+) viruses, such as DENV, SARS-CoV-2, and its variants of concern, including the currently circulating Omicron subvariants. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with DENV2 or SARS-CoV-2 in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against DENV and SARS-CoV-2 but other ssRNA+ viruses.
Collapse
Affiliation(s)
- Kentaro Uemura
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
| | - Haruaki Nobori
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
| | - Shinsuke Toba
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Shinji Kusakabe
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Keita Matsuno
- Unit of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Naoyoshi Maeda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Shiori Ito
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Mayu Tanaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Mayumi Ishii
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo113-0033, Japan
| | - Kayoko Kanamitsu
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo113-0033, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
| | - William W. Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, DublinD04, Ireland
- Global Virus Network, Baltimore, MD21201
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Global Virus Network, Baltimore, MD21201
| | - Hiroshi Kida
- Laboratory for Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo060-0812, Japan
| |
Collapse
|
27
|
Rodrigues Dutra JV, Santos IA, Grosche VR, Jardim ACG, de Aguiar RS, Junior NN, José DP. L protein characterization and in silico screening of putative broad range target molecules for pathogenic mammarenaviruses from South America. J Biomol Struct Dyn 2023; 42:12176-12194. [PMID: 37817533 DOI: 10.1080/07391102.2023.2268186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023]
Abstract
The genus Mammarenavirus belonging to the family Arenaviridae encompasses pathogenic viral species capable of triggering severe diseases in humans, causing concern for the health system due to the high fatality rate associated with them. Currently, there is a dearth of specific therapies against pathogens of the genus. Natural products isolated from plants have impacted the development of drugs against several diseases. The Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE) database offers several natural compounds with antimicrobial activities that can be used in the development of new antiviral drugs. In this context, here we modeled the arenavirus L protein, multifunctional machinery essential for the viral replicative cycle, making this enzyme a potential candidate for targeting the development of antivirals against genus pathogens. Using the modeled L protein, a virtual screening was performed, which suggested eleven molecules from the NuBBE database that binds to the active site of the L protein, which was promising in the in silico predictions of absorption and toxicity analysis. The NuBBE 1642 molecule proved to be the best candidate for four of the five species evaluated, acting as a possible broad-spectrum molecule. Additionally, our results showed that the L protein is highly conserved among species of the genus, as well as presenting close phylogenetic relationships between many of the species studied, strengthening its candidacy as a therapeutic target. The data presented here demonstrate that some NuBBE molecules are potential ligands for the L protein of arenaviruses, which may help to contain possible outbreaks.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- João Victor Rodrigues Dutra
- Federal University of Triângulo Mineiro, Iturama, Minas Gerais, Brazil
- Laboratory of Integrative Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Igor Andrade Santos
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
| | - Victória Riquena Grosche
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
- São Paulo State University, São José do Rio Preto, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
- São Paulo State University, São José do Rio Preto, Brazil
| | - Renato Santana de Aguiar
- Laboratory of Integrative Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nilson Nicolau Junior
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
28
|
Kariithi HM, Volkening JD, Chiwanga GH, Goraichuk IV, Msoffe PLM, Suarez DL. Molecular Characterization of Complete Genome Sequence of an Avian Coronavirus Identified in a Backyard Chicken from Tanzania. Genes (Basel) 2023; 14:1852. [PMID: 37895200 PMCID: PMC10606662 DOI: 10.3390/genes14101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
A complete genome sequence of an avian coronavirus (AvCoV; 27,663 bp excluding 3' poly(A) tail) was determined using nontargeted next-generation sequencing (NGS) of an oropharyngeal swab from a backyard chicken in a live bird market in Arusha, Tanzania. The open reading frames (ORFs) of the Tanzanian strain TZ/CA127/19 are organized as typical of gammaCoVs (Coronaviridae family): 5'UTR-[ORFs 1a/1b encoding replicase complex (Rep1ab) non-structural peptides nsp2-16]-[spike (S) protein]-[ORFs 3a/3b]-[small envelop (E) protein]-[membrane (M) protein]-[ORFs 4a/4c]-[ORFs 5a/5b]-[nucleocapsid (N) protein]-[ORF6b]-3'UTR. The structural (S, E, M and N) and Rep1ab proteins of TZ/CA127/19 contain features typically conserved in AvCoVs, including the cleavage sites and functional motifs in Rep1ab and S. Its genome backbone (non-spike region) is closest to Asian GI-7 and GI-19 infectious bronchitis viruses (IBVs) with 87.2-89.7% nucleotide (nt) identities, but it has a S gene closest (98.9% nt identity) to the recombinant strain ck/CN/ahysx-1/16. Its 3a, 3b E and 4c sequences are closest to the duck CoV strain DK/GD/27/14 at 99.43%, 100%, 99.65% and 99.38% nt identities, respectively. Whereas its S gene phylogenetically cluster with North American TCoVs and French guineafowl COVs, all other viral genes group monophyletically with Eurasian GI-7/GI-19 IBVs and Chinese recombinant AvCoVs. Detection of a 4445 nt-long recombinant fragment with breakpoints at positions 19,961 and 24,405 (C- and N-terminus of nsp16 and E, respectively) strongly suggested that TZ/CA127/19 acquired its genome backbone from an LX4-type (GI-19) field strain via recombination with an unknown AvCoV. This is the first report of AvCoV in Tanzania and leaves unanswered the questions of its emergence and the biological significance.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Nairobi 00200, Kenya
