1
|
Alenad AMH, Khan MS, Al-Twaijry N, Alokail MS, Shano LB, Karthikeyan S, Naz H, Jali BR. Suppression of necroptosis-driven cell death and inflammation in hypoxic neuroblastoma (SH-SY5Y) cells by necrostatin-1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04023-z. [PMID: 40095052 DOI: 10.1007/s00210-025-04023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Neuroblastoma (NB) is the most typical malignant extracranial solid tumor in the pediatric population. The advent of drug resistance is an essential deterrent in treating high-risk NB patients despite a multi-modality remedy. Inflammation-induced early neuronal degeneration plays a leading part in the pathogenesis of NB via necroptosis; however, the mechanisms remained cryptic. Our current investigation determines the anti-inflammatory and neuroprotective effect of necroptosis inhibitor necrostatin-1 (Nec-1) in receptor-interacting proteins 1 and 3 (RIP1/3)-induced cell death pathway and inflammation caused by hypoxia mimetic agent cobalt chloride (CoCl2). Our biomolecular study illustrates that necroptosis marker RIP1/3 and mixed-lineage kinase domain-like pseudokinase (MLKL) protein expression was increased after treatment with CoCl2 in SH-SY5Y cells. Subsequently, elevated expression levels of RIP1/3 and MLKL further contributed to the inflammation by activating transcription factors extracellular signal-regulated protein kinase (ERK1/2), nuclear factor kappa-B (NF-κB), and releasing high levels of proinflammatory cytokines, such as vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1/CCL2). At the same time, Nec-1 treatment reduced the RIP1/3 and MLKL, phospho-ERK1/2, p65 subunit of NF-κB expression, and VEGF and MCP-1 levels. Molecular docking analysis of RIP1/3-necrostatin-1 complex highlights a significant interaction between necrostatin-1 and specific amino acid residues within the protein. Based on our promising results, necrostatin-1 could be exploited as a therapeutic agent during neuroblastoma's pathogenesis and its molecular therapy.
Collapse
Affiliation(s)
- Amal Majed H Alenad
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Nojood Al-Twaijry
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Leon Bernet Shano
- Division of Physics, School of Advanced Science, Vellore Institute of Technology (VIT) Chennai Campus, Vandalur- Kelambakkam Road, Chennai, Tamil Nadu, 600 127, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology University, Vandalur- Kelambakkam Road, Vellore, Tamil Nadu, 600 127, India
| | - Huma Naz
- Department of Internal Medicine, University of Missouri, Mizzou, Columbia, MO, 65211, USA
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology Burla Sambalpur Odisha, Burla, 768018, India.
| |
Collapse
|
2
|
Zhang Q, Zheng P, Pan Y, Zhou H, Fu Y, Jia E. Phosphoglycerate Mutase 5 Is Important Mediator for Instigating Arterial Lipid Accumulation and Aggravating Atherosclerosis. JACC Basic Transl Sci 2025. [DOI: 10.1016/j.jacbts.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
3
|
Chen R, Huang Q, Rao Y, Wang J, Yu R, Peng S, Huang K, Huang Y, Zhu X, Tang D, Zhang X, Lin T, Chen T, Yan A. Genomic and Transcriptional Analysis of the Necroptosis Pathway Elements RIPK and MLKL in Sea Cucumber, Holothuria leucospilota. Genes (Basel) 2024; 15:1297. [PMID: 39457421 PMCID: PMC11507063 DOI: 10.3390/genes15101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Receptor-interacting protein kinases (RIPKs) and mixed-lineage kinase domain-like protein (MLKL) are crucial in regulating innate immune responses and cell death signaling (necroptosis and apoptosis), and are potential candidates for genetic improvement in breeding programs. Knowledge about the RIPK family and MLKL in sea cucumber remains limited. Methods: We searched the genomes of sea cucumber Holothuria leucospilota for genes encoding RIPKs and MLKL, performed phylogenetic tree, motif and functional domain analyses, and examined tissue distribution and embryonic development patterns using qPCR. Results: RIPK5 (Hl-RIPK5), RIPK7 (Hl-RIPK7) and MLKL (Hl-MLKL) were identified in sea cucumber H. leucospilota. Hl-RIPK5 and Hl-RIPK7 were mainly expressed in coelomocytes, suggesting that they play a role in innate immunity, whereas Hl-MLKL exhibited relatively low expression across tissues. During embryonic development, Hl-MLKL was highly expressed from the 2-cell stage to the morula stage, while Hl-RIPK5 and Hl-RIPK7 were primarily expressed after the morula stage, indicating different roles in embryonic development. In primary coelomocytes, Hl-RIPK5 transcriptional activity was significantly depressed by LPS, poly(I:C), or pathogen Vibrio harveyi. Hl-RIPK7 expression levels were unchanged following the same challenges. Hl-MLKL mRNA levels were significantly decreased with poly(I:C) or V. harveyi, but did not change with LPS. Conclusions: These findings provide valuable insights into the evolutionary tree and characterization of RIPK and MLKL genes in sea cucumber, contributing to the broader understanding of the RIPK gene family and MLKL in ancient echinoderms.
Collapse
Affiliation(s)
- Rong Chen
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Institute of Applied Biotechnology, School of Life Science and Technolog, Lingnan Normal University, Zhanjiang 528048, China; (R.C.); (Y.R.)
| | - Qianying Huang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Yingzhu Rao
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Institute of Applied Biotechnology, School of Life Science and Technolog, Lingnan Normal University, Zhanjiang 528048, China; (R.C.); (Y.R.)
| | - Junyan Wang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Ruiming Yu
- School of Global Public Health, New York University, New York, NY 10012, USA;
| | - Shuangxin Peng
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Kaiyi Huang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Yihang Huang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Xiangxing Zhu
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Dongsheng Tang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Xiaoli Zhang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Tiehao Lin
- Guangdong Institute for Drug Control, Guangzhou 5106630, China;
| | - Ting Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
- Research Centre on Aquaculture Nutrition and Environmental Ecology of the Ministry of Agriculture and Rural Affair, Shanghai Ocean University, Shanghai 201306, China
| | - Aifen Yan
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| |
Collapse
|
4
|
Gong Q, Ali T, Hu Y, Gao R, Mou S, Luo Y, Yang C, Li A, Li T, Hao LL, He L, Yu X, Li S. RIPK1 inhibition mitigates neuroinflammation and rescues depressive-like behaviors in a mouse model of LPS-induced depression. Cell Commun Signal 2024; 22:427. [PMID: 39223674 PMCID: PMC11367892 DOI: 10.1186/s12964-024-01796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Depression is often linked to inflammation in the brain. Researchers have been exploring ways to reduce this inflammation to improve depression symptoms. One potential target is a protein called RIPK1, which is known to contribute to brain inflammation. However, it's unclear how RIPK1 influences depression. Our study aims to determine whether RIPK1 inhibition could alleviate neuroinflammation-associated depression and elucidate its underlying mechanisms. METHODS To investigate our research objectives, we established a neuroinflammation mouse model by administering LPS. Behavioral and biochemical assessments were conducted on these mice. The findings were subsequently validated through in vitro experiments. RESULTS Using LPS-induced depression models, we investigated RIPK1's role, observing depressive-like behaviors accompanied by elevated cytokines, IBA-1, GFAP levels, and increased inflammatory signaling molecules and NO/H2O2. Remarkably, Necrostatin (Nec-1 S), a RIPK1 inhibitor, mitigated these changes. We further found altered expression and phosphorylation of eIF4E, PI3K/AKT/mTOR, and synaptic proteins in hippocampal tissues, BV2, and N2a cells post-LPS treatment, which Nec-1 S also ameliorated. Importantly, eIF4E inhibition reversed some of the beneficial effects of Nec-1 S, suggesting a complex interaction between RIPK1 and eIF4E in LPS-induced neuroinflammation. Moreover, citronellol, a RIPK1 agonist, significantly altered eIF4E phosphorylation, indicating RIPK1's potential upstream regulatory role in eIF4E and its contribution to neuroinflammation-associated depression. CONCLUSION These findings propose RIPK1 as a pivotal mediator in regulating neuroinflammation and neural plasticity, highlighting its significance as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Qichao Gong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yue Hu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ruyan Gao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shengnan Mou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanhua Luo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Canyu Yang
- College of Forensic Medicine, Institute of Forensic Injury, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, China
| | - Axiang Li
- College of Forensic Medicine, Institute of Forensic Injury, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, China
| | - Tao Li
- College of Forensic Medicine, Institute of Forensic Injury, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, China
| | - Liang Liang Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-Qiao Road, Chengdu, P.R. China
| | - Liufang He
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518190, China.
| | - Xiaoming Yu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Yu F, Yang L, Zhang R, Hu F, Yuan Y, Wang Z, Yang W. Low levels of supercoiled mitochondrial DNA are involved in heart failure induced by transverse aortic constriction in mice via an inflammatory response mediated by ZBP1. Exp Cell Res 2024; 442:114187. [PMID: 39069152 DOI: 10.1016/j.yexcr.2024.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Inflammation in the myocardium plays a critical role in cardiac remodeling and the pathophysiology of heart failure (HF). Previous studies have shown that mitochondrial DNA (mtDNA) can exist in different topological forms. However, the specific influence of the ratio of supercoiled/relaxed mtDNA on the inflammatory response in cardiomyocytes remains poorly understood. The aim of this study was to elucidate the differential effects of different mtDNA types on cardiomyocyte inflammation through regulation of ZBP1. MATERIALS AND METHODS A mouse model of HF was established by transverse aortic constriction (TAC) or doxorubicin (Doxo) induction. Histopathological changes were assessed by HE staining. ELISA was used to measure cytokine levels (IL-1β and IL-6). Southern blot analysis was performed to examine the different topology of mtDNA. Pearson correlation analysis was used to determine the correlation between the ratio of supercoiled/relaxed mtDNA and inflammatory cytokines. Reverse transcription quantitative PCR (RT-qPCR) was used to measure the mRNA expression levels of cytokines (IL-1β, IL-6) and Dloop, as an mtDNA marker. RESULTS The ratio of supercoiled to relaxed mtDNA was significantly increased in the myocardium of Doxo-induced mice, whereas no significant changes were observed in TAC-induced mice. The levels of IL-1β and IL-6 were positively correlated with the cytoplasmic mtDNA supercoiled/relaxed circle ratio. Different mtDNA topology has different effects on inflammatory pathways. Low supercoiled mtDNA primarily activates the NF-κB (Ser536) pathway via ZBP1, whereas high supercoiled mtDNA significantly affects the STAT1 and STAT2 pathways. The RIPK3-NF-κB pathway, as a downstream target of ZBP1, mediates the inflammatory response induced by low supercoiled mtDNA. Knockdown of TLR9 enhances the expression of ZBP1, p-NF-κB, and RIPK3 in cardiomyocytes treated with low supercoiled mtDNA, indicating the involvement of TLR9 in the anti-inflammatory role of ZBP1 in low supercoiled mtDNA-induced inflammation. CONCLUSION Different ratios of supercoiled to relaxed mtDNA influence the inflammatory response of cardiomyocytes and contribute to HF through the involvement of ZBP1. ZBP1, together with its downstream inflammatory mechanisms, mediates the inflammatory response induced by a low ratio of supercoiled mtDNA.
Collapse
Affiliation(s)
- Fan Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lu Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Rongjie Zhang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yong Yuan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zixu Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
6
|
Singh G, Singh K, Sinha RA, Singh A, Khushi, Kumar A. Japanese encephalitis virus infection causes reactive oxygen species-mediated skeletal muscle damage. Eur J Neurosci 2024; 60:4843-4860. [PMID: 39049535 DOI: 10.1111/ejn.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Skeletal muscle wasting is a clinically proven pathology associated with Japanese encephalitis virus (JEV) infection; however, underlying factors that govern skeletal muscle damage are yet to be explored. The current study aims to investigate the pathobiology of skeletal muscle damage using a mouse model of JEV infection. Our study reveals a significant increment in viral copy number in skeletal muscle post-JEV infection, which is associated with enhanced skeletal muscle cell death. Molecular and biochemical analysis confirms NOX2-dependent generation of reactive oxygen species, leading to autophagy flux inhibition and cell apoptosis. Along with this, an alteration in mitochondrial dynamics (change in fusion and fission process) and a decrease in the total number of mitochondria copies were found during JEV disease progression. The study represents the initial evidence of skeletal muscle damage caused by JEV and provides insights into potential avenues for therapeutic advancement.
