1
|
Akisaka T. Three-dimensional digital elevation models reconstructed from stereoscopic image of platinum replica in sheared open osteoclasts. Micron 2025; 195:103834. [PMID: 40273509 DOI: 10.1016/j.micron.2025.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Computer-generated microscopic images can be valuable tools for analyzing cell structure. We have used a computerized surface topography technique to convert platinum replica images into measurable 3D digital elevation model reconstructiondata. The commercially available Alicona MeX software can be successfully applied to the 3D reconstruction images of the platinum replicas, resulting in a series of digital elevation models in grayscale and coloured elevation maps in RGB mode of the selected area of interest. Here, we present accessible methods to analyze cell structures in sheared-open osteoclasts in 3D and at nanometre resolution, focusing on the podosome cytoskeleton, membrane-bound clathrin lattices, and surface topography. These structures on the surface of the ventral membrane appear to be highly characterized for their specific cellular functions. Extraction data from these reconstructed digital elevation models lead to the presentation of 3D information on some ultrastructural architectures on the ventral membrane, including the height of podosomes, the thickness of clathrin-coated structures and the non-coplanar surface of the flat clathrin lattices. In particular, we found that flat clathrin lattices appear on the curved surface of the basal part of the cell protrusions, or the non-coplanarity of their surface topography further indicates their morphological diversity. This new analytical approach provided a fast and easy way to reveal the ventral membrane surface structures in sheared open osteoclasts using high quality 3D reconstructed images.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Asahi University School of Dentistry, Hozumi 1851, Gifu 501-0296, Japan.
| |
Collapse
|
2
|
Depierre M, Mularski A, Ruppel A, Le Clainche C, Balland M, Niedergang F. A crosstalk between adhesion and phagocytosis integrates macrophage functions into their microenvironment. iScience 2025; 28:112067. [PMID: 40177633 PMCID: PMC11964680 DOI: 10.1016/j.isci.2025.112067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Phagocytosis is the process of actin-dependent internalization and degradation of large particles. Macrophages, which are professional phagocytes, are present in all tissues and are, thus, exposed to environments with different mechanical properties. How mechanical cues from macrophages' environment affect their ability to phagocytose and, in turn, how phagocytosis influences how phagocytic cells interact with their environment remain poorly understood. We found that the ability of macrophages to perform phagocytosis varied with the substrate stiffness. Using live traction force microscopy, we showed that phagocytosing macrophages applied more dynamic traction forces to their substrate. In addition, integrin-mediated phagocytosis triggered a transient loss of podosomes that was associated with decreased degradation of the extracellular matrix, concomitantly with RhoA activation and F-actin recruitment at phagocytic cups. Overall, these results highlight a crosstalk between macrophage phagocytosis and cell adhesion. Mechanical properties of the microenvironment influence phagocytosis, which, in turn, impacts how macrophages interact with their surroundings.
Collapse
Affiliation(s)
- Manon Depierre
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 Paris, France
| | - Anna Mularski
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 Paris, France
| | - Artur Ruppel
- Université Grenoble Alpes, CNRS, Interdisciplinary Laboratory of Physics (LIPhy), Grenoble, France
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Martial Balland
- Université Grenoble Alpes, CNRS, Interdisciplinary Laboratory of Physics (LIPhy), Grenoble, France
| | | |
Collapse
|
3
|
Antkowiak A, Batut J, Gaits-Iacovoni F. Linear podosomes display low Cdc42 activity for proplatelet elongation by megakaryocytes. Biochem Biophys Res Commun 2024; 734:150654. [PMID: 39241623 DOI: 10.1016/j.bbrc.2024.150654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Blood platelets result from differentiation of megakaryocytes (MKs) into the bone marrow. It culminates with the extension of proplatelets (PPT) through medullar sinusoids and release of platelets in the blood stream. Those processes are regulated by contact with the microenvironment mediated by podosomes. We previously demonstrated that contact of megakaryocytes to Collagen I fibers initiated the formation of linear podosomes required for proplatelets extension and release of mature platelets. MKs linear podosomes have the particularity of displaying mechanical pulling activity but, unlike other linear podosomes, they lack the ability of digesting the extracellular matrix (ECM), as we recently demonstrated. The Cdc42 small GTPase is required for actomyosin-dependent maturation of the demarcation membrane system (DMS), a membrane reservoir for PPT and platelets components. Cdc42 is a known protein of the podosomes core, and is instrumental to accurate platelets release into the sinusoids. Indeed, FRET analysis showed that Cdc42 activity was very high and central to DMS formation. Unexpectedly, even though we found the protein in linear podosomes, almost undetectable Cdc42 activity was detected in those structures. This observation suggests that Cdc42 could also act as scaffold to assemble proteins required for PPT formation/elongation along Collagen I fibers in MKs. Eventually, we demonstrated that linear podosomes appear as points of contact between Collagen I fibers and DMS membranes, to mechanically extend PPT along Collagen bundles, independently of Cdc42 activity.
Collapse
Affiliation(s)
- Adrien Antkowiak
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Julie Batut
- Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD, UMR 5077), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne F-31062, Toulouse, France
| | - Frédérique Gaits-Iacovoni
- Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD, UMR 5077), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne F-31062, Toulouse, France.
| |
Collapse
|
4
|
Williams KS, Seawell JA, Zhuravleva V, Pierre K, Meeker RB. Cooperative interactions between neurotrophin receptors and CXCR4 regulate macrophage phenotype and susceptibility to activation by HIV. J Neurovirol 2024; 30:406-422. [PMID: 38822196 DOI: 10.1007/s13365-024-01211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Neural damage due to inflammatory activation of macrophages and microglia is a consequence of HIV infection that leads to cognitive dysfunction. The damage is due, in part, to the release of factors that impair neuronal function but the mechanisms that control their release are poorly understood. Previous studies have shown that mature nerve growth factor (NGF) binding to tropomyosin receptor kinase A (TrkA), and proNGF acting through the p75 neurotrophin receptor (p75NTR) differentially control the phenotype of macrophages in response to HIV. However, the mechanisms responsible for these actions are unclear. The current studies demonstrated that in human monocyte-derived macrophages, CCR5 tropic HIV virions interact with the CXCR4 receptor to promote a neurotoxic macrophage phenotype. TrkA cooperatively interacted with CXCR4 to promote quick and dynamic changes in CXCR4 phosphorylation and more stable downstream actin remodeling in the form of membrane ruffles. TrkA signaling also promoted increased moacrophage calcium spiking, and low neurotoxic activity. Disruption of these interactions by HIV led to an alternative podosome-bearing phenotype with minimal calcium signaling and enhanced toxicity. Neurotrophin receptors provide an independent yet cooperative pathway for modifying the actin cytoskeleton in response to chemokines and subsequent degenerative activity. The strong opposing effects of mature and proneurotrophins may provide the opportunity to develop novel therapies that regulate the phenotype of macrophages in the context of HIV infection and perhaps other degenerative diseases.
Collapse
Affiliation(s)
- Kimberly S Williams
- Environmental and Health Sciences Program, Spelman College, 30314, Atlanta, GA, USA.
