1
|
Amrollahi-Sharifabadi M, Oladejo TO, Ibrahim AS, Shakoor B, Mehrpour O, Sadeghi-Hashjin G, Gonçalves S. Melatonin's paradox: From therapeutic benefits to toxicity warnings. Chem Biol Interact 2025:111556. [PMID: 40383469 DOI: 10.1016/j.cbi.2025.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/03/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Melatonin is an endogenous chemical predominantly synthesized in the pineal gland, widely recognized for its hormonal roles, such as regulating sleep and circadian rhythms. Through mechanisms such as anti-oxidative reduction, anti-inflammatory, and immunomodulation, it is suggested that melatonin exhibits biochemical properties in in vitro conditions. Beyond these functions, melatonin has garnered attention for its pharmacological benefits, particularly as a therapeutic agent that is exogenously administered as a supplement in various diseases ranging from insomnia to immunological and gastrointestinal disorders. However, emerging studies highlight potential toxicological concerns associated with exogenous melatonin use, especially in specific populations. This review provided a comprehensive exploration of melatonin's dual role as a therapeutic and potentially toxic agent. It summarized what is currently known about its pharmacological, toxicological, and biochemical characteristics as well as toxicity mechanisms, and safety concerns in susceptible groups. By highlighting new knowledge gaps about melatonin's clinical uses, the study opens the door for further studies to maximize its therapeutic benefits while maintaining its safety.
Collapse
Affiliation(s)
| | - Toheeb Olalekan Oladejo
- Department of Pharmacology and Toxicology, Nazarbayev School of Medicine, Astana, Kazakhstan.
| | - Adedayo Sheu Ibrahim
- Department of Pharmacology and Toxicology, Nazarbayev School of Medicine, Astana, Kazakhstan.
| | - Bushra Shakoor
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Omid Mehrpour
- Michigan Poison & Drug Information Center, School of Medicine, Wayne State University, Detroit, Michigan, United States of America.
| | - Goudarz Sadeghi-Hashjin
- Department of Comparative Biosciences, College of Veterinary Medicine & Biomedical Science, University of Tehran, Tehran, Iran.
| | - Sara Gonçalves
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
| |
Collapse
|
2
|
Quan T, Zhang W, Shi Y, Gao T. Melatonin-mediated intestinal microbiota homeostasis improves skin barrier damage involvement of gut-skin axis dysfunction in aging mice. Cell Signal 2025; 133:111859. [PMID: 40349812 DOI: 10.1016/j.cellsig.2025.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Researches suggested a close connection between the gut microbiome homeostasis and skin health. Melatonin, as a multifunctional molecule, has the potential to regulate intestinal homeostasis and skin function. The study further explored the potential mechanism of melatonin in ameliorating skin barrier damage from the perspective of the association between intestinal microbiota and gut-skin axis in aging mice. We established a natural aging-induced skin barrier damage mouse model with or without melatonin supplementation and fecal microbiota transplantation (FMT) to clarify the crucial role of intestinal microbiota-mediated gut-skin axis in melatonin improving skin barrier damage. Furthermore, lipopolysaccharide (LPS)-treated mice and human keratinocytes cells (HaCaT) explored the modulation mechanism of melatonin. Our results suggested that aging induced skin barrier damage, including skin microbiota disorder and epidermal barrier structure disruption, and intestinal dysbiosis. Similarly, FMT from aging mice and LPS treatment rebuild the aging-like skin barrier damage. Whereas, melatonin or resatorvid (TAK242, the antagonist of LPS) supplementation restored all consequence in aging and LPS-treated mice. In vitro, melatonin restored LPS-induced skin barrier proteins deficiency in HaCaT via decreasing the expression level of TLR4 and MyD88 and increasing the content of p-ERK, p-GSK-3β and β-catenin proteins, while the improving effects was mimicked by pretreatment with a TLR4 antagonist but were blocked by GSK-3β agonists. Our study revealed that melatonin-mediated intestinal microbiota homeostasis suppresses LPS escape to restore the skin barrier function, including skin dysbiosis and epidermal structural disruption via LPS/TLR4/MyD88/ERK/GSK-3β/β-catenin loop, further improving skin aging in mice.