| | | | - Gaspar H. Chiwanga
- Tanzania Veterinary Laboratory Agency, South Zone, Mtwara P.O. Box 186, Tanzania
| | - Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 61023 Kharkiv, Ukraine
| | - Peter L. M. Msoffe
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Chuo Kikuu, Morogoro P.O. Box 3021, Tanzania
- National Ranching Company Ltd., Dodoma P.O. Box 1819, Tanzania
| | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
| |
Collapse
|
29
|
Urayama SI, Fukudome A, Hirai M, Okumura T, Nishimura Y, Takaki Y, Kurosawa N, Koonin EV, Krupovic M, Nunoura T. Distinct groups of RNA viruses associated with thermoacidophilic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547447. [PMID: 37790367 PMCID: PMC10542131 DOI: 10.1101/2023.07.02.547447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Recent massive metatranscriptome mining substantially expanded the diversity of the bacterial RNA virome, suggesting that additional groups of riboviruses infecting bacterial hosts remain to be discovered. We employed full length double-stranded (ds) RNA sequencing for identification of riboviruses associated with microbial consortia dominated by bacteria and archaea in acidic hot springs in Japan. Whole sequences of two groups of multisegmented riboviruses genomes were obtained. One group, which we denoted hot spring riboviruses (HsRV), consists of unusual viruses with distinct RNA-dependent RNA polymerases (RdRPs) that seem to be intermediates between typical ribovirus RdRPs and viral reverse transcriptases. We also identified viruses encoding HsRV-like RdRPs in moderate aquatic environments, including marine water, river sediments and salt marsh, indicating that this previously overlooked ribovirus group is not restricted to the extreme ecosystem. The HsRV-like viruses are candidates for a distinct phylum or even kingdom within the viral realm Riboviria. The second group, denoted hot spring partiti-like viruses (HsPV), is a distinct branch within the family Partitiviridae. All genome segments in both these groups of viruses display the organization typical of bacterial riboviruses, where multiple open reading frames encoding individual proteins are preceded by ribosome-binding sites. Together with the identification in bacteria-dominated habitats, this genome architecture indicates that riboviruses of these distinct groups infect thermoacidophilic bacterial hosts.
Collapse
Affiliation(s)
- Syun-ichi Urayama
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akihito Fukudome
- Howard Hughes Medical Institute, Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana Univeristy, Bloomington, IN, USA
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Tomoyo Okumura
- Marine Core Research Institute, Kochi University, 200 Otsu, Monobe, Nankoku City, Kochi, 783-8502, Japan
| | - Yosuke Nishimura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji 192-8577, Japan
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| |
Collapse
|
30
|
Olendraite I, Brown K, Firth AE. Identification of RNA Virus-Derived RdRp Sequences in Publicly Available Transcriptomic Data Sets. Mol Biol Evol 2023; 40:msad060. [PMID: 37014783 PMCID: PMC10101049 DOI: 10.1093/molbev/msad060] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/15/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
RNA viruses are abundant and highly diverse and infect all or most eukaryotic organisms. However, only a tiny fraction of the number and diversity of RNA virus species have been catalogued. To cost-effectively expand the diversity of known RNA virus sequences, we mined publicly available transcriptomic data sets. We developed 77 family-level Hidden Markov Model profiles for the viral RNA-dependent RNA polymerase (RdRp)-the only universal "hallmark" gene of RNA viruses. By using these to search the National Center for Biotechnology Information Transcriptome Shotgun Assembly database, we identified 5,867 contigs encoding RNA virus RdRps or fragments thereof and analyzed their diversity, taxonomic classification, phylogeny, and host associations. Our study expands the known diversity of RNA viruses, and the 77 curated RdRp Profile Hidden Markov Models provide a useful resource for the virus discovery community.
Collapse
Affiliation(s)
- Ingrida Olendraite
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Sahin E, Ozbey Saridogan BG, Keskin E, Akata I. Identification and complete genome sequencing of a novel betapartitivirus naturally infecting the mycorrhizal desert truffle Terfezia claveryi. Virus Genes 2023; 59:254-259. [PMID: 36735175 DOI: 10.1007/s11262-023-01972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Viruses that naturally infect fungal species and capable of establishing mycorrhizae are largely unknown. In this study, we identified and characterized a new partitivirus inhabiting the ascomycete, mycorrhizal desert truffle species Terfezia claveryi, and named it "Terfezia claveryi partitivirus 1" (TcPV1). The entire genome of TcPV1, sequenced by both high throughput sequencing of the total dsRNA extracts and by Sanger sequencing of the RLM-RACE PCR products comprised two dsRNA segments of 2404 bp and 2374 bp, respectively. Both dsRNA genome segments harbored a single open reading frame (ORF), encoding a putative RNA-dependent RNA polymerase (RdRp), and a capsid protein (CP), respectively. The BLASTp search of the RdRp and CP sequences revealed the highest sequence identities (41.92% and 24.13% identity, respectively) to those of Bipolaris maydis partitivirus 2 and Plasmopara viticola lesion associated partitivirus 5. Molecular phylogenetic analyses of the RdRp sequence showed that TcPV1 fall within a clade composed entirely of members of the genus Betapartitivirus, belonging to the family Partitiviridae. In light of this molecular evidence, TcPV1 is a new member of the genus Betapartitivirus. This is the first report of a new partitivirus hosted by the ascomycete, mycorrhizal fungus T. claveryi.