| | - Jaimie A Seawell
- Department of Neurology, University of North Carolina, 27599, Chapel Hill, NC, USA
- School of Medicine, Now at University of South Carolina, 29203, Columbia, SC, USA
| | - Viktoriya Zhuravleva
- Department of Neurology, University of North Carolina, 27599, Chapel Hill, NC, USA
- Columbia University, 10027, New York, NY, USA
| | - Kersten Pierre
- Environmental and Health Sciences Program, Spelman College, 30314, Atlanta, GA, USA
- Emory University, 30322, Atlanta, GA, USA
| | - Rick B Meeker
- Department of Neurology, University of North Carolina, 27599, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Linder S, Barcelona B. Get a grip: Podosomes as potential players in phagocytosis. Eur J Cell Biol 2023; 102:151356. [PMID: 37625234 DOI: 10.1016/j.ejcb.2023.151356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
Podosomes have been known for several decades as micron-sized, F-actin-rich structures that play a pivotal role in cell migration and invasion, as they are able to mediate both cell-matrix attachment as well as extracellular matrix degradation. Particularly in monocytic cells, podosomes have been shown to fulfill a variety of additional functions such as sensing of substrate rigidity and topography, or cell-cell fusion. Increasing evidence now points to the involvement of podosome-like structures also during phagocytosis by immune cells such as macrophages, dendritic cells, and neutrophils. Here, we compare the different cell models and experimental set ups where "phagocytic podosomes" have been described. We also discuss the composition and architecture of these structures, their potential involvement in mechanosensing and particle disruption, as well as the pros and cons for addressing them as bona fide podosomes.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| | - Bryan Barcelona
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Clausen BE, Amon L, Backer RA, Berod L, Bopp T, Brand A, Burgdorf S, Chen L, Da M, Distler U, Dress RJ, Dudziak D, Dutertre CA, Eich C, Gabele A, Geiger M, Ginhoux F, Giusiano L, Godoy GJ, Hamouda AEI, Hatscher L, Heger L, Heidkamp GF, Hernandez LC, Jacobi L, Kaszubowski T, Kong WT, Lehmann CHK, López-López T, Mahnke K, Nitsche D, Renkawitz J, Reza RA, Sáez PJ, Schlautmann L, Schmitt MT, Seichter A, Sielaff M, Sparwasser T, Stoitzner P, Tchitashvili G, Tenzer S, Tochoedo NR, Vurnek D, Zink F, Hieronymus T. Guidelines for mouse and human DC functional assays. Eur J Immunol 2023; 53:e2249925. [PMID: 36563126 DOI: 10.1002/eji.202249925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Björn E Clausen
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Ronald A Backer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luciana Berod
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Tobias Bopp
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Anna Brand
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sven Burgdorf
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Luxia Chen
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Meihong Da
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ute Distler
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Regine J Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Christina Eich
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Gabele
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Melanie Geiger
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Lucila Giusiano
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Gloria J Godoy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Ahmed E I Hamouda
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Gordon F Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Lola C Hernandez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Jacobi
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Wan Ting Kong
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
| | - Tamara López-López
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik Nitsche
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Jörg Renkawitz
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Rifat A Reza
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Schlautmann
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Madeleine T Schmitt
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Malte Sielaff
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Tim Sparwasser
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venerology & Allergology, Medical University Innsbruck, Innsbruck, Austria
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Stefan Tenzer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Nounagnon R Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Fabian Zink
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Thomas Hieronymus
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Germany
| |
Collapse
|
7
|
Chen ZH, Wu JJ, Guo DY, Li YY, Chen MN, Zhang ZY, Yuan ZD, Zhang KW, Chen WW, Tian F, Ye JX, Li X, Yuan FL. Physiological functions of podosomes: From structure and function to therapy implications in osteoclast biology of bone resorption. Ageing Res Rev 2023; 85:101842. [PMID: 36621647 DOI: 10.1016/j.arr.2023.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
With increasing age, bone tissue undergoes significant alterations in composition, architecture, and metabolic functions, probably causing senile osteoporosis. Osteoporosis possess the vast majority of bone disease and associates with a reduction in bone mass and increased fracture risk. Bone loss is on account of the disorder in osteoblast-induced bone formation and osteoclast-induced bone resorption. As a unique bone resorptive cell type, mature bone-resorbing osteoclasts exhibit dynamic actin-based cytoskeletal structures called podosomes that participate in cell-matrix adhesions specialized in the degradation of mineralized bone matrix. Podosomes share many of the same molecular constitutions as focal adhesions, but they have a unique structural organization, with a central core abundant in F-actin and encircled by scaffolding proteins, kinases and integrins. Here, we conclude recent advancements in our knowledge of the architecture and the functions of podosomes. We also discuss the regulatory pathways in osteoclast podosomes, providing a reference for future research on the podosomes of osteoclasts and considering podosomes as a therapeutic target for inhibiting bone resorption.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Dan-Yang Guo
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Yue-Yue Li
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Meng-Nan Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zhen-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Kai-Wen Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-Wei Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Fan Tian
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Xia Li
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| | - Feng-Lai Yuan
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| |
Collapse
|
8
|
Hamouda AEI, Schalla C, Sechi A, Zenke M, Schneider-Kramann R, Hieronymus T. Met-signaling Controls Dendritic Cell Migration in Skin by Regulating Podosome Formation and Function. J Invest Dermatol 2023:S0022-202X(23)00100-8. [PMID: 36813160 DOI: 10.1016/j.jid.2022.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 02/23/2023]
Abstract
Signaling through the HGF receptor/Met in skin-resident Langerhans cells (LC) and dermal dendritic cells (dDC) is essential for their emigration toward draining lymph nodes upon inflammation-induced activation. Here, we addressed the role of Met-signaling in distinct steps of LC/dDC emigration from the skin by employing a conditional Met-deficient mouse model (Metflox/flox). We found that Met deficiency severely impaired podosome formation in DC and concomitantly decreased the proteolytic degradation of gelatin. Accordingly, Met-deficient LC failed to efficiently cross the extracellular matrix (ECM)-rich basement membrane between the epidermis and dermis. We further observed that HGF-dependent Met activation reduced the adhesion of bone marrow-derived LC to various ECM factors and enhanced the motility of DC in 3D collagen matrices, which was not the case for Met-deficient LC/DC. We found no impact of Met-signaling on the integrin-independent amoeboid migration of DC in response to the c-c chemokine receptor 7 (CCR7) ligand CCL19. Collectively, our data show that the Met-signaling pathway regulates the migratory properties of DC in HGF-dependent and HGF-independent manners.
Collapse
Affiliation(s)
- Ahmed E I Hamouda
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Carmen Schalla
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; Institute for Cell and Tumor Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Antonio Sechi
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; Institute for Cell and Tumor Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine IV, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Rebekka Schneider-Kramann
- Institute for Cell and Tumor Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Thomas Hieronymus
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; Institute for Cell and Tumor Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
9
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
11
|
Herron JC, Hu S, Watanabe T, Nogueira AT, Liu B, Kern ME, Aaron J, Taylor A, Pablo M, Chew TL, Elston TC, Hahn KM. Actin nano-architecture of phagocytic podosomes. Nat Commun 2022; 13:4363. [PMID: 35896550 PMCID: PMC9329332 DOI: 10.1038/s41467-022-32038-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
Podosomes are actin-enriched adhesion structures important for multiple cellular processes, including migration, bone remodeling, and phagocytosis. Here, we characterize the structure and organization of phagocytic podosomes using interferometric photoactivated localization microscopy, a super-resolution microscopy technique capable of 15-20 nm resolution, together with structured illumination microscopy and localization-based super-resolution microscopy. Phagocytic podosomes are observed during frustrated phagocytosis, a model in which cells attempt to engulf micropatterned IgG antibodies. For circular patterns, this results in regular arrays of podosomes with well-defined geometry. Using persistent homology, we develop a pipeline for semi-automatic identification and measurement of podosome features. These studies reveal an hourglass shape of the podosome actin core, a protruding knob at the bottom of the core, and two actin networks extending from the core. Additionally, the distributions of paxillin, talin, myosin II, α-actinin, cortactin, and microtubules relative to actin are characterized.
Collapse
Affiliation(s)
- J Cody Herron
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shiqiong Hu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takashi Watanabe
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Ana T Nogueira
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bei Liu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan E Kern
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Aaron Taylor
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Michael Pablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Timothy C Elston
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Klaus M Hahn
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Alexandrova M, Manchorova D, You Y, Mor G, Dimitrova V, Dimova T. Functional HLA-C expressing trophoblast spheroids as a model to study placental-maternal immune interactions during human implantation. Sci Rep 2022; 12:10224. [PMID: 35715452 PMCID: PMC9205925 DOI: 10.1038/s41598-022-12870-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/17/2022] [Indexed: 01/04/2023] Open
Abstract
In healthy couples over half of the conceptions result in failed pregnancy and around 30% of them occur during implantation defining it as a rate-limiting step for the success of native and in vitro fertilization. The understanding of the factors regulating each step of implantation and immune recognition is critical for the pregnancy outcome. Creation of 3D-cell culture models, such as spheroids and organoids, is in the focus of placental tissue engineering in attempt to resemble the in vivo complexity of the maternal-fetal interface and to overcome the need of laboratory animals and human embryos. We constructed stable, reliable, and reproducible trophoblast Sw71 spheroids which are functional independently of the serum level in the culture media. These models resemble the hatched human blastocyst in size, shape and function and are useful for in vitro studies of the in vivo concealed human implantation. Since Sw71 spheroids produce HLA-C, the only classical MHC molecule indispensable for establishment of the immune tolerance and proper human implantation, they are applicable for the evaluation not only of implantation itself but also of maternal-trophoblasts immune interactions. In addition, Sw71-blastocyst-like spheroids are manipulable in low-volume platform, easy to monitor and analyze automatically under treatment with favorable/detrimental factors.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, USA
| | - Violeta Dimitrova
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
13
|
Rashid SA, Blanchard AT, Combs JD, Fernandez N, Dong Y, Cho HC, Salaita K. DNA Tension Probes Show that Cardiomyocyte Maturation Is Sensitive to the Piconewton Traction Forces Transmitted by Integrins. ACS NANO 2022; 16:5335-5348. [PMID: 35324164 PMCID: PMC11238821 DOI: 10.1021/acsnano.1c04303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cardiac muscle cells (CMCs) are the unit cells that comprise the heart. CMCs go through different stages of differentiation and maturation pathways to fully mature into beating cells. These cells can sense and respond to mechanical cues through receptors such as integrins which influence maturation pathways. For example, cell traction forces are important for the differentiation and development of functional CMCs, as CMCs cultured on varying substrate stiffness function differently. Most work in this area has focused on understanding the role of bulk extracellular matrix stiffness in mediating the functional fate of CMCs. Given that stiffness sensing mechanisms are mediated by individual integrin receptors, an important question in this area pertains to the specific magnitude of integrin piconewton (pN) forces that can trigger CMC functional maturation. To address this knowledge gap, we used DNA adhesion tethers that rupture at specific thresholds of force (∼12, ∼56, and ∼160 pN) to test whether capping peak integrin tension to specific magnitudes affects CMC function. We show that adhesion tethers with greater force tolerance lead to functionally mature CMCs as determined by morphology, twitching frequency, transient calcium flux measurements, and protein expression (F-actin, vinculin, α-actinin, YAP, and SERCA2a). Additionally, sarcomeric actinin alignment and multinucleation were significantly enhanced as the mechanical tolerance of integrin tethers was increased. Taken together, the results show that CMCs harness defined pN integrin forces to influence early stage development. This study represents an important step toward biophysical characterization of the contribution of pN forces in early stage cardiac differentiation.
