1
|
Dai GC, Wang H, Ming Z, Lu PP, Li YJ, Gao YC, Shi L, Cheng Z, Liu XY, Rui YF. Heterotopic mineralization (ossification or calcification) in aged musculoskeletal soft tissues: A new candidate marker for aging. Ageing Res Rev 2024; 95:102215. [PMID: 38325754 DOI: 10.1016/j.arr.2024.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Aging can lead to various disorders in organisms and with the escalating impact of population aging, the incidence of age-related diseases is steadily increasing. As a major risk factor for chronic illnesses in humans, the prevention and postponement of aging have become focal points of research among numerous scientists. Aging biomarkers, which mirror molecular alterations at diverse levels in organs, tissues, and cells, can be used to monitor and evaluate biological changes associated with aging. Currently, aging biomarkers are primarily categorized into physiological traits, imaging characteristics, histological features, cellular-level alterations, and molecular-level changes that encompass the secretion of aging-related factors. However, in the context of the musculoskeletal soft tissue system, aging-related biological indicators primarily involve microscopic parameters at the cellular and molecular levels, resulting in inconvenience and uncertainty in the assessment of musculoskeletal soft tissue aging. To identify convenient and effective indicators, we conducted a comprehensive literature review to investigate the correlation between ectopic mineralization and age-related changes in the musculoskeletal soft tissue system. Here, we introduce the concept of ectopic mineralization as a macroscopic, reliable, and convenient biomarker for musculoskeletal soft tissue aging and present novel targets and strategies for the future management of age-related musculoskeletal soft tissue disorders.
Collapse
Affiliation(s)
- Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Zhang Ming
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Ying-Juan Li
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Yu-Cheng Gao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Zhang Cheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Xiao-Yu Liu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
2
|
Yoon J, Kaya S, Matsumae G, Dole N, Alliston T. miR181a/b-1 controls osteocyte metabolism and mechanical properties independently of bone morphology. Bone 2023; 175:116836. [PMID: 37414200 PMCID: PMC11156520 DOI: 10.1016/j.bone.2023.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Bone derives its ability to resist fracture from bone mass and quality concurrently; however, many questions about the molecular mechanisms controlling bone quality remain unanswered, limiting the development of diagnostics and therapeutics. Despite the increasing evidence on the importance of miR181a/b-1 in bone homeostasis and disease, whether and how osteocyte-intrinsic miR181a/b-1 controls bone quality remains elusive. Osteocyte-intrinsic deletion of miR181a/b-1 in osteocytes in vivo resulted in compromised overall bone mechanical behavior in both sexes, although the parameters affected by miR181a/b-1 varied distinctly based on sex. Furthermore, impaired fracture resistance in both sexes was unexplained by cortical bone morphology, which was altered in female mice and intact in male mice with miR181a/b-1-deficient osteocytes. The role of miR181a/b-1 in the regulation of osteocyte metabolism was apparent in bioenergetic testing of miR181a/b-1-deficient OCY454 osteocyte-like cells and transcriptomic analysis of cortical bone from mice with osteocyte-intrinsic ablation of miR181a/b-1. Altogether, this study demonstrates the control of osteocyte bioenergetics and the sexually dimorphic regulation of cortical bone morphology and mechanical properties by miR181a/b-1, hinting at the role of osteocyte metabolism in the regulation of mechanical behavior.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Gen Matsumae
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Neha Dole
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, AR, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA.
| |
Collapse
|
3
|
Perrone S, Caporilli C, Grassi F, Ferrocino M, Biagi E, Dell’Orto V, Beretta V, Petrolini C, Gambini L, Street ME, Dall’Asta A, Ghi T, Esposito S. Prenatal and Neonatal Bone Health: Updated Review on Early Identification of Newborns at High Risk for Osteopenia. Nutrients 2023; 15:3515. [PMID: 37630705 PMCID: PMC10459154 DOI: 10.3390/nu15163515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bone health starts with maternal health and nutrition, which influences bone mass and density already in utero. The mechanisms underlying the effect of the intrauterine environment on bone health are partly unknown but certainly include the 'foetal programming' of oxidative stress and endocrine systems, which influence later skeletal growth and development. With this narrative review, we describe the current evidence for identifying patients with risk factors for developing osteopenia, today's management of these populations, and screening and prevention programs based on gestational age, weight, and morbidity. Challenges for bone health prevention include the need for new technologies that are specific and applicable to pregnant women, the foetus, and, later, the newborn. Radiofrequency ultrasound spectrometry (REMS) has proven to be a useful tool in the assessment of bone mineral density (BMD) in pregnant women. Few studies have reported that transmission ultrasound can also be used to assess BMD in newborns. The advantages of this technology in the foetus and newborn are the absence of ionising radiation, ease of use, and, above all, the possibility of performing longitudinal studies from intrauterine to extrauterine life. The use of these technologies already in the intrauterine period could help prevent associated diseases, such as osteoporosis and osteopenia, which are characterised by a reduction in bone mass and degeneration of bone structure and lead to an increased risk of fractures in adulthood with considerable social repercussions for the related direct and indirect costs.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Mandy Ferrocino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Eleonora Biagi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Valentina Dell’Orto
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Virginia Beretta
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Lucia Gambini
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Maria Elisabeth Street
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Andrea Dall’Asta
- Obstetric and Gynecology Unit, University Hospital of Parma, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.D.); (T.G.)
| | - Tullio Ghi
- Obstetric and Gynecology Unit, University Hospital of Parma, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.D.); (T.G.)
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| |
Collapse
|
4
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Liu J, Chang X, Dong D. MicroRNA-181a-5p Curbs Osteogenic Differentiation and Bone Formation Partially Through Impairing Runx1-Dependent Inhibition of AIF-1 Transcription. Endocrinol Metab (Seoul) 2023; 38:156-173. [PMID: 36604945 PMCID: PMC10008668 DOI: 10.3803/enm.2022.1516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/01/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGRUOUND Evidence has revealed the involvement of microRNAs (miRNAs) in modulating osteogenic differentiation, implying the promise of miRNA-based therapies for treating osteoporosis. This study investigated whether miR-181a-5p influences osteogenic differentiation and bone formation and aimed to establish the mechanisms in depth. METHODS Clinical serum samples were obtained from osteoporosis patients, and MC3T3-E1 cells were treated with osteogenic induction medium (OIM) to induce osteogenic differentiation. miR-181a-5p-, Runt-related transcription factor 1 (Runx1)-, and/or allograft inflammatory factor-1 (AIF-1)-associated oligonucleotides or vectors were transfected into MC3T3-E1 cells to explore their function in relation to the number of calcified nodules, alkaline phosphatase (ALP) staining and activity, expression levels of osteogenesis-related proteins, and apoptosis. Luciferase activity, RNA immunoprecipitation, and chromatin immunoprecipitation assays were employed to validate the binding relationship between miR-181a-5p and Runx1, and the transcriptional regulatory relationship between Runx1 and AIF-1. Ovariectomy (OVX)-induced mice were injected with a miR-181a-5p antagonist for in vivo verification. RESULTS miR-181a-5p was highly expressed in the serum of osteoporosis patients. OIM treatment decreased miR-181a-5p and AIF-1 expression, but promoted Runx1 expression in MC3T-E1 cells. Meanwhile, upregulated miR-181a-5p suppressed OIM-induced increases in calcified nodules, ALP content, and osteogenesis-related protein expression. Mechanically, miR-181a-5p targeted Runx1, which acted as a transcription factor to negatively modulate AIF-1 expression. Downregulated Runx1 suppressed the miR-181a-5p inhibitor-mediated promotion of osteogenic differentiation, and downregulated AIF-1 reversed the miR-181a-5p mimic-induced inhibition of osteogenic differentiation. Tail vein injection of a miR-181a-5p antagonist induced bone formation in OVX-induced osteoporotic mice. CONCLUSION In conclusion, miR-181a-5p affects osteogenic differentiation and bone formation partially via the modulation of the Runx1/AIF-1 axis.
Collapse
Affiliation(s)
- Jingwei Liu
- Department of Orthopedic, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Chang
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daming Dong
- Department of Orthopedic, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Corresponding author: Daming Dong. Department of Orthopedic, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Road, Nangang District, Harbin, Heilongjiang 150001, China Tel: +86-0451-53643856, Fax: +86-0451-53643856, E-mail:
| |
Collapse
|
6
|
Zheng F, Zhang F, Wang F. Inhibition of miR‑98‑5p promotes high glucose‑induced suppression of preosteoblast proliferation and differentiation via the activation of the PI3K/AKT/GSK3β signaling pathway by targeting BMP2. Mol Med Rep 2022; 26:292. [PMID: 35904181 PMCID: PMC9366150 DOI: 10.3892/mmr.2022.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
Osteoporosis (OP) is a bone metabolic disease, in which low bone mass and the microarchitectural deterioration of bone tissue contribute to the fragility of bones and increase the risk of fracture. The aim of the present study was to determine the role of microRNA (miR)-98-5p in high glucose (HG)-induced preosteoblasts. HG was used to induce preosteoblasts treated in a differentiation medium to establish an in vitro OP model. Next, miR-98-5p expression was determined using reverse transcription-quantitative PCR. Following the transfection of an miR-98-5p inhibitor into HG-treated osteoblasts, cell viability was assessed using a Cell Counting Kit-8 assay, while alkaline phosphatase (ALP) activity, differentiation ability and the expression of differentiation-regulated genes osteocalcin and osteopontin were measured using the corresponding ALP, Alizarin red staining, reverse transcription-quantitative PCR and western blotting assays. The association between miR-98-5p and the PI3K/AKT/GSK3β signaling pathway was determined using western blotting. Next, the binding relationship between miR-98-5p and bone morphogenetic protein 2 (BMP2) was predicted and verified, and the role of BMP2 in the regulation of the PI3K/AKT/GSK3β signaling pathway was explored using western blotting. The results revealed that miR-98-5p expression was upregulated in HG-induced osteoblasts, and the inhibition of miR-98-5p resulted in enhanced cell viability, alkaline phosphatase activity and differentiation in osteoblasts following HG induction. It was also discovered that miR-98-5p inhibition activated PI3K/AKT/GSK3β signaling, while knockdown of BMP2, which binds to miR-98-5p, enhanced the activation of this signaling pathway and the differentiation ability of osteoblasts. In conclusion, the findings of the present study suggested that the inhibition of miR-98-5p expression may activate PI3K/AKT/GSK3β signaling to promote HG-induced suppression of preosteoblast viability and differentiation by targeting BMP2, which provides a novel insight into future potential molecular markers for OP treatment.