Collapse
Affiliation(s)
- Gajendra Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Kulwant Singh
- Stem Cell Research Center, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anjali Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Khushi
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
7
|
Mukherjee N, Contreras CJ, Lin L, Colglazier KA, Mather EG, Kalwat MA, Esser N, Kahn SE, Templin AT. RIPK3 promotes islet amyloid-induced β-cell loss and glucose intolerance in a humanized mouse model of type 2 diabetes. Mol Metab 2024; 80:101877. [PMID: 38218538 PMCID: PMC10830894 DOI: 10.1016/j.molmet.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Aggregation of human islet amyloid polypeptide (hIAPP), a β-cell secretory product, leads to islet amyloid deposition, islet inflammation and β-cell loss in type 2 diabetes (T2D), but the mechanisms that underlie this process are incompletely understood. Receptor interacting protein kinase 3 (RIPK3) is a pro-death signaling molecule that has recently been implicated in amyloid-associated brain pathology and β-cell cytotoxicity. Here, we evaluated the role of RIPK3 in amyloid-induced β-cell loss using a humanized mouse model of T2D that expresses hIAPP and is prone to islet amyloid formation. METHODS We quantified amyloid deposition, cell death and caspase 3/7 activity in islets isolated from WT, Ripk3-/-, hIAPP and hIAPP; Ripk3-/- mice in real time, and evaluated hIAPP-stimulated inflammation in WT and Ripk3-/- bone marrow derived macrophages (BMDMs) in vitro. We also characterized the role of RIPK3 in glucose stimulated insulin secretion (GSIS) in vitro and in vivo. Finally, we examined the role of RIPK3 in high fat diet (HFD)-induced islet amyloid deposition, β-cell loss and glucose homeostasis in vivo. RESULTS We found that amyloid-prone hIAPP mouse islets exhibited increased cell death and caspase 3/7 activity compared to amyloid-free WT islets in vitro, and this was associated with increased RIPK3 expression. hIAPP; Ripk3-/- islets were protected from amyloid-induced cell death compared to hIAPP islets in vitro, although amyloid deposition and caspase 3/7 activity were not different between genotypes. We observed that macrophages are a source of Ripk3 expression in isolated islets, and that Ripk3-/- BMDMs were protected from hIAPP-stimulated inflammatory gene expression (Tnf, Il1b, Nos2). Following 52 weeks of HFD feeding, islet amyloid-prone hIAPP mice exhibited impaired glucose tolerance and decreased β-cell area compared to WT mice in vivo, whereas hIAPP; Ripk3-/- mice were protected from these impairments. CONCLUSIONS In conclusion, loss of RIPK3 protects from amyloid-induced inflammation and islet cell death in vitro and amyloid-induced β-cell loss and glucose intolerance in vivo. We propose that therapies targeting RIPK3 may reduce islet inflammation and β-cell loss and improve glucose homeostasis in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Noyonika Mukherjee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher J Contreras
- Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Kaitlyn A Colglazier
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Egan G Mather
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Michael A Kalwat
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, WA, USA
| | - Andrew T Templin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Sun X, Wu Y, Xu F, Liu C. Screening of potent RIPK3 inhibitors to attenuate necroptosis and inflammation in mouse traumatic brain injury models. Exp Neurol 2024; 372:114633. [PMID: 38061556 DOI: 10.1016/j.expneurol.2023.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Necroptosis is a type of cell death that occurs when cells are exposed to external stressors such as inflammation, infections, or injury. In necroptosis, cells use a different set of proteins including: receptor-interacting kinase 1 (RIPK1 or RIP1), receptor-interacting kinase 3 (RIPK3 or RIP3) and the phosphorylation of its substrate mixed lineage kinase domain-like protein (MLKL) and pathways to trigger their own death. Mutations in the gene encoding RIPK3 have been associated with many diseases, including neurodegenerative diseases, neuroinflammatory diseases, inflammatory diseases,tumors, and it is being studied as a potential target for inflammatory injury therapy. RIPK3 has also been implicated in the pathology of neuroinflammation following Traumatic brain injury and is currently being explored as a potential therapy. We screened through necroptosis blocking compounds, a library of FDA-approved compounds. We found four compounds:1D6-Foretinib GSK1363089; 15F6-Poziotinib (HM781-36B); 15F9-Dasatinib monohydrate; 15A10-Pexmetinib (ARRY-614); acts as potent inhibitors of necroptosis (Necroptosis Blocking Compounds, NBCs) by blocking the RIPK3 kinase activity. These four compounds effectively block necroptosis induced by death receptor ligands Toll-like receptors as well as viral infections in human, rat and mouse cells. The cellular activation of RIPK3 and MLKL stimulated by necroptosis was strongly inhibited by NBCs. The compounds are promising for targeting RIPK3 kinase activity, thereby preventing necroptosis and inflammatory responses. In our study, we explored the role of NBCs in neuroprotection after traumatic brain injury. It's effectiveness in traumatic brain injury animal models and favorable safety profiles make it a potential candidate for the advances of new therapies for necroptosis-associated neuroinflammatory disorders.
Collapse
Affiliation(s)
- Xue Sun
- The Second Affiliated Hospital of Soochow University, Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Soochow University, Suzhou, China; The First Affiliated hospital of Soochow University, Department of Emergency Medicine, Soochow University, Jiangsu Province, Suzhou, China; Institute of Trauma Medicine, Soochow University, China; Jiangsu Provincial Medical Innovation Center of Trauma Medicine, China
| | - Yu Wu
- The First Affiliated Hospital of Soochow University, Department of neurosurgery, Soochow University, Jiangsu Province, Suzhou, China
| | - Feng Xu
- The First Affiliated hospital of Soochow University, Department of Emergency Medicine, Soochow University, Jiangsu Province, Suzhou, China; Institute of Trauma Medicine, Soochow University, China; Jiangsu Provincial Medical Innovation Center of Trauma Medicine, China.
| | - Chunfeng Liu
- The Second Affiliated Hospital of Soochow University, Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Wu K, Li B, Zhang X, Fang Y, Zeng S, Hu W, Liu X, Liu X, Lu Z, Li X, Chen W, Qin Y, Zhou B, Zou L, Zhao F, Yi L, Zhao M, Fan S, Chen J. CSFV restricts necroptosis to sustain infection by inducing autophagy/mitophagy-targeted degradation of RIPK3. Microbiol Spectr 2024; 12:e0275823. [PMID: 38100396 PMCID: PMC10782971 DOI: 10.1128/spectrum.02758-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
IMPORTANCE CSFV infection in pigs causes persistent high fever, hemorrhagic necrotizing multi-organ inflammation, and high mortality, which seriously threatens the global swine industry. Cell death is an essential immune response of the host against pathogen invasion, and lymphopenia is the most typical clinical feature in the acute phase of CSFV infection, which affects the initial host antiviral immunity. As an "old" virus, CSFV has evolved mechanisms to evade host immune response after a long genetic evolution. Here, we show that necroptosis is a limiting host factor for CSFV infection and that CSFV-induced autophagy can subvert this host defense mechanism to promote its sustained replication. Our findings reveal a complex link between necroptosis and autophagy in the process of cell death, provide evidence supporting the important role for CSFV in counteracting host cell necrosis, and enrich our knowledge of pathogens that may subvert and evade this host defense.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
| | - Xiaoai Zhang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
| | - Yiqi Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Wenshuo Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Zhimin Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Bolun Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
He XY, Wang F, Suo XG, Gu MZ, Wang JN, Xu CH, Dong YH, He Y, Zhang Y, Ji ML, Chen Y, Zhang MM, Fan YG, Wen JG, Jin J, Wang J, Li J, Zhuang CL, Liu MM, Meng XM. Compound-42 alleviates acute kidney injury by targeting RIPK3-mediated necroptosis. Br J Pharmacol 2023; 180:2641-2660. [PMID: 37248964 DOI: 10.1111/bph.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Necroptosis plays an essential role in acute kidney injury and is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed lineage kinase domain-like pseudokinase (MLKL). A novel RIPK3 inhibitor, compound 42 (Cpd-42) alleviates the systemic inflammatory response. The current study was designed to investigate whether Cpd-42 exhibits protective effects on acute kidney injury and reveal the underlying mechanisms. EXPERIMENTAL APPROACH The effects of Cpd-42 were determined in vivo through cisplatin- and ischaemia/reperfusion (I/R)-induced acute kidney injury and in vitro through cisplatin- and hypoxia/re-oxygenation (H/R)-induced cell damage. Transmission electron microscopy and periodic acid-Schiff staining were used to identify renal pathology. Cellular thermal shift assay and RIPK3-knockout mouse renal tubule epithelial cells were used to explore the relationship between Cpd-42 and RIPK3. Molecular docking and site-directed mutagenesis were used to determine the binding site of RIPK3 with Cpd-42. KEY RESULTS Cpd-42 reduced human proximal tubule epithelial cell line (HK-2) cell damage, necroptosis and inflammatory responses in vitro. Furthermore, in vivo, cisplatin- and I/R-induced acute kidney injury was alleviated by Cpd-42 treatment. Cpd-42 inhibited necroptosis by interacting with two key hydrogen bonds of RIPK3 at Thr94 and Ser146, which further blocked the phosphorylation of RIPK3 and mitigated acute kidney injury. CONCLUSION AND IMPLICATIONS Acting as a novel RIPK3 inhibitor, Cpd-42 reduced kidney damage, inflammatory response and necroptosis in acute kidney injury by binding to sites Thr94 and Ser146 on RIPK3. Cpd-42 could be a promising treatment for acute kidney injury.
Collapse
Affiliation(s)
- Xiao-Yan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Fang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ming-Zhen Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Meng-Meng Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Juan Jin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Chun-Lin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
11
|
Zhang J, Qian J, Zhang W, Chen X. The pathophysiological role of receptor-interacting protein kinase 3 in cardiovascular disease. Biomed Pharmacother 2023; 165:114696. [PMID: 37329707 DOI: 10.1016/j.biopha.2023.114696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023] Open
Abstract
Recent studies have found that receptor interacting protein kinase 3 (RIPK3) can mediate CaMK Ⅱ phosphorylation and oxidation, open mitochondrial permeability transition pore (mPTP), and induce myocardial necroptosis. The increased expression or phosphorylation of RIPK3 is one of the important markers of necroptosis; Inhibition of CaMK Ⅱ phosphorylation or oxidation significantly reduces RIPK3 mediated myocardial necroptosis; Studies have shown that necroptosis plays an important role in the occurrence and development of cardiovascular diseases; Using the selective inhibitor GSK '872 of RIPK3 can effectively inhibit the occurrence and development of cardiovascular diseases, and can reverse cardiovascular and cardiac dysfunction caused by overexpression of RIPK3. In this review, we provide a brief overview of the current knowledge on RIPK3 in mediating necroptosis, inflammatory response, and oxidative stress, and discussed the role of RIPK3 in cardiovascular diseases such as atherosclerosis, myocardial ischaemia, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianan Qian
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Wei Zhang
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China; School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Xianfen Chen
- Department of Pharmacy, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
12
|
Cao L, Gao S, Liu J, Wang J, Qin R. Selenomethionine protects against Escherichia coli-induced endometritis by inhibiting inflammation and necroptosis via regulating the PPAR-γ/NF-κB pathway. Chem Biol Interact 2023; 379:110532. [PMID: 37150495 DOI: 10.1016/j.cbi.2023.110532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Endometritis, inflammation of the endometrium, is a major cause of subfertility in women. Selenomethionine (SeMet)is known to exert anti-inflammatory activity. We aimed to verify the protective roles of SeMet on Escherichia coli (E.coli)-induced endometritis. The extent of uterus damage was assessed by detecting histopathology and inflammatory mediators. The results revealed that SeMet significantly prevented E.coli-induced endometritis by attenuating uterine histopathology and inflammatory cytokine production. E.coli-induced MPO activity and MDA content were inhibited by SeMey. E.coli-induced ZO-1 and occludin were upregulated by SeMet. E.coli-induced necroptosis was also inhibited by SeMet. Additionally, E.coli-induced NF-κB activation was alleviated by SeMet. PPAR-γ expression was upregulated by SeMet. Notably, the protective effects of SeMet on endometritis were abolished by a PPAR-γ inhibitor. In conclusion, SeMet inhibits E.coli-induced endometritis by attenuating inflammation and necroptosis, which is mediated by the PPAR-γ/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lu Cao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province, 130033, China
| | - Shouyang Gao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province, 130033, China
| | - Junbao Liu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Junrong Wang
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| | - Rui Qin
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| |
Collapse
|
13
|
Lentini G, Famà A, De Gaetano GV, Coppolino F, Mahjoub AK, Ryan L, Lien E, Espevik T, Beninati C, Teti G. Caspase-8 inhibition improves the outcome of bacterial infections in mice by promoting neutrophil activation. Cell Rep Med 2023:101098. [PMID: 37390829 PMCID: PMC10394171 DOI: 10.1016/j.xcrm.2023.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/07/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
During differentiation, neutrophils undergo a spontaneous pro-inflammatory program that is hypothesized here to be under caspase-8 control. In mice, intraperitoneal administration of the caspase-8 inhibitor z-IETD-fmk is sufficient to unleash the production of pro-inflammatory cytokines and neutrophil influx in the absence of cell death. These effects are due to selective inhibition of caspase-8 and require tonic interferon-β (IFN-β) production and RIPK3 but not MLKL, the essential downstream executioner of necroptotic cell death. In vitro, stimulation with z-IETD-fmk is sufficient to induce significant cytokine production in murine neutrophils but not in macrophages. Therapeutic administration of z-IETD-fmk improves clinical outcome in models of lethal bacterial peritonitis and pneumonia by augmenting cytokine release, neutrophil influx, and bacterial clearance. Moreover, the inhibitor protects mice against high-dose endotoxin shock. Collectively, our data unveil a RIPK3- and IFN-β-dependent pathway that is constitutively activated in neutrophils and can be harnessed therapeutically using caspase-8 inhibition.