Collapse
Affiliation(s)
- Sk Aysha Rashid
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - J Dale Combs
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Natasha Fernandez
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Hee Cheol Cho
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Oprescu A, Michel D, Antkowiak A, Vega E, Viaud J, Courtneidge SA, Eckly A, de la Salle H, Chicanne G, Léon C, Payrastre B, Gaits-Iacovoni F. Megakaryocytes form linear podosomes devoid of digestive properties to remodel medullar matrix. Sci Rep 2022; 12:6255. [PMID: 35428815 PMCID: PMC9012751 DOI: 10.1038/s41598-022-10215-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Bone marrow megakaryocytes (MKs) undergo a maturation involving contacts with the microenvironment before extending proplatelets through sinusoids to deliver platelets in the bloodstream. We demonstrated that MKs assemble linear F-actin-enriched podosomes on collagen I fibers. Microscopy analysis evidenced an inverse correlation between the number of dot-like versus linear podosomes over time. Confocal videomicroscopy confirmed that they derived from each-other. This dynamics was dependent on myosin IIA. Importantly, MKs progenitors expressed the Tks4/5 adaptors, displayed a strong gelatinolytic ability and did not form linear podosomes. While maturing, MKs lost Tks expression together with digestive ability. However, those MKs were still able to remodel the matrix by exerting traction on collagen I fibers through a collaboration between GPVI, ß1 integrin and linear podosomes. Our data demonstrated that a change in structure and composition of podosomes accounted for the shift of function during megakaryopoiesis. These data highlight the fact that members of the invadosome family could correspond to different maturation status of the same entity, to adapt to functional responses required by differentiation stages of the cell that bears them.
Collapse
Affiliation(s)
- Antoine Oprescu
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Déborah Michel
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Adrien Antkowiak
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Elodie Vega
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Julien Viaud
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Sara A Courtneidge
- Department of Cell, Development and Cancer Biology, Oregon Health & Science University, Oregon, USA
| | - Anita Eckly
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Henri de la Salle
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Gaëtan Chicanne
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Catherine Léon
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Bernard Payrastre
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France.,CHU de Toulouse, laboratoire d'Hématologie, Toulouse, France
| | - Frédérique Gaits-Iacovoni
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France. .,Molecular, Cellular and Developmental Biology Department (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), University of Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
15
|
Weber K, Hey S, Cervero P, Linder S. The circle of life: Phases of podosome formation, turnover and reemergence. Eur J Cell Biol 2022; 101:151218. [PMID: 35334303 DOI: 10.1016/j.ejcb.2022.151218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/06/2023] Open
Abstract
Podosomes are highly dynamic actin-rich structures in a variety of cell types, especially monocytic cells. They fulfill multiple functions such as adhesion, mechanosensing, or extracellular matrix degradation, thus allowing cells to detect and respond to a changing environment. These abilities are based on an intricate architecture that enables podosomes to sense mechanical properties of their substratum and to transduce them intracellularly in order to generate an appropriate cellular response. These processes are enabled through the tightly orchestrated interplay of more than 300 different components that are dynamically recruited during podosome formation and turnover. In this review, we discuss the different phases of the podosome life cycle and the current knowledge on regulatory factors that impact on the genesis, activity, dissolution and reemergence of podosomes. We also highlight mechanoregulatory processes that become important during these different stages, on the level of individual podosomes, and also at podosome sub- and superstructures.
Collapse
Affiliation(s)
- Kathrin Weber
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Sven Hey
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
16
|
Zhou H, Xue Y, Dong L, Wang C. Biomaterial-based physical regulation of macrophage behaviour. J Mater Chem B 2021; 9:3608-3621. [PMID: 33908577 DOI: 10.1039/d1tb00107h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages play a critical role in regulating immune reactions induced by implanted biomaterials. They are highly plastic and in response to diverse stimuli in the microenvironment can exhibit a spectrum of phenotypes and functions. In addition to biochemical signals, the physical properties of biomaterials are becoming increasingly appreciated for their significant impact on macrophage behaviour, and the underlying mechanisms deserve more in-depth investigations. This review first summarises the effects of key physical cues - including stiffness, topography, physical confinement and applied force - on macrophage behaviour. Then, it reviews the current knowledge of cellular sensing and transduction of physical cues into intracellular signals. Finally, it discusses the major challenges in understanding mechanical regulation that could provide insights for biomaterial design.
Collapse
Affiliation(s)
- Huiqun Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Yizebang Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China. and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
17
|
Lin SS, Su YA, Chuang MC, Liu YW. Probing invadosomes: technologies for the analysis of invadosomes. FEBS J 2021; 289:5850-5863. [PMID: 34196119 DOI: 10.1111/febs.16098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022]
Abstract
Invadosomes are protrusive and mechanosensitive actin devices critical for cell migration, invasion, and extracellular matrix remodeling. The dynamic, proteolytic, and protrusive natures of invadosomes have made these structures fascinating and attracted many scientists to develop new technologies for their analysis. With these exciting methodologies, many biochemical and biophysical properties of invadosomes have been well characterized and appreciated, and those discoveries elegantly explained the biological and pathological effects of invadosomes in human health and diseases. In this review, we focus on these commonly used or newly developed methods for invadosome analysis and effort to reason some discrepancies among those assays. Finally, we explore the opposite regulatory mechanisms among invadosomes and focal adhesions, another actin-rich adhesive structures, and speculate a potential rule for their switch.
Collapse
Affiliation(s)
- Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Tsai CL, Hung SL, Lee YY, Ho YC, Yang SF. The role of fibroblasts in the modulation of dental pulp inflammation. J Formos Med Assoc 2021; 121:342-349. [PMID: 34049758 DOI: 10.1016/j.jfma.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND/PURPOSE Dental pulp fibroblasts can protect dental pulp from microbial invasion. However, little is known about the interaction between pulp fibroblasts and the immune cells. In this study, the production of proinflammatory cytokines related to inflammatory cell recruitment was evaluated in tumor necrosis factor (TNF)-α-stimulated human dental pulp fibroblasts (HDPFs). The role of TNF-α-stimulated HDPFs in the cell fusion under inflammatory process was determined with the cell co-culture with peripheral blood mononuclear cells (PBMCs). METHODS HDPFs were stimulated with various concentrations of TNF-α, and the secretion of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1 was analyzed by the enzyme-linked immunosorbent assay. The mRNA expression levels of intercellular adhesion molecule-1 (ICAM-1), macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) were determined by real-time quantitative polymerase chain reaction. TNF-α-treated HDPFs were co-cultured with PBMCs for 21 days, and characteristics of cell differentiation were assessed. RESULTS TNF-α induced IL-6, IL-8 and MCP-1 production in HDPFs. Moreover, mRNA expression levels of ICAM-1, M-CSF and OPG were significantly increased in TNF-α-treated HDPFs. Co-culture of TNF-α-treated HDPFs and PBMCs stimulated formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, and the F-actin rings were observed in these multinucleated cells. CONCLUSION Our results indicate that under the stimulation of TNF-α, HDPFs may amplify inflammatory response by cytokines production, which in turn can modulate the differentiation of immune cells.
Collapse
Affiliation(s)
- Chia-Lun Tsai
- Division of Endodontics and Periodontology, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shan-Ling Hung
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Yun Lee
- Division of Endodontics and Periodontology, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ching Ho
- Division of Endodontics and Periodontology, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shue-Fen Yang
- Division of Endodontics and Periodontology, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
19
|
Hu Z, Gu H, Ni J, Hu S, Hu J, Wang X, Liu X, Liu X. Matrix metalloproteinase-14 regulates collagen degradation and migration of mononuclear cells during infection with genotype VII Newcastle disease virus. J Gen Virol 2021; 102. [PMID: 33090092 DOI: 10.1099/jgv.0.001505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upregulation of matrix metalloproteinase (MMP)-14, a major driven force of extracellular-matrix (ECM) remodelling and cell migration, correlates with ECM breakdown and pathologic manifestation of genotype VII Newcastle disease virus (NDV) in chickens. However, the functional relevance between MMP-14 and pathogenesis of genotype VII NDV remains to be investigated. In this study, expression, biofunction and regulation of MMP-14 induced by genotype VII NDV were analysed in chicken peripheral blood mononuclear cells (PBMCs). The results showed that JS5/05 significantly increased expression and membrane accumulation of MMP-14 in PBMCs, correlating to enhanced collagen degradation and cell migration. Specific MMP-14 inhibition significantly impaired collagen degradation and migration of JS5/05-infected cells, suggesting dependence of these features on MMP-14. In addition, MMP-14 upregulation correlated with activation of the extracellular signal-regulated kinase (ERK) pathway upon JS5/05 infection, and blockage of the ERK signalling significantly suppressed MMP-14-mediated collagen degradation and migration of JS5/05-infected cells. Using a panel of chimeric NDVs derived from gene exchange between genotype VII and IV NDV, the fusion and haemagglutinin-neuraminidase genes were identified as the major viral determinants for MMP-14 expression and activity. In conclusion, MMP-14 was defined as a critical regulator of collagen degradation and cell migration of chicken PBMCs infected with genotype VII NDV, which may contribute to pathology of the virus. Our findings add novel information to the body of knowledge regarding virus-host biology and NDV pathogenesis.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Han Gu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Jie Ni
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Shunlin Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Jiao Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiaoquan Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiaowen Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
20
|
Simon P, Pompe W, Bobeth M, Worch H, Kniep R, Formanek P, Hild A, Wenisch S, Sturm E. Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale. ACS Biomater Sci Eng 2021; 7:2255-2267. [PMID: 33938726 PMCID: PMC8290401 DOI: 10.1021/acsbiomaterials.0c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The degradation mechanism of human trabecular bone harvested from the central part of the femoral head of a patient with a fragility fracture of the femoral neck under conditions of senile osteoporosis was investigated by high-resolution electron microscopy. As evidenced by light microscopy, there is a disturbance of bone metabolism leading to severe and irreparable damages to the bone structure. These defects are evoked by osteoclasts and thus podosome activity. Podosomes create typical pit marks and holes of about 300-400 nm in diameter on the bone surface. Detailed analysis of the stress field caused by the podosomes in the extracellular bone matrix was performed. The calculations yielded maximum stress in the range of few megapascals resulting in formation of microcracks around the podosomes. Disintegration of hydroxyapatite and free lying collagen fibrils were observed at the edges of the plywood structure of the bone lamella. At the ultimate state, the disintegration of the mineralized collagen fibrils to a gelatinous matrix comes along with a delamination of the apatite nanoplatelets resulting in a brittle, porous bone structure. The nanoplatelets aggregate to big hydroxyapatite plates with a size of up to 10 x 20 μm2. The enhanced plate growth can be explained by the interaction of two mechanisms in the ruffled border zone: the accumulation of delaminated hydroxyapatite nanoplatelets near clusters of podosomes and the accelerated nucleation and random growth of HAP nanoplatelets due to a nonsufficient concentration of process-directing carboxylated osteocalcin cOC.