Collapse
Affiliation(s)
- Feng Zheng
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Fucai Zhang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Furong Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
7
|
Abstract
PURPOSE MicroRNA-151b (miR-151b) showed altered expression in ovariectomized rat model of osteoporosis. This study established an ovariectomy-induced osteoporotic rat model to investigate the role of miR-151b in osteoblasts. METHODS Eighteen female Sprague-Dawley (SD) rats were divided randomly into Sham and OVX group (n = 9). The transfections with different miRNAs and expression vectors were confirmed by RT-qPCR. The protein expression of Msx2 was detected by Western blots. The interaction between miR-151b and Msx2D was evaluated by RNA pull-down and dual luciferase reporter assay. RESULTS The expression of miR-151b was significantly increased in femoral tissues of ovariectomy-induced osteoporotic rats. The expression of osteogenesis marker genes including RUNX2, ALP, OCN, OSX, and Msx2 were all significantly increased in osteogenic medium (OM) incubated primary osteoblasts and MC3T3-E1 cells. The interaction between miR-151b and Msx2 was confirmed by luciferase reporter assay and RNA pull-down. Moreover, overexpression of miR-151b significantly inhibited Msx2 in both MC3T3-E1 cells and primary osteoblasts, while miR-151b inhibitor had the opposite effect on the expression of Msx2. In addition, in primary osteoblasts and MC3T3-E1 cells, miR-151b overexpression, or Msx2 silence significantly decreased the expression of OSX, ALP, RUNX2, and OCN. CONCLUSION MiR-151b could inhibit osteoblast proliferation, differentiation, and mineralization via downregulating Msx2 in both MC3T3-E1 cells and primary osteoblasts. MiR-151b might serve as a novel therapeutic target for osteoporosis. ABBREVIATIONS miR-151b: microRNA-151b; miRNAs: microRNAs; Msx2: Msh homeobox 2; MAPK: mitogen-activated protein kinase; STAT: signal transducer and activator of transcription; SD: Sprague-Dawley; BMD: bone mineral density; qRT-PCR: quantitative reverse transcription PCR; MTT: methyl thiazolyl tetrazolium; OVX: ovariectomy; ALP: alkaline phosphatase.
Collapse
Affiliation(s)
- Fuan Liu
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Yunbang Liang
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Xiaoyi Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
8
|
Modulation of miR-204 Expression during Chondrogenesis. Int J Mol Sci 2022; 23:ijms23042130. [PMID: 35216245 PMCID: PMC8874780 DOI: 10.3390/ijms23042130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
RUNX2 and SOX9 are two pivotal transcriptional regulators of chondrogenesis. It has been demonstrated that RUNX2 and SOX9 physically interact; RUNX2 transactivation may be inhibited by SOX9. In addition, RUNX2 exerts reciprocal inhibition on SOX9 transactivity. Epigenetic control of gene expression plays a major role in the alternative differentiation fates of stem cells; in particular, it has been reported that SOX9 can promote the expression of miRNA (miR)-204. Our aim was therefore to investigate the miR-204-5p role during chondrogenesis and to identify the relationship between this miR and the transcription factors plus downstream genes involved in chondrogenic commitment and differentiation. To evaluate the role of miR-204 in chondrogenesis, we performed in vitro transfection experiments by using Mesenchymal Stem Cells (MSCs). We also evaluated miR-204-5p expression in zebrafish models (adults and larvae). By silencing miR-204 during the early differentiation phase, we observed the upregulation of SOX9 and chondrogenic related genes compared to controls. In addition, we observed the upregulation of COL1A1 (a RUNX2 downstream gene), whereas RUNX2 expression of RUNX2 was slightly affected compared to controls. However, RUNX2 protein levels increased in miR-204-silenced cells. The positive effects of miR204 silencing on osteogenic differentiation were also observed in the intermediate phase of osteogenic differentiation. On the contrary, chondrocytes’ maturation was considerably affected by miR-204 downregulation. In conclusion, our results suggest that miR-204 negatively regulates the osteochondrogenic commitment of MSCs, while it positively regulates chondrocytes’ maturation.
Collapse
|
9
|
Wang Y, He R, Yang A, Guo R, Liu J, Liang G, Sheng D, Zhong L. Role of miR-214 in biomaterial transplantation therapy for osteonecrosis. Biomed Mater Eng 2022; 33:351-364. [PMID: 34744059 DOI: 10.3233/bme-211296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The effectiveness and availability of conservative therapies for osteonecrosis of the femoral head (ONFH) are limited. Transplantation of bone marrow mesenchymal stem cells (BMSCs) combined with Bio-Oss, which is a good bone scaffold biomaterial for cell proliferation and differentiation, is a new potential therapy. Of note, the expression of miRNAs was significantly modified in cells cultured with Bio-Oss, and MiR-214 was correlated positively with osteonecrosis. Furthermore, miR-214 was upregulated in cells exposed to Bio-Oss. OBJECTIVE To investigate whether targeting miR-214 further improves the transplantation effect. METHODS We treated BMSCs with agomiR-214 (a miR-214 agonist), antagomiR-214 (a miR-214 inhibitor), or vehicle, followed by their transplantation into ONFH model rats. RESULTS Histological and histomorphometric data showed that bone formation was significantly increased in the experimental groups (Bio-Oss and BMSCs treated with antagomiR-214) compared with other groups. CONCLUSIONS miR-214 participates in the inhibition of osteoblastic bone formation, and the inhibition of miR-214 to bone formation during transplantation therapy with Bio-Oss combined with BMSCs for ONFH.
Collapse
Affiliation(s)
- Yuying Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- Department of Stomatology, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Rui He
- Department of Stomatology, College of Medicine, Hangzhou Normal University, Hangzhou, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Anqi Yang
- Department of Physiology, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Rui Guo
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Jie Liu
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Guoqing Liang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Donglai Sheng
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Liangjun Zhong
- Department of Stomatology, College of Medicine, Hangzhou Normal University, Hangzhou, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
10
|
Overexpression Effects of miR-424 and BMP2 on the Osteogenesis of Wharton's Jelly-Derived Stem Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7031492. [PMID: 34790821 PMCID: PMC8592721 DOI: 10.1155/2021/7031492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
Recently, the translational application of noncoding RNAs is accelerated dramatically. In this regard, discovering therapeutic roles of microRNAs by developing synthetic RNA and vector-based RNA is attracting attention. Here, we studied the effect of BMP2 and miR-424 on the osteogenesis of Wharton's jelly-derived stem cells (WJSCs). For this purpose, human BMP2 and miR-424 DNA codes were cloned in the third generation of lentiviral vectors and then used for HEK-293T cell transfection. Lentiviral plasmids contained miR424, BMP-2, miR424-BMP2, green fluorescent protein (GFP) genes, and helper vectors. The recombinant lentiviral particles transduced the WJSCs, and the osteogenesis was evaluated by real-time PCR, Western blot, Alizarin Red staining, and alkaline phosphatase enzyme activity. According to the results, there was a significant increase in the expression of the BMP2 gene and secretion of Osteocalcin protein in the group of miR424-BMP2. Moreover, the amount of dye deposition in Alizarin Red staining and alkaline phosphatase activity was significantly higher in the mentioned group (p < 0.05). Thus, the current study results clarify the efficacy of gene therapy by miR424-BMP2 vectors for bone tissue engineering. These data could help guide the development of gene therapy-based protocols for bone tissue engineering.
Collapse
|
11
|
Cannata-Andía JB, Carrillo-López N, Messina OD, Hamdy NAT, Panizo S, Ferrari SL, on behalf of the International Osteoporosis Foundation (IOF) Working Group on Bone and Cardiovascular Diseases. Pathophysiology of Vascular Calcification and Bone Loss: Linked Disorders of Ageing? Nutrients 2021; 13:3835. [PMID: 34836090 PMCID: PMC8623966 DOI: 10.3390/nu13113835] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Vascular Calcification (VC), low bone mass and fragility fractures are frequently observed in ageing subjects. Although this clinical observation could be the mere coincidence of frequent age-dependent disorders, clinical and experimental data suggest that VC and bone loss could share pathophysiological mechanisms. Indeed, VC is an active process of calcium and phosphate precipitation that involves the transition of the vascular smooth muscle cells (VSMCs) into osteoblast-like cells. Among the molecules involved in this process, parathyroid hormone (PTH) plays a key role acting through several mechanisms which includes the regulation of the RANK/RANKL/OPG system and the Wnt/ß-catenin pathway, the main pathways for bone resorption and bone formation, respectively. Furthermore, some microRNAs have been implicated as common regulators of bone metabolism, VC, left ventricle hypertrophy and myocardial fibrosis. Elucidating the common mechanisms between ageing; VC and bone loss could help to better understand the potential effects of osteoporosis drugs on the CV system.
Collapse
Affiliation(s)
- Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Osvaldo D. Messina
- Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires 1114, Argentina;
| | - Neveen A. T. Hamdy
- Center for Bone Quality, Division Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Sara Panizo
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Serge L. Ferrari
- Service and Laboratory of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospital, 1211 Geneva, Switzerland;
| | | |
Collapse
|
12
|
Li Y, Chen G, He Y, Yi C, Zhang X, Zeng B, Huang Z, Deng F, Yu D. Selenomethionine-Modified Polyethylenimine-Based Nanoparticles Loaded with miR-132-3p Inhibitor-Biofunctionalized Titanium Implants for Improved Osteointegration. ACS Biomater Sci Eng 2021; 7:4933-4945. [PMID: 34583510 DOI: 10.1021/acsbiomaterials.1c00880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Titanium and its alloys have been widely used as bone implants, but for reduced treatment span, improvements are urgently needed to achieve faster and better osteointegration. In this study, we found that miR-132-3p inhibited bone-marrow-derived stem cell (BMSC) osteogenic differentiation via targeting BMP2, and that inhibiting miR-132-3p could significantly improve the osteogenic capability of BMSCs. Moreover, we fabricated a biocompatible selenomethionine (SEMET)-modified polyethylene glycol (PEG)/polyethylenimine (PEI) nanoparticle (SeNP) cross-linked with 0.2% gelatin solutions and delivered miR-132-3p inhibitor to biofunctionalize alkali heat-treated titanium implants, resulting in the development of a novel coating for reverse transfection. The biological performances of PEG/PEI/miR-132-3p inhibitor and SeNP/miR-132-3p inhibitor-biofunctionalized titanium were compared. The biological effects, including cell viability, cytotoxicity, adhesion, cellular uptake, and osteogenic capacity of SeNP/miR-132-3p inhibitor-biofunctionalized titanium implants, were then assessed. Results showed that SeNPs presented appropriate morphology, diameter, and positive zeta potential for efficient gene delivery. The transfection efficiency of the SeNP/miR-132-3p inhibitor was comparable to that of the PEG/PEI/miR-132-3p inhibitor, but the former induced less reactive oxygen species (ROS) production and lower apoptosis rates. Confocal laser scanning microscopy (CLSM) demonstrated that SeNP/miR-132-3p inhibitor nanoparticles released from the titanium surfaces and were taken up by adherent BMSCs. In addition, the release profile showed that transfection could obtain a long-lasting silencing effect for more than 2 weeks. The cell viability, cytotoxicity, and cell spreading of SeNP/miRNA-132-3p inhibitor-biofunctionalized titanium were comparable with those of untreated titanium and the SeNP/miRNA-132-3p inhibitor negative control (NC)-biofunctionalized titanium but resulted in higher ALP activity and osteogenic gene expression levels. In vivo animal studies further certified that SeNP/miRNA-132-3p inhibitor nanoparticles from titanium surfaces promoted osteointegration, which was revealed by microcomputed tomography (micro-CT) and histological observations. Taken together, these findings suggested that selenomethionine-modified PEI-based nanoparticles could achieve better biocompatibility. Moreover, titanium implants biofunctionalized by SeNP/miRNA-132-3p inhibitor nanoparticles might have significant clinical potential for more effective osteointegration.