Collapse
Affiliation(s)
- Tao Quan
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Wenrui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Yanfeng Shi
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Böhm M, Stegemann A, Paus R, Kleszczyński K, Maity P, Wlaschek M, Scharffetter-Kochanek K. Endocrine Controls of Skin Aging. Endocr Rev 2025; 46:349-375. [PMID: 39998423 DOI: 10.1210/endrev/bnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 02/26/2025]
Abstract
Skin is the largest organ of the human body and undergoes both intrinsic (chronological) and extrinsic aging. While intrinsic skin aging is driven by genetic and epigenetic factors, extrinsic aging is mediated by external threats such as UV irradiation or fine particular matters, the sum of which is referred to as exposome. The clinical manifestations and biochemical changes are different between intrinsic and extrinsic skin aging, albeit overlapping features exist, eg, increased generation of reactive oxygen species, extracellular matrix degradation, telomere shortening, increased lipid peroxidation, or DNA damage. As skin is a prominent target for many hormones, the molecular and biochemical processes underlying intrinsic and extrinsic skin aging are under tight control of classical neuroendocrine axes. However, skin is also an endocrine organ itself, including the hair follicle, a fully functional neuroendocrine "miniorgan." Here we review pivotal hormones controlling human skin aging focusing on IGF-1, a key fibroblast-derived orchestrator of skin aging, of GH, estrogens, retinoids, and melatonin. The emerging roles of additional endocrine players, ie, α-melanocyte-stimulating hormone, a central player of the hypothalamic-pituitary-adrenal axis; members of the hypothalamic-pituitary-thyroid axis; oxytocin, endocannabinoids, and peroxisome proliferator-activated receptor modulators, are also reviewed. Until now, only a limited number of these hormones, mainly topical retinoids and estrogens, have found their way into clinical practice as anti-skin aging compounds. Further research into the biological properties of endocrine players or its derivatives may offer the development of novel senotherapeutics for the treatment and prevention of skin aging.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester M13 9PL, UK
- CUTANEON-Skin & Hair Innovations, 22335 Hamburgyi, Germany
- CUTANEON-Skin & Hair Innovations, 13125 Berlin, Germany
| | | | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
4
|
Perez AS, Inada NM, Mezzacappo NF, Vollet-Filho JD, Bagnato VS. Ultraviolet radiation inhibits mitochondrial bioenergetics activity. Photochem Photobiol 2025; 101:697-708. [PMID: 39411998 DOI: 10.1111/php.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 05/17/2025]
Abstract
Mitochondria play an important role in cellular function, not only as a major site of adenosine triphosphate (ATP) production but also by regulating energy expenditure, apoptosis signaling, control of the cell cycle, cellular growth, cell differentiation, transportation of metabolites, and production of reactive oxygen species. Interaction with electromagnetic waves can lead to dysregulation or alterations in the patterns of energy activities in the mitochondria. Ultraviolet light (UV) can be found in sunlight and artificial sources, such as lamps. UV radiation can cause damage to DNA, proteins, and lipids. Besides that, UV radiation is largely used in microorganism disinfection. To establish possible alterations in mitochondrial bioenergetics, this study proposes to investigate the UV (at two distinct intervals) effects on isolated mitochondria from mice liver to obtain direct responses and selective permeability of the internal membrane information. UVA-371 and UVC-255 nm lamps were used to irradiate, at different doses varying from 22.5 to 756 mJ/cm2, isolated mitochondria samples. Mitochondrial respiration pathways were investigated by high-resolution respirometry, and possible mitochondrial membrane damages were evaluated by mitochondrial swelling by spectrophotometer analysis. UVC irradiation results (in the higher dose) indicate decrease in 75% of mitochondrial bioenergetics capacity, such as limitation of oxidative phosphorylation in 60% and increased energy dissipation in 30%. Mitochondrial swelling experiments (spectrophotometer) indicated inner membrane damage, and consequently a loss of selective permeability. Direct correlation between irradiation and effect responses was observed, mitochondrial bioenergetics is severely affected by UVC radiation, but (UVA) radiation did not present bioenergetic alterations. These alterations can contribute to improving the knowledge behind the cell death mechanism in disinfection UV light and UV therapy such as phototherapy.