Collapse
Affiliation(s)
- Ergin Sahin
- Department of Biology, Faculty of Science, Dokuz Eylül University, Buca, 35390, İzmir, Turkey.
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Buca, 35390, İzmir, Turkey.
| | | | - Emre Keskin
- Evolutionary Genetics Laboratory (eGL), Faculty of Agriculture, Department of Fisheries and Aquaculture, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Ilgaz Akata
- Department of Biology, Faculty of Science, Ankara University, Tandogan, 06100, Ankara, Turkey
| |
Collapse
|
32
|
Akata I, Edis G, Keskin E, Sahin E. Diverse partitiviruses hosted by the ectomycorrhizal agaric Hebeloma mesophaeum and the natural transmission of a partitivirus between phylogenetically distant, sympatric fungi. Virology 2023; 581:63-70. [PMID: 36913914 DOI: 10.1016/j.virol.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Mycorrhizal fungi host diverse mycoviruses that contribute to our understanding of their diversity and evolution. Here we report on the identification and complete genome characterization of three novel partitiviruses naturally infecting the ectomycorrhizal fungus Hebeloma mesophaeum. During NGS derived viral sequence analyses, we identified a partitivirus that is conspecific with the previously reported partitivirus (LcPV1) described from a saprotrophic fungus Leucocybe candicans. The two distinct fungal specimens inhabited the same vicinity of a campus garden. RdRp sequences encoded by the LcPV1 isolates from both host fungi was found to be identical. Bio-tracking studies revealed that viral loads of LcPV1 drop significantly in L. candicans but not in H. mesophaeum within four years period. The physical proximity of the mycelial networks of both fungal specimens implied the occurrence of a virus transmission event with unknown mechanism. Nature of this virus transmission was discussed in relation to transient interspecific mycelial contact hypothesis.
Collapse
Affiliation(s)
- Ilgaz Akata
- Ankara University Faculty of Science Department of Biology, 06100, Tandogan, Ankara, Turkey
| | - Gulce Edis
- Ankara University Science Institute, 06110, Dışkapı, Ankara, Turkey
| | - Emre Keskin
- Evolutionary Genetics Laboratory (eGL), Faculty of Agriculture Department of Fisheries and Aquaculture, Ankara University, 06110, Dışkapı, Ankara, Turkey
| | - Ergin Sahin
- Dokuz Eylül University Faculty of Science Department of Biology, 35390, Buca, İzmir, Turkey; Dokuz Eylül University Fauna and Flora Research and Application Center, 35390, Buca, İzmir, Turkey.
| |
Collapse
|
33
|
Computational identification of drug-like marine natural products as potential RNA polymerase inhibitors against Nipah virus. Comput Biol Chem 2023; 104:107850. [PMID: 36907056 DOI: 10.1016/j.compbiolchem.2023.107850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Nipah virus (NiV) has been an alarming threat to human populations in southern Asia for more than a decade. It is one of the most deadly viruses in the Mononegavirales order. Despite its high mortality rate and virulence, no chemotherapeutic agent or vaccine is publicly available. Hence, this work was conducted to computationally screen marine natural products database for drug-like potential inhibitors for the viral RNA-dependent RNA polymerase (RdRp). The structural model was subjected to molecular dynamics (MD) simulation to obtain the native ensemble of the protein. The CMNPDB dataset of marine natural products was filtered to retain only compounds following Lipinski's five rules. The molecules were energy minimized and docked into different conformers of the RdRp using AutoDock Vina. The best 35 molecules were rescored by GNINA, a deep learning-based docking software. The resulting nine compounds were evaluated for their pharmacokinetic profiles and medicinal chemistry properties. The best five compounds were subjected to MD simulation for 100 ns, followed by binding free energy estimation via Molecular Mechanics/ Generalized Born Surface Area (MM/GBSA) calculations. The results showed remarkable behavior of five hits as inferred by stable binding pose and orientation to block the exit channel of RNA synthesis products in the RdRp cavity. These hits are promising starting materials for in vitro validation and structural modifications to enhance the pharmacokinetic and medicinal chemistry properties for developing antiviral lead compounds.
Collapse
|
34
|
Zhou Q, Luo Y, Zhu Y, Chen Q, Qiu J, Cong F, Li Y, Zhang X. Nonsteroidal anti-inflammatory drugs (NSAIDs) and nucleotide analog GS-441524 conjugates with potent in vivo efficacy against coronaviruses. Eur J Med Chem 2023; 249:115113. [PMID: 36706621 PMCID: PMC9830933 DOI: 10.1016/j.ejmech.2023.115113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Coronaviruses (CoVs) infect a broad range of hosts, including humans and various animals, with a tendency to cross the species barrier, causing severe harm to human society and fostering the need for effective anti-coronaviral drugs. GS-441524 is a broad-spectrum antiviral nucleoside with potent anti-CoVs activities. However, its application is limited by poor oral bioavailability. Herein, we designed and synthesized several conjugates via covalently binding NSAIDs to 5'-OH of GS-441524 through ester bonds. The ibuprofen conjugate, ATV041, exhibited potent in vitro anti-coronaviral efficacy against four zoonotic coronaviruses in the alpha- and beta-genera. Oral-dosed ATV041 resulted in favorable bioavailability and rapid tissue distribution of GS-441524 and ibuprofen. In MHV-A59 infected mice, ATV041 dose-dependently decreased viral RNA replication and significantly reduced the proinflammatory cytokines in the liver and the lung at 3 dpi. As a result, the MHV-A59-induced lung and liver inflammatory injury was significantly alleviated. Taken together, this work provides a novel drug conjugate strategy to improve oral PK and offers a potent anti-coronaviral lead compound for further studies.