Collapse
Affiliation(s)
- Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Binghui Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| |
Collapse
|
13
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
14
|
Mao Y, Ni N, Huang L, Fan J, Wang H, He F, Liu Q, Shi D, Fu K, Pakvasa M, Wagstaff W, Tucker AB, Chen C, Reid RR, Haydon RC, Ho SH, Lee MJ, He TC, Yang J, Shen L, Cai L, Luu HH. Argonaute (AGO) proteins play an essential role in mediating BMP9-induced osteogenic signaling in mesenchymal stem cells (MSCs). Genes Dis 2021; 8:918-930. [PMID: 34522718 PMCID: PMC8427325 DOI: 10.1016/j.gendis.2021.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
As multipotent progenitor cells, mesenchymal stem cells (MSCs) can renew themselves and give rise to multiple lineages including osteoblastic, chondrogenic and adipogenic lineages. It's previously shown that BMP9 is the most potent BMP and induces osteogenic and adipogenic differentiation of MSCs. However, the molecular mechanism through which BMP9 regulates MSC differentiation remains poorly understood. Emerging evidence indicates that noncoding RNAs, especially microRNAs, may play important roles in regulating MSC differentiation and bone formation. As highly conserved RNA binding proteins, Argonaute (AGO) proteins are essential components of the multi-protein RNA-induced silencing complexes (RISCs), which are critical for small RNA biogenesis. Here, we investigate possible roles of AGO proteins in BMP9-induced lineage-specific differentiation of MSCs. We first found that BMP9 up-regulated the expression of Ago1, Ago2 and Ago3 in MSCs. By engineering multiplex siRNA vectors that express multiple siRNAs targeting individual Ago genes or all four Ago genes, we found that silencing individual Ago expression led to a decrease in BMP9-induced early osteogenic marker alkaline phosphatase (ALP) activity in MSCs. Furthermore, we demonstrated that simultaneously silencing all four Ago genes significantly diminished BMP9-induced osteogenic and adipogenic differentiation of MSCs and matrix mineralization, and ectopic bone formation. Collectively, our findings strongly indicate that AGO proteins and associated small RNA biogenesis pathway play an essential role in mediating BMP9-induced osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Yukun Mao
- Departments of Spine Surgery and Musculoskeletal Tumor, and Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430072, PR China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, PR China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, PR China
| | - Kai Fu
- Departments of Spine Surgery and Musculoskeletal Tumor, and Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430072, PR China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Andrew Blake Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lin Cai
- Departments of Spine Surgery and Musculoskeletal Tumor, and Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430072, PR China
- Corresponding author. Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, 430071, China.
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Corresponding author. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA. Fax: +(773) 834 4598.
| |
Collapse
|
15
|
Farshbaf-Khalili A, Farajnia S, Pourzeinali S, Shakouri SK, Salehi-Pourmehr H. The effect of nanomicelle curcumin supplementation and Nigella sativa oil on the expression level of miRNA-21, miRNA-422a, and miRNA-503 gene in postmenopausal women with low bone mass density: A randomized, triple-blind, placebo-controlled clinical trial with factorial design. Phytother Res 2021; 35:6216-6227. [PMID: 34496087 DOI: 10.1002/ptr.7259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the effect of nanomicelle curcumin (CUR), Nigella sativa oil (NS), and CUR and NS on the plasma levels of miR-21, miR-422a, and miR-503 expression in postmenopausal women with low bone mass density (BMD). This randomized, triple-blind, placebo-controlled clinical trial with a factorial design was conducted on 120 postmenopausal women from the integrated healthcare system, Tabriz-Iran. The BMD was determined using dual-energy X-ray absorptiometry (DEXA). Women were randomly divided into four groups of 30 participants: (a) CUR (80 mg) and placebo of NS, (b) NS (1,000 mg) and placebo of CUR, (c) CUR (80 mg) and NS (1,000 mg), and (d) both placebos (containing microcrystalline cellulose). The plasma level of miRNA-21, miRNA-422a, and miRNA-503 was determined by qRT-PCR. The expression level of miRNAs at the baseline was similar. At the end of the intervention, only the expression level of miRNA-21 changed statistically significantly between the four groups (p = .037) and between the NS and placebo groups (p = .005). Also, its expression in the two groups receiving NS (p = .037) and NS-CUR (p = .043) was significantly increased. NS and NS-CUR supplementation can increase the expression level of miRNA-21 in postmenopausal women with low bone density, and bring perspective to further studies of the target.
Collapse
Affiliation(s)
- Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Pourzeinali
- Health Center, Vice Chancellor for Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-based medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical, Tabriz, Iran
| |
Collapse
|
16
|
Ouyang T, Qin Y, Luo K, Han X, Yu C, Zhang A, Pan X. miR-486-3p regulates CyclinD1 and promotes fluoride-induced osteoblast proliferation and activation. ENVIRONMENTAL TOXICOLOGY 2021; 36:1817-1828. [PMID: 34080770 DOI: 10.1002/tox.23302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Fluoride is a persistent environmental pollutant, and its excessive intake contributes to skeletal and dental fluorosis. The mechanisms underlying fluoride-induced abnormal osteoblast proliferation and activation, which are related to skeletal fluorosis, have not yet been fully clarified. As important epigenetic regulators, microRNAs (miRNAs) participate in bone metabolism. On the basis of our previous miRNA-seq results and bioinformatics analysis, this study investigated the role and specific molecular mechanism of miR-486-3p in fluoride-induced osteoblast proliferation and activation via CyclinD1. Herein, in the fluoride-challenged population, we observed that miR-486-3p expression decreased while CyclinD1 and transforming growth factor (TGF)-β1 increased, and miR-486-3p level correlated negatively with the expression of CyclinD1 and TGF-β1 genes. Further, we verified that sodium fluoride (NaF) decreases miR-486-3p expression in human osteoblasts and overexpression of miR-486-3p reduces fluoride-induced osteoblast proliferation and activation. Meanwhile, we demonstrated that miR-486-3p regulates NaF-induced upregulation of CyclinD1 by directly targeting its 3'-untranslated region (3'-UTR). In addition, we observed that NaF activates the TGF-β1/Smad2/3/CyclinD1 axis and miR-486-3p mediates transcriptional regulation of CyclinD1 by TGF-β1/Smad2/3 signaling pathway via targeting TGF-β1 3'-UTR in vitro. This study, thus, contributes significantly in revealing the mechanism of miR-486-3p-mediated CyclinD1 upregulation in skeletal fluorosis and sheds new light on endemic fluorosis treatment.
Collapse
Affiliation(s)
- Ting Ouyang
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yu Qin
- Department of Orthopedics, Guizhou Province Orthopedics Hospital, Guiyang, China
| | - Keke Luo
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xue Han
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Chun Yu
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xueli Pan
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
17
|
Abstract
Chronic kidney disease (CKD), which is characterized by the gradual loss of kidney function, is a growing worldwide problem due to CKD-related morbidity and mortality. There are no reliable and early biomarkers enabling the monitoring, the stratification of CKD progression and the estimation of the risk of CKD-related complications, and therefore, the search for such molecules is still going on. Numerous studies have provided evidence that miRNAs are potentially important particles in the CKD field. Studies indicate that some miRNA levels can be increased in patients with CKD stages III–V and hemodialysis and decreased in renal transplant recipients (miR-143, miR-145 and miR-223) as well as elevated in patients with CKD stages III–V, decreased in hemodialysis patients and even more markedly decreased in renal transplant recipients (miR-126 and miR-155). miRNA have great potential of being sensitive and specific biomarkers in kidney diseases as they are tissue specific and stable in various biological materials. Some promising non-invasive miRNA biomarkers have already been recognized in renal disease with the potential to enhance diagnostic accuracy, predict prognosis and monitor the course of disease. However, large-scale clinical trials enrolling heterogeneous patients are required to evaluate the clinical value of miRNAs.