Collapse
Affiliation(s)
- Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Francesco Coppolino
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Liv Ryan
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil Lien
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy; Scylla Biotech Srl, Messina, Italy
| | | |
Collapse
|
14
|
Liu Z, Garcia Reino EJ, Harschnitz O, Guo H, Chan YH, Khobrekar NV, Hasek ML, Dobbs K, Rinchai D, Materna M, Matuozzo D, Lee D, Bastard P, Chen J, Lee YS, Kim SK, Zhao S, Amin P, Lorenzo L, Seeleuthner Y, Chevalier R, Mazzola L, Gay C, Stephan JL, Milisavljevic B, Boucherit S, Rozenberg F, Perez de Diego R, Dix RD, Marr N, Béziat V, Cobat A, Aubart M, Abel L, Chabrier S, Smith GA, Notarangelo LD, Mocarski ES, Studer L, Casanova JL, Zhang SY. Encephalitis and poor neuronal death-mediated control of herpes simplex virus in human inherited RIPK3 deficiency. Sci Immunol 2023; 8:eade2860. [PMID: 37083451 PMCID: PMC10337828 DOI: 10.1126/sciimmunol.ade2860] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Inborn errors of TLR3-dependent type I IFN immunity in cortical neurons underlie forebrain herpes simplex virus-1 (HSV-1) encephalitis (HSE) due to uncontrolled viral growth and subsequent cell death. We report an otherwise healthy patient with HSE who was compound heterozygous for nonsense (R422*) and frameshift (P493fs9*) RIPK3 variants. Receptor-interacting protein kinase 3 (RIPK3) is a ubiquitous cytoplasmic kinase regulating cell death outcomes, including apoptosis and necroptosis. In vitro, the R422* and P493fs9* RIPK3 proteins impaired cellular apoptosis and necroptosis upon TLR3, TLR4, or TNFR1 stimulation and ZBP1/DAI-mediated necroptotic cell death after HSV-1 infection. The patient's fibroblasts displayed no detectable RIPK3 expression. After TNFR1 or TLR3 stimulation, the patient's cells did not undergo apoptosis or necroptosis. After HSV-1 infection, the cells supported excessive viral growth despite normal induction of antiviral IFN-β and IFN-stimulated genes (ISGs). This phenotype was, nevertheless, rescued by application of exogenous type I IFN. The patient's human pluripotent stem cell (hPSC)-derived cortical neurons displayed impaired cell death and enhanced viral growth after HSV-1 infection, as did isogenic RIPK3-knockout hPSC-derived cortical neurons. Inherited RIPK3 deficiency therefore confers a predisposition to HSE by impairing the cell death-dependent control of HSV-1 in cortical neurons but not their production of or response to type I IFNs.
Collapse
Affiliation(s)
- Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Eduardo J Garcia Reino
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Oliver Harschnitz
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
- Human Technopole, Viale Rita Levi-Montalcini, Milan, Italy
| | - Hongyan Guo
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, GA, USA
- School of Medicine, Atlanta, GA, USA
- Louisiana State University Health Sciences Center at Shreveport (LSUHSC-S), Shreveport, LA, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Noopur V Khobrekar
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Mary L Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Daniela Matuozzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoon Seung Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Param Amin
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Remi Chevalier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Laure Mazzola
- Department of Pediatrics, Hôpital Nord, Saint-Etienne, Paris, France
| | - Claire Gay
- Department of Pediatrics, Hôpital Nord, Saint-Etienne, Paris, France
| | | | - Baptiste Milisavljevic
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Richard D Dix
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, USA
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
- Institute of Translational Immunology, Brandenburg Medical School, Brandenburg an der Havel, Germany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Aurelie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Pediatric Neurology Department, Necker Hospital for Sick Children, APHP, Paris City University, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Stephane Chabrier
- Department of Pediatrics, Hôpital Nord, Saint-Etienne, Paris, France
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, GA, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| |
Collapse
|
15
|
Huang Z, Liang J, Chen S, Ng TK, Brelén ME, Liu Q, Yang R, Xie B, Ke S, Chen W, Huang D. RIP3-mediated microglial necroptosis promotes neuroinflammation and neurodegeneration in the early stages of diabetic retinopathy. Cell Death Dis 2023; 14:227. [PMID: 36991017 PMCID: PMC10060420 DOI: 10.1038/s41419-023-05660-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 03/31/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness that poses significant public health concerns worldwide. Increasing evidence suggests that neuroinflammation plays a key role in the early stages of DR. Microglia, long-lived immune cells in the central nervous system, can become activated in response to pathological insults and contribute to retinal neuroinflammation. However, the molecular mechanisms of microglial activation during the early stages of DR are not fully understood. In this study, we used in vivo and in vitro assays to investigate the role of microglial activation in the early pathogenesis of DR. We found that activated microglia triggered an inflammatory cascade through a process called necroptosis, a newly discovered pathway of regulated cell death. In the diabetic retina, key components of the necroptotic machinery, including RIP1, RIP3, and MLKL, were highly expressed and mainly localized in activated microglia. Knockdown of RIP3 in DR mice reduced microglial necroptosis and decreased pro-inflammatory cytokines. Additionally, blocking necroptosis with the specific inhibitor GSK-872 improved retinal neuroinflammation and neurodegeneration, as well as visual function in diabetic mice. RIP3-mediated necroptosis was activated and contributed to inflammation in BV2 microglia under hyperglycaemic conditions. Our data demonstrate the importance of microglial necroptosis in retinal neuroinflammation related to diabetes and suggest that targeting necroptosis in microglia may be a promising therapeutic strategy for the early stages of DR.
Collapse
Affiliation(s)
- Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China.
| | - Jiajian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaolang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Marten E Brelén
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Rucui Yang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqi Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Dingguo Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
16
|
Xu Y, Liang C, Zhang W, Yu J, Xing C, Liu H, Zhuang C. Profiling of the chemical space on the phenyl group of substituted benzothiazole RIPK3 inhibitors. Bioorg Chem 2023; 131:106339. [PMID: 36599218 DOI: 10.1016/j.bioorg.2022.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Necroptosis is confirmed as a precisely programmed cell death that is activated in caspase-deficient conditions. Receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed-lineage kinase domain-like pseudokinase (MLKL) are the key regulators involved in the signaling pathway. However, accumulating evidence suggests that RIPK1 also works in apoptosis and inflammation pathways independent of necroptosis. Differently, RIPK3 signals necroptosis independent of RIPK1. Thus, identification of specific RIPK3 inhibitors is of great importance for the drug development associated with necroptosis. The benzothiazole carboxamide is a privileged scaffold as RIPK3 inhibitors developed by our group recently. In this study, we work on the phenyl group in-between of benzothiazole and carboxamide to profile the chemical space. Finally, a chlorinated derivative XY-1-127 was found to specifically inhibit necroptosis rather than apoptosis with an EC50 value of 676.8 nM and target RIPK3 with a Kd of 420 nM rather than RIPK1 (Kd = 4300 nM). It was also confirmed to block the formation of necrosome by inhibiting RIPK3 phosphorylation at 1 μM in necroptosis cells. This work discovers the chemical space insights on the phenyl group of the substituted benzothiazole RIPK3 inhibitors and provides a new lead compound for further development.
Collapse
Affiliation(s)
- Yue Xu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Caiquan Liang
- Department of Otolaryngology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Huanhai Liu
- Department of Otolaryngology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
17
|
[Hydroxysafflor yellow A attenuates heat stroke-induced acute lung injury in mice by inhibiting necroptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1875-1881. [PMID: 36651257 PMCID: PMC9878420 DOI: 10.12122/j.issn.1673-4254.2022.12.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To investigate the protective effect of hydroxysafflor yellow A (HSYA) against heat stroke (HS)-induced acute lung injury and its possible mechanism. METHODS The optimal dose of HSYA pretreatment via intraperitoneal injection prior to HS was determined in a mice by observing heat tolerance of the mice. C57BL/6J mice were pretreated with HSYA at the optimal dose or with Nec-1 (a RIP1 activation inhibitor) before HS, and the changes in core body temperature and survival of the mice were observed during the 72-h recovery period. At different stages of recovery, lung tissues, bronchoalveolar lavage fluid and blood samples were collected from the mice for assessing lung tissue pathology, wet-to-dry weight ratio and water content of the lungs; leukocyte and neutrophil counts, total protein levels and HMGB1 level in the bronchoalveolar lavage fluid (BLF) were also detected. Serum levels of TNF-α, IL-6 and HMGB1 were detected with ELISA, and the expression levels of RIP1, RIP3, MLKL-s358, MLKL and MLKL-s358 proteins in the lung tissues were detected using Western blotting. RESULTS HSYA pretreatment at the moderate and high doses significantly improved heat tolerance of the mice with comparable effects. At the optimal dose of 2.25 mg/kg, HSYA pretreatment significantly increased heat tolerance of the mice (P<0.05), showing a similar effect with Nec-1 pretreatment. Pretreatment with HSYA and Nec-1 both significantly increased survival rate of the mice (P<0.05), lowered histopathological score and water content of the lungs, and reduced the levels of TNF-α, IL-6 and HMGB1 (P<0.05), leukocyte and neutrophil counts, and total protein and HMGB1 levels in the BLF (P<0.05). The mice during recovery from HS showed significantly increased RIP1 expression and MLKL-s358 phosphorylation level in the lung tissue (P<0.05), which were obviously lowered by HSYA pretreatment of the mice. CONCLUSION Severe HS results in necroptosis in the lung tissue of mice, which can be alleviated by HSYA pretreatment.
Collapse
|
18
|
Hou B, Liu M, Chen Y, Ni W, Suo X, Xu Y, He Q, Meng X, Hao Z. Cpd-42 protects against calcium oxalate nephrocalcinosis-induced renal injury and inflammation by targeting RIPK3-mediated necroptosis. Front Pharmacol 2022; 13:1041117. [PMID: 36408256 PMCID: PMC9669592 DOI: 10.3389/fphar.2022.1041117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Calcium oxalate (CaOx) crystals, as the predominant component of human kidney stones, can trigger excessive cell death and inflammation of renal tubular epithelial cells, involved in the pathogenesis of nephrocalcinosis. Necroptosis mediated by receptor-interacting protein kinase 3 (RIPK3) serves a critical role in the cytotoxicity of CaOx crystals. Here, we assessed the therapeutic potential of a novel RIPK3 inhibitor, compound 42 (Cpd-42), for CaOx nephrocalcinosis by comparison with dabrafenib, a classic RIPK3 inhibitor. Our results demonstrated that Cpd-42 pretreatment attenuated CaOx crystals-induced renal tubular epithelial cell (TEC) injury by inhibiting necroptosis and inflammation in vitro and in vivo. Furthermore, in an established mouse model of CaOx nephrocalcinosis, Cpd-42 also reduced renal injury while improving the impaired kidney function and intrarenal crystal deposition. Consistent with this finding, Cpd-42 was confirmed to exhibit superior inhibition of necroptosis and protection against renal TEC injury compared to the classic RIPK3 inhibitor dabrafenib in vitro and in vivo. Mechanistically, RIPK3 knockout (KO) tubular epithelial cells pretreated with Cpd-42 did not show further enhancement of the protective effect on crystals-induced cell injury and inflammation. We confirmed that Cpd-42 exerted protective effects by specifically targeting and inhibiting RIPK3-mediated necroptosis to block the formation of the RIPK1-RIPK3 necrosome. Taken together, targeted inhibition of RIPK3-mediated necroptosis with Cpd-42 may provide a potential therapeutic approach for CaOx nephrocalcinosis.