Collapse
Affiliation(s)
- Qifan Zhou
- Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Yinzhu Luo
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, 510663, China
| | - Yujun Zhu
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, 510663, China
| | - Qishu Chen
- Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Jingfei Qiu
- Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Feng Cong
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, 510663, China.
| | - Yingjun Li
- Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China; State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| | - Xumu Zhang
- Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
35
|
Endoh T, Takahashi S, Sugimoto N. Endogenous G-quadruplex-forming RNAs inhibit the activity of SARS-CoV-2 RNA polymerase. Chem Commun (Camb) 2023; 59:872-875. [PMID: 36594508 DOI: 10.1039/d2cc05858h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Replication of RNA viruses is catalysed by virus-specific polymerases, which can be targets of therapeutic strategies. In this study, we used a selection strategy to identify endogenous RNAs from a transcriptome library derived from lung cells that interact with the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Some of the selected RNAs weakened the activity of RdRp by forming G-quadruplexes. These results suggest that certain endogenous RNAs, which potentially form G-quadruplexes, can reduce the replication of viral RNAs.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan. .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan
| |
Collapse
|
36
|
Naidu SAG, Mustafa G, Clemens RA, Naidu AS. Plant-Derived Natural Non-Nucleoside Analog Inhibitors (NNAIs) against RNA-Dependent RNA Polymerase Complex (nsp7/nsp8/nsp12) of SARS-CoV-2. J Diet Suppl 2023; 20:254-283. [PMID: 34850656 DOI: 10.1080/19390211.2021.2006387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of fast-spreading SARS-CoV-2 mutants has sparked a new phase of COVID-19 pandemic. There is a dire necessity for antivirals targeting highly conserved genomic domains on SARS-CoV-2 that are less prone to mutation. The nsp12, also known as the RNA-dependent RNA-polymerase (RdRp), the core component of 'SARS-CoV-2 replication-transcription complex', is a potential well-conserved druggable antiviral target. Several FDA-approved RdRp 'nucleotide analog inhibitors (NAIs)' such as remdesivir, have been repurposed to treat COVID-19 infections. The NAIs target RdRp protein translation and competitively block the nucleotide insertion into the RNA chain, resulting in the inhibition of viral replication. However, the replication proofreading function of nsp14-ExoN could provide resistance to SARS-CoV-2 against many NAIs. Conversely, the 'non-nucleoside analog inhibitors (NNAIs)' bind to allosteric sites on viral polymerase surface, change the redox state; thereby, exert antiviral activity by altering interactions between the enzyme substrate and active core catalytic site of the RdRp. NNAIs neither require metabolic activation (unlike NAIs) nor compete with intracellular pool of nucleotide triphosphates (NTPs) for anti-RdRp activity. The NNAIs from phytonutrient origin are potential antiviral candidates compared to their synthetic counterparts. Several in-silico studies reported the antiviral spectrum of natural phytonutrient-NNAIs such as Suramin, Silibinin (flavonolignan), Theaflavin (tea polyphenol), Baicalein (5,6,7-trihydroxyflavone), Corilagin (gallotannin), Hesperidin (citrus bioflavonoid), Lycorine (pyrrolidine alkaloid), with superior redox characteristics (free binding energy, hydrogen-bonds, etc.) than antiviral drugs (i.e. remdesivir, favipiravir). These phytonutrient-NNAIs also exert anti-inflammatory, antioxidant, immunomodulatory and cardioprotective functions, with multifunctional therapeutic benefits in the clinical management of COVID-19.
Collapse
Affiliation(s)
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
37
|
Discovery, Genomic Sequence Characterization and Phylogenetic Analysis of Novel RNA Viruses in the Turfgrass Pathogenic Colletotrichum spp. in Japan. Viruses 2022; 14:v14112572. [PMID: 36423181 PMCID: PMC9698584 DOI: 10.3390/v14112572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Turfgrass used in various areas of the golf course has been found to present anthracnose disease, which is caused by Colletotrichum spp. To obtain potential biological agents, we identified four novel RNA viruses and obtained full-length viral genomes from turfgrass pathogenic Colletotrichum spp. in Japan. We characterized two novel dsRNA partitiviruses: Colletotrichum associated partitivirus 1 (CaPV1) and Colletotrichum associated partitivirus 2 (CaPV2), as well as two negative single-stranded (ss) RNA viruses: Colletotrichum associated negative-stranded RNA virus 1 (CaNSRV1) and Colletotrichum associated negative-stranded RNA virus 2 (CaNSRV2). Using specific RT-PCR assays, we confirmed the presence of CaPV1, CaPV2 and CaNSRV1 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-264, as well as CaNSRV2 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-288. This is the first time mycoviruses have been discovered in turfgrass pathogenic Colletotrichum spp. in Japan. CaPV1 and CaPV2 are new members of the newly proposed genus "Zetapartitivirus" and genus Alphapartitivirus, respectively, in the family Partitiviridae, according to genomic characterization and phylogenetic analysis. Negative sense ssRNA viruses CaNSRV1 and CaNSRV2, on the other hand, are new members of the family Phenuiviridae and the proposed family "Mycoaspirividae", respectively. These findings reveal previously unknown RNA virus diversity and evolution in turfgrass pathogenic Colletotrichum spp.