Collapse
|
18
|
Cirillo F, Catellani C, Lazzeroni P, Sartori C, Street ME. The Role of MicroRNAs in Influencing Body Growth and Development. Horm Res Paediatr 2021; 93:7-15. [PMID: 31914447 DOI: 10.1159/000504669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022] Open
Abstract
Body growth and development are regulated among others by genetic and epigenetic factors. MicroRNAs (miRNAs) are epigenetic regulators of gene expression that act at the post-transcriptional level, thereby exerting a strong influence on regulatory gene networks. Increasing studies suggest the importance of miRNAs in the regulation of the growth plate and growth hormone (GH)-insulin-like growth factor (IGF) axis during the life course in a broad spectrum of animal species, contributing to longitudinal growth. This review summarizes the role of miRNAs in regulating growth in different in vitro and in vivo models acting on GH, GH receptor (GHR), IGFs, and IGF1R genes besides current knowledge in humans, and highlights that this regulatory system is of importance for growth.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Cecilia Catellani
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pietro Lazzeroni
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Sartori
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Elisabeth Street
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy,
| |
Collapse
|
19
|
Wang Y, Wu Y, Cai A, Ma C, Cai S, Wang H, Que Y, Xu S, Xu T, Hu Y. Cisplatin inhibits the proliferation of Saos-2 osteosarcoma cells via the miR-376c/TGFA pathway. Bosn J Basic Med Sci 2021; 21:163-173. [PMID: 32020849 PMCID: PMC7982073 DOI: 10.17305/bjbms.2020.4485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022] Open
Abstract
The transforming growth factor alpha (TGFA) gene is involved in the proliferation and metastasis of various tumors, but its role in cell sensitivity to cisplatin chemotherapy is unclear. In this study, we investigated the mechanism underlying inhibitory effects of cisplatin on growth and proliferation of osteosarcoma cells. Osteosarcoma and normal skeletal muscle tissues were collected from 26 patients by biopsy. TGFA was silenced or overexpressed in Saos-2 osteosarcoma cells by transfection with TGFA-shRNA or TGFA ORF clone, respectively. MiR-376c was inhibited or overexpressed by transfection of Saos-2 cells with miR-376c sponge or miR-376c mimics, respectively. Cell growth was analyzed by MTT assay and cell proliferation by BrdU assay. MiR-376c and TGFA mRNA expression was detected by quantitative reverse transcription PCR and TGFA protein expression by Western blot. The target relationship between miR-376c and TGFA was assessed by luciferase reporter assay. Both in osteosarcoma tissues and Saos-2 cells, miR-376c expression was significantly decreased and TGFA mRNA expression was significantly increased compared with control. Transfection of Saos-2 cells with TGFA-shRNA silenced TGFA expression and significantly inhibited cell growth and proliferation. TGFA mRNA and protein expression in Saos-2 cells significantly decreased with increasing cisplatin concentrations (2.5–10 mg/L). Transfection with TGFA ORF clone reversed the inhibitory effects of cisplatin on Saos-2 cell proliferation. Compared with cisplatin (10 mg/L) treatment alone, the combined treatment with cisplatin and miR-376c mimics inhibited the proliferation of Saos-2 cells more significantly. MiR-376c suppressed TGFA expression by directly interacting with its 3’ UTR region. Overall, cisplatin inhibited the proliferation of Saos-2 cells by upregulating miR-376c and downregulating TGFA expression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Orthopedic Disease and Oncology Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yichao Wu
- Department of Orthopedics, Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Awei Cai
- Department of Orthopedic Disease and Oncology Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengxiao Ma
- Department of Orthopedic Disease and Oncology Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shang Cai
- Department of Orthopedic Disease and Oncology Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Wang
- Department of Orthopedic Disease and Oncology Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yukang Que
- Department of Orthopedic Disease and Oncology Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shenglin Xu
- Department of Orthopedic Disease and Oncology Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tangbing Xu
- Department of Orthopedics, Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Hu
- Department of Orthopedic Disease and Oncology Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Wang J, Gao Z, Gao P. MiR-133b Modulates the Osteoblast Differentiation to Prevent Osteoporosis Via Targeting GNB4. Biochem Genet 2021; 59:1146-1157. [PMID: 33687637 DOI: 10.1007/s10528-021-10048-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
MiR-133b is considered to be lowly expressed in osteoporosis patients. This study aimed to probe the role and in-depth mechanism of miR-133b in modulating osteoblast biological behavior and differentiation. The differential expressions of miR-133b and GNB4 in patients with osteoporosis and healthy control were analyzed based on the GEO database. Osteoblastic differentiation of hFOB 1.19 cells was induced in the culture medium containing 10 mM β-glycerophosphate, 50 nm dexamethasone, and 100 μg/ml ascorbic acid. The level of GNB4 was detected using quantitative real-time PCR (qRT-PCR) and Western blot. Cell viability and apoptosis were measured by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Western blot was also utilized to measure the levels of osteoblast-related proteins, including ALP, Runx2, Osterix, and OPN. GNB4 was identified and confirmed as a downstream target gene of miR-133b. The expression of miR-133b was declined while the expression of GNB4 was increased in osteoporosis patients. Importantly, up-regulation of miR-133b caused the increase of cell viability and the decrease of apoptosis, which could be blocked by overexpression of GNB4. Also, up-regulation of miR-133b promoted osteoblasts differentiation, as shown by the increase in the expression of ALP, Runx2, Osterix, and OPN. Similarly, this promoting impact resulted from miR-133b overexpression can be reversed via up-regulation of GNB4. These findings revealed that miR-133b can promote the viability and differentiation of osteoblasts by targeting GNB4, hoping to lay a feasible theoretical foundation for the clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Jinqiang Wang
- Department of Spine Surgery, Weifang Traditional Chinese Medicine Hospital, No. 1055 Weizhou Road, Kuiwen District, Weifang, Shandong, People's Republic of China.
| | - Zhaoqing Gao
- Department of Spine Surgery, Weifang Traditional Chinese Medicine Hospital, No. 1055 Weizhou Road, Kuiwen District, Weifang, Shandong, People's Republic of China
| | - Peng Gao
- Department of Spine Surgery, Weifang Traditional Chinese Medicine Hospital, No. 1055 Weizhou Road, Kuiwen District, Weifang, Shandong, People's Republic of China
| |
Collapse
|
21
|
Liu H, Wang YW, Chen WD, Dong HH, Xu YJ. Iron accumulation regulates osteoblast apoptosis through lncRNA XIST/miR-758-3p/caspase 3 axis leading to osteoporosis. IUBMB Life 2021; 73:432-443. [PMID: 33336851 DOI: 10.1002/iub.2440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Postmenopausal osteoporosis (PMOP) is mainly caused by multiple factors. Recent studies have suggested that iron accumulation (IA) was closely related to PMOP. However, the detailed molecular mechanisms have not been well demonstrated. We constructed the IA mouse model by intraperitoneal injections of ferric ammonium citrate (FAC) and cell model by culturing with the medium containing FAC. Osteoporosis was confirmed in mouse bone tissues using H&E staining, and the level of serum ferritin, alkaline phosphatase (ALP), procollagen-1 N-terminal peptide (P1NP), and osteocalcin in mice was examined by ELISA. The expressions of XIST and miR-758-3p were detected by qRT-PCR. Cell proliferation and apoptosis were measured by CCK-8, TUNEL, and flow cytometry. The expression levels of apoptotic-related proteins were evaluated by western blot. Dual luciferase reporter assay was used to examine the molecular interaction. The expressions of ALP, P1NP, and osteocalcin, and the H&E staining of bone tissues in mice were analyzed to confirm the biological function of XIST and miR-758-3p in vivo. XIST was up-regulated while miR-758-3p was down-regulated in IA mouse and cell models. XIST knockdown significantly reduced FAC-induced osteoblast apoptosis, which was mimicked by transfection with miR-758-3p mimics. XIST acted as a sponge of miR-758-3p, which targeted caspase 3. IA led to the high expression of XIST and promoted osteoblast apoptosis through miR-758-3p/caspase 3. Transfection with shXIST or miR-758-3p mimics alleviated IA-induced mouse osteoporosis. IA regulated osteoblast apoptosis through XIST/miR-758-3p/caspase 3 axis, which might provide alternative targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hu Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, Yancheng Third People's Hospital, Yancheng, China
| | - Yu-Wu Wang
- Department of Orthopedics, Yancheng Third People's Hospital, Yancheng, China
| | - Wei-Dong Chen
- Department of Orthopedics, Yancheng Third People's Hospital, Yancheng, China
| | - Hong-Hua Dong
- Department of Orthopedics, Yancheng Third People's Hospital, Yancheng, China
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
22
|
Bharadwaz A, Jayasuriya AC. Osteogenic differentiation cues of the bone morphogenetic protein-9 (BMP-9) and its recent advances in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111748. [PMID: 33545890 PMCID: PMC7867678 DOI: 10.1016/j.msec.2020.111748] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/14/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Bone regeneration using bioactive molecules and biocompatible materials is growing steadily with the advent of the new findings in cellular signaling. Bone Morphogenetic Protein (BMP)-9 is a considerably recent discovery from the BMP family that delivers numerous benefits in osteogenesis. The Smad cellular signaling pathway triggered by BMPs is often inhibited by Noggin. However, BMP-9 is resistant to Noggin, thus, facilitating a more robust cellular differentiation of osteoprogenitor cells into preosteoblasts and osteoblasts. This review encompasses a general understanding of the Smad signaling pathway activated by the BMP-9 ligand molecule with its specific receptors. The robust osteogenic cellular differentiation cue provided by BMP-9 has been reviewed from a bone regeneration perspective with several in vitro as well as in vivo studies reporting promising results for future research. The effect of the biomaterial, chosen in such studies as the scaffold or carrier matrix, on the activity of BMP-9 and subsequent bone regeneration has been highlighted in this review. The non-viral delivery technique for BMP-9 induced bone regeneration is a safer alternative to its viral counterpart. The recent advances in non-viral BMP-9 delivery have also highlighted the efficacy of the protein molecule at a low dosage. This opens a new horizon as a more efficient and safer alternative to BMP-2, which was prevalent among clinical trials; however, BMP-2 applications have reported its downsides during bone defect healing such as cystic bone formation.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
23
|
Zhu X, Chen Y, Zhang Z, Zhao S, Xie L, Zhang R. A species-specific miRNA participates in biomineralization by targeting CDS regions of Prisilkin-39 and ACCBP in Pinctada fucata. Sci Rep 2020; 10:8971. [PMID: 32488043 PMCID: PMC7265298 DOI: 10.1038/s41598-020-65708-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Biomineralization is a sophisticated biological process precisely regulated by multiple molecules and pathways. Accumulating miRNAs have been identified in invertebrates but their functions in biomineralization are poorly studied. Here, an oyster species-specific miRNA, novel_miR_1 was found to regulate biomineralization in Pinctada fucata. Target prediction showed that novel_miR_1 could target Prisilkin-39 and ACCBP by binding to their coding sequences (CDS). Tissue distribution analysis revealed that the expression level of novel_miR_1 was highest in the mantle, which was a key tissue participating in biomineralization. Gain-of-function assay in vivo showed that biomineralization-related genes including Prisilkin-39 and ACCBP were down-regulated and shell inner surfaces of both prismatic and nacreous layer were disrupted after the over-expression of novel_miR_1, indicating its dual roles in biomineralization. Furthermore, the shell notching results indicated that novel_miR_1 was involved in shell regeneration. Dual-luciferase reporter assay in vitro demonstrated that novel_miR_1 directly suppressed Prisilkin-39 and ACCBP genes by binding to the CDS regions. Taken together, these results suggest that novel_miR_1 is a direct negative regulator to Prisilkin-39 and ACCBP and plays an indispensable and important role in biomineralization in both prismatic and nacreous layer of P. fucata.