Collapse
Affiliation(s)
- Bingbing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Mingming Liu
- The Key Laboratory of Anti-inflammatory of Immune Medicines, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yang Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Weijian Ni
- The Key Laboratory of Anti-inflammatory of Immune Medicines, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiaoguo Suo
- The Key Laboratory of Anti-inflammatory of Immune Medicines, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yuexian Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Qiushi He
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xiaoming Meng
- The Key Laboratory of Anti-inflammatory of Immune Medicines, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Zongyao Hao, ; Xiaoming Meng,
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Zongyao Hao, ; Xiaoming Meng,
| |
Collapse
|
19
|
Han M, Wang X, Wang J, Lang D, Xia X, Jia Y, Chen Y. Ameliorative effects of epigallocatechin-3-gallate nanoparticles on 2,4-dinitrochlorobenzene induced atopic dermatitis: A potential mechanism of inflammation-related necroptosis. Front Nutr 2022; 9:953646. [PMID: 36017227 PMCID: PMC9395728 DOI: 10.3389/fnut.2022.953646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common autoimmune and chronic inflammatory cutaneous disease with a relapsing-remitting course. Necroptosis is a regulated necrotic cell death mediated by receptor-interacting protein 1 (RIP1), receptor-interacting protein 3 (RIP3), and mixed lineage kinase domain-like pseudokinase (MLKL), which is activated by tumor necrosis factor-α (TNF-α). However, the mechanism and the role of necroptosis have not been delineated in AD progression. (-)-Epigallocatechin-3-gallate (EGCG), the main biological activity of tea catechin, is well known for its beneficial effects in the treatment of skin diseases. Here, PEG-PLGA-EGCG nanoparticles (EGCG-NPs) were formulated to investigate the bioavailability of EGCG to rescue cellular injury following the inhibition of necroptosis after AD. 2,4-dinitrochlorobenzene (DNCB) was used to establish AD mouse models. As expected, topically applied EGCG-NPs elicited a significant amelioration of AD symptoms in skin lesions, including reductions in the ear and skin thickness, dermatitis score, and scratching behavior, which was accompanied by redox homeostasis restored early in the experiment. In addition, EGCG-NPs significantly decreased the expression of inflammatory cytokines like TNF-α, interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-6 (IL-6), and interleukin-17A (IL-17A) in a time-dependent manner than those of in AD group. As a result, the overexpression of RIP1, RIP3, and MLKL in the entire epidermis layers was dramatically blocked by EGCG-NPs, as well as the expression ofphosphorylated p38 (p-p38), extracellular signal-regulated kinase 1 (ERK1), and extracellular signal-regulated kinase 2 (ERK2). These findings promote that EGCG-NPs formulation represents a promising drug-delivery strategy for the treatment of AD by maintaining the balance of Th1/Th2 inflammation response and targeting necroptosis.
Collapse
Affiliation(s)
- Mengguo Han
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xue Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Jian Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Dongcen Lang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yongfang Jia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Ying Chen
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
20
|
Biswas DD, Martin RK, Brown LN, Mockenhaupt K, Gupta AS, Surace MJ, Tharakan A, Yester JW, Bhardwaj R, Conrad DH, Kordula T. Cellular inhibitor of apoptosis 2 (cIAP2) restricts neuroinflammation during experimental autoimmune encephalomyelitis. J Neuroinflammation 2022; 19:158. [PMID: 35718775 PMCID: PMC9208101 DOI: 10.1186/s12974-022-02527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Immune activation, neuroinflammation, and cell death are the hallmarks of multiple sclerosis (MS), which is an autoimmune demyelinating disease of the central nervous system (CNS). It is well-documented that the cellular inhibitor of apoptosis 2 (cIAP2) is induced by inflammatory stimuli and regulates adaptive and innate immune responses, cell death, and the production of inflammatory mediators. However, the impact of cIAP2 on neuroinflammation associated with MS and disease severity remains unknown.
Methods We used experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS, to assess the effect of cIAP2 deletion on disease outcomes. We performed a detailed analysis on the histological, cellular, and molecular levels. We generated and examined bone-marrow chimeras to identify the cIAP2-deficient cells that are critical to the disease outcomes. Results cIAP2−/− mice exhibited increased EAE severity, increased CD4+ T cell infiltration, enhanced proinflammatory cytokine/chemokine expression, and augmented demyelination. This phenotype was driven by cIAP2-deficient non-hematopoietic cells. cIAP2 protected oligodendrocytes from cell death during EAE by limiting proliferation and activation of brain microglia. This protective role was likely exerted by cIAP2-mediated inhibition of the non-canonical NLRP3/caspase-8-dependent myeloid cell activation during EAE. Conclusions Our findings suggest that cIAP2 is needed to modulate neuroinflammation, cell death, and survival during EAE. Significantly, our data demonstrate the critical role of cIAP2 in limiting the activation of microglia during EAE, which could be explored for developing MS therapeutics in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02527-6.
Collapse
Affiliation(s)
- Debolina D Biswas
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - LaShardai N Brown
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Angela S Gupta
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michael J Surace
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Anuj Tharakan
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jessie W Yester
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Reetika Bhardwaj
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
21
|
Shi S, Bonaccorsi-Riani E, Schurink I, van den Bosch T, Doukas M, Lila KA, Roest HP, Xhema D, Gianello P, de Jonge J, Verstegen MMA, van der Laan LJW. Liver Ischemia and Reperfusion Induce Periportal Expression of Necroptosis Executor pMLKL Which Is Associated With Early Allograft Dysfunction After Transplantation. Front Immunol 2022; 13:890353. [PMID: 35655777 PMCID: PMC9152120 DOI: 10.3389/fimmu.2022.890353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Early allograft dysfunction (EAD) following liver transplantation (LT) remains a major threat to the survival of liver grafts and recipients. In animal models, it is shown that hepatic ischemia-reperfusion injury (IRI) triggers phosphorylation of Mixed Lineage Kinase domain-like protein (pMLKL) inducing necroptotic cell death. However, the clinical implication of pMLKL-mediated cell death in human hepatic IRI remains largely unexplored. In this study, we aimed to investigate the expression of pMLKL in human liver grafts and its association with EAD after LT. Methods The expression of pMLKL was determined by immunohistochemistry in liver biopsies obtained from both human and rat LT. Human liver biopsies were obtained at the end of preservation (T0) and ~1 hour after reperfusion (T1). The positivity of pMLKL was quantified electronically and compared in rat and human livers and post-LT outcomes. Multiplex immunofluorescence staining was performed to characterize the pMLKL-expressing cells. Results In the rat LT model, significant pMLKL expression was observed in livers after IRI as compared to livers of sham-operation animals. Similarly, the pMLKL score was highest after IRI in human liver grafts (in T1 biopsies). Both in rats and humans, the pMLKL expression is mostly observed in the portal triads. In grafts who developed EAD after LT (n=24), the pMLKL score at T1 was significantly higher as compared to non-EAD grafts (n=40). ROC curve revealed a high predictive value of pMLKL score at T1 (AUC 0.70) and the ratio of pMLKL score at T1 and T0 (pMLKL-index, AUC 0.82) for EAD. Liver grafts with a high pMLKL index (>1.64) had significantly higher levels of serum ALT, AST, and LDH 24 hours after LT compared to grafts with a low pMLKL index. Multivariate logistical regression analysis identified the pMLKL-index (Odds ratio=1.3, 95% CI 1.1-1.7) as a predictor of EAD development. Immunohistochemistry on serial sections and multiplex staining identified the periportal pMLKL-positive cells as portal fibroblasts, fibrocytes, and a minority of cholangiocytes. Conclusion Periportal pMLKL expression increased significantly after IRI in both rat and human LT. The histological score of pMLKL is predictive of post-transplant EAD and is associated with early liver injury after LT. Periportal non-parenchymal cells (i.e. fibroblasts) appear most susceptible to pMLKL-mediated cell death during hepatic IRI.
Collapse
Affiliation(s)
- Shaojun Shi
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Eliano Bonaccorsi-Riani
- Abdominal Transplant Unit, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.,Pôle de Chirurgie Expérimentale et Transplantation Institute de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ivo Schurink
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Thierry van den Bosch
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Michael Doukas
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Karishma A Lila
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Daela Xhema
- Pôle de Chirurgie Expérimentale et Transplantation Institute de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pierre Gianello
- Pôle de Chirurgie Expérimentale et Transplantation Institute de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
22
|
Kuczak M, Musiał M, Malarz K, Rurka P, Zorębski E, Musioł R, Dzida M, Mrozek-Wilczkiewicz A. Anticancer potential and through study of the cytotoxicity mechanism of ionic liquids that are based on the trifluoromethanesulfonate and bis(trifluoromethylsulfonyl)imide anions. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128160. [PMID: 34979392 DOI: 10.1016/j.jhazmat.2021.128160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs) are known for their unique physicochemical properties. However, despite the great number of published papers, still little attention has been paid to their biological activity. Anticancer potential and the molecular mechanisms underlying the toxicity of these compounds are especially interesting and still unexplored. In the current work, a broad analysis of the cytotoxicity towards colon and breast cancers as well as glioblastoma of the ILs with pyridinium, piperidinium, pyrrolidinium, and imidazolium cations and trifluoromethanesulfonate or bis(trifluoromethylsulfonyl)imide anions indicated previously as the most toxic for normal human dermal fibroblasts were presented. In the case of MCF-7 cells, the activity of 1-decyl-3-methylimidazolium trifluoromethanesulfonate was more than twice as high as cisplatin. It was found that the inhibition of the cell cycle of colon cancer and glioblastoma cells occurs in different phases. More importantly, the different types of cell death were detected for both selected ILs, namely 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-hexyl-3-methylimidazolium trifluoromethane-sulfonate, on colon cancer and glioblastoma, respectively, apoptosis and autophagy, confirmed at the gene and protein levels. Additionally, kinetic studies of the reactive oxygen species indicated that the tested ILs disturbed the cellular redox homeostasis.
Collapse
Affiliation(s)
- Micha Kuczak
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Małgorzata Musiał
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Katarzyna Malarz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Patryk Rurka
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Edward Zorębski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Marzena Dzida
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland.
| |
Collapse
|
23
|
Protective Effect of MFG-E8 on Necroptosis-Induced Intestinal Inflammation and Enteroendocrine Cell Function in Diabetes. Nutrients 2022; 14:nu14030604. [PMID: 35276962 PMCID: PMC8839169 DOI: 10.3390/nu14030604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022] Open
Abstract
Low-grade inflammation is one of the characteristics of metabolic disorders induced by diabetes mellitus. The present study explores the underlying mechanism of milk fat globule epidermal growth factor 8 (MFG-E8) on necroptosis-induced intestinal inflammation and intestinal epithelial endocrine cell dysfunction in diabetes. Compared with the normal control group, pathological changes such as blunt and shortened villus and denuded villus tips were observed in ileum tissue of streptozotocin (STZ) induced senescence-resistant 1 (SAMR1) and senescence-accelerated prone 8 (SAMP8) diabetic mice under light microscope. Western blotting and immunohistochemistry (IHC) displayed significantly decreased protein expression of MFG-E8 in SAMR1 and SAMP8 diabetic mice, accompanied by an increased expression of phosphorylated mixed lineage kinase domain-like (p-MLKL) and HMGB1. In addition, advanced glycation end products (AGEs) significantly increased the pro-inflammatory mediators (TNF-α, IL-1β, IL-6) and HMGB1 by activating the receptor-interacting protein kinase 3 (RIPK3)/MLKL signaling pathway in enteroendocrine STC-1 cells. D-pinitol pretreatment markedly attenuated the release of pro-inflammatory mediators and increased the expression of MFG-E8. MFG-E8 small interfering RNA (siRNA) promoted, while MFG-E8 overexpression inhibited, the activation of receptor-interacting proteins (RIPs) pathway and pro-inflammatory factors. Our study demonstrated that downregulation of MFG-E8 is an important phenomenon in the pathogenesis of diabetes-related intestinal inflammatory damage. MFG-E8 overexpression and D-pinitol intervention could protect against necroptosis-induced intestinal inflammation and maintain the function of enteroendocrine STC-1 cells in diabetes.
Collapse
|
24
|
Liu M, Zhang H, Zhang L, Liu X, Zhou S, Wang X, Zhong W, Zhang J, Wang B, Zhao J, Zhou L. RIP3 blockade prevents immune-mediated hepatitis through a myeloid-derived suppressor cell dependent mechanism. Int J Biol Sci 2022; 18:199-213. [PMID: 34975327 PMCID: PMC8692153 DOI: 10.7150/ijbs.65402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated chronic inflammatory liver disease, and its pathogenesis is not fully understood. Our previous study discovered that receptor interacting protein kinase 3 (RIP3) is correlated with serum transaminase levels in AIH patients. However, its role and underlying mechanism in AIH are poorly understood. Here, we detected the increased expression and activation of RIP3 in livers of patients and animal models with AIH. The inhibition of RIP3 kinase by GSK872 prevented concanavalin A (ConA)-induced immune-mediated hepatitis (IMH) by reduced hepatic proinflammatory cytokines and immune cells including Th17 cells and macrophages. Further experiments revealed that RIP3 inhibition resulted in an increase in CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) with immunoregulatory properties in the liver, spleen, and peripheral blood. Moreover, the depletion of Gr-1+ MDSCs abrogated the protective effect and immune suppression function of GSK872 in ConA-induced IMH. Altogether, our data demonstrate that RIP3 blockade prevents ConA-induced IMH through promoting MDSCs infiltration. Inhibition of RIP3 kinase may be a novel therapeutic avenue for AIH treatment.