Collapse
Affiliation(s)
- Aline S Perez
- Institute of Physics, University of Sao Paulo, Sao Paulo, Brazil
| | - Natalia M Inada
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | | | - Jose D Vollet-Filho
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Vanderlei S Bagnato
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Michałek M, Ogrodowicz P, Kempa M, Kuczyńska A, Mikołajczak K. Melatonin in crop plants: from biosynthesis through pleiotropic effects to enhanced stress resilience. J Appl Genet 2025:10.1007/s13353-025-00963-7. [PMID: 40304972 DOI: 10.1007/s13353-025-00963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/27/2025] [Accepted: 03/15/2025] [Indexed: 05/02/2025]
Abstract
Melatonin plays a crucial role in enhancing plant resilience to environmental stresses by regulating physiological and biochemical responses. This review provides an overview of melatonin biosynthesis, signaling pathways, and its interactions with phytohormones, highlighting its multifunctional roles across various crop species. We summarize recent discoveries regarding the biosynthetic pathways of melatonin and its crucial metabolites, emphasizing the importance of tryptophan and serotonin in this process. Furthermore, we discuss the intricate crosstalk between melatonin and phytohormones, particularly auxins, cytokinins, and brassinosteroids, which collectively influence root development, growth, and stress tolerance, among other traits. The antioxidant activity of melatonin and its derivatives, along with their impact on photosynthesis, has also been thoroughly discussed. Notably, melatonin's regulatory actions promote root growth, thereby improving water and nutrient absorption under stress conditions. The identification of candidate genes and a putative receptor provides a foundation for future studies aimed at elucidating the molecular mechanisms underlying melatonin signaling in crop species. Ultimately, this review underscores the potential of harnessing melatonin in crop improvement strategies to enhance resilience to abiotic stresses while promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Martyna Michałek
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| |
Collapse
|
6
|
Taheri M, Seirafianpour F, Fallahian A, Hosseinzadeh A, Reiter RJ, Mehrzadi S. Exploring melatonin's signalling pathways in the protection against age-related skin deterioration. Pharmacol Rep 2025; 77:375-391. [PMID: 39883394 DOI: 10.1007/s43440-025-00699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/15/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation. The presence of melatonin receptors in diverse skin cell types and its documented ability to enhance skin tone, hydration, and texture upon topical administration underscores its promise as an anti-aging agent. Melatonin's protective effects likely emanate from its multifaceted characteristics, encompassing antioxidant, anti-inflammatory, and immunomodulatory functions, as well as its influence on collagen synthesis and mitochondrial activity. Chronic inflammation and oxidative stress initiate a detrimental feedback loop. Reactive oxygen species (ROS), notorious for damaging cellular structures, provoke immune responses by oxidizing vital molecules and activating signaling proteins. This triggers heightened expression of inflammatory genes, perpetuating the cycle. Such dysregulation significantly compromises the body's resilience against infections and other health adversities. This study embarks on an exploration of the fundamental signaling pathways implicated in skin aging. Furthermore, it delves into the therapeutic potential of melatonin and its anti-aging attributes within the realm of skin health.
Collapse
Affiliation(s)
- Maryam Taheri
- Medical School, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Amirali Fallahian
- Department of Dermatology, School of Medicine, Rasool Akram Medical Complex, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, United States
| | - Saeed Mehrzadi
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
7
|
Zheng Z, Su Z, Zhang W. Melatonin's Role in Hair Follicle Growth and Development: A Cashmere Goat Perspective. Int J Mol Sci 2025; 26:2844. [PMID: 40243438 PMCID: PMC11988770 DOI: 10.3390/ijms26072844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Hair follicles, unique skin appendages, undergo cyclic phases (anagen, catagen, telogen) governed by melatonin and associated molecular pathways. Melatonin, synthesized in the pineal gland, skin, and gut, orchestrates these cycles through antioxidant activity and signaling cascades (e.g., Wnt, BMP). This review examines melatonin's biosynthesis across tissues, its regulation of cashmere growth patterns, and its interplay with non-coding RNAs and the gut-skin axis. Recent advances highlight melatonin's dual role in enhancing antioxidant capacity (via Keap1-Nrf2) and modulating gene expression (e.g., Wnt10b, CTNNB1) to promote hair follicle proliferation. By integrating multi-omics insights, we construct a molecular network of melatonin's regulatory mechanisms, offering strategies to improve cashmere yield and quality while advancing therapies for human alopecia.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.Z.); (Z.S.)