Collapse
|
38
|
Edgar RC. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun 2022; 13:6968. [PMID: 36379955 PMCID: PMC9664440 DOI: 10.1038/s41467-022-34630-w] [Citation(s) in RCA: 286] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sequence alignments are widely used to infer evolutionary relationships, enabling inferences of structure, function, and phylogeny. Standard practice is to construct one alignment by some preferred method and use it in further analysis; however, undetected alignment bias can be problematic. I describe Muscle5, a novel algorithm which constructs an ensemble of high-accuracy alignment with diverse biases by perturbing a hidden Markov model and permuting its guide tree. Confidence in an inference is assessed as the fraction of the ensemble which supports it. Applied to phylogenetic tree estimation, I show that ensembles can confidently resolve topologies with low bootstrap according to standard methods, and conversely that some topologies with high bootstraps are incorrect. Applied to the phylogeny of RNA viruses, ensemble analysis shows that recently adopted taxonomic phyla are probably polyphyletic. Ensemble analysis can improve confidence assessment in any inference from an alignment.
Collapse
|
39
|
Abstract
RNA viruses include respiratory viruses, such as coronaviruses and influenza viruses, as well as vector-borne viruses, like dengue and West Nile virus. RNA viruses like these encounter various environments when they copy themselves and spread from cell to cell or host to host. Ex vivo differences, such as geographical location and humidity, affect their stability and transmission, while in vivo differences, such as pH and host gene expression, impact viral receptor binding, viral replication, and the host immune response against the viral infection. A critical factor affecting RNA viruses both ex vivo and in vivo, and defining the outcome of viral infections and the direction of viral evolution, is temperature. In this minireview, we discuss the impact of temperature on viral replication, stability, transmission, and adaptation, as well as the host innate immune response. Improving our understanding of how RNA viruses function, survive, and spread at different temperatures will improve our models of viral replication and transmission risk analyses.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
40
|
Babaian A, Edgar R. Ribovirus classification by a polymerase barcode sequence. PeerJ 2022; 10:e14055. [PMID: 36258794 PMCID: PMC9573346 DOI: 10.7717/peerj.14055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023] Open
Abstract
RNA viruses encoding a polymerase gene (riboviruses) dominate the known eukaryotic virome. High-throughput sequencing is revealing a wealth of new riboviruses known only from sequence, precluding classification by traditional taxonomic methods. Sequence classification is often based on polymerase sequences, but standardised methods to support this approach are currently lacking. To address this need, we describe the polymerase palmprint, a segment of the palm sub-domain robustly delineated by well-conserved catalytic motifs. We present an algorithm, Palmscan, which identifies palmprints in nucleotide and amino acid sequences; PALMdb, a collection of palmprints derived from public sequence databases; and palmID, a public website implementing palmprint identification, search, and annotation. Together, these methods demonstrate a proof-of-concept workflow for high-throughput characterisation of RNA viruses, paving the path for the continued rapid growth in RNA virus discovery anticipated in the coming decade.
Collapse
Affiliation(s)
- Artem Babaian
- St Edmunds College, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Robert Edgar
- Corte Madera, California, United States of America
| |
Collapse
|
41
|
Ramaswamy K, Rashid M, Ramasamy S, Jayavelu T, Venkataraman S. Revisiting Viral RNA-Dependent RNA Polymerases: Insights from Recent Structural Studies. Viruses 2022; 14:2200. [PMID: 36298755 PMCID: PMC9612308 DOI: 10.3390/v14102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
RNA-dependent RNA polymerases (RdRPs) represent a distinctive yet versatile class of nucleic acid polymerases encoded by RNA viruses for the replication and transcription of their genome. The structure of the RdRP is comparable to that of a cupped right hand consisting of fingers, palm, and thumb subdomains. Despite the presence of a common structural core, the RdRPs differ significantly in the mechanistic details of RNA binding and polymerization. The present review aims at exploring these incongruities in light of recent structural studies of RdRP complexes with diverse cofactors, RNA moieties, analogs, and inhibitors.
Collapse
Affiliation(s)
- Kavitha Ramaswamy
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Mariya Rashid
- Taiwan International Graduate Program, Molecular Cell Biology (National Defense Medical Center and Academia Sinica), Taipei 115, Taiwan;
| | - Selvarajan Ramasamy
- National Research Center for Banana, Somarasempettai−Thogaimalai Rd, Podavur, Tamil Nadu 639103, India;
| | - Tamilselvan Jayavelu
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Sangita Venkataraman
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| |
Collapse
|
42
|
Chen X, Yu Z, Sun Y, Yang M, Jiang N. Molecular characterization of a novel partitivirus isolated from Rhizoctonia solani. Front Microbiol 2022; 13:978075. [PMID: 36204602 PMCID: PMC9531756 DOI: 10.3389/fmicb.2022.978075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Rhizoctonia solani is a widely distributed plant pathogen that can damage many crops. Here, we identified a novel mycovirus tentatively named Rhizoctonia solani partitivirus 433 (RsPV433) from an R. solani (AG-3) strain which caused tobacco target spot disease on flue-cured tobacco. RsPV433 was consisted of two dsRNA segments with lengths of 2450 and 2273 bp, which encoded an RNA-dependent RNA polymerase and a coat protein, respectively. BLASTP results of RsPV433 showed that the closest relative of RsPV433 was Sarcosphaera coronaria partitivirus (QLC36830.1), with an identity of 60.85% on the RdRp amino sequence. Phylogenetic analysis indicated that RsPV433 belonged to the Betapartitivirus genus in the Partitiviridae family. The virus transmission experiment revealed that RsPV433 can be transmitted horizontally. We further tested the biological effect of RsPV433 on R. solani strains and found that the RsPV433-infected R. solani strain grew slower than the RsPV433-free strain on the PDA medium and RsPV433 seemed to have no obvious impact on the lesion inducing ability of R. solani.