Collapse
Affiliation(s)
- Man Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Hongxia Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Simin Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaoyi Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Department of Gastroenterology and Hepatology, People's Hospital of Hetian District, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
25
|
Shen S, Ji C, Wei K. Cellular Senescence and Regulated Cell Death of Tubular Epithelial Cells in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:924299. [PMID: 35837297 PMCID: PMC9273736 DOI: 10.3389/fendo.2022.924299] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is frequently evident at etiologic sites of chronic diseases and involves essentially irreversible arrest of cell proliferation, increased protein production, resistance to apoptosis, and altered metabolic activity. Regulated cell death plays a vital role in shaping fully functional organs during the developmental process, coordinating adaptive or non-adaptive responses, and coping with long-term harmful intracellular or extracellular homeostasis disturbances. In recent years, the concept of 'diabetic tubulopathy' has emerged. tubular epithelial cells are particularly susceptible to the derangements of diabetic state because of the virtue of the high energy requirements and reliance on aerobic metabolism render. Hyperglycemia, oxidative stress, persistent chronic inflammation, glucose toxicity, advanced glycation end-products (AGEs) accumulation, lipid metabolism disorders, and lipotoxicity contribute to the cellular senescence and different patterns of regulated cell death (apoptosis, autophagic cell death, necroptosis, pyroptosis, and ferroptosis) in tubular epithelial cells. We now explore the 'tubulocentric' view of diabetic kidney disease(DKD). And we summarize recent discoveries regarding the development and regulatory mechanisms of cellular senescence, apoptosis, autophagic cell death, necroptosis, pyroptosis, and ferroptosis in the pathogenesis of DKD. These findings provide new perspectives on the mechanisms of DKD and are useful for designing novel therapeutic approaches for the treatment of DKD.
Collapse
|
26
|
Yan ZY, Jiao HY, Chen JB, Zhang KW, Wang XH, Jiang YM, Liu YY, Xue Z, Ma QY, Li XJ, Chen JX. Antidepressant Mechanism of Traditional Chinese Medicine Formula Xiaoyaosan in CUMS-Induced Depressed Mouse Model via RIPK1-RIPK3-MLKL Mediated Necroptosis Based on Network Pharmacology Analysis. Front Pharmacol 2021; 12:773562. [PMID: 34867405 PMCID: PMC8641697 DOI: 10.3389/fphar.2021.773562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Depression is a stress-related disorder that seriously threatens people's physical and mental health. Xiaoyaosan is a classical traditional Chinese medicine formula, which has been used to treat mental depression since ancient times. More and more notice has been given to the relationship between the occurrence of necroptosis and the pathogenesis of mental disorders. Objective: The purpose of present study is to explore the potential mechanism of Xiaoyaosan for the treatment of depression using network pharmacology and experimental research, and identify the potential targets of necroptosis underlying the antidepressant mechanism of Xiaoyaosan. Methods: The mice model of depression was induced by chronic unpredictable mild stress (CUMS) for 6 weeks. Adult C57BL/6 mice were randomly divided into five groups, including control group, chronic unpredictable mild stress group, Xiaoyaosan treatment group, necrostatin-1 (Nec-1) group and solvent group. Drug intervention performed from 4th to 6th week of modeling. The mice in Xiaoyaosan treatment group received Xiaoyaosan by intragastric administration (0.254 g/kg/d), and mice in CUMS group received 0.5 ml physiological saline. Meanwhile, the mice in Nec-1 group were injected intraperitoneally (i.p.) with Nec-1 (10 mg/kg/d), and the equivalent volume of DMSO/PBS (8.3%) was injected into solvent group mice. The behavior tests such as sucrose preference test, forced swimming test and novelty-suppressed feeding test were measured to evaluate depressive-like behaviors of model mice. Then, the active ingredients in Xiaoyaosan and the related targets of depression and necroptosis were compiled through appropriate databases, while the "botanical drugs-active ingredients-target genes" network was constructed by network pharmacology analysis. The expressions of RIPK1, RIPK3, MLKL, p-MLKL were detected as critical target genes of necroptosis and the potential therapeutic target compounds of Xiaoyaosan. Furthermore, the levels of neuroinflammation and microglial activation of hippocampus were measured by detecting the expressions of IL-1β, Lipocalin-2 and IBA1, and the hematoxylin and eosin (H&E) stained was used to observe the morphology in hippocampus sections. Results: After 6-weeks of modeling, the behavioral data showed that mice in CUMS group and solvent group had obvious depressive-like behaviors, and the medication of Xiaoyaosan or Nec-1 could improve these behavioral changes. A total of 96 active ingredients in Xiaoyaosan which could regulate the 23 key target genes were selected from databases. Xiaoyaosan could alleviate the core target genes in necroptosis and improve the hippocampal function and neuroinflammation in depressed mice. Conclusion: The activation of necroptosis existed in the hippocampus of CUMS-induced mice, which was closely related to the pathogenesis of depression. The antidepressant mechanism of Xiaoyaosan included the regulation of multiple targets in necroptosis. It also suggested that necroptosis could be a new potential target for the treatment of depression.
Collapse
Affiliation(s)
- Zhi-Yi Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hai-Yan Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-Bei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kai-Wen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xi-Hong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - You-Ming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Yu Ma
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiao-Juan Li
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Wu L, Chung JY, Cao T, Jin G, Edmiston WJ, Hickman S, Levy ES, Whalen JA, Abrams ESL, Degterev A, Lo EH, Tozzi L, Kaplan DL, El Khoury J, Whalen MJ. Genetic inhibition of RIPK3 ameliorates functional outcome in controlled cortical impact independent of necroptosis. Cell Death Dis 2021; 12:1064. [PMID: 34753914 PMCID: PMC8578385 DOI: 10.1038/s41419-021-04333-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability with no specific effective therapy, in part because disease driving mechanisms remain to be elucidated. Receptor interacting protein kinases (RIPKs) are serine/threonine kinases that assemble multi-molecular complexes that induce apoptosis, necroptosis, inflammasome and nuclear factor kappa B activation. Prior studies using pharmacological inhibitors implicated necroptosis in the pathogenesis of TBI and stroke, but these studies cannot be used to conclusively demonstrate a role for necroptosis because of the possibility of off target effects. Using a model of cerebral contusion and RIPK3 and mixed lineage kinase like knockout (MLKL-/-) mice, we found evidence for activation of RIPK3 and MLKL and assembly of a RIPK1-RIPK3-MLKL necrosome complex in pericontusional brain tissue. Phosphorylated forms of RIPK3 and MLKL were detected in endothelium, CD11b + immune cells, and neurons, and RIPK3 was upregulated and activated in three-dimensional human endothelial cell cultures subjected to CCI. RIPK3-/- and MLKL-/- mice had reduced blood-brain barrier damage at 24 h (p < 0.05), but no differences in neuronal death (6 h, p = ns in CA1, CA3 and DG), brain edema (24 h, p = ns), or lesion size (4 weeks, p = ns) after CCI. RIPK3-/-, but not MLKL-/- mice, were protected against postinjury motor and cognitive deficits at 1-4 weeks (RIPK3-/- vs WT: p < 0.05 for group in wire grip, Morris water maze hidden platform trials, p < 0.05 for novel object recognition test, p < 0.01 for rotarod test). RIPK3-/- mice had reduced infiltrating leukocytes (p < 0.05 vs WT in CD11b + cells, microglia and macrophages), HMGB1 release and interleukin-1 beta activation at 24-48 h (p < 0.01) after CCI. Our data indicate that RIPK3 contributes to functional outcome after cerebral contusion by mechanisms involving inflammation but independent of necroptosis.
Collapse
Affiliation(s)
- Limin Wu
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Joon Yong Chung
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Tian Cao
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.13291.380000 0001 0807 1581Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Gina Jin
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - William J. Edmiston
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Suzanne Hickman
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Emily S. Levy
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jordyn A. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Eliza Sophie LaRovere Abrams
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Alexei Degterev
- grid.67033.310000 0000 8934 4045Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA USA
| | - Eng H. Lo
- grid.32224.350000 0004 0386 9924Department of Radiology, Massachusetts General Hospital, Boston, MA 02115 USA ,grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Lorenzo Tozzi
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - David L. Kaplan
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - Joseph El Khoury
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Michael J. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
28
|
Ide S, Kobayashi Y, Ide K, Strausser SA, Abe K, Herbek S, O'Brien LL, Crowley SD, Barisoni L, Tata A, Tata PR, Souma T. Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. eLife 2021; 10:68603. [PMID: 34279220 PMCID: PMC8318592 DOI: 10.7554/elife.68603] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/17/2021] [Indexed: 12/14/2022] Open
Abstract
Overwhelming lipid peroxidation induces ferroptotic stress and ferroptosis, a non-apoptotic form of regulated cell death that has been implicated in maladaptive renal repair in mice and humans. Using single-cell transcriptomic and mouse genetic approaches, we show that proximal tubular (PT) cells develop a molecularly distinct, pro-inflammatory state following injury. While these inflammatory PT cells transiently appear after mild injury and return to their original state without inducing fibrosis, after severe injury they accumulate and contribute to persistent inflammation. This transient inflammatory PT state significantly downregulates glutathione metabolism genes, making the cells vulnerable to ferroptotic stress. Genetic induction of high ferroptotic stress in these cells after mild injury leads to the accumulation of the inflammatory PT cells, enhancing inflammation and fibrosis. Our study broadens the roles of ferroptotic stress from being a trigger of regulated cell death to include the promotion and accumulation of proinflammatory cells that underlie maladaptive repair.
Collapse
Affiliation(s)
- Shintaro Ide
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University School of Medicine, Durham, United States
| | - Kana Ide
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - Sarah A Strausser
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - Koki Abe
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - Savannah Herbek
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - Lori L O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - Laura Barisoni
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States.,Department of Pathology, Duke University School of Medicine, Durham, United States
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, United States
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, United States.,Regeneration Next, Duke University, Durham, United States.,Duke Cancer Institute, Duke University School of Medicine, Durham, United States
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States.,Regeneration Next, Duke University, Durham, United States
| |
Collapse
|
29
|
Gao S, Menendez M, Kurylowicz K, Griffin CT. Genomic locus proteomic screening identifies the NF-κB signaling pathway components NFκB1 and IKBKG as transcriptional regulators of Ripk3 in endothelial cells. PLoS One 2021; 16:e0253519. [PMID: 34153072 PMCID: PMC8216549 DOI: 10.1371/journal.pone.0253519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The receptor-interacting protein kinase 3 (RIPK3) is a multi-functional protein best known for facilitating cellular necroptosis and inflammation. Recent evidence from our lab indicates that RIPK3 expression must be tightly regulated in endothelial cells to promote angiogenesis, to maintain vascular integrity during embryogenesis, and to provide protection from postnatal atherosclerosis. RIPK3 activity and stability are regulated by post-translational modifications and caspase-dependent cleavage. However, less is known about the transcriptional regulation of Ripk3. Here we utilized an unbiased CRISPR-based technology called genomic locus proteomics (GLoPro) to screen transcription factors and coregulatory proteins associated with the Ripk3 locus in a murine endothelial cell line. We found that 41 nuclear proteins are specifically enriched at the Ripk3 locus, including the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway components NFκB1 and IKBKG. We further verified that NFκB1 and IKBKG directly bind the Ripk3 promoter and prevent TNFα-induced Ripk3 transcription in cultured human primary endothelial cells. Moreover, NFκB1 prevents RIPK3-mediated death of primary endothelial cells. These data provide new insights into NF-κB signaling and Ripk3 transcriptional regulation in endothelial cells.