Collapse
Affiliation(s)
- Paul Simon
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Wolfgang Pompe
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Manfred Bobeth
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Hartmut Worch
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Rüdiger Kniep
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Petr Formanek
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Anne Hild
- Clinical Anatomy, Clinic of Small Animals, Justus-Liebig-University, 35385 Giessen, Germany
| | - Sabine Wenisch
- Clinical Anatomy, Clinic of Small Animals, Justus-Liebig-University, 35385 Giessen, Germany
| | - Elena Sturm
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.,University of Konstanz, Physical Chemistry, POB 714, D-78457 Konstanz, Germany
| |
Collapse
|
21
|
Discepolo V, Lania G, Ten Eikelder MLG, Nanayakkara M, Sepe L, Tufano R, Troncone R, Auricchio S, Auricchio R, Paolella G, Barone MV. Pediatric Celiac Disease Patients Show Alterations of Dendritic Cell Shape and Actin Rearrangement. Int J Mol Sci 2021; 22:ijms22052708. [PMID: 33800150 PMCID: PMC7962447 DOI: 10.3390/ijms22052708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Celiac disease (CD) is a frequent intestinal inflammatory disease occurring in genetically susceptible individuals upon gluten ingestion. Recent studies point to a role in CD for genes involved in cell shape, adhesion and actin rearrangements, including a Rho family regulator, Rho GTPase-activating protein 31 (ARHGAP31). In this study, we investigated the morphology and actin cytoskeletons of peripheral monocyte-derived dendritic cells (DCs) from children with CD and controls when in contact with a physiological substrate, fibronectin. DCs were generated from peripheral blood monocytes of pediatric CD patients and controls. After adhesion on fibronectin, DCs showed a higher number of protrusions and a more elongated shape in CD patients compared with controls, as assessed by immunofluorescence actin staining, transmitted light staining and video time-lapse microscopy. These alterations did not depend on active intestinal inflammation associated with gluten consumption and were specific to CD, since they were not found in subjects affected by other intestinal inflammatory conditions. The elongated morphology was not a result of differences in DC activation or maturation status, and did not depend on the human leukocyte antigen (HLA)-DQ2 haplotype. Notably, we found that ARH-GAP31 mRNA levels were decreased while RhoA-GTP activity was increased in CD DCs, pointing to an impairment of the Rho pathway in CD cells. Accordingly, Rho inhibition was able to prevent the cytoskeleton rearrangements leading to the elongated morphology of celiac DCs upon adhesion on fibronectin, confirming the role of this pathway in the observed phenotype. In conclusion, adhesion on fibronectin discriminated CD from the controls' DCs, revealing a gluten-independent CD-specific cellular phenotype related to DC shape and regulated by RhoA activity.
Collapse
Affiliation(s)
- Valentina Discepolo
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Giuliana Lania
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | | | - Merlin Nanayakkara
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (L.S.); (R.T.)
| | - Rossella Tufano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (L.S.); (R.T.)
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Renata Auricchio
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Giovanni Paolella
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
- Correspondence:
| |
Collapse
|
22
|
Mondal C, Di Martino JS, Bravo-Cordero JJ. Actin dynamics during tumor cell dissemination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:65-98. [PMID: 33962751 PMCID: PMC8246644 DOI: 10.1016/bs.ircmb.2020.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The actin cytoskeleton is a dynamic network that regulates cellular behavior from development to disease. By rearranging the actin cytoskeleton, cells are capable of migrating and invading during developmental processes; however, many of these cellular properties are hijacked by cancer cells to escape primary tumors and disseminate to distant organs in the body. In this review article, we highlight recent work describing how cancer cells regulate the actin cytoskeleton to achieve efficient invasion and metastatic colonization. We also review new imaging technologies that are capable of revealing the complex architecture and regulation of the actin cytoskeleton during motility and invasion of tumor cells.
Collapse
Affiliation(s)
- Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
23
|
Advances in Understanding TKS4 and TKS5: Molecular Scaffolds Regulating Cellular Processes from Podosome and Invadopodium Formation to Differentiation and Tissue Homeostasis. Int J Mol Sci 2020; 21:ijms21218117. [PMID: 33143131 PMCID: PMC7663256 DOI: 10.3390/ijms21218117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Scaffold proteins are typically thought of as multi-domain "bridging molecules." They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development, among others. However, a number of novel functions have been discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling pathways, and interaction partners, as well as their involvement in cellular processes, including migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe related pathologies and the established mouse models.
Collapse
|
24
|
Lian Y, Wen D, Meng X, Wang X, Li H, Hao L, Xue H, Zhao J. Inhibition of invadopodia formation by diosgenin in tumor cells. Oncol Lett 2020; 20:283. [PMID: 33014161 PMCID: PMC7520800 DOI: 10.3892/ol.2020.12148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Diosgenin is a type of steroid extracted from the rhizome of Dioscorea plants. In traditional Chinese medicine, Dioscorea has the effect of ‘eliminating phlegm, promoting digestion, relaxing tendons, promoting blood circulation and inhibiting malaria’. Recent studies have confirmed that diosgenin exhibits a number of pharmacological effects, including antitumor activities. Through its antitumor effect, diosgenin is able to block tumor progression and increase the survival rate of patients with cancer; ultimately improving their quality of life. However, the mechanism underlying its pharmacological action remains unclear. Once tumor cells reach a metastatic phase, it can be fatal. Increased migration and invasiveness are the hallmarks of metastatic tumor cells. Invadopodia formation is key to maintaining the high migration and invasive ability of tumor cells. Invadopodia are a type of membrane structure process rich in filamentous-actin and are common in highly invasive tumor cells. In addition to actin, numerous actin regulators, including cortical actin-binding protein (Cortactin), accumulate in invadopodia. Cortactin is a microfilament actin-binding protein with special repetitive domains that are directly involved in the formation of the cortical microfilament actin cell skeleton. Cortactin is also one of the main substrates of intracellular Src-type tyrosine protein kinases and represents a highly conserved family of intracellular cortical signaling proteins. In recent years, great progress has been made in understanding the role of Cortactin and its molecular mechanism in cell motility. However, the diosgenin-Cortactin-invadopodia mechanism is still under investigation. Therefore, the present review focused on the current research on the regulation of invadopodia by diosgenin via Cortactin.
Collapse
Affiliation(s)
- Yaxin Lian
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dezhong Wen
- Department of Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaoting Meng
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaozhen Wang
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongcheng Li
- GeneScience Pharmaceuticals Co., Ltd., Changchun, Jilin 130021, P.R. China
| | - Liming Hao
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Xue
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia Zhao
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
25
|
Takito J, Nakamura M. Heterogeneity and Actin Cytoskeleton in Osteoclast and Macrophage Multinucleation. Int J Mol Sci 2020; 21:ijms21186629. [PMID: 32927783 PMCID: PMC7554939 DOI: 10.3390/ijms21186629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoclast signatures are determined by two transcriptional programs, the lineage-determining transcription pathway and the receptor activator of nuclear factor kappa-B ligand (RANKL)-dependent differentiation pathways. During differentiation, mononuclear precursors become multinucleated by cell fusion. Recently, live-cell imaging has revealed a high level of heterogeneity in osteoclast multinucleation. This heterogeneity includes the difference in the differentiation states and the mobility of the fusion precursors, as well as the mode of fusion among the fusion precursors with different numbers of nuclei. In particular, fusion partners often form morphologically distinct actin-based linkages that allow two cells to exchange lipids and proteins before membrane fusion. However, the origin of this heterogeneity remains elusive. On the other hand, osteoclast multinucleation is sensitive to the environmental cues. Such cues promote the reorganization of the actin cytoskeleton, especially the formation and transformation of the podosome, an actin-rich punctate adhesion. This review covers the heterogeneity of osteoclast multinucleation at the pre-fusion stage with reference to the environment-dependent signaling pathway responsible for reorganizing the actin cytoskeleton. Furthermore, we compare osteoclast multinucleation with macrophage fusion, which results in multinucleated giant macrophages.