Collapse
Affiliation(s)
- Xiangru Chen
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Zhaoyao Yu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Yujia Sun
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Meipeng Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Ning Jiang
- Agronomic Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- *Correspondence: Ning Jiang
| |
Collapse
|
43
|
El Mansouri AE, Lachhab S, Oubella A, Ahmad M, Neyts J, Jochmans D, Chiu W, Vangeel L, De Jonghe S, Morjani H, Ali MA, Zahouily M, Sanghvi YS, Lazrek HB. Synthesis, characterization, molecular docking, and anticancer activities of new 1,3,4-oxadiazole-5-fluorocytosine hybrid derivatives. J Mol Struct 2022; 1272:134135. [PMID: 36101881 PMCID: PMC9459830 DOI: 10.1016/j.molstruc.2022.134135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/18/2023]
Abstract
Analogs of pyrimidine and 1,3,4-oxadiazole are two well established class of molecules proven as potent antiviral and anticancer agents in the pharmaceutical industry. We envisioned designing new molecules where these two heterocycles were conjugated with the goal of enhancing biological activity. In this vein, we synthesized a series of novel pyrimidine-1,3,4-oxadiazole conjugated hybrid molecules as potential anticancer and antiviral agents. Herein, we present a new design for 5-fluorocytosine-1,3,4-oxadiazole hybrids (5a-h) connected via a methylene bridge. An efficient synthesis of new derivatives was established, and all compounds were fully characterized by NMR and MS. Eight compounds were evaluated for their cytotoxic activity against fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), lung carcinoma (A-549), and for their antiviral activity against SARS-CoV-2. Among all compounds tested, the compound 5e showed marked growth inhibition against all cell lines tested, particularly in HT-1080, with IC50 values of 19.56 µM. Meanwhile, all tested compounds showed no anti-SARS-CoV-2 activity, with EC50 >100 µM. The mechanism of cell death was investigated using Annexin V staining, caspase-3/7 activity, and analysis of cell cycle progression. The compound 5e induced apoptosis by the activation of caspase-3/7 and cell-cycle arrest in HT-1080 and A-549 cells at the G2M phase. The molecular docking suggested that the compound 5e activated caspase-3 via the formation of a stable complex protein-ligand.
Collapse
Affiliation(s)
- Az-Eddine El Mansouri
- Laboratory of Biomolecular and Medicinal chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakesh, Morocco
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, 20650, Morocco
| | - Saida Lachhab
- Laboratory of Biomolecular and Medicinal chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakesh, Morocco
| | - Ali Oubella
- Laboratoire de Synthese Organique et de Physico-Chimie Moleculaire, Departement de Chimie, Faculte´ des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco
| | - Mehdi Ahmad
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dirk Jochmans
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Winston Chiu
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Laura Vangeel
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Hamid Morjani
- BioSpecT - EA7506 UFR de Pharmacie, Univ-Reims 51, rue Cognacq Jay 51096 Reims cedex, France
| | - Mustapha Ait Ali
- Laboratory of Biomolecular and Medicinal chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakesh, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, 20650, Morocco
| | - Yogesh S Sanghvi
- Rasayan Inc. 2802 Crystal Ridge Road, Encinitas, CA 92024-6615, U.S.A
| | - Hassan B Lazrek
- Laboratory of Biomolecular and Medicinal chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakesh, Morocco
| |
Collapse
|
44
|
Charon J, Buchmann JP, Sadiq S, Holmes EC. RdRp-Scan: A Bioinformatic Resource to Identify and Annotate Divergent RNA Viruses in Metagenomic Sequence Data. Virus Evol 2022; 8:veac082. [PMID: 36533143 PMCID: PMC9752661 DOI: 10.1093/ve/veac082] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Despite a rapid expansion in the number of documented viruses following the advent of metagenomic sequencing, the identification and annotation of highly divergent RNA viruses remains challenging, particularly from poorly characterized hosts and environmental samples. Protein structures are more conserved than primary sequence data, such that structure-based comparisons provide an opportunity to reveal the viral “dusk matter”: viral sequences with low, but detectable, levels of sequence identity to known viruses with available protein structures. Here, we present a new open computational and resource – RdRp-scan – that contains a standardized bioinformatic toolkit to identify and annotate divergent RNA viruses in metagenomic sequence data based on the detection of RNA dependent RNA polymerase (RdRp) sequences. By combining RdRp-specific Hidden Markov models (HMM) and structural comparisons we show that RdRp-scan can efficiently detect RdRp sequences with identity levels as low as 10% to those from known viruses and not identifiable using standard sequence-to-sequence comparisons. In addition, to facilitate the annotation and placement of newly detected and divergent virus-like sequences into the diversity of RNA viruses, RdRp-scan provides new custom and curated databases of viral RdRp sequences and core motifs, as well as pre-built RdRp multiple sequence alignments. In parallel, our analysis of the sequence diversity detected by RdRp-scan revealed that while most of the taxonomically unassigned RdRps fell into pre-established clusters, with some falling into potentially new orders of RNA viruses related to the Wolframvirales and Tolivirales. Finally, a survey of the conserved A, B and C RdRp motifs within the RdRp-scan sequence database revealed additional variations of both sequence and position that might provide new insights into the structure, function and evolution of viral polymerases.