Collapse
Affiliation(s)
- Siqi Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Matthew Menendez
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Katarzyna Kurylowicz
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
30
|
Wang WY, Xie L, Zou XS, Li N, Yang YG, Wu ZJ, Tian XY, Zhao GY, Chen MH. Inhibition of extracellular signal-regulated kinase/calpain-2 pathway reduces neuroinflammation and necroptosis after cerebral ischemia-reperfusion injury in a rat model of cardiac arrest. Int Immunopharmacol 2021; 93:107377. [PMID: 33517223 DOI: 10.1016/j.intimp.2021.107377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) is the leading cause of poor neurological prognosis after cardiopulmonary resuscitation (CPR). We previously reported that the extracellular signal-regulated kinase (ERK) activation mediates CIRI. Here, we explored the potential ERK/calpain-2 pathway role in CIRI using a rat model of cardiac arrest (CA). METHODS Adult male Sprague-Dawley rats suffered from CA/CPR-induced CIRI, received saline, DMSO, PD98059 (ERK1/2 inhibitor, 0.3 mg/kg), or MDL28170 (calpain inhibitor, 3.0 mg/kg) after spontaneous circulation recovery. The survival rate and the neurological deficit score (NDS) were utilized to assess the brain function. Hematoxylin stain, Nissl staining, and transmission electron microscopy were used to evaluate the neuron injury. The expression levels of p-ERK, ERK, calpain-2, neuroinflammation-related markers (GFAP, Iba1, IL-1β, TNF-α), and necroptosis proteins (TNFR1, RIPK1, RIPK3, p-MLKL, and MLKL) in the brain tissues were determined by western blotting and immunohistochemistry. Fluorescent multiplex immunohistochemistry was used to analyze the p-ERK, calpain-2, and RIPK3 co-expression in neurons, and RIPK3 expression levels in microglia or astrocytes. RESULTS At 24 h after CA/CPR, the rats in the saline-treated and DMSO groups presented with injury tissue morphology, low NDS, ERK/calpain-2 pathway activation, and inflammatory cytokine and necroptosis protein over-expression in the brain tissue. After PD98059 and MDL28170 treatment, the brain function was improved, while inflammatory response and necroptosis were suppressed by ERK/calpain-2 pathway inhibition. CONCLUSION Inflammation activation and necroptosis involved in CA/CPR-induced CIRI were regulated by the ERK/calpain-2 signaling pathway. Inhibition of that pathway can reduce neuroinflammation and necroptosis after CIRI in the CA model rats.
Collapse
Affiliation(s)
- Wen-Yan Wang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Lu Xie
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Xin-Sen Zou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Nuo Li
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Ye-Gui Yang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Zhi-Jiang Wu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Xin-Yue Tian
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Gao-Yang Zhao
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Meng-Hua Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China.
| |
Collapse
|
31
|
Hu Y, Pan H, Peng J, He J, Tang M, Yan S, Rong J, Li J, Zheng Z, Wang H, Liu Y, Zhong X. Resveratrol inhibits necroptosis by mediating the TNF-α/RIP1/RIP3/MLKL pathway in myocardial hypoxia/reoxygenation injury. Acta Biochim Biophys Sin (Shanghai) 2021; 53:430-437. [PMID: 33686403 DOI: 10.1093/abbs/gmab012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
Resveratrol (RES) protects myocardial cells from hypoxia/reoxygenation (H/R)-caused injury. However, the mechanism of this effect has not been clarified. Thus, in this study, we aimed to determine whether RES attenuates H/R-induced cell necroptosis by inhibiting the tumor necrosis factor-alpha (TNF-α)/receptor-interacting protein kinase 1 (RIP1)/RIP3/mixed-lineage kinase domain-like (MLKL) signaling pathway. Rat myocardial ischemia/reperfusion (I/R) models and H/R-injured cell models were constructed. Our study showed that myocardial H/R injury significantly increased the levels of TNF-α, RIP1, RIP3, and p-MLKL/MLKL by western blot analysis. Cell viability assay and 4,6-dianmidino-2-phenylindole (DAPI)-propidium iodide staining showed that the cell viability was decreased, and necroptosis was increased after myocardial H/R injury. The expressions of TNF-α, RIP1, RIP3, and p-MLKL/MLKL in H/R myocardial cells treated with different concentrations of RES were significantly downregulated. In addition, we also found that the cell viability was increased and necroptosis was decreased in dose-dependent manners when H/R-injured cells were treated with RES. In addition, the enhanced effect of TNF-α on necroptosis in myocardial H/R-injured cells was improved by RES, and the effect of RES was confirmed in vivo in I/R rats. This study also showed that RES suppresses necroptosis in H9c2 cells, which may occur through the inhibition of the TNF-α/RIP1/RIP3/MLKL signaling pathway. Our data suggest that necroptosis is a promising therapeutic target and may be a promising therapeutic target for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
- Department of Cardiology, Lixian People's Hospital, Changde 415500, China
| | - Hongwei Pan
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Jianqiang Peng
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Jin He
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Mingxiang Tang
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Sulan Yan
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Jingjing Rong
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Junshan Li
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Zhaofen Zheng
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Haijun Wang
- Department of Cardiology, Lixian People's Hospital, Changde 415500, China
| | - Yanfu Liu
- Department of Cardiology, Lixian People's Hospital, Changde 415500, China
| | - Xin Zhong
- Department of Ultrasound, The People's Hospital of Hunan Province, Changsha 410061, China
| |
Collapse
|
32
|
Li X, Dong G, Xiong H, Diao H. A narrative review of the role of necroptosis in liver disease: a double-edged sword. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:422. [PMID: 33842643 PMCID: PMC8033311 DOI: 10.21037/atm-20-5162] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acute and chronic liver injuries lead to hepatocyte death and turnover. When injuries become chronic, continuous cell death and transformation lead to chronic inflammation, fibrosis, cirrhosis, and eventually carcinoma. A therapeutic strategy of great significance for liver disease is to control hepatocyte death in acute and chronic injuries. This strategy prevents hepatocytes from causing liver failure and inhibits both secondary inflammation and fibrosis. Both apoptosis and necrosis have been proven to occur in the liver, but the role of necroptosis in liver diseases is controversial. Necroptosis, which has features of necrosis and apoptosis, is a regulatory process that occurs in some cell types when caspases are inhibited. The signaling pathway of necroptosis is characterized by the activation of receptor-interacting proteins kinase (RIPK) and mixed lineage kinase domain-like (MLKL). Necroptosis is associated with a variety of inflammatory diseases and has been the focus of research in recent years. The incidence of necroptosis in liver tissues has been studied recently in several liver injury models, but the results of the studies are not consistent. The purpose of this review is to summarize the published data on the involvement of necroptosis in liver injury, focusing on the controversies, issues remaining to be discussed, and potential therapeutic applications in this area.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Engin A. Bile Acid Toxicity and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:229-258. [PMID: 33539018 DOI: 10.1007/978-3-030-49844-3_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1β)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
34
|
Airway epithelial cell necroptosis contributes to asthma exacerbation in a mouse model of house dust mite-induced allergic inflammation. Mucosal Immunol 2021; 14:1160-1171. [PMID: 34045680 PMCID: PMC8379077 DOI: 10.1038/s41385-021-00415-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023]
Abstract
Regulation of epithelial cell death has emerged as a key mechanism controlling immune homeostasis in barrier surfaces. Necroptosis is a type of regulated necrotic cell death induced by receptor interacting protein kinase 3 (RIPK3) that has been shown to cause inflammatory pathologies in different tissues. The role of regulated cell death and particularly necroptosis in lung homeostasis and disease remains poorly understood. Here we show that mice with Airway Epithelial Cell (AEC)-specific deficiency of Fas-associated with death domain (FADD), an adapter essential for caspase-8 activation, developed exacerbated allergic airway inflammation in a mouse model of asthma induced by sensitization and challenge with house dust mite (HDM) extracts. Genetic inhibition of RIPK1 kinase activity by crossing to mice expressing kinase inactive RIPK1 as well as RIPK3 or MLKL deficiency prevented the development of exaggerated HDM-induced asthma pathology in FADDAEC-KO mice, suggesting that necroptosis of FADD-deficient AECs augmented the allergic immune response. These results reveal a role of AEC necroptosis in amplifying airway allergic inflammation and suggest that necroptosis could contribute to asthma exacerbations caused by respiratory virus infections inducing AEC death.
Collapse
|
35
|
Engin AB, Engin A. Alzheimer's Disease and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:285-321. [PMID: 33539020 DOI: 10.1007/978-3-030-49844-3_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and accounts for more than 60-80% of all cases of dementia. Loss of pyramidal neurons, extracellular amyloid beta (Abeta) accumulated senile plaques, and neurofibrillary tangles that contain hyperphosphorylated tau constitute the main pathological alterations in AD.Synaptic dysfunction and extrasynaptic N-methyl-D-aspartate receptor (NMDAR) hyperactivation contributes to excitotoxicity in patients with AD. Amyloid precursor protein (APP) and Abeta promoted neurodegeneration develop through the activation of protein kinase signaling cascade in AD. Furthermore, ultimate neuronal death in AD is under control of protein kinases-related signaling pathways. In this chapter, critical check-points within the cross-talk between neuron and protein kinases have been defined regarding the initiation and progression of AD. In this context, amyloid cascade hypothesis, neuroinflammation, oxidative stress, granulovacuolar degeneration, loss of Wnt signaling, Abeta-related synaptic alterations, prolonged calcium ions overload and NMDAR-related synaptotoxicity, damage signals hypothesis and type-3 diabetes are discussed briefly.In addition to clinical perspective of AD pathology, recommendations that might be effective in the treatment of AD patients have been reviewed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
36
|
Xia K, Zhu F, Yang C, Wu S, Lin Y, Ma H, Yu X, Zhao C, Ji Y, Ge W, Wang J, Du Y, Zhang W, Yang T, Zhang X, He S. Discovery of a Potent RIPK3 Inhibitor for the Amelioration of Necroptosis-Associated Inflammatory Injury. Front Cell Dev Biol 2020; 8:606119. [PMID: 33364238 PMCID: PMC7753040 DOI: 10.3389/fcell.2020.606119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Necroptosis is a form of regulated necrosis that requires the activation of receptor-interacting kinase 3 (RIPK3 or RIP3) and its phosphorylation of the substrate MLKL (mixed lineage kinase domain-like protein). Necroptosis has emerged as important cell death involved in the pathogenesis of various diseases including inflammatory diseases, degenerative diseases, and cancer. Here, we discovered a small molecule Zharp-99 as a potent inhibitor of necroptosis through blocking the kinase activity of RIPK3. Zharp-99 efficiently blocks necroptosis induced by ligands of the death receptor and Toll-like receptor as well as viral infection in human, rat and mouse cells. Zharp-99 strongly inhibits cellular activation of RIPK3, and MLKL upon necroptosis stimuli. Zharp-99 directly blocks the kinase activity of RIPK3 without affecting RIPK1 kinase activity at the tested concentration. Importantly, Zharp-99 exerts effective protection against TNF-α induced systemic inflammatory response syndrome in the mouse model. Zharp-99 displays favorable in vitro safety profiles and in vivo pharmacokinetic parameters. Thus, our study demonstrates Zharp-99 as a potent inhibitor of RIPK3 kinase and also highlights its potential for further development of new approaches for treating necroptosis-associated inflammatory disorders.
Collapse
Affiliation(s)
- Kaijiang Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fang Zhu
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences, Beijing, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Chengkui Yang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuwei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yu Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Haikuo Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiaoliang Yu
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences, Beijing, China
| | - Cong Zhao
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuting Ji
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences, Beijing, China.,School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenxiang Ge
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingrui Wang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences, Beijing, China
| | - Yayun Du
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences, Beijing, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Wei Zhang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences, Beijing, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Sudan He
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences, Beijing, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
37
|
Yang B, Maddison LA, Zaborska KE, Dai C, Yin L, Tang Z, Zang L, Jacobson DA, Powers AC, Chen W. RIPK3-mediated inflammation is a conserved β cell response to ER stress. SCIENCE ADVANCES 2020; 6:eabd7272. [PMID: 33355143 PMCID: PMC11206196 DOI: 10.1126/sciadv.abd7272] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Islet inflammation is an important etiopathology of type 2 diabetes; however, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered RIPK3-dependent IL1B induction in β cells as an instigator of islet inflammation. In cultured β cells, ER stress activated RIPK3, leading to NF-kB-mediated proinflammatory gene expression. In a zebrafish muscle insulin resistance model, overnutrition caused islet inflammation, β cell dysfunction, and loss in an ER stress-, ripk3-, and il1b-dependent manner. In mouse islets, high-fat diet triggered the IL1B expression in β cells before macrophage recruitment in vivo, and RIPK3 inhibition suppressed palmitate-induced β cell dysfunction and Il1b expression in vitro. Furthermore, in human islets grafted in hyperglycemic mice, a marked increase in ER stress, RIPK3, and NF-kB activation in β cells were accompanied with murine macrophage infiltration. Thus, RIPK3-mediated induction of proinflammatory mediators is a conserved, previously unrecognized β cell response to metabolic stress and a mediator of the ensuing islet inflammation.