Collapse
|
26
|
Pacheco-Fernandez N, Pakdel M, Blank B, Sanchez-Gonzalez I, Weber K, Tran ML, Hecht TKH, Gautsch R, Beck G, Perez F, Hausser A, Linder S, von Blume J. Nucleobindin-1 regulates ECM degradation by promoting intra-Golgi trafficking of MMPs. J Cell Biol 2020; 219:e201907058. [PMID: 32479594 PMCID: PMC7401813 DOI: 10.1083/jcb.201907058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/29/2019] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) degrade several ECM components and are crucial modulators of cell invasion and tissue organization. Although much has been reported about their function in remodeling ECM in health and disease, their trafficking across the Golgi apparatus remains poorly understood. Here we report that the cis-Golgi protein nucleobindin-1 (NUCB1) is critical for MMP2 and MT1-MMP trafficking along the Golgi apparatus. This process is Ca2+-dependent and is required for invasive MDA-MB-231 cell migration as well as for gelatin degradation in primary human macrophages. Our findings emphasize the importance of NUCB1 as an essential component of MMP transport and its overall impact on ECM remodeling.
Collapse
Affiliation(s)
| | | | - Birgit Blank
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | | | - Kathrin Weber
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Mai Ly Tran
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Tobias Karl-Heinz Hecht
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Renate Gautsch
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gisela Beck
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Franck Perez
- Institute Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
27
|
Blangy A, Bompard G, Guerit D, Marie P, Maurin J, Morel A, Vives V. The osteoclast cytoskeleton - current understanding and therapeutic perspectives for osteoporosis. J Cell Sci 2020; 133:133/13/jcs244798. [PMID: 32611680 DOI: 10.1242/jcs.244798] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoclasts are giant multinucleated myeloid cells specialized for bone resorption, which is essential for the preservation of bone health throughout life. The activity of osteoclasts relies on the typical organization of osteoclast cytoskeleton components into a highly complex structure comprising actin, microtubules and other cytoskeletal proteins that constitutes the backbone of the bone resorption apparatus. The development of methods to differentiate osteoclasts in culture and manipulate them genetically, as well as improvements in cell imaging technologies, has shed light onto the molecular mechanisms that control the structure and dynamics of the osteoclast cytoskeleton, and thus the mechanism of bone resorption. Although essential for normal bone physiology, abnormal osteoclast activity can cause bone defects, in particular their hyper-activation is commonly associated with many pathologies, hormonal imbalance and medical treatments. Increased bone degradation by osteoclasts provokes progressive bone loss, leading to osteoporosis, with the resulting bone frailty leading to fractures, loss of autonomy and premature death. In this context, the osteoclast cytoskeleton has recently proven to be a relevant therapeutic target for controlling pathological bone resorption levels. Here, we review the present knowledge on the regulatory mechanisms of the osteoclast cytoskeleton that control their bone resorption activity in normal and pathological conditions.
Collapse
Affiliation(s)
- Anne Blangy
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Guillaume Bompard
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - David Guerit
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Pauline Marie
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Justine Maurin
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Anne Morel
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Virginie Vives
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| |
Collapse
|
28
|
The podosome cap: past, present, perspective. Eur J Cell Biol 2020; 99:151087. [DOI: 10.1016/j.ejcb.2020.151087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/04/2020] [Accepted: 05/16/2020] [Indexed: 12/22/2022] Open
|
29
|
Lukácsi S, Gerecsei T, Balázs K, Francz B, Szabó B, Erdei A, Bajtay Z. The differential role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in the adherence, migration and podosome formation of human macrophages and dendritic cells under inflammatory conditions. PLoS One 2020; 15:e0232432. [PMID: 32365067 PMCID: PMC7197861 DOI: 10.1371/journal.pone.0232432] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/14/2020] [Indexed: 11/19/2022] Open
Abstract
CR3 and CR4, the leukocyte specific β2-integrins, involved in cellular adherence, migration and phagocytosis, are often assumed to have similar functions. Previously however, we proved that under physiological conditions CR4 is dominant in the adhesion to fibrinogen of human monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs). Here, using inflammatory conditions, we provide further evidence that the expression and function of CR3 and CR4 are not identical in these cell types. We found that LPS treatment changes their expression differently on MDMs and MDDCs, suggesting a cell type specific regulation. Using mAb24, specific for the high affinity conformation of CD18, we proved that the activation and recycling of β2-integrins is significantly enhanced upon LPS treatment. Adherence to fibrinogen was assessed by two fundamentally different approaches: a classical adhesion assay and a computer-controlled micropipette, capable of measuring adhesion strength. While both receptors participated in adhesion, we demonstrated that CR4 exerts a dominant role in the strong attachment of MDDCs. Studying the formation of podosomes we found that MDMs retain podosome formation after LPS activation, whereas MDDCs lose this ability, resulting in a significantly reduced adhesion force and an altered cellular distribution of CR3 and CR4. Our results suggest that inflammatory conditions reshape differentially the expression and role of CR3 and CR4 in macrophages and dendritic cells.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Gerecsei
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- Nanobiosensorics “Lendület” Group, Institute of Technical Physics and Material Sciences, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Balázs
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | - Bálint Szabó
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- CellSorter Company for Innovations, Budapest, Hungary
| | - Anna Erdei
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Bajtay
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
30
|
Herzog R, van den Dries K, Cervero P, Linder S. Poji: a Fiji-based tool for analysis of podosomes and associated proteins. J Cell Sci 2020; 133:jcs238964. [PMID: 32152182 DOI: 10.1242/jcs.238964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Podosomes are actin-based adhesion and invasion structures in a variety of cell types, with podosome-forming cells displaying up to several hundreds of these structures. Podosome number, distribution and composition can be affected by experimental treatments or during regular turnover, necessitating a tool that is able to detect even subtle differences in podosomal properties. Here, we present a Fiji-based macro code termed 'Poji' ('podosome analysis by Fiji'), which serves as an easy-to-use tool to characterize a variety of cellular and podosomal parameters, including area, fluorescence intensity, relative enrichment of associated proteins and radial podosome intensity profiles. This tool should be useful to gain more detailed insight into the regulation, architecture and functions of podosomes. Moreover, we show that Poji is easily adaptable for the analysis of invadopodia and associated extracellular matrix degradation, and likely also of other micron-size punctate structures. This article describes the workflow of the Poji macro, presents several examples of its applications, and also points out limitations, as well as respective solutions, and adaptable features to streamline the analysis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Robert Herzog
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
31
|
Murrey MW, Steer JH, Greenland EL, Proudfoot JM, Joyce DA, Pixley FJ. Adhesion, motility and matrix-degrading gene expression changes in CSF-1-induced mouse macrophage differentiation. J Cell Sci 2020; 133:jcs232405. [PMID: 32005697 DOI: 10.1242/jcs.232405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022] Open
Abstract
Migratory macrophages play critical roles in tissue development, homeostasis and disease, so it is important to understand how their migration machinery is regulated. Whole-transcriptome sequencing revealed that CSF-1-stimulated differentiation of bone marrow-derived precursors into mature macrophages is accompanied by widespread, profound changes in the expression of genes regulating adhesion, actin cytoskeletal remodeling and extracellular matrix degradation. Significantly altered expression of almost 40% of adhesion genes, 60-86% of Rho family GTPases, their regulators and effectors and over 70% of extracellular proteases occurred. The gene expression changes were mirrored by changes in macrophage adhesion associated with increases in motility and matrix-degrading capacity. IL-4 further increased motility and matrix-degrading capacity in mature macrophages, with additional changes in migration machinery gene expression. Finally, siRNA-induced reductions in the expression of the core adhesion proteins paxillin and leupaxin decreased macrophage spreading and the number of adhesions, with distinct effects on adhesion and their distribution, and on matrix degradation. Together, the datasets provide an important resource to increase our understanding of the regulation of migration in macrophages and to develop therapies targeting disease-enhancing macrophages.
Collapse
Affiliation(s)
- Michael W Murrey
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - James H Steer
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Eloise L Greenland
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Julie M Proudfoot
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - David A Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Fiona J Pixley
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
32
|
AlQranei MS, Aljohani H, Majumdar S, Senbanjo LT, Chellaiah MA. C-phycocyanin attenuates RANKL-induced osteoclastogenesis and bone resorption in vitro through inhibiting ROS levels, NFATc1 and NF-κB activation. Sci Rep 2020; 10:2513. [PMID: 32054921 PMCID: PMC7018981 DOI: 10.1038/s41598-020-59363-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive bone loss occurs in inflammatory disorders such as periodontitis and osteoporosis. The underlying mechanism is related to the differentiation of macrophages into multinucleated giant osteoclasts and their bone resorptive activity. C-Phycocyanin (C-PC) is a phycobiliprotein extracted from the blue-green algae, which has been shown to have various pharmacological effects. The role of C-PC on bone metabolism needs revelation. In this study, we determined the effectiveness of C-PC as an inhibitor of osteoclast differentiation, activity, and survival in vitro. We found that C-PC strongly inhibited the differentiation of macrophages to TRAP-positive osteoclasts, distinctive osteoclast specific podosomal organization, and dentine matrix resorption without any cytotoxicity. Also, it suppressed the expression of osteoclast specific markers, such as cathepsin K and integrin β3 at mRNA and protein levels. RANKL mediated signaling utilizes reactive oxygen species (ROS) for the differentiation of osteoclasts. C-PC attenuated RANKL stimulated ROS. Mechanistic studies indicate that C-PC has the potential to reduce osteoclast formation via blocking the degradation of cytosolic IκB-α and hence, the activation of downstream markers such as c-Fos and NFATc1. However, it does not have any effect on osteoblast-mediated bone formation in vitro. Collectively, our data suggest that C-PC may be utilized as a therapeutic agent that can target bone loss mediated by excessive osteoclastic bone resorption without affecting osteoblastic activity in bone.