Collapse
Affiliation(s)
- Justine Charon
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney , Sydney, NSW 2006, Australia
| | - Jan P Buchmann
- Institute for Biological Data Science, Heinrich-Heine-University , Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Sabrina Sadiq
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney , Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney , Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Glab-ampai K, Kaewchim K, Thavorasak T, Saenlom T, Thepsawat W, Mahasongkram K, Thueng-In K, Sookrung N, Chaicumpa W, Chulanetra M. Targeting Emerging RNA Viruses by Engineered Human Superantibody to Hepatitis C Virus RNA-Dependent RNA Polymerase. Front Microbiol 2022; 13:926929. [PMID: 35935185 PMCID: PMC9355540 DOI: 10.3389/fmicb.2022.926929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-dependent RNA polymerase (RdRp) is a unique and highly conserved enzyme across all members of the RNA virus superfamilies. Besides, humans do not have a homolog of this protein. Therefore, the RdRp is an attractive target for a broadly effective therapeutic agent against RNA viruses. In this study, a formerly generated cell-penetrating human single-chain antibody variable fragment (superantibody) to a conformational epitope of hepatitis C virus (HCV) RdRp, which inhibited the polymerase activity leading to the HCV replication inhibition and the host innate immunity restoration, was tested against emerging/reemerging RNA viruses. The superantibody could inhibit the replication of the other members of the Flaviviridae (DENV serotypes 1−4, ZIKV, and JEV), Picornaviridae (genus Enterovirus: EV71, CVA16), and Coronaviridae (genus Alphacoronavirus: PEDV, and genus Betacoronavirus: SARS-CoV-2 (Wuhan wild-type and the variants of concern), in a dose-dependent manner, as demonstrated by the reduction of intracellular viral RNAs and numbers of the released infectious particles. Computerized simulation indicated that the superantibody formed contact interfaces with many residues at the back of the thumb domain (thumb II site, T2) of DENV, ZIKV, JEV, EV71, and CVA16 and fingers and thumb domains of the HCV and coronaviruses (PEDV and SARS-CoV-2). The superantibody binding may cause allosteric change in the spatial conformation of the enzyme and disrupt the catalytic activity, leading to replication inhibition. Although the speculated molecular mechanism of the superantibody needs experimental support, existing data indicate that the superantibody has high potential as a non-chemical broadly effective anti-positive sense-RNA virus agent.
Collapse
Affiliation(s)
- Kittirat Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanasap Kaewchim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Techit Thavorasak
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Watayagorn Thepsawat
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanyarat Thueng-In
- School of Pathology, Translational Medicine Program, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Monrat Chulanetra,
| |
Collapse
|
46
|
Roy V, Agrofoglio LA. Nucleosides and emerging viruses: A new story. Drug Discov Today 2022; 27:1945-1953. [PMID: 35189369 PMCID: PMC8856764 DOI: 10.1016/j.drudis.2022.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 12/24/2022]
Abstract
With several US Food and Drug Administration (FDA)-approved drugs and high barriers to resistance, nucleoside and nucleotide analogs remain the cornerstone of antiviral therapies for not only herpesviruses, but also HIV and hepatitis viruses (B and C); however, with the exception of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which vaccines have been developed at unprecedented speed, there are no vaccines or small antivirals yet available for (re)emerging viruses, which are primarily RNA viruses. Thus, herein, we present an overview of ribonucleoside analogs recently developed and acting as inhibitors of the viral RNA-dependent RNA polymerase (RdRp). They are new lead structures that will be exploited for the discovery of new antiviral nucleosides.
Collapse
Affiliation(s)
- Vincent Roy
- ICOA, University of Orléans, CNRS UMR 7311, Rue de Chartres, 45067 Orléans, France
| | - Luigi A Agrofoglio
- ICOA, University of Orléans, CNRS UMR 7311, Rue de Chartres, 45067 Orléans, France.
| |
Collapse
|
47
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
48
|
Borrego B, Moreno S, López-Valiñas Á, de la Losa N, Weber F, Núñez JI, Brun A. Identification of Single Amino Acid Changes in the Rift Valley Fever Virus Polymerase Core Domain Contributing to Virus Attenuation In Vivo. Front Cell Infect Microbiol 2022; 12:875539. [PMID: 35573791 PMCID: PMC9096444 DOI: 10.3389/fcimb.2022.875539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever (RVF) is an arboviral zoonotic disease affecting many African countries with the potential to spread to other geographical areas. RVF affects sheep, goats, cattle and camels, causing a high rate of abortions and death of newborn lambs. Also, humans can be infected, developing a usually self-limiting disease that can turn into a more severe illness in a low percentage of cases. Although different veterinary vaccines are available in endemic areas in Africa, to date no human vaccine has been licensed. In previous works, we described the selection and characterization of a favipiravir-mutagenized RVFV variant, termed 40Fp8, with potential as a RVF vaccine candidate due to the strong attenuation shown in immunocompromised animal models. Compared to the parental South African 56/74 viral strain, 40Fp8 displayed 7 amino acid substitutions in the L-protein, three of them located in the central region corresponding to the catalytic core of the RNA-dependent RNA polymerase (RdRp). In this work, by means of a reverse genetics system, we have analyzed the effect on virulence of these amino acid changes, alone or combined, both in vitro and in vivo. We found that the simultaneous introduction of two changes (G924S and A1303T) in the heterologous ZH548-RVFV Egyptian strain conferred attenuated phenotypes to the rescued viruses as shown in infected mice without affecting virus immunogenicity. Our results suggest that both changes induce resistance to favipiravir likely associated to some fitness cost that could be the basis for the observed attenuation in vivo. Conversely, the third change, I1050V, appears to be a compensatory mutation increasing viral fitness. Altogether, these results provide relevant information for the safety improvement of novel live attenuated RVFV vaccines.