Collapse
Affiliation(s)
- Bingyuan Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Lisette A Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Chunhua Dai
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Linlin Yin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Zihan Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Liqing Zang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare, 1310 24th Ave. S, Nashville, TN 37212, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
38
|
Xie X, Cao Y, Dai Y, Chen Z, Wei J, Tan Y, Wu H, Feng H. Black carp RIPK1 negatively regulates MAVS-mediated antiviral signaling during the innate immune activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103726. [PMID: 32376280 DOI: 10.1016/j.dci.2020.103726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Receptor-interacting serine/threonine protein kinase 1 (RIPK1) is an important regulator of necroptosis and involved in innate immune response in human and mammal; however, its function in teleost fish mains largely unknown. In this paper, the RIPK1 homologue of black carp (Mylopharyngodon piceus) has been cloned and characterized to explore its role in immunity. Black carp RIPK1 (bcRIPK1) possesses the similar structure to its mammalian counterpart, which has been identified as a cytosolic protein by immunofluorescence staining. Overexpressed bcRIPK1 in host cells led to the decreased transcription of interferon (IFN) and interferon stimulated genes, and exogenous bcRIPK1 in EPC cells led to the decreased transcription of interferon promoters in reporter assay. Our previous study has identified that black carp MAVS (bcMAVS) functions as an antiviral adaptor protein against both grass carp reovirus (GCRV) and spring viremia of carp virus (SVCV). The reporter assay showed that the IFN-inducing ability of bcMAVS was dampened by bcRIPK1 and the plaque assay demonstrated that the antiviral activity of bcMAVS was inhibited by bcRIPK1. The immunofluorescent staining and co-immunoprecipitation identified the interaction between these two molecules. Thus, the data generated in this paper support the conclusion that bcRIPK1 interacts with bcMAVS and negatively regulates bcMAVS-mediated antiviral signaling.
Collapse
Affiliation(s)
- Xinchi Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yingyi Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuhan Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhaoyuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jing Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
39
|
Liu Y, Zhu M, Gong R, Wang X, Li L, Xu G. Pre-treatment With Ranibizumab Aggravates PDT Injury and Alleviates Inflammatory Response in Choroid-Retinal Endothelial Cells. Front Cell Dev Biol 2020; 8:608. [PMID: 32733897 PMCID: PMC7363772 DOI: 10.3389/fcell.2020.00608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/19/2020] [Indexed: 11/25/2022] Open
Abstract
Polypoidal choroidal vasculopathy (PCV) is the predominant subtype of exudative age-related macular degeneration in Asians. Although photodynamic therapy (PDT) is widely used for PCV treatment, its long-term beneficial effects are unsatisfactory. Accumulating clinical investigations suggest that combined therapy with anti-vascular endothelial growth factor (anti-VEGF) and PDT is superior to PDT monotherapy. However, the optimal time of anti-VEGF before or after PDT remains controversial, hence it needs to further explore the mechanism underlying combined therapy. PDT causes selective damage to endothelial cells, which determines its angio-occlusive efficiency, yet the impact of anti-VEGF on PDT-induced endothelial injury is unclear. Here, we found that pre- compared to post-treatment with anti-VEGF ranibizumab (rani) significantly aggravates PDT injury in the rhesus macaque choroid-retinal endothelial (RF/6A) cell line. PDT activates apoptosis, necroptosis and NLRP3 inflammasome in RF/6A cells. Pre-treatment with rani promotes PDT-caused apoptosis via triggering caspase 8-mediated extrinsic apoptosis, and caspase 8 might also play a pivotal role in the rani’s function of suppressing PDT-induced necroptosis and NLRP3 inflammasome activation. Our results implicate that pre-treatment with rani may enhance the angio-occlusive efficiency of PDT and alleviate endothelial inflammatory response, which gives it a great advantage over post-treatment.
Collapse
Affiliation(s)
- Yang Liu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Min Zhu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ruowen Gong
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Lei Li
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Gezhi Xu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
40
|
Wang M, Wan H, Wang S, Liao L, Huang Y, Guo L, Liu F, Shang L, Huang J, Ji D, Xia X, Jiang B, Chen D, Xiong K. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells. J Anat 2020; 237:29-47. [PMID: 32162697 PMCID: PMC7309291 DOI: 10.1111/joa.13185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein 3 (RIP3) plays an important role in the necroptosis signaling pathway. Our previous studies have shown that the RIP3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis occurs in retinal ganglion cell line 5 (RGC-5) following oxygen-glucose deprivation (OGD). However, upstream regulatory pathways of RIP3 are yet to be uncovered. The purpose of the present study was to investigate the role of p90 ribosomal protein S6 kinase 3 (RSK3) in the phosphorylation of RIP3 in RGC-5 cell necroptosis following OGD. Our results showed that expression of RSK3, RIP3, and MLKL was upregulated in necroptosis of RGC-5 after OGD. A computer simulation based on our preliminary results indicated that RSK3 might interact with RIP3, which was subsequently confirmed by co-immunoprecipitation. Further, we found that the application of a specific RSK inhibitor, LJH685, or rsk3 small interfering RNA (siRNA), downregulated the phosphorylation of RIP3. However, the overexpression of rip3 did not affect the expression of RSK3, thereby indicating that RSK3 could be a possible upstream regulator of RIP3 phosphorylation in OGD-induced necroptosis of RGC-5 cells. Moreover, our in vivo results showed that pretreatment with LJH685 before acute high intraocular pressure episodes could reduce the necroptosis of retinal neurons and improve recovery of impaired visual function. Taken together, our findings suggested that RSK3 might work as an upstream regulator of RIP3 phosphorylation during RGC-5 necroptosis.
Collapse
Affiliation(s)
- Mi Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Hao Wan
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Shuchao Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lvshuang Liao
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Yanxia Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Limin Guo
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Fengxia Liu
- Department of Human AnatomySchool of Basic Medical ScienceXinjiang Medical UniversityUrumqiChina
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual SciencesAffiliated Eye Hospital of Nanchang UniversityNanchangChina
| | - Jufang Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Dan Ji
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaobo Xia
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Bin Jiang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Dan Chen
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Kun Xiong
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| |
Collapse
|
41
|
Kanno H, Ozawa H, Handa K, Murakami T, Itoi E. Changes in Expression of Receptor-Interacting Protein Kinase 1 in Secondary Neural Tissue Damage Following Spinal Cord Injury. Neurosci Insights 2020; 15:2633105520906402. [PMID: 32524089 PMCID: PMC7236572 DOI: 10.1177/2633105520906402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/23/2020] [Indexed: 01/01/2023] Open
Abstract
Introduction: Necroptosis is a form of programmed cell death that is different from apoptotic cell death. Receptor-interacting protein kinase 1 (RIPK1) plays a particularly important function in necroptosis execution. This study investigated changes in expression of RIPK1 in secondary neural tissue damage following spinal cord injury in mice. The time course of the RIPK1 expression was also compared with that of apoptotic cell death in the lesion site. Methods and Materials: Immunostaining for RIPK1 was performed at different time points after spinal cord injury. The protein expressions of RIPK1 were determined by western blot. The RIPK1 expressions in various neural cells were investigated using immunohistochemistry. To investigate the time course of apoptotic cell death, TUNEL-positive cells were counted at the different time points. To compare the incidence of necroptosis and apoptosis, the RIPK1-labeled sections were co-stained with TUNEL. Results: The RIPK1 expression was significantly upregulated in the injured spinal cord. The upregulation of RIPK1 expression was observed in neurons, astrocytes, and oligodendrocytes. The increase in RIPK1 expression started at 4 hours and peaked at 3 days after injury. Time course of the RIPK1 expression was similar to that of apoptosis detected by TUNEL. Interestingly, the increased expression of RIPK1 was rarely observed in the TUNEL-positive cells. Furthermore, the number of RIPK1-positive cells was significantly higher than that of TUNEL-positive cells. Conclusions: This study demonstrated that the expression of RIPK1 increased in various neural cells and peaked at 3 days following spinal cord injury. The temporal change of the RIPK1 expression was analogous to that of apoptosis at the lesion site. However, the increase in RIPK1 expression was barely seen in the apoptotic cells. These findings suggested that the RIPK1 might contribute to the pathological mechanism of the secondary neural tissue damage after spinal cord injury.
Collapse
Affiliation(s)
- Haruo Kanno
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Ozawa
- Department of Orthopaedic Surgery, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kyoichi Handa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taishi Murakami
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
42
|
Li W, Ni H, Wu S, Han S, Chen C, Li L, Li Y, Gui F, Han J, Deng X. Targeting RIPK3 oligomerization blocks necroptosis without inducing apoptosis. FEBS Lett 2020; 594:2294-2302. [PMID: 32412649 DOI: 10.1002/1873-3468.13812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 01/19/2023]
Abstract
Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) is a central protein in necroptosis with great potential as a target for treating necroptosis-associated diseases, such as Crohn's disease. However, blockade of RIPK3 kinase activity leads to unexpected RIPK3-initiated apoptosis. Herein, we found that PP2, a known SRC inhibitor, inhibits TNF-α-induced necroptosis without initiating apoptosis. Further investigation showed that PP2 acts as an inhibitor of not only SRC but also RIPK3. PP2 does not disturb the integrity of the RIPK1-RIPK3-mixed lineage kinase domain-like pseudokinase (MLKL) necroptosome or the autophosphorylation of RIPK3 at T231/S232 but disrupts RIPK3 oligomerization, thereby impairing the phosphorylation and oligomerization of MLKL. These results demonstrate the essential role of RIPK3 oligomerization in necroptosis and suggest a potential RIPK3 oligomerization-targeting strategy for therapeutic development.
Collapse
Affiliation(s)
- Wenjuan Li
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Hengxiao Ni
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Shaofeng Wu
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Shang Han
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Chang'an Chen
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Li Li
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Yunzhan Li
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Fu Gui
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Jiahuai Han
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Xianming Deng
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| |
Collapse
|
43
|
Jiang L, Poon IKH. Methods for monitoring the progression of cell death, cell disassembly and cell clearance. Apoptosis 2020; 24:208-220. [PMID: 30684146 DOI: 10.1007/s10495-018-01511-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell death through apoptosis, necrosis, necroptosis and pyroptosis, as well as the clearance of dead cells are crucial biological processes in the human body. Likewise, disassembly of dying cells during apoptosis to generate cell fragments known as apoptotic bodies may also play important roles in regulating cell clearance and intercellular communication. Recent advances in the field have led to the development of new experimental systems to identify cells at different stages of cell death, measure the levels of apoptotic cell disassembly, and monitor the cell clearance process using a range of in vitro, ex vivo and in vivo models. In this article, we will provide a comprehensive review of the methods for monitoring the progression of cell death, cell disassembly and cell clearance.
Collapse
Affiliation(s)
- Lanzhou Jiang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
44
|
Colijn S, Muthukumar V, Xie J, Gao S, Griffin CT. Cell-specific and athero-protective roles for RIPK3 in a murine model of atherosclerosis. Dis Model Mech 2020; 13:dmm041962. [PMID: 31953345 PMCID: PMC6994951 DOI: 10.1242/dmm.041962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3) was recently implicated in promoting atherosclerosis progression through a proposed role in macrophage necroptosis. However, RIPK3 has been connected to numerous other cellular pathways, which raises questions about its actual role in atherosclerosis. Furthermore, RIPK3 is expressed in a multitude of cell types, suggesting that it may be physiologically relevant to more than just macrophages in atherosclerosis. In this study, Ripk3 was deleted in macrophages, endothelial cells, vascular smooth muscle cells or globally on the Apoe-/- background using Cre-lox technology. To induce atherosclerosis progression, male and female mice were fed a Western diet for three months before tissue collection and analysis. Surprisingly, necroptosis markers were nearly undetectable in atherosclerotic aortas. Furthermore, en face lesion area was increased in macrophage- and endothelial-specific deletions of Ripk3 in the descending and abdominal regions of the aorta. Analysis of bone-marrow-derived macrophages and cultured endothelial cells revealed that Ripk3 deletion promotes expression of monocyte chemoattractant protein 1 (MCP-1) and E-selectin in these cell types, respectively. Western blot analysis showed upregulation of MCP-1 in aortas with Ripk3-deficient macrophages. Altogether, these data suggest that RIPK3 in macrophages and endothelial cells protects against atherosclerosis through a mechanism that likely does not involve necroptosis. This protection may be due to RIPK3-mediated suppression of pro-inflammatory MCP-1 expression in macrophages and E-selectin expression in endothelial cells. These findings suggest a novel and unexpected cell-type specific and athero-protective function for RIPK3.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarah Colijn
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Vijay Muthukumar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jun Xie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Siqi Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| |
Collapse
|
45
|
Chen J, Jin H, Xu H, Peng Y, Jie L, Xu D, Chen L, Li T, Fan L, He P, Ying G, Gu C, Wang C, Wang L, Chen G. The Neuroprotective Effects of Necrostatin-1 on Subarachnoid Hemorrhage in Rats Are Possibly Mediated by Preventing Blood-Brain Barrier Disruption and RIP3-Mediated Necroptosis. Cell Transplant 2019; 28:1358-1372. [PMID: 31370690 PMCID: PMC6802141 DOI: 10.1177/0963689719867285] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Despite the substantial efforts to elucidate the role of early brain injury in subarachnoid hemorrhage (SAH), an effective pharmaceutical therapy for patients with SAH continues to be unavailable. This study aims to reveal the role of necroptosis after SAH, and explore whether the disruption of the blood-brain barrier (BBB) and RIP3-mediated necroptosis following SAH in a rat SAH model are altered by necrostatin-1 via its selective inhibition of receptor-interacting protein kinase 1 (RIP1). Sixty-five rats were used in the experiments. The SAH model was established using endovascular perforation. Necrostatin-1 was intracerebroventricularly injected 1 h before SAH induction. The neuroprotective effects of necrostatin-1 were evaluated with multiple methods such as magnetic resonance imaging (MRI) scanning, immunohistochemistry, propidium iodide (PI) labeling, and western blotting. Pretreatment with necrostatin-1 attenuated brain swelling and reduced the lesion volume on T2 sequence and ventricular volume on MRI 72 h after SAH induction. Albumin leakage and the degradation of tight junction proteins were also ameliorated by necrostatin-1 administration. In addition, necrostatin-1 decreased the number of PI-positive cells in the basal cortex, reduced the levels of the RIP3 and MLKL proteins, and inhibited the production of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Based on the findings from the present study, the selective RIP1 inhibitor necrostatin-1 functioned as a neuroprotective agent after SAH by attenuating brain swelling and BBB disruption. Moreover, the necrostatin-1 pretreatment prevented SAH-induced necroptosis by suppressing the activity of the RIP3/MLKL signaling pathway. These results will provide insights into new drugs and pharmacological targets to manage SAH, which are worth further study.