Collapse
Affiliation(s)
- Mohammed S AlQranei
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Preventive Dental Sciences Department, School of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Department of Oral Medicine and Diagnostics Sciences, King Saud University, School of Dentistry, Riyadh, Saudi Arabia
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Linda T Senbanjo
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
33
|
Kong L, Wang B, Yang X, He B, Hao D, Yan L. Integrin-associated molecules and signalling cross talking in osteoclast cytoskeleton regulation. J Cell Mol Med 2020; 24:3271-3281. [PMID: 32045092 PMCID: PMC7131929 DOI: 10.1111/jcmm.15052] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas , c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.
Collapse
Affiliation(s)
- Lingbo Kong
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Biao Wang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xiaobin Yang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Baorong He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Dingjun Hao
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Liang Yan
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
34
|
Chellaiah MA, Moorer MC, Majumdar S, Aljohani H, Morley SC, Yingling V, Stains JP. L-Plastin deficiency produces increased trabecular bone due to attenuation of sealing ring formation and osteoclast dysfunction. Bone Res 2020; 8:3. [PMID: 31993243 PMCID: PMC6976634 DOI: 10.1038/s41413-019-0079-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Bone resorption requires the formation of complex, actin-rich cytoskeletal structures. During the early phase of sealing ring formation by osteoclasts, L-plastin regulates actin-bundling to form the nascent sealing zones (NSZ). Here, we show that L-plastin knockout mice produce osteoclasts that are deficient in the formation of NSZs, are hyporesorptive, and make superficial resorption pits in vitro. Transduction of TAT-fused full-length L-plastin peptide into osteoclasts from L-plastin knockout mice rescued the formation of nascent sealing zones and sealing rings in a time-dependent manner. This response was not observed with mutated full-length L-plastin (Ser-5 and -7 to Ala-5 and -7) peptide. In contrast to the observed defect in the NSZ, L-plastin deficiency did not affect podosome formation or adhesion of osteoclasts in vitro or in vivo. Histomorphometry analyses in 8- and 12-week-old female L-plastin knockout mice demonstrated a decrease in eroded perimeters and an increase in trabecular bone density, without a change in bone formation by osteoblasts. This decrease in eroded perimeters supports that osteoclast function is attenuated in L-plastin knockouts. Micro-CT analyses confirmed a marked increase in trabecular bone mass. In conclusion, female L-plastin knockout mice had increased trabecular bone density due to impaired bone resorption by osteoclasts. L-plastin could be a potential target for therapeutic interventions to treat trabecular bone loss.
Collapse
Affiliation(s)
- Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Megan C. Moorer
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD USA
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Sharon C. Morley
- Department of Pediatrics, Division of Infectious Diseases, and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - Vanessa Yingling
- Department of Kinesiology, California State University, East Bay, Hayward, CA USA
| | - Joseph P. Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
35
|
van den Dries K, Linder S, Maridonneau-Parini I, Poincloux R. Probing the mechanical landscape – new insights into podosome architecture and mechanics. J Cell Sci 2019; 132:132/24/jcs236828. [DOI: 10.1242/jcs.236828] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT
Podosomes are dynamic adhesion structures formed constitutively by macrophages, dendritic cells and osteoclasts and transiently in a wide variety of cells, such as endothelial cells and megakaryocytes. They mediate numerous functions, including cell–matrix adhesion, extracellular matrix degradation, mechanosensing and cell migration. Podosomes present as micron-sized F-actin cores surrounded by an adhesive ring of integrins and integrin–actin linkers, such as talin and vinculin. In this Review, we highlight recent research that has considerably advanced our understanding of the complex architecture–function relationship of podosomes by demonstrating that the podosome ring actually consists of discontinuous nano-clusters and that the actin network in between podosomes comprises two subsets of unbranched actin filaments, lateral and dorsal podosome-connecting filaments. These lateral and dorsal podosome-connecting filaments connect the core and ring of individual podosomes and adjacent podosomes, respectively. We also highlight recent insights into the podosome cap as a novel regulatory module of actomyosin-based contractility. We propose that these newly identified features are instrumental for the ability of podosomes to generate protrusion forces and to mechanically probe their environment. Furthermore, these new results point to an increasing complexity of podosome architecture and have led to our current view of podosomes as autonomous force generators that drive cell migration.
Collapse
Affiliation(s)
- Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UMR5089, 205 route de Narbonne, BP64182 31077 Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UMR5089, 205 route de Narbonne, BP64182 31077 Toulouse, France
| |
Collapse
|
36
|
van den Dries K, Nahidiazar L, Slotman JA, Meddens MBM, Pandzic E, Joosten B, Ansems M, Schouwstra J, Meijer A, Steen R, Wijers M, Fransen J, Houtsmuller AB, Wiseman PW, Jalink K, Cambi A. Modular actin nano-architecture enables podosome protrusion and mechanosensing. Nat Commun 2019; 10:5171. [PMID: 31729386 PMCID: PMC6858452 DOI: 10.1038/s41467-019-13123-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/11/2019] [Indexed: 01/03/2023] Open
Abstract
Basement membrane transmigration during embryonal development, tissue homeostasis and tumor invasion relies on invadosomes, a collective term for invadopodia and podosomes. An adequate structural framework for this process is still missing. Here, we reveal the modular actin nano-architecture that enables podosome protrusion and mechanosensing. The podosome protrusive core contains a central branched actin module encased by a linear actin module, each harboring specific actin interactors and actin isoforms. From the core, two actin modules radiate: ventral filaments bound by vinculin and connected to the plasma membrane and dorsal interpodosomal filaments crosslinked by myosin IIA. On stiff substrates, the actin modules mediate long-range substrate exploration, associated with degradative behavior. On compliant substrates, the vinculin-bound ventral actin filaments shorten, resulting in short-range connectivity and a focally protrusive, non-degradative state. Our findings redefine podosome nanoscale architecture and reveal a paradigm for how actin modularity drives invadosome mechanosensing in cells that breach tissue boundaries.
Collapse
Affiliation(s)
- Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leila Nahidiazar
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- van Leeuwenhoek Centre of Advanced Microscopy, Amsterdam, Netherlands
| | - Johan A Slotman
- Department of Pathology, Optical imaging center Erasmus MC, Rotterdam, Netherlands
| | - Marjolein B M Meddens
- Department of Physics and Astronomy and Department of Pathology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Elvis Pandzic
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joost Schouwstra
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anke Meijer
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raymond Steen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jack Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Paul W Wiseman
- Departments of Physics and Chemistry, McGill University Otto Maass (OM), Chemistry Building, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- van Leeuwenhoek Centre of Advanced Microscopy, Amsterdam, Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
37
|
Tian Y, Wu Y, Liu L, He L, Gao J, Zhou L, Yu F, Yu S, Wang H. The structural characteristics of mononuclear-macrophage membrane observed by atomic force microscopy. J Struct Biol 2019; 206:314-321. [DOI: 10.1016/j.jsb.2019.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/09/2019] [Accepted: 04/01/2019] [Indexed: 01/26/2023]
|
38
|
Macrophage in vitro Response on Hybrid Coatings Obtained by Matrix Assisted Pulsed Laser Evaporation. COATINGS 2019. [DOI: 10.3390/coatings9040236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The improvement in the research area of the implant by surface functionalization when correlated with the biological response is of major interest in the biomedical field. Based on the fact that the inflammatory response is directly involved in the ultimate response of the implant within the body, it is essential to study the macrophage-material interactions. Within this context, we have investigated the composite material-macrophage cell interactions and the inflammatory response to these composites with amorphous hydroxyapatite (HA), Lactoferrin (Lf), and polyethylene glycol-polycaprolactone (PEG-PCL) copolymer. All materials are obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique and characterized by Atomic Force Microscopy and Scanning Electron Microscopy. Macrophage-differentiated THP-1 cells proliferation and metabolic activity were assessed by qualitative and quantitative methods. The secretion of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) cytokine, in the presence and absence of the inflammatory stimuli (bacterial endotoxin; lipopolysaccharide (LPS)), was measured using an ELISA assay. Our results revealed that the cellular response depended on the physical-chemical characteristics of the coatings. Copolymer-HA-Lf coatings led to low level of pro-inflammatory TNF-α, the increased level of anti-inflammatory IL-10, and the polarization of THP-1 cells towards an M2 pro-reparative phenotype in the presence of LPS. These findings could have important potential for the development of composite coatings in implant applications.