Collapse
Affiliation(s)
- Xuejing Zhu
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yan Chen
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhen Zhang
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China
| | - Shuyan Zhao
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China
| | - Liping Xie
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongqing Zhang
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
24
|
Liu Z, Deng Y, Li T, Zhu F, Zhou X, He Y. The opposite functions of miR-24 in the osteogenesis and adipogenesis of adipose-derived mesenchymal stem cells are mediated by the HOXB7/β-catenin complex. FASEB J 2020; 34:9034-9050. [PMID: 32413244 DOI: 10.1096/fj.202000006rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022]
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) used in combination with nanoparticles or scaffolds represent promising candidates for bone engineering. Compared to bone marrow-derived MSCs (BMMSCs), ADMSCs show a relatively low capacity for osteogenesis. In the current study, miR-24 was identified as an osteogenesis- and adipogenesis-related miRNA that performs opposing roles (inhibition in osteogenesis and promotion in adipogenesis) during these two differentiation processes. Through bioinformatics analysis and luciferase reporter assays, homeobox protein Hox-B7 (HOXB7) was identified as a potential novel downstream target of miR-24 that contains a miR-24 binding site in the 3'-UTR of its mRNA. Overexpression of HOXB7 could partly halt the inhibitory effect of miR-24 on osteogenesis, and downregulation of HOXB7 could also partly suppress the positive effect of miR-24 on adipogenesis. Furthermore, immunoprecipitation experiments found that HOXB7 and β-catenin formed a functional complex that acted as an essential modulator during osteogenesis and adipogenesis of ADMSCs. After transfecting ADMSCs with an MSNs-PEI-miR-24 agomir or antagomir and loading the cells onto gelatin-chitosan scaffolds, the compounds were assessed for their abilities to repair the critical-sized calvarial defects in rats. Comprehensive evaluation, including micro-CT, sequential fluorescent labeling, and immunohistochemistry analysis, revealed that silencing miR-24 distinctly promoted in vivo bone remolding, whereas overexpression of miR-24 significantly repressed bone formation. Taken together, our findings demonstrated opposite roles for the miR-24/HOXB7/β-catenin signaling pathway in the osteogenesis and adipogenesis of ADMSCs, which may provide a novel mechanism for determining the balance between these two biological processes.
Collapse
Affiliation(s)
- Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yiwen Deng
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Li
- Department of Orthopedics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengshuo Zhu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| | - Xiaojun Zhou
- Department of Orthopedics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
25
|
Moura SR, Bras JP, Freitas J, Osório H, Barbosa MA, Santos SG, Almeida MI. miR-99a in bone homeostasis: Regulating osteogenic lineage commitment and osteoclast differentiation. Bone 2020; 134:115303. [PMID: 32126314 DOI: 10.1016/j.bone.2020.115303] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The tight coupling between osteoblasts and osteoclasts is essential to maintain bone homeostasis. Deregulation of this process leads to loss and deterioration of the bone tissue causing diseases, such as osteoporosis. MicroRNAs are able to control bone-related mechanisms and have been explored as therapeutic tools. In this study, we investigated the potential of miR-99a-5p to modulate osteogenic differentiation, osteoclastogenesis, and the osteoblasts-osteoclasts crosstalk. METHODS To achieve this goal, human primary Mesenchymal Stem/Stromal Cells (MSC) were differentiated into osteoblasts and adipocytes, and miR-99a-5p expression was evaluated by RT-qPCR. Knockdown and overexpression experiments were conducted to modulate miR-99a-5p expression in MC3T3 cells. Cell proliferation and cell death/apoptosis were evaluated by resazurin assay and flow cytometry, respectively. Proteomic analysis was used to identify the miR-99a-5p regulatory network, and ELISA to evaluate OPG levels in the cell culture supernatant. Conditioned media from MC3T3-transfected cells was used to culture RAW 264.7 cells and the effect on osteoclast differentiation was assessed. Human primary monocytes were isolated to induce osteoclastogenesis and evaluate miR-99a-5p expression. Finally, levels of miR-99a-5p were modulated in RAW 264.7 cells to understand the impact on osteoclastogenesis. RESULTS The results show that miR-99a-5p is significantly downregulated during the early stages of human primary MSCs osteogenic differentiation and during MC3T3 osteogenic differentiation. On the other hand, miR-99a-5p levels are increased during the initial stages of adipogenic differentiation. Inhibition of miR-99a-5p in MC3T3 pre-osteoblastic cells promoted osteogenic differentiation, whereas its overexpression suppressed the levels of osteogenic specific genes (Runx2 and Alpl), as well as mineralization, with no effect on proliferation or apoptosis. Proteomic analysis of miR-99a-5p-transfected cells showed that numerous proteins known to be involved in cell differentiation were altered, including osteogenic differentiation markers and extracellular matrix proteins. While inhibition of miR-99a-5p increased the Tnfrsf11b (OPG encoding gene)/Tnfsf11 (RANKL encoding gene) mRNA expression ratio, in addition to increasing OPG secretion, miR-99a-5p overexpression resulted in the opposite effect. The cell culture supernatant of miR-99a-5p-inhibited MC3T3 cells impaired the osteoclastogenic potential of RAW 264.7 cells by decreasing the number of multinucleated cells and reducing the expression of osteoclastogenic markers. Interestingly, miR-99a-5p expression is increased during osteoclasts differentiation, both in human primary monocytes and RAW 264.7. These results show that miR-99a-5p per se is a positive regulator of osteoclastogenic differentiation. CONCLUSIONS Globally, our findings show that miR-99a-5p inhibition promotes the commitment into osteogenic differentiation, impairs osteoclastogenic differentiation, and control bone cells communication. Ultimately, it supports miR-99a-5p as a target candidate for future miRNA-based therapies for bone diseases associated with bone remodeling deregulation.
Collapse
Affiliation(s)
- Sara Reis Moura
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joao Paulo Bras
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Jaime Freitas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; FMUP - Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Mario Adolfo Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Susana Gomes Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Ines Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
26
|
Chen G, Zhang X, Chen H, Lin H, Wu H, Lin H, Huang G. miR‐22 represses osteoblast viability with ESR1 presenting a direct target and indirectly inactivating p38 MAPK/JNK signaling. J Gene Med 2020; 22:e3174. [PMID: 32056303 DOI: 10.1002/jgm.3174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Guang‐Hua Chen
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Xin‐Le Zhang
- Department of Pharmacology, School of PharmacyGuangdong Medical University Zhanjiang Guangdong China
| | - Hang Chen
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Hao Lin
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Hao‐Jun Wu
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Han Lin
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Gui‐Zhi Huang
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| |
Collapse
|
27
|
Abstract
Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.
Collapse
|
28
|
Sun M, Hu L, Wang S, Huang T, Zhang M, Yang M, Zhen W, Yang D, Lu W, Guan M, Peng S. Circulating MicroRNA-19b Identified From Osteoporotic Vertebral Compression Fracture Patients Increases Bone Formation. J Bone Miner Res 2020; 35:306-316. [PMID: 31614022 DOI: 10.1002/jbmr.3892] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Circulating microRNAs (miRNAs) play important roles in regulating gene expression and have been reported to be involved in various metabolic diseases, including osteoporosis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the role of circulating miRNAs in this process is poorly understood. Here we discovered that the level of circulating miR-19b was significantly lower in osteoporotic patients with vertebral compression fractures than that of healthy controls. The expression level of miR-19b was increased during osteoblastic differentiation of human mesenchymal stem cells (hMSCs) and MC3T3-E1 cells, and transfection with synthetic miR-19b could promote osteoblastic differentiation of hMSCs and MC3T3-E1 cells. PTEN (phosphatase and tensin homolog deleted from chromosome 10) was found to be directly repressed by miR-19b, with a concomitant increase in Runx2 expression and increased phosphorylation of AKT (protein kinase B, PKB). The expression level of circulating miR-19b in aged ovariectomized mice was significantly lower than in young mice. Moreover, the osteoporotic bone phenotype in aged ovariectomized mice was alleviated by the injection of chemically modified miR-19b (agomiR-19b). Taken together, our results show that circulating miR-19b plays an important role in enhancing osteoblastogenesis, possibly through regulation of the PTEN/pAKT/Runx2 pathway, and may be a useful therapeutic target in bone loss disorders, such as osteoporosis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mengge Sun
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Liqiu Hu
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Shang Wang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Tongling Huang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minyi Zhang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meng Yang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wanxin Zhen
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Dazhi Yang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - William Lu
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Min Guan
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
29
|
Cooper LF, Ravindran S, Huang CC, Kang M. A Role for Exosomes in Craniofacial Tissue Engineering and Regeneration. Front Physiol 2020; 10:1569. [PMID: 32009978 PMCID: PMC6971208 DOI: 10.3389/fphys.2019.01569] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering and regenerative medicine utilize mesenchymal stem cells (MSCs) and their secretome in efforts to create or induce functional tissue replacement. Exosomes are specific extracellular vesicles (EVs) secreted by MSCs and other cells that carry informative cargo from the MSC to targeted cells that influence fundamental cellular processes including apoptosis, proliferation, migration, and lineage-specific differentiation. In this report, we review the current knowledge regarding MSC exosome biogenesis, cargo and function. This review summarizes the use of MSC exosomes to control or induce bone, cartilage, dentin, mucosa, and pulp tissue formation. The next-step engineering of exosomes provides additional avenues to enhance oral and craniofacial tissue engineering and regeneration.
Collapse
Affiliation(s)
- Lyndon F. Cooper
- College of Dentistry, The University of Illinois at Chicago, Chicago, IL, United States
| | | | | | | |
Collapse
|
30
|
Ito K, Tomoki R, Ogura N, Takahashi K, Eda T, Yamazaki F, Kato Y, Goss A, Kondoh T. MicroRNA-204 regulates osteogenic induction in dental follicle cells. J Dent Sci 2020; 15:457-465. [PMID: 33505617 PMCID: PMC7816036 DOI: 10.1016/j.jds.2019.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
The dental follicle is an ectomesenchymal tissue surrounding developing tooth germ that contains osteoblastic-lineage-committed stem/progenitor cells. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression during stem cell growth, proliferation, and differentiation. The aim of this study was to investigate the key regulators of miRNA during osteogenic differentiation in human dental follicle cells (hDFC). We analyzed miRNA expression profiles in hDFC during osteoblastic differentiation. Expression of miR-204 was decreased in hDFC during osteogenic induction on microarray analysis. Real-time and RT-PCR analysis also showed that the expression of miR-204 was decreased in all three hDFC during osteogenic differentiation. To investigate whether miR-204 has an effect on osteogenic differentiation, miR-204 was predicted to target alkaline phosphatase (ALP), secreted protein acidic and rich in cysteine (SPARC), and Runx2 in the in the 3'-UTRs by in silico analysis. When miR-204 was transfected into hDFC, the activity of ALP and protein levels of SPARC and Runx2 were decreased. mRNA levels of ALP, SPARC and Runx2 were also decreased by miR-204 transfection. Our data suggest that miR-204 negatively regulates the osteogenic differentiation of hDFC by targeting the bone-specific transcription factor Runx2, the mineralization maker ALP and the bone extracellular matrix protein SPARC.