Collapse
Affiliation(s)
- Jingsen Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
- All the authors contributed equally to this article
| | - Hanghuang Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Affiliated Taizhou Municipal Hospital, Taizhou
University, Taizhou, China
- All the authors contributed equally to this article
| | - Hangzhe Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
- All the authors contributed equally to this article
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Liyong Jie
- Department of Radiology, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Demin Xu
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen,
China
| | - Lili Chen
- Department of Neurology, Xiasha Campus, Sir Run Run Shaw Hospital, School of
Medicine, Zhejiang University, Hangzhou, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Linfeng Fan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Pingyou He
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Guangyu Ying
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Chun Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Zhuang C, Chen F. Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives. J Med Chem 2019; 63:1490-1510. [PMID: 31622096 DOI: 10.1021/acs.jmedchem.9b01317] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Necroptosis, an important form of programmed cell death (PCD), is a highly regulated caspase-independent type of cell death that plays a critical role in the pathophysiology of various inflammatory, infectious, and degenerative diseases. Currently, receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) have been widely recognized as critical therapeutic targets of the necroptotic machinery. Targeting RIPK1, RIPK3, and/or MLKL is a promising strategy for necroptosis-related diseases. Following the identification of the first RIPK1 inhibitor Nec-1 in 2005, the antinecroptosis field is attracting increasing research interest from multiple disciplines, including the biological and medicinal chemistry communities. Herein, we will review the functions of necroptosis in human diseases, as well as the related targets and representative small-molecule inhibitors, mainly focusing on research articles published during the past 10 years. Outlooks and perspectives on the associated challenges are also discussed.
Collapse
Affiliation(s)
- Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , China
| |
Collapse
|
47
|
Chan HH, Koh RY, Lim CL, Leong CO. Receptor-Interacting Protein Kinase 1 (RIPK1) as a Potential Therapeutic Target: An Overview of Its Possible Role in the Pathogenesis of Alzheimer's Disease. Curr Alzheimer Res 2019; 16:907-918. [PMID: 31642777 DOI: 10.2174/1567205016666191023102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023]
Abstract
Alzheimer's Disease (AD) is an age-dependent neurodegenerative disorder, the most common type of dementia that is clinically characterized by the presence of beta-amyloid (Aβ) extracellularly and intraneuronal tau protein tangles that eventually leads to the onset of memory and cognition impairment, development of psychiatric symptoms and behavioral disorders that affect basic daily activities. Current treatment approved by the U.S Food and Drug Administration (FDA) for AD is mainly focused on the symptoms but not on the pathogenesis of the disease. Recently, receptor-interacting protein kinase 1 (RIPK1) has been identified as a key component in the pathogenesis of AD through necroptosis. Furthermore, genetic and pharmacological suppression of RIPK1 has been shown to revert the phenotype of AD and its mediating pathway is yet to be deciphered. This review is aimed to provide an overview of the pathogenesis and current treatment of AD with the involvement of autophagy as well as providing a novel insight into RIPK1 in reverting the progression of AD, probably through an autophagy machinery.
Collapse
Affiliation(s)
- Hong Hao Chan
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Chooi Ling Lim
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Chee Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Xu Y, Gao H, Hu Y, Fang Y, Qi C, Huang J, Cai X, Wu H, Ding X, Zhang Z. High glucose-induced apoptosis and necroptosis in podocytes is regulated by UCHL1 via RIPK1/RIPK3 pathway. Exp Cell Res 2019; 382:111463. [PMID: 31247189 DOI: 10.1016/j.yexcr.2019.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Diabetic nephrology (DN) is attributed largely to the depletion of podocytes, which is closely associated to apoptosis. However, the complex mechanism of podocyte loss in DN pathogenesis remains unclear. Recently, necroptosis has emerged as an important cell death model in many pathological conditions, which is regulated through RIPK1/RIPK3 pathway. In addition, necroptosis was found to share several upstream signaling pathways with apoptosis. Therefore, it was speculated that both apoptosis and necroptosis may occur in podocytes during the process of podocyte injury in DN. Herein, necroptosis and apoptosis were shown to be involved in podocyte injury induced by high glucose (HG), both in vitro and in vivo, with a high level of positive signaling markers RIPK1 (298.4 ± 17.35), cleaved caspase 3 (497.1 ± 23.09), RIPK3 (108.4 ± 14.92), and MLKL (470.4 ± 15.73) than the control groups. Scaning electron microscopy examination revealed the morphological characteristics of necroptotic and apoptotic cells, which differed remarkably. z-VAD-fmk, a pan-inhibitor of apoptosis, could block apoptosis and enhance necroptosis. Furthermore, UCHL1 was found to play a major role in promoting podocyte necroptosis by regulating the ubiquitination state of the RIPK1/RIPK3 pathway. The half-life of RIPK1 and RIPK3 proteins reduced and the expression of RIPK1, RIPK3, and MLKL decreased significantly after the knockdown of UCHL1. It was shown that UCHL1 exerted a more regulatory response to necroptosis. These data suggested that necroptosis may have more effect on the loss of podocytes than apoptosis in DN with the regulation of UCHL1. Thus, inhibiting UCHL1 to downregulate the RIPK1/RIPK3 pathway may be a novel strategy to protect the podocytes in DN patients.
Collapse
Affiliation(s)
- Yuyin Xu
- The Department of Pathology, School of Basic Medical Science, Fudan University, China; The Department of Pathology, Fudan University Shanghai Cancer Center, China
| | - Hongyang Gao
- The Department of Pathology, School of Basic Medical Science, Fudan University, China
| | - Yuan Hu
- The Department of Pathology, School of Basic Medical Science, Fudan University, China
| | - Yili Fang
- The Department of Pathology, School of Basic Medical Science, Fudan University, China
| | - Chenyang Qi
- The Department of Pathology, School of Basic Medical Science, Fudan University, China
| | - Jiebo Huang
- The Department of Nephrology, Putuo District Central Hospital, Shanghai, China
| | - Xiaofan Cai
- The Department of Nephrology, Longhua Hospital, Shanghai, China
| | - Huijuan Wu
- The Department of Pathology, School of Basic Medical Science, Fudan University, China
| | - Xiaoqiang Ding
- Shanghai Key Laboratory of Renal Diseases and Blood Purification, Zhongshan Hospital, Fudan University, China
| | - Zhigang Zhang
- The Department of Pathology, School of Basic Medical Science, Fudan University, China; Shanghai Key Laboratory of Renal Diseases and Blood Purification, Zhongshan Hospital, Fudan University, China.
| |
Collapse
|
49
|
Zhang H, Xu L, Qin X, Chen X, Cong H, Hu L, Chen L, Miao Z, Zhang W, Cai Z, Zhuang C. N-(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[ d]thiazol-2-yl)cyclopropanecarboxamide (TAK-632) Analogues as Novel Necroptosis Inhibitors by Targeting Receptor-Interacting Protein Kinase 3 (RIPK3): Synthesis, Structure-Activity Relationships, and in Vivo Efficacy. J Med Chem 2019; 62:6665-6681. [PMID: 31095385 DOI: 10.1021/acs.jmedchem.9b00611] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Necroptosis, a form of programmed cell death, plays a critical role in various diseases, including inflammatory, infectious, and degenerative diseases. We previously identified N-(7-cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (TAK-632) (6) as a potent inhibitor of necroptosis by targeting both receptor-interacting protein kinase 1 (RIPK1) and 3 (RIPK3) kinases. Herein, we performed three rounds of structural optimizations of TAK-632 and elucidated structure-activity relationships to generate more potent inhibitors by targeting RIPK3. The analogues with carbamide groups exhibited great antinecroptotic activities, and compound 42 showed >60-fold selectivity for RIPK3 than RIPK1. It blocked necrosome formation by specifically inhibiting the phosphorylation of RIPK3 in necroptotic cells. In a tumor necrosis factor-induced systemic inflammatory response syndrome model, it significantly protected mice from hypothermia and death at a dose of 5 mg/kg, which was much more effective than TAK-632. Moreover, it showed favorable and druglike pharmacokinetic properties in rats with an oral bioavailability of 25.2%. Thus, these RIPK3-targeting small molecules represent promising lead structures for further development.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy , Ningxia Medical University , 1160 Shengli Street , Yinchuan 750004 , China
| | - Lijuan Xu
- School of Pharmacy , Ningxia Medical University , 1160 Shengli Street , Yinchuan 750004 , China
| | - Xia Qin
- National Center for Liver Cancer , Second Military Medical University , 225 Changhai Road , Shanghai 200438 , China
| | - Xiaofei Chen
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Hui Cong
- School of Pharmacy , Ningxia Medical University , 1160 Shengli Street , Yinchuan 750004 , China.,School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Longmiao Hu
- National Center for Liver Cancer , Second Military Medical University , 225 Changhai Road , Shanghai 200438 , China
| | - Long Chen
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Zhenyuan Miao
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Wannian Zhang
- School of Pharmacy , Ningxia Medical University , 1160 Shengli Street , Yinchuan 750004 , China.,School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Zhenyu Cai
- National Center for Liver Cancer , Second Military Medical University , 225 Changhai Road , Shanghai 200438 , China.,Cancer Institute , Fudan University Shanghai Cancer Center , Shanghai 200032 , China
| | - Chunlin Zhuang
- School of Pharmacy , Ningxia Medical University , 1160 Shengli Street , Yinchuan 750004 , China.,School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China.,Department of Chemistry , Fudan University , Shanghai 200433 , China
| |
Collapse
|
50
|
Upregulation of the NLRC4 inflammasome contributes to poor prognosis in glioma patients. Sci Rep 2019; 9:7895. [PMID: 31133717 PMCID: PMC6536517 DOI: 10.1038/s41598-019-44261-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammation in tumor microenvironments is implicated in the pathogenesis of tumor development. In particular, inflammasomes, which modulate innate immune functions, are linked to tumor growth and anticancer responses. However, the role of the NLRC4 inflammasome in gliomas remains unclear. Here, we investigated whether the upregulation of the NLRC4 inflammasome is associated with the clinical prognosis of gliomas. We analyzed the protein expression and localization of NLRC4 in glioma tissues from 11 patients by immunohistochemistry. We examined the interaction between the expression of NLRC4 and clinical prognosis via a Kaplan-Meier survival analysis. The level of NLRC4 protein was increased in brain tissues, specifically, in astrocytes, from glioma patients. NLRC4 expression was associated with a poor prognosis in glioma patients, and the upregulation of NLRC4 in astrocytomas was associated with poor survival. Furthermore, hierarchical clustering of data from the Cancer Genome Atlas dataset showed that NLRC4 was highly expressed in gliomas relative to that in a normal healthy group. Our results suggest that the upregulation of the NLRC4 inflammasome contributes to a poor prognosis for gliomas and presents a potential therapeutic target and diagnostic marker.
Collapse
|