Collapse
|
39
|
Chuang MC, Lin SS, Ohniwa RL, Lee GH, Su YA, Chang YC, Tang MJ, Liu YW. Tks5 and Dynamin-2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion. J Cell Biol 2019; 218:1670-1685. [PMID: 30894403 PMCID: PMC6504888 DOI: 10.1083/jcb.201809161] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/22/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle development requires the cell-cell fusion of differentiated myoblasts to form muscle fibers. The actin cytoskeleton is known to be the main driving force for myoblast fusion; however, how actin is organized to direct intercellular fusion remains unclear. Here we show that an actin- and dynamin-2-enriched protrusive structure, the invadosome, is required for the fusion process of myogenesis. Upon differentiation, myoblasts acquire the ability to form invadosomes through isoform switching of a critical invadosome scaffold protein, Tks5. Tks5 directly interacts with and recruits dynamin-2 to the invadosome and regulates its assembly around actin filaments to strengthen the stiffness of dynamin-actin bundles and invadosomes. These findings provide a mechanistic framework for the acquisition of myogenic fusion machinery during myogenesis and reveal a novel structural function for Tks5 and dynamin-2 in organizing actin filaments in the invadosome to drive membrane fusion.
Collapse
Affiliation(s)
- Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Gang-Hui Lee
- International Center of Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Jer Tang
- International Center of Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan .,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Chi PY, Spuul P, Tseng FG, Genot E, Chou CF, Taloni A. Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1146:79-103. [PMID: 31612455 DOI: 10.1007/978-3-030-17593-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The last 20 years have seen the blooming of microfluidics technologies applied to biological sciences. Microfluidics provides effective tools for biological analysis, allowing the experimentalists to extend their playground to single cells and single molecules, with high throughput and resolution which were inconceivable few decades ago. In particular, microfluidic devices are profoundly changing the conventional way of studying the cell motility and cell migratory dynamics. In this chapter we will furnish a comprehensive view of the advancements made in the research domain of confinement-induced cell migration, thanks to the use of microfluidic devices. The chapter is subdivided in three parts. Each section will be addressing one of the fundamental questions that the microfluidic technology is contributing to unravel: (i) where cell migration takes place, (ii) why cells migrate and, (iii) how the cells migrate. The first introductory part is devoted to a thumbnail, and partially historical, description of microfluidics and its impact in biological sciences. Stress will be put on two aspects of the devices fabrication process, which are crucial for biological applications: materials used and coating methods. The second paragraph concerns the cell migration induced by environmental cues: chemical, leading to chemotaxis, mechanical, at the basis of mechanotaxis, and electrical, which induces electrotaxis. Each of them will be addressed separately, highlighting the fundamental role of microfluidics in providing the well-controlled experimental conditions where cell migration can be induced, investigated and ultimately understood. The third part of the chapter is entirely dedicated to how the cells move in confined environments. Invadosomes (the joint name for podosomes and invadopodia) are cell protrusion that contribute actively to cell migration or invasion. The formation of invadosomes under confinement is a research topic that only recently has caught the attention of the scientific community: microfluidic design is helping shaping the future direction of this emerging field of research.
Collapse
Affiliation(s)
- Pei-Yin Chi
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Pirjo Spuul
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Elisabeth Genot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux, France.
| | - Chia-Fu Chou
- Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China. .,Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China. .,Genomics Research Center and Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.
| | - Alessandro Taloni
- Institute for Complex Systems, Consiglio Nazionale delle Ricerche, Roma, Italy.
| |
Collapse
|
41
|
Kloc M, Ghobrial RM, Wosik J, Lewicka A, Lewicki S, Kubiak JZ. Macrophage functions in wound healing. J Tissue Eng Regen Med 2018; 13:99-109. [PMID: 30445662 DOI: 10.1002/term.2772] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Abstract
Macrophages play a crucial role in regeneration and consecutive phases of wound healing. In this review, we summarise current knowledge on the ontogeny, origin, phenotypical heterogeneity, and functional exchangeability of macrophages participating in these processes. We also describe the genetic, pharmacologic, and bioengineering methods for manipulation of macrophage phenotype and functions and their potential for development of the novel, clinically applicable therapies.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Immunobiology, The Houston Methodist Research Institute, Houston, Texas, USA.,Department of Surgery, The Houston Methodist Hospital, Houston, Texas, USA.,MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Rafik M Ghobrial
- Immunobiology, The Houston Methodist Research Institute, Houston, Texas, USA.,Department of Surgery, The Houston Methodist Hospital, Houston, Texas, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, Texas, USA.,Texas Center for Superconductivity, University of Houston, Houston, Texas, USA
| | - Aneta Lewicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Jacek Z Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland.,Cell Cycle Group, Faculty of Medicine, Univ Rennes, UMR 6290, CNRS, Institute of Genetics and Development of Rennes, Rennes, France
| |
Collapse
|
42
|
Myosins in Osteoclast Formation and Function. Biomolecules 2018; 8:biom8040157. [PMID: 30467281 PMCID: PMC6317158 DOI: 10.3390/biom8040157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
Skeletal quantity and quality are determined by processes of bone modeling and remodeling, which are undertaken by cells that build and resorb bone as they respond to mechanical, hormonal, and other external and internal signals. As the sole bone resorptive cell type, osteoclasts possess a remarkably dynamic actin cytoskeleton that drives their function in this enterprise. Actin rearrangements guide osteoclasts’ capacity for precursor fusion during differentiation, for migration across bone surfaces and sensing of their composition, and for generation of unique actin superstructures required for the resorptive process. In this regard, it is not surprising that myosins, the superfamily of actin-based motor proteins, play key roles in osteoclast physiology. This review briefly summarizes current knowledge of the osteoclast actin cytoskeleton and describes myosins’ roles in osteoclast differentiation, migration, and actin superstructure patterning.
Collapse
|
43
|
Georgess D, Spuul P, Le Clainche C, Le Nihouannen D, Fremaux I, Dakhli T, Delannoy López DM, Deffieux D, Jurdic P, Quideau S, Génot E. Anti-osteoclastic effects of C-glucosidic ellagitannins mediated by actin perturbation. Eur J Cell Biol 2018; 97:533-545. [PMID: 30287085 DOI: 10.1016/j.ejcb.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Actin subunits assemble into actin filaments whose dynamics and three-dimensional architectures are further regulated by a variety of cellular factors to establish the functional actin cytoskeleton. The C-glucosidic ellagitannin vescalagin and its simpler analogue vescalin, affect both the dynamics and the ultrastructure of the actin cytoskeleton by directly binding to F-actin. Herein, we show that in vitro, the two compounds induce the formation of distinct F-actin networks characterized by different superstructures and dynamics. In living mature osteoclasts, highly specialized bone-degrading cells that constantly remodel their cytoskeleton, vescalagin and vescalin alter actin dynamics at podosomes and compromise the integrity of the podosome belt that forms the bone-degrading apparatus. Both compounds target the bone-resorbing activity at concentrations that preserve osteoclastic maturation and survival and with no detectable impact on the behaviour of bone-forming osteoblastic cells. This anti-osteoclastic activity of vescalagin and vescalin reveals the potential of targeting actin dynamics as a new therapeutic opportunity and, in this case, as a plausible approach for the local treatment of osteoporosis.
Collapse
Affiliation(s)
- Dan Georgess
- Institut de Génomique Fonctionnelle de Lyon, (ENS-UMR 5242), Université de Lyon, F-69007, Lyon Cedex, France
| | - Pirjo Spuul
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, F-33076, Bordeaux Cedex, France; Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Christophe Le Clainche
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Damien Le Nihouannen
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, F-33076 Bordeaux, France
| | - Isabelle Fremaux
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, F-33076, Bordeaux Cedex, France
| | - Thierry Dakhli
- European Institute of Chemistry and Biology, (UMS 3033/US 001), Université de Bordeaux, 33607 Pessac Cedex, F-33607, France
| | | | - Denis Deffieux
- Institut des Sciences Moléculaires (CNRS-UMR 5255), Université de Bordeaux, Talence Cedex, F-33405, France
| | - Pierre Jurdic
- Institut de Génomique Fonctionnelle de Lyon, (ENS-UMR 5242), Université de Lyon, F-69007, Lyon Cedex, France
| | - Stéphane Quideau
- Institut des Sciences Moléculaires (CNRS-UMR 5255), Université de Bordeaux, Talence Cedex, F-33405, France.
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, F-33076, Bordeaux Cedex, France.
| |
Collapse
|
44
|
Chen W, Chen S, Chen W, Li XC, Ghobrial RM, Kloc M. Screening RhoA/ROCK inhibitors for the ability to prevent chronic rejection of mouse cardiac allografts. Transpl Immunol 2018; 50:15-25. [DOI: 10.1016/j.trim.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
|
45
|
Uehara S, Udagawa N, Kobayashi Y. Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts. Cell Mol Life Sci 2018; 75:3683-3692. [PMID: 30051162 PMCID: PMC6154041 DOI: 10.1007/s00018-018-2881-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. Osteoclasts adhere to the bone surface through integrins and polarize to form actin rings, which are formed by the assembly of podosomes. The area contained within actin rings (also called sealing zones) has an acidic pH, which causes dissolution of bone minerals including hydroxyapatite and the degradation of matrix proteins including type I collagen by the protease cathepsin K. Osteoclasts resorb bone matrices while moving on bone surfaces. Osteoclasts change their cell shapes and exhibit three modes for bone resorption: motile resorbing mode for digging trenches, static resorbing mode for digging pits, and motile non-resorbing mode. Therefore, the actin cytoskeleton is actively remodeled in osteoclasts. Recent studies have revealed that many molecules, such as Rac, Cdc42, Rho, and small GTPase regulators and effectors, are involved in actin cytoskeletal remodeling during the formation of actin rings and resorption cavities on bone slices. In this review, we introduce how these molecules and non-canonical Wnt signaling regulate the bone-resorbing activity of osteoclasts.