Collapse
Affiliation(s)
- Ko Ito
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Risa Tomoki
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Naomi Ogura
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Kosuke Takahashi
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Takashi Eda
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Fumie Yamazaki
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yugo Kato
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Alastair Goss
- Oral and Maxillofacial Surgery Unit, Faculty of Health Science, University of Adelaide, South Australia, Australia
| | - Toshirou Kondoh
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
31
|
Xiong Y, Yan C, Chen L, Endo Y, Sun Y, Zhou W, Hu Y, Hu L, Chen D, Xue H, Mi B, Liu G. IL-10 induces MC3T3-E1 cells differentiation towards osteoblastic fate in murine model. J Cell Mol Med 2019; 24:1076-1086. [PMID: 31755174 PMCID: PMC6933380 DOI: 10.1111/jcmm.14832] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
Interleukin‐10 (IL‐10) displays well‐documented anti‐inflammatory effects, but its effects on osteoblast differentiation have not been investigated. In this study, we found IL‐10 negatively regulates microRNA‐7025‐5p (miR‐7025‐5p), the down‐regulation of which enhances osteoblast differentiation. Furthermore, through luciferase reporter assays, we found evidence that insulin‐like growth factor 1 receptor (IGF1R) is a miR‐7025‐5p target gene that positively regulates osteoblast differentiation. In vivo studies indicated that the pre‐injection of IL‐10 leads to increased bone formation, while agomiR‐7025‐5p injection delays fracture healing. Taken together, these results indicate that IL‐10 induces osteoblast differentiation via regulation of the miR‐7025‐5p/IGF1R axis. IL‐10 therefore represents a promising therapeutic strategy to promote fracture healing.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Albulescu R, Popa AC, Enciu AM, Albulescu L, Dudau M, Popescu ID, Mihai S, Codrici E, Pop S, Lupu AR, Stan GE, Manda G, Tanase C. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:3704. [PMID: 31717621 PMCID: PMC6888321 DOI: 10.3390/ma12223704] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Recently, a large spectrum of biomaterials emerged, with emphasis on various pure, blended, or doped calcium phosphates (CaPs). Although basic cytocompatibility testing protocols are referred by International Organization for Standardization (ISO) 10993 (parts 1-22), rigorous in vitro testing using cutting-edge technologies should be carried out in order to fully understand the behavior of various biomaterials (whether in bulk or low-dimensional object form) and to better gauge their outcome when implanted. In this review, current molecular techniques are assessed for the in-depth characterization of angiogenic potential, osteogenic capability, and the modulation of oxidative stress and inflammation properties of CaPs and their cation- and/or anion-substituted derivatives. Using such techniques, mechanisms of action of these compounds can be deciphered, highlighting the signaling pathway activation, cross-talk, and modulation by microRNA expression, which in turn can safely pave the road toward a better filtering of the truly functional, application-ready innovative therapeutic bioceramic-based solutions.
Collapse
Affiliation(s)
- Radu Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department Pharmaceutical Biotechnology, National Institute for Chemical-Pharmaceutical R&D, 031299, Bucharest, Romania
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
- Army Centre for Medical Research, 010195 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Lucian Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Maria Dudau
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Simona Mihai
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Elena Codrici
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Andreea-Roxana Lupu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
| | - Gina Manda
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cajal Institute, Titu Maiorescu University, 004051 Bucharest, Romania
| |
Collapse
|
33
|
Asa'ad F, Monje A, Larsson L. Role of epigenetics in alveolar bone resorption and regeneration around periodontal and peri‐implant tissues. Eur J Oral Sci 2019; 127:477-493. [DOI: 10.1111/eos.12657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Farah Asa'ad
- Institute of Odontology The Sahlgrenska Academy University of Gothenburg Göteborg Sweden
| | - Alberto Monje
- Department of Oral Surgery and Stomatology ZMK School of Dentistry Bern Switzerland
- Department of Periodontology Universitat Internacional de Catalunya Barcelona Spain
| | - Lena Larsson
- Department of Periodontology Institute of Odontology University of Gothenburg Göteborg Sweden
| |
Collapse
|
34
|
Razmara E, Bitaraf A, Yousefi H, Nguyen TH, Garshasbi M, Cho WCS, Babashah S. Non-Coding RNAs in Cartilage Development: An Updated Review. Int J Mol Sci 2019; 20:4475. [PMID: 31514268 PMCID: PMC6769748 DOI: 10.3390/ijms20184475] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
In the development of the skeleton, the long bones are arising from the process of endochondral ossification (EO) in which cartilage is replaced by bone. This complex process is regulated by various factors including genetic, epigenetic, and environmental elements. It is recognized that DNA methylation, higher-order chromatin structure, and post-translational modifications of histones regulate the EO. With emerging understanding, non-coding RNAs (ncRNAs) have been identified as another mode of EO regulation, which is consist of microRNAs (miRNAs or miRs) and long non-coding RNAs (lncRNAs). There is expanding experimental evidence to unlock the role of ncRNAs in the differentiation of cartilage cells, as well as the pathogenesis of several skeletal disorders including osteoarthritis. Cutting-edge technologies such as epigenome-wide association studies have been employed to reveal disease-specific patterns regarding ncRNAs. This opens a new avenue of our understanding of skeletal cell biology, and may also identify potential epigenetic-based biomarkers. In this review, we provide an updated overview of recent advances in the role of ncRNAs especially focus on miRNA and lncRNA in the development of bone from cartilage, as well as their roles in skeletal pathophysiology.
Collapse
Affiliation(s)
- Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Tina H Nguyen
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran.
| |
Collapse
|
35
|
Yin N, Zhu L, Ding L, Yuan J, Du L, Pan M, Xue F, Xiao H. MiR-135-5p promotes osteoblast differentiation by targeting HIF1AN in MC3T3-E1 cells. Cell Mol Biol Lett 2019; 24:51. [PMID: 31410089 PMCID: PMC6686269 DOI: 10.1186/s11658-019-0177-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background MicroRNAs (miRNAs or miRs) serve crucial roles in the progression of osteoporosis. This study investigated the role and specific molecular mechanism of miR-135-5p in regulating osteoblast differentiation and calcification. Methods Bone morphogenetic protein 2 (BMP2) was employed to interfere with the differentiation of MC3T3-E1. Then, miR-135-5p mimic or miR-135-5p inhibitor was transfected into MC3T3-E1, and quantitative RT-PCR was used to measure the expression of miR-135-5p. The expressions of runt-related transcription factor 2 (Runx2), osterix (OSX), osteopontin (OPN), and osteocalcin (OCN) were determined using western blot. Alkaline phosphatase (ALP) activity was measured using an appropriate kit assay. Calcium nodule staining was evaluated with alizarin red staining. A luciferase reporter assay was used to verify the target of miR-135-5p. Hypoxia-inducible factor 1 α inhibitor (HIF1AN) overexpression was applied to investigate its own role in the mechanism and a miR-135-5p rescue experiment was also performed. Results Overexpression of miR-135-5p promoted osteogenic differentiation and calcification, as shown by the increase in ALP activity, calcification and osteogenic marker levels, including Runx2, OSX, OPN and OCN. Knockdown of miR-135-5p yielded the opposite results. HIF1AN was confirmed as a direct target of miR-135-5p. HIF1AN overexpression inhibited osteogenic differentiation and calcification while miR-135-5p reversed these effects. Conclusions These results indicate that miR-135-5p might have a therapeutic application related to its promotion of bone formation through the targeting of HIF1AN.
Collapse
Affiliation(s)
- Nuo Yin
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Longzhang Zhu
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Liang Ding
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Junjie Yuan
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Li Du
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Mingmang Pan
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Feng Xue
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Haijun Xiao
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| |
Collapse
|
36
|
The wonders of BMP9: From mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine. Genes Dis 2019; 6:201-223. [PMID: 32042861 PMCID: PMC6997590 DOI: 10.1016/j.gendis.2019.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Although bone morphogenetic proteins (BMPs) initially showed effective induction of ectopic bone growth in muscle, it has since been determined that these proteins, as members of the TGF-β superfamily, play a diverse and critical array of biological roles. These roles include regulating skeletal and bone formation, angiogenesis, and development and homeostasis of multiple organ systems. Disruptions of the members of the TGF-β/BMP superfamily result in severe skeletal and extra-skeletal irregularities, suggesting high therapeutic potential from understanding this family of BMP proteins. Although it was once one of the least characterized BMPs, BMP9 has revealed itself to have the highest osteogenic potential across numerous experiments both in vitro and in vivo, with recent studies suggesting that the exceptional potency of BMP9 may result from unique signaling pathways that differentiate it from other BMPs. The effectiveness of BMP9 in inducing bone formation was recently revealed in promising experiments that demonstrated efficacy in the repair of critical sized cranial defects as well as compatibility with bone-inducing bio-implants, revealing the great translational promise of BMP9. Furthermore, emerging evidence indicates that, besides its osteogenic activity, BMP9 exerts a broad range of biological functions, including stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism. This review aims to summarize our current understanding of BMP9 across biology and the body.
Collapse
|
37
|
Zhang H, Mehmood K, Jiang X, Li Z, Yao W, Zhang J, Tong X, Wang Y, Li A, Waqas M, Iqbal M, Li J. Identification of differentially expressed MiRNAs profile in a thiram-induced tibial dyschondroplasia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:83-89. [PMID: 30889403 DOI: 10.1016/j.ecoenv.2019.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Tetramethyl thiuram disulfide (thiram) is a dithiocarbamate, which is widely used on seeds and storing food grains. The incorporation of thiram into the food chain could be a risk for both human beings and animals. Thiram-contaminated feed has been considered a common cause of tibial dyschondrolplasia (TD) in many avian species. The molecular mechanism of action of thiram on TD involving microRNA (miRNA) is not fully understood. For this purpose, the morbidity and pathologic changes were evaluated to understand the TD, and high-throughput RNA sequencing (RNA-Seq) was performed to explore the differentially expressed miRNAs (DEGs). RT-qPCR was used to confirm the validity as compared with sequencing data. The results showed that the marked alterations in the growth plate of the TD chickens were noticeable, with shrinking cells and irregular chondrocyte columns as compared with control group. In this study, we identified total 375 (p < 0.1), 340 (p < 0.05) and 266 (p < 0.01) significant DEGs between the TD and control groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that the target miRNAs were significantly enriched in different treatment groups, such as apoptosis, mRNA surveillance pathway, mitophagy-animal, etc. This study provides theoretical basis for in-depth understanding the pathogenesis of thiram-induced TD and explore the new insights towards the proposed molecular mechanism of specific miRNA as biomarkers for effective gene diagnosis and treatment of TD in broilers.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, PR China; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhixing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mujahid Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Department of Pathology, Cholistan University of Veterinary & Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, PR China.
| |
Collapse
|
38
|
Wildman BJ, Godfrey TC, Rehan M, Chen Y, Afreen LH, Hassan Q. MICROmanagement of Runx2 Function in Skeletal Cells. ACTA ACUST UNITED AC 2019; 5:55-64. [PMID: 31289715 DOI: 10.1007/s40610-019-0115-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review- Precise and temporal expression of Runx2 and its regulatory transcriptional network is a key determinant for the intricate cellular and developmental processes in adult bone tissue formation. This review analyzes how microRNA functions to regulate this network, and how dysregulation results in bone disorders. Recent Findings- Similar to other biologic processes, microRNA (miRNA/miR) regulation is undeniably indispensable to bone synthesis and maintenance. There exists a miRNA-RUNX2 network where RUNX2 regulates the transcription of miRs, or is post transcriptionally regulated by a class of miRs, forming a variety of miR-RUNX2 regulatory pathways which regulate osteogenesis. Summary- The current review provides insights to understand transcriptional-post transcriptional regulatory network governed by Runx2 and osteogenic miRs, and is based largely from in vitro and in vivo studies. When taken together, this article discusses a new regulatory layer of bone tissue specific gene expression by RUNX2 influenced via miRNA.