Collapse
Affiliation(s)
- Belén Borrego
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
- *Correspondence: Belén Borrego, ; Alejandro Brun,
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Álvaro López-Valiñas
- Centre de Recerca en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA) Institut de Recerca en Tecnologies Agroalimentàries (IRTA), Barcelona, Spain
| | - Nuria de la Losa
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Friedemann Weber
- Institut für Virologie, FB10-Veterinary Medicine, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - José Ignacio Núñez
- Centre de Recerca en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA) Institut de Recerca en Tecnologies Agroalimentàries (IRTA), Barcelona, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
- *Correspondence: Belén Borrego, ; Alejandro Brun,
| |
Collapse
|
49
|
Forgia M, Chiapello M, Daghino S, Pacifico D, Crucitti D, Oliva D, Ayllon M, Turina M, Turina M. Three new clades of putative viral RNA-dependent RNA polymerases with rare or unique catalytic triads discovered in libraries of ORFans from powdery mildews and the yeast of oenological interest Starmerella bacillaris. Virus Evol 2022; 8:veac038. [PMID: 35615103 PMCID: PMC9125799 DOI: 10.1093/ve/veac038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
High throughput sequencing allowed the discovery of many new viruses and viral organizations increasing our comprehension of virus origin and evolution. Most RNA viruses are currently characterized through similarity searches of annotated virus databases. This approach limits the possibility to detect completely new virus-encoded proteins with no detectable similarities to existing ones, i.e. ORFan proteins. A strong indication of the ORFan viral origin in a metatranscriptome is the lack of DNA corresponding to an assembled RNA sequence in the biological sample. Furthermore, sequence homology among ORFans and evidence of co-occurrence of these ORFans in specific host individuals provides further indication of a viral origin. Here, we use this theoretical framework to report the finding of three conserved clades of protein-coding RNA segments without a corresponding DNA in fungi. Protein sequence and structural alignment suggest these proteins are distantly related to viral RNA-dependent RNA polymerases (RdRP). In these new putative viral RdRP clades, no GDD catalytic triad is present, but the most common putative catalytic triad is NDD and a clade with GDQ, a triad previously unreported at that site. SDD, HDD, and ADD are also represented. For most members of these three clades, we were able to associate a second genomic segment, coding for a protein of unknown function. We provisionally named this new group of viruses ormycovirus. Interestingly, all the members of one of these sub-clades (gammaormycovirus) accumulate more minus sense RNA than plus sense RNA during infection.
Collapse
Affiliation(s)
- Marco Forgia
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - M Chiapello
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Stefania Daghino
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - D Pacifico
- Institute of Biosciences and Bioresources (IBBR), CNR, Corso Calatafimi 414, Palermo 90129, Italy
| | - D Crucitti
- Institute of Biosciences and Bioresources (IBBR), CNR, Corso Calatafimi 414, Palermo 90129, Italy
- Dipartimento di Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - D Oliva
- Istituto Regionale del Vino e dell’Olio (IRVO), Via Libertà 66, Palermo 90143, Italy
| | - M Ayllon
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Campus Ciudad Universitaria Av. Puerta de Hierro, nº 2 - 4, Madrid 28040, Spain
| | - M Turina
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - M Turina
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, Torino 10135, Italy
| |
Collapse
|
50
|
Zayed AA, Wainaina JM, Dominguez-Huerta G, Pelletier E, Guo J, Mohssen M, Tian F, Pratama AA, Bolduc B, Zablocki O, Cronin D, Solden L, Delage E, Alberti A, Aury JM, Carradec Q, da Silva C, Labadie K, Poulain J, Ruscheweyh HJ, Salazar G, Shatoff E, Coordinators TO, Bundschuh R, Fredrick K, Kubatko LS, Chaffron S, Culley AI, Sunagawa S, Kuhn JH, Wincker P, Sullivan MB. Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome. Science 2022; 376:156-162. [PMID: 35389782 PMCID: PMC10990476 DOI: 10.1126/science.abm5847] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.
Collapse
Affiliation(s)
- Ahmed A. Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - James M. Wainaina
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Guillermo Dominguez-Huerta
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jiarong Guo
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Mohamed Mohssen
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Dylan Cronin
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Lindsey Solden
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Erwan Delage
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Corinne da Silva
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Elan Shatoff
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | | | - Ralf Bundschuh
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Laura S. Kubatko
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Statistics, Ohio State University, Columbus, OH 43210, USA
| | - Samuel Chaffron
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Alexander I. Culley
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|