Collapse
Affiliation(s)
- Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan.
| |
Collapse
|
46
|
Chen W, Ghobrial RM, Li XC, Kloc M. Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) induces p21-activated kinase 1, PAK-1 and amplifies podosomes in mouse peritoneal macrophages. Immunobiology 2018; 223:634-647. [PMID: 30005970 DOI: 10.1016/j.imbio.2018.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
Abstract
Macrophage functions in the immune response depend on their ability to infiltrate tissues and organs. The penetration between and within the tissues requires degradation of extracellular matrix (ECM), a function performed by the specialized, endopeptidase- and actin filament- rich organelles located at the ventral surface of macrophage, called the podosomes. Podosome formation requires local inhibition of small GTPase RhoA activity, and depends on Rac 1/Rho guanine nucleotide exchange factor 7, β-PIX and its binding partner the p21-activated kinase (PAK-1). The activity of RhoA and Rac 1 is in turn regulated by mTOR/mTORC2 pathway. Here we showed that a fungus metabolite Fingolimod (FTY720, Gilenya), which is clinically approved for the treatment of multiple sclerosis, down-regulates Rictor, which is a signature molecule of mTORC2 and dictates its substrate (actin cytoskeleton) specificity, down-regulates RhoA, up-regulates PAK-1, and causes amplification of podosomes in mouse peritoneal macrophages.
Collapse
Affiliation(s)
- Wei Chen
- Houston Methodist Research Institute, Houston, TX, USA; Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Rafik M Ghobrial
- Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medical College, 407 E 61st St, New York, USA
| | - Xian C Li
- Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medical College, 407 E 61st St, New York, USA
| | - Malgorzata Kloc
- Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medical College, 407 E 61st St, New York, USA; University of Texas, MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| |
Collapse
|
47
|
Santoni G, Morelli MB, Amantini C, Santoni M, Nabissi M, Marinelli O, Santoni A. "Immuno-Transient Receptor Potential Ion Channels": The Role in Monocyte- and Macrophage-Mediated Inflammatory Responses. Front Immunol 2018; 9:1273. [PMID: 29928281 PMCID: PMC5997787 DOI: 10.3389/fimmu.2018.01273] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/22/2018] [Indexed: 01/19/2023] Open
Abstract
Monocytes and macrophages play important roles in health and disease. They have a central role in protecting the host, as they clear pathogens and modulate other immune cell functions through the production of regulatory molecules. Their functions include immune surveillance, bacterial killing, tissue remodeling and repair, clearance of cell debris and more. Macrophages can have beneficial and detrimental effects on the outcome of several diseases depending on the microenvironment and the activation state of cells. Over the past few years, there has been an increasing interest in the expression and functions of ion channels, in particular of transient receptor potential (TRP) channel family in immune cells. The 30 members of mammalian TRP channels are subdivided into TRPC, TRPV, TRPM, TRPML, TRPP, and TRPA superfamily, and several members of TRP subfamily have been found to be functionally expressed in monocytes and macrophages. TRP are cation-selective channels that are weakly voltage-sensitive and diversely gated by temperature, mechanical force, electrophiles, ligands, and internal cues, such as membrane composition and pH, contributing to immune and inflammatory responses. The TRP channels play major roles in controlling several monocyte and macrophage functions such as phagocytosis, production of chemokines and cytokines, cell survival, polarization and so forth. In addition, they can also be potential therapeutic targets in a variety of inflammatory diseases. Thus, the goal of this review is to describe the role of TRP channels in the control of monocyte–macrophage functions in inflammatory and immune-mediated diseases.
Collapse
Affiliation(s)
- Giorgio Santoni
- Section of Experimental Medicine, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- Section of Experimental Medicine, School of Pharmacy, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Clinical Oncology Unit, Macerata Hospital, Macerata, Italy
| | - Massimo Nabissi
- Section of Experimental Medicine, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Oliviero Marinelli
- Section of Experimental Medicine, School of Pharmacy, University of Camerino, Camerino, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,Neuromed I.R.C.C.S. - Istituto Neurologico Mediterraneo, Pozzilli, Italy
| |
Collapse
|
48
|
Cougoule C, Lastrucci C, Guiet R, Mascarau R, Meunier E, Lugo-Villarino G, Neyrolles O, Poincloux R, Maridonneau-Parini I. Podosomes, But Not the Maturation Status, Determine the Protease-Dependent 3D Migration in Human Dendritic Cells. Front Immunol 2018; 9:846. [PMID: 29760696 PMCID: PMC5936769 DOI: 10.3389/fimmu.2018.00846] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/05/2018] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DC) are professional Antigen-Presenting Cells scattered throughout antigen-exposed tissues and draining lymph nodes, and survey the body for pathogens. Their ability to migrate through tissues, a 3D environment, is essential for an effective immune response. Upon infection, recognition of Pathogen-Associated Molecular Patterns (PAMP) by Toll-like receptors (TLR) triggers DC maturation. Mature DC (mDC) essentially use the protease-independent, ROCK-dependent amoeboid mode in vivo, or in collagen matrices in vitro. However, the mechanisms of 3D migration used by human immature DC (iDC) are still poorly characterized. Here, we reveal that human monocyte-derived DC are able to use two migration modes in 3D. In porous matrices of fibrillar collagen I, iDC adopted the amoeboid migration mode. In dense matrices of gelled collagen I or Matrigel, iDC used the protease-dependent, ROCK-independent mesenchymal migration mode. Upon TLR4 activation by LPS, mDC-LPS lose the capacity to form podosomes and degrade the matrix along with impaired mesenchymal migration. TLR2 activation by Pam3CSK4 resulted in DC maturation, podosome maintenance, and efficient mesenchymal migration. Under all these conditions, when DC used the mesenchymal mode in dense matrices, they formed 3D podosomes at the tip of cell protrusions. Using PGE2, known to disrupt podosomes in DC, we observed that the cells remained in an immature status and the mesenchymal migration mode was abolished. We also observed that, while CCL5 (attractant of iDC) enhanced both amoeboid and mesenchymal migration of iDC, CCL19 and CCL21 (attractants of mDC) only enhanced mDC-LPS amoeboid migration without triggering mesenchymal migration. Finally, we examined the migration of iDC in tumor cell spheroids, a tissue-like 3D environment. We observed that iDC infiltrated spheroids of tumor cells using both migration modes. Altogether, these results demonstrate that human DC adopt the mesenchymal mode to migrate in 3D dense environments, which relies on their capacity to form podosomes independent of their maturation status, paving the way of further investigations on in vivo DC migration in dense tissues and its regulation during infections.
Collapse
Affiliation(s)
- Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Lastrucci
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Romain Guiet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Mascarau
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
49
|
Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nat Commun 2018; 9:515. [PMID: 29410425 PMCID: PMC5802837 DOI: 10.1038/s41467-018-02904-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/05/2018] [Indexed: 01/06/2023] Open
Abstract
Subcellular fine-tuning of the actomyosin cytoskeleton is a prerequisite for polarized cell migration. We identify LSP (lymphocyte-specific protein) 1 as a critical regulator of actomyosin contractility in primary macrophages. LSP1 regulates adhesion and migration, including the parameters cell area and speed, and also podosome turnover, oscillation and protrusive force. LSP1 recruits myosin IIA and its regulators, including myosin light chain kinase and calmodulin, and competes with supervillin, a myosin hyperactivator, for myosin regulators, and for actin isoforms, notably β-actin. Actin isoforms are anisotropically distributed in myosin IIA-expressing macrophages, and contribute to the differential recruitment of LSP1 and supervillin, thus enabling an actomyosin symmetry break, analogous to the situation in cells expressing two myosin II isoforms. Collectively, these results show that the cellular pattern of actin isoforms builds the basis for the differential distribution of two actomyosin machineries with distinct properties, leading to the establishment of discrete zones of actomyosin contractility. The actomyosin cytoskeleton plays an important role in polarised cell migration. Here the authors identify lymphocyte-specific protein (LSP)-1 as a regulator of actomyosin contractility in macrophages, by competing with supervillin for myosin IIA activators acting specifically on the β-actin isoform.
Collapse
|
50
|
Dulyaninova NG, Ruiz PD, Gamble MJ, Backer JM, Bresnick AR. S100A4 regulates macrophage invasion by distinct myosin-dependent and myosin-independent mechanisms. Mol Biol Cell 2017; 29:632-642. [PMID: 29282275 PMCID: PMC6004585 DOI: 10.1091/mbc.e17-07-0460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/27/2017] [Accepted: 12/22/2017] [Indexed: 01/27/2023] Open
Abstract
S100A4, a member of the S100 family of Ca2+-binding proteins, is a key regulator of cell migration and invasion. Our previous studies showed that bone marrow–derived macrophages from S100A4−/− mice exhibit defects in directional motility and chemotaxis in vitro and reduced recruitment to sites of inflammation in vivo. We now show that the loss of S100A4 produces two mechanistically distinct phenotypes with regard to macrophage invasion: a defect in matrix degradation, due to a disruption of podosome rosettes caused by myosin-IIA overassembly, and a myosin-independent increase in microtubule acetylation, which increases podosome rosette stability and is sufficient to inhibit macrophage invasion. Our studies point to S100A4 as a critical regulator of matrix degradation, whose actions converge on the dynamics and degradative functions of podosome rosettes.
Collapse
Affiliation(s)
| | - Penelope D Ruiz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Matthew J Gamble
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 .,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|