Collapse
Affiliation(s)
- Benjamin J Wildman
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Tanner C Godfrey
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Mohammad Rehan
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Yuechuan Chen
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Lubana H Afreen
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Quamarul Hassan
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| |
Collapse
|
39
|
Chen R, Qiu H, Tong Y, Liao F, Hu X, Qiu Y, Liao Y. MiRNA-19a-3p alleviates the progression of osteoporosis by targeting HDAC4 to promote the osteogenic differentiation of hMSCs. Biochem Biophys Res Commun 2019; 516:666-672. [PMID: 31248594 DOI: 10.1016/j.bbrc.2019.06.083] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023]
Abstract
To clarify the function of microRNA-19a-3p (miRNA-19a-3p) in the osteogenic differentiation of human-derived mesenchymal stem cells (hMSCs) and the potential mechanism. Serum levels of miRNA-19a-3p, RUNX2 and OCN in osteoporosis patients and controls were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Alkaline phosphatase (ALP) content and calcification ability during the process of osteogenic differentiation were examined by ALP staining and alizarin red staining, respectively. After altering miRNA-19a-3p level by transfection of miRNA-19a-3p mimic or inhibitor, we detected relative levels of miRNA-19a-3p, RUNX2 and OCN in hMSCs by qRT-PCR. The binding relationship between miRNA-19a-3p and HDAC4 was predicted by TargetScan and further verified by dual-luciferase reporter gene assay. Relative expression of HDAC4 was detected by Western blot and qRT-PCR in hMSCs transfected with miRNA-19a-3p mimic or inhibitor. Regulatory effects of miRNA-19a-3p/HDAC4 axis on osteogenic differentiation of hMSCs were evaluated. MiRNA-19a-3p was downregulated in osteoporosis patients. Its level gradually increased in hMSCs with the prolongation of osteogenic differentiation. Overexpression of miRNA-19a-3p upregulated levels of RUNX2 and OCN, and enhanced ALP activity. Knockdown of miRNA-19a-3p obtained the opposite trends. Dual-luciferase reporter gene assay verified that miRNA-19a-3p could target to 3'UTR of HDAC4. Protein level of HDAC4 was negatively regulated by miRNA-19a-3p in hMSCs. More importantly, co-overexpression of miRNA-19a-3p and HDAC4 could reverse the regulatory effects of miRNA-19a-3p on enhancing ALP activity and upregulating RUNX2 and OCN. MiRNA-19a-3p promotes the osteogenic differentiation of hMSCs by inhibiting HDAC4 expression, thus alleviating the progression of osteoporosis.
Collapse
Affiliation(s)
- Rijiang Chen
- Department of Orthopaedics, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Hanmin Qiu
- Department of Orthopaedics, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yan Tong
- Department of Endocrine, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Fake Liao
- Department of Orthopaedics, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xiunian Hu
- Department of Orthopaedics, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yongrong Qiu
- Department of Orthopaedics, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yuanjun Liao
- Department of Orthopaedics, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China.
| |
Collapse
|
40
|
Lerner UH, Kindstedt E, Lundberg P. The critical interplay between bone resorbing and bone forming cells. J Clin Periodontol 2019; 46 Suppl 21:33-51. [DOI: 10.1111/jcpe.13051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/05/2018] [Accepted: 12/01/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ulf H. Lerner
- Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition; Institute of Medicine; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
- Department of Odontology; Division of Molecular Periodontology; Umeå University; Umeå Sweden
| | - Elin Kindstedt
- Department of Odontology; Division of Molecular Periodontology; Umeå University; Umeå Sweden
| | - Pernilla Lundberg
- Department of Odontology; Division of Molecular Periodontology; Umeå University; Umeå Sweden
| |
Collapse
|
41
|
Cui Y, Fu S, Sun D, Xing J, Hou T, Wu X. EPC-derived exosomes promote osteoclastogenesis through LncRNA-MALAT1. J Cell Mol Med 2019; 23:3843-3854. [PMID: 31025509 PMCID: PMC6533478 DOI: 10.1111/jcmm.14228] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 12/17/2022] Open
Abstract
Bone repair involves bone resorption through osteoclastogenesis and the stimulation of neovascularization and osteogenesis by endothelial progenitor cells (EPCs). However, the role of EPCs in osteoclastogenesis is unclear. In this study, we assess the effects of EPC-derived exosomes on the migration and osteoclastic differentiation of primary mouse bone marrow-derived macrophages (BMMs) in vitro using immunofluorescence, western blotting, RT-PCR and Transwell assays. We also evaluated the effects of EPC-derived exosomes on the homing and osteoclastic differentiation of transplanted BMMs in a mouse bone fracture model in vivo. We found that EPCs cultured with BMMs secreted exosomes into the medium and, compared with EPCs, exosomes had a higher expression level of LncRNA-MALAT1. We confirmed that LncRNA-MALAT1 directly binds to miR-124 to negatively control miR-124 activity. Moreover, overexpression of miR-124 could reverse the migration and osteoclastic differentiation of BMMs induced by EPC-derived exosomes. A dual-luciferase reporter assay indicated that the integrin ITGB1 is the target of miR-124. Mice treated with EPC-derived exosome-BMM co-transplantations exhibited increased neovascularization at the fracture site and enhanced fracture healing compared with those treated with BMMs alone. Overall, our results suggest that EPC-derived exosomes can promote bone repair by enhancing recruitment and differentiation of osteoclast precursors through LncRNA-MALAT1.
Collapse
Affiliation(s)
- Yigong Cui
- Department of OrthopaedicsSouthwest HospitalThe Third Military Medical UniversityChongqingP.R. China
| | - Shenglong Fu
- Department of OrthopaedicsJinan Fifth People's HospitalShandongP.R. China
| | - Dong Sun
- Department of OrthopaedicsSouthwest HospitalThe Third Military Medical UniversityChongqingP.R. China
| | - Junchao Xing
- Department of OrthopaedicsSouthwest HospitalThe Third Military Medical UniversityChongqingP.R. China
| | - Tianyong Hou
- Department of OrthopaedicsSouthwest HospitalThe Third Military Medical UniversityChongqingP.R. China
| | - Xuehui Wu
- Department of OrthopaedicsSouthwest HospitalThe Third Military Medical UniversityChongqingP.R. China
| |
Collapse
|
42
|
Wang Y, Chen H, Zhang H. Kaempferol promotes proliferation, migration and differentiation of MC3T3-E1 cells via up-regulation of microRNA-101. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1050-1056. [PMID: 30942633 DOI: 10.1080/21691401.2019.1591428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yang Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyu Chen
- Department of Orthopaedics, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Hanyang Zhang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Li SL, An N, Liu B, Wang SY, Wang JJ, Ye Y. Exosomes from LNCaP cells promote osteoblast activity through miR-375 transfer. Oncol Lett 2019; 17:4463-4473. [PMID: 30988815 PMCID: PMC6447935 DOI: 10.3892/ol.2019.10110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Previous studies have revealed that exosomes influence tumour metastasis, diagnosis and treatment. In addition, exosomal microRNAs (miRNAs/miRs) are closely associated with the metastatic microenvironment; however, the regulatory role of exosomal miRNAs from prostate cancer cells on bone metastasis remains poorly understood. In the present study, a series of experiments were performed to determine whether exosomal miR-375 from LNCaP cells promote osteoblast activity. Exosomes were isolated and purified by ultracentrifugation, total RNA from cells and total miRNA from exosomes were then extracted, and miR-375 levels were detected by reverse transcription-quantitative polymerase chain reaction. Exosome libraries from LNCaP and RWPE-1 cells were sequenced and selected using an Illumina HiSeq™ 2500 system. The effects of exosomes on osteoblasts were determined and osteoblast activity was evaluated by measuring the activity of alkaline phosphatase, the extent of extracellular matrix mineralisation and the expression of osteoblast activity-associated marker genes. Morphological observations, particle size analysis and molecular phenotyping confirmed that cell supernatants contained exosomes. Differential expression analysis confirmed high miR-375 expression levels in LNCaP cell-derived exosomes. The ability of exosomes to enter osteoblasts and increase their levels of miR-375 was further analysed. The results demonstrated that exosomal miR-375 significantly promoted osteoblast activity. In conclusion, the present study may lead to further investigation of the function role of exosomal miR-375 in the activation and differentiation of osteoblasts in PCa.
Collapse
Affiliation(s)
- Su-Liang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Na An
- Department of Laboratory Medicine, Shaanxi Jiaotong Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Bing Liu
- Department of Pathology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Sheng-Yu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Jian-Jun Wang
- Intensive Care Unit, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Yun Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| |
Collapse
|
44
|
Metzinger-Le Meuth V, Metzinger L. miR-223 and other miRNA's evaluation in chronic kidney disease: Innovative biomarkers and therapeutic tools. Noncoding RNA Res 2019; 4:30-35. [PMID: 30891535 PMCID: PMC6404357 DOI: 10.1016/j.ncrna.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/04/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) represent a recent breakthrough regarding gene expression regulation. They are instrumental players known to regulate post-transcriptional expression. miRNAs are short single stranded RNAs that base-pair with target mRNAs in specific regions mainly within their 3' untranslated region. We know now that miRNAs are involved in kidney physiopathology. We outline in this review the recent discoveries made on the roles of miRNAs in cellular and animal models of kidney disease but also in patients suffering from chronic kidney disease, acute kidney injury and so forth. miRNAs are potential innovative biomarkers in nephrology, but before being used in daily clinical routine, their expression in large cohorts will have to be assessed, and an effort will have to be made to standardize measurement methods and to select the most suitable tissues and biofluids. In addition to a putative role as biomarkers, up- or down-regulating miRNAs is a novel therapeutic approach to cure kidney disorders. We discuss in this review recent methods that could be used to deliver miRNAs in a specific and suitable way in kidney and other organs damaged by kidney failure such as the cardiovascular system.
Collapse
Affiliation(s)
- Valérie Metzinger-Le Meuth
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Paris 13-Sorbonne Paris Cité, 93017 Bobigny Cedex, France
| | - Laurent Metzinger
- HEMATIM EA4666, C.U.R.S, Université de Picardie Jules Verne, 80025 Amiens Cedex 1, France
| |
Collapse
|
45
|
Chen Z, Liu Z, Shen L, Jiang H. Long non-coding RNA SNHG7 promotes the fracture repair through negative modulation of miR-9. Am J Transl Res 2019; 11:974-982. [PMID: 30899396 PMCID: PMC6413244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Fracture is the most common disease in the orthopedics. Long non-coding small nucleolar RNA host gene 7 (SNHG7) has been confirmed to enhance cell proliferation and decrease cell apoptosis in many cancers. However, the role of SNHG7 in skeletal fracture remains largely to be elucidated. In the current study, we observed SNHG7 was down-regulated in femoral neck fracture tissues. In addition, SNHG7 knockdown inhibited proliferation and migration, induced apoptosis, reduced activity in osteoblast cells in vitro. Bioinformatics analysis revealed SNHG7 acts as a molecular sponge for miR-9 and MiR-9 directly targets with 3'-UTR of TGFBR2. Furthermore, SNHG7 knockdown repressed the TGF-β signaling pathway. Taken together, this study manifested SNHG7 promotes bone repair in femoral neck fracture, and may serve as a potential target for enhancing bone formation.
Collapse
Affiliation(s)
- Zhiqing Chen
- Department of Osteology, Tianjin Third Central HospitalTianjin 300170, China
- Tianjin Institute of Hepatobiliary DiseaseTianjin 300170, China
- Tianjin Key Laboratory of Artificial CellTianjin 300170, China
- Artificial Cell Engineering Technology Research Center of Public Health MinistryTianjin 300170, China
| | - Zhi Liu
- Department of Osteology, Tianjin Third Central HospitalTianjin 300170, China
- Tianjin Institute of Hepatobiliary DiseaseTianjin 300170, China
- Tianjin Key Laboratory of Artificial CellTianjin 300170, China
- Artificial Cell Engineering Technology Research Center of Public Health MinistryTianjin 300170, China
| | - Lin Shen
- Department of Osteology, Tianjin HospitalTianjin 300210, China
| | - Han Jiang
- Department of Osteology, Tianjin Third Central HospitalTianjin 300170, China
- Tianjin Institute of Hepatobiliary DiseaseTianjin 300170, China
- Tianjin Key Laboratory of Artificial CellTianjin 300170, China
- Artificial Cell Engineering Technology Research Center of Public Health MinistryTianjin 300170, China
| |
Collapse
|
46
|
Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells 2019; 8:cells8020121. [PMID: 30717449 PMCID: PMC6406308 DOI: 10.3390/cells8020121] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Bone formation and regeneration is a multistep complex process crucially determined by the formation of blood vessels in the growth plate region. This is preceded by the expression of growth factors, notably the vascular endothelial growth factor (VEGF), secreted by osteogenic cells, as well as the corresponding response of endothelial cells, although the exact mechanisms remain to be clarified. Thereby, coordinated coupling between osteogenesis and angiogenesis is initiated and sustained. The precise interplay of these two fundamental processes is crucial during times of rapid bone growth or fracture repair in adults. Deviations in this balance might lead to pathologic conditions such as osteoarthritis and ectopic bone formation. Besides VEGF, the recently discovered important regulatory and modifying functions of microRNAs also support this key mechanism. These comprise two principal categories of microRNAs that were identified with specific functions in bone formation (osteomiRs) and/or angiogenesis (angiomiRs). However, as hypoxia is a major driving force behind bone angiogenesis, a third group involved in this process is represented by hypoxia-inducible microRNAs (hypoxamiRs). This review was focused on the identification of microRNAs that were found to have an active role in osteogenesis as well as angiogenesis to date that were termed "CouplingmiRs (CPLGmiRs)". Outlined representatives therefore represent microRNAs that already have been associated with an active role in osteogenic-angiogenic coupling or are presumed to have its potential. Elucidation of the molecular mechanisms governing bone angiogenesis are of great relevance for improving therapeutic options in bone regeneration, tissue-engineering, and the treatment of bone-related diseases.
Collapse
|
47
|
Delsin LEA, Salomao KB, Pezuk JA, Brassesco MS. Expression profiles and prognostic value of miRNAs in retinoblastoma. J Cancer Res Clin Oncol 2019; 145:1-10. [PMID: 30350021 DOI: 10.1007/s00432-018-2773-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Current cure rates for retinoblastoma (RB) are very high in developed countries. Nonetheless, in less privileged places worldwide, delayed diagnosis and refusal to adhere to treatment still endure an obstacle to improve overall patient survival. Thus, the access to consistent biomarkers for diagnosis at an earlier stage may facilitate treatment and improve outcomes. Over recent years, much attention has been focused on miRNAs, key post-transcriptional regulators that when altered, largely contribute to carcinogenesis and tumor progression. Many of the ~ 2500 microRNAs described in humans have shown differential expression profiles in tumors. In this review, we summarize current data about the roles of miRNAs in RB along with their value as diagnostic/prognostic factors using electronic databases such as PubMed. We reviewed the importance of miRNA in RB biology and discussed their implications in clinic intervention. Several miRNAs have pointed out reliable diagnostic and prognostic molecular biomarkers. The emergence of targeted therapies has significantly improved cancer treatment. In the near future, the modulation of miRNAs will represent a good treatment strategy.
Collapse
Affiliation(s)
| | | | - Julia Alejandra Pezuk
- Anhanguera University of Sao Paulo, UNIAN, Av. Raimundo Pereira de Magalhaes 3305, Sao Paulo, SP, CEP 05145-200, Brazil.
| | - Maria Sol Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
48
|
Wang Y, Wang K, Hu Z, Zhou H, Zhang L, Wang H, Li G, Zhang S, Cao X, Shi F. MicroRNA-139-3p regulates osteoblast differentiation and apoptosis by targeting ELK1 and interacting with long noncoding RNA ODSM. Cell Death Dis 2018; 9:1107. [PMID: 30382082 PMCID: PMC6208413 DOI: 10.1038/s41419-018-1153-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022]
Abstract
Recent studies have confirmed that microRNAs and lncRNAs can affect bone cell differentiation and bone formation. In this study, miR-139-3p was upregulated in the femurs of hindlimb unloading mice and MC3T3-E1 cells under simulated microgravity; this effect was related to osteoblast differentiation and apoptosis. Silencing miR-139-3p attenuated the suppression of differentiation and the promotion of MC3T3-E1 cell apoptosis induced by simulated microgravity. ELK1 is a target of miR-139-3p and is essential for miR-139-3p to regulate osteoblast differentiation and apoptosis. An osteoblast differentiation-related lncRNA that could interact with miR-139-3p (lncRNA ODSM) was identified in MC3T3-E1 cells under simulated microgravity. Further investigations demonstrated that lncRNA ODSM could promote MC3T3-E1 cell differentiation. Therefore, this research was the first to reveal the critical role of the lncRNA ODSM/miR-139-3p/ELK1 pathway in osteoblasts, and these findings suggest the potential value of miR-139-3p in osteoporosis diagnosis and therapy.
Collapse
Affiliation(s)
- Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Hua Zhou
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
49
|
Kaur S, Abu-Shahba AG, Paananen RO, Hongisto H, Hiidenmaa H, Skottman H, Seppänen-Kaijansinkko R, Mannerström B. Small non-coding RNA landscape of extracellular vesicles from human stem cells. Sci Rep 2018; 8:15503. [PMID: 30341351 PMCID: PMC6195565 DOI: 10.1038/s41598-018-33899-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are reported to be involved in stem cell maintenance, self-renewal, and differentiation. Due to their bioactive cargoes influencing cell fate and function, interest in EVs in regenerative medicine has rapidly increased. EV-derived small non-coding RNA mimic the functions of the parent stem cells, regulating the maintenance and differentiation of stem cells, controlling the intercellular regulation of gene expression, and eventually affecting the cell fate. In this study, we used RNA sequencing to provide a comprehensive overview of the expression profiles of small non-coding transcripts carried by the EVs derived from human adipose tissue stromal/stem cells (AT-MSCs) and human pluripotent stem cells (hPSCs), both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSC). Both hPSCs and AT-MSCs were characterized and their EVs were extracted using standard protocols. Small non-coding RNA sequencing from EVs showed that hPSCs and AT-MSCs showed distinct profiles, unique for each stem cell source. Interestingly, in hPSCs, most abundant miRNAs were from specific miRNA families regulating pluripotency, reprogramming and differentiation (miR-17-92, mir-200, miR-302/367, miR-371/373, CM19 microRNA cluster). For the AT-MSCs, the highly expressed miRNAs were found to be regulating osteogenesis (let-7/98, miR-10/100, miR-125, miR-196, miR-199, miR-615-3p, mir-22-3p, mir-24-3p, mir-27a-3p, mir-193b-5p, mir-195-3p). Additionally, abundant small nuclear and nucleolar RNA were detected in hPSCs, whereas Y- and tRNA were found in AT-MSCs. Identification of EV-miRNA and non-coding RNA signatures released by these stem cells will provide clues towards understanding their role in intracellular communication, and well as their roles in maintaining the stem cell niche.
Collapse
Affiliation(s)
- Sippy Kaur
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ahmed G Abu-Shahba
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Riku O Paananen
- Helsinki Eye Lab, Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heidi Hongisto
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere, Finland
| | - Hanna Hiidenmaa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heli Skottman
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere, Finland
| | - Riitta Seppänen-Kaijansinkko
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Bettina Mannerström
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
50
|
Li Q, Li C, Xi S, Li X, Ding L, Li M. The effects of photobiomodulation therapy on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via miR-503/Wnt3a pathway. Lasers Med Sci 2018; 34:607-614. [DOI: 10.1007/s10103-018-2636-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
|