| |
Collapse
|
8
|
Choi S, Yu E, Park S, Oh SW, Kwon K, Kim G, Ha H, Shin HS, Min S, Song M, Cho JY, Lee J. Protective effect of melatonin against blue light-induced cell damage via the TRPV1-YAP pathway in cultured human epidermal keratinocytes. Biofactors 2025; 51:e70015. [PMID: 40183558 PMCID: PMC11970215 DOI: 10.1002/biof.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Although blue light has been known to negatively affect skin cells, its detailed signaling mechanisms and anti-blue light agents have not been clearly elucidated. We investigated the involvement of Yes-associated protein (YAP)-mediated Hippo signaling in blue light-induced apoptosis, depending on the degree of blue light exposure. Additionally, we elucidated the effects of melatonin on blue light-irradiated keratinocytes and examined their action mechanisms. After blue light irradiation, its effects and antagonizing effects of melatonin on cell proliferation, apoptosis, DNA damage, and transient receptor potential vanilloid 1 (TRPV1)/YAP-mediated signaling were examined in HaCaT cells using western blots, image analysis, flow cytometric analysis, co-immunoprecipitation, and immunocytochemistry. We found that melatonin treatment attenuated the reduced cell viability and increased production of reactive oxygen species (ROS) in response to blue light irradiation. In the experiments to investigate the mechanism of action of blue light and melatonin, we found that YAP changed its binding protein, either p73 or TEAD, depending on the degree of blue light exposure. Melatonin treatment reduced blue light-induced phosphorylation of TRPV1 and MST1/2. Upon treatment with capsazepine, an antagonist of TRPV1, MST1/2 activation also reduced. Furthermore, we found that prolonged blue light irradiation induced DNA damage, which in turn induced YAP-p73 nuclear translocation. These effects were also notably attenuated by melatonin. These findings indicate that depending on the duration of blue light irradiation, two different YAP-mediated Hippo signaling pathways are activated. Additionally, these findings suggest that melatonin could be a potential therapeutic agent for blue light-induced skin damage.
Collapse
Affiliation(s)
- Seoyoung Choi
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - See‐Hyoung Park
- Department of Bio and Chemical EngineeringHongik UniversitySejong CityKorea
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Gyeonghyeon Kim
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Heejun Ha
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Hee Seon Shin
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Seokhyeon Min
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Minkyung Song
- Integrative Research of T cells Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
- Department of Biopharmaceutical ConvergenceSungkyunkwan UniversitySuwon CityKorea
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| |
Collapse
|
9
|
Feng Y, Yang R, Zhang J, Yuan H, Yan Z, Wang P, Ma X, Liu T, Gun S. Maternal Melatonin Contributes to Offspring Hair Follicle Development Through Transcriptional Regulation of the AP-1 Complex and MAPK Pathway. Int J Mol Sci 2025; 26:1952. [PMID: 40076576 PMCID: PMC11900504 DOI: 10.3390/ijms26051952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Maternal melatonin (MT) readily crosses the placental barrier to enter the fetal circulation, and it holds the potential to enhance hair follicle (HF) development, possibly augmented through nutritional interventions during pregnancy. However, the specific impact of maternal MT treatment on fetal HF development remains largely unexplored. In this study, we implanted pregnant rabbits with 10 mg of MT-containing and non-MT-containing silica gel microcapsules. We then assessed HF density and the extent of HF cell apoptosis in the neonatal rabbits. Our findings revealed that maternal MT implantation significantly reduced HF cell apoptosis and promoted an increased HF density in the neonates. Mechanistically, this process involved MT downregulating the expression of JUN/FOS and AP-1, while concurrently upregulating equol expression and reducing norepinephrine levels. Analysis of key protein expression within the MAPK pathway indicated that maternal MT activated this pathway. These results suggest that maternal MT treatment promotes beneficial HF development in offspring. Notably, the transcriptional regulation of JUN/FOS members of the AP-1 complex emerges as a pivotal factor mediating the beneficial effects of MT on neonatal hair follicle development.
Collapse
Affiliation(s)
- Yang Feng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruixin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianqiang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaochun Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Wong C, Ng JY, Sio YY, Chew FT. Genetic determinants of skin ageing: a systematic review and meta-analysis of genome-wide association studies and candidate genes. J Physiol Anthropol 2025; 44:4. [PMID: 39923055 PMCID: PMC11806588 DOI: 10.1186/s40101-025-00384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/30/2024] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Skin ageing is influenced by complex genetic factors. Various phenotypes such as wrinkling, pigmentation changes, and skin cancers have been linked to specific genetic loci. However, the underlying genetic mechanisms and pathways remain poorly understood. This systematic review and meta-analysis aims to summarise the genetic loci found to be associated with skin ageing phenotypes by published genome-wide association studies (GWAS) and candidate gene studies. We also evaluated the overall association of loci via meta-analysis and identified the association patterns to explore potential biological pathways contributing to skin ageing. The Web of Science, Embase, and PubMed databases were searched on January 2024 using specific exclusion criteria (e.g., study of non-human subjects, focus on skin diseases, or treatments) to identify relevant articles. There did not appear to be any significant publication bias observed across the all phenotypes. MAIN BODY A total of 48 studies were included, revealing 30 loci that were confirmed to be associated with skin ageing by multiple studies (e.g., AFG3L1P: odds ratio 1.133 95% confidence interval [1.044, 1.222]; BPIFA3: 1.859 [1.567, 2.151]; CLPTML1: 1.164 [1.0.99, 1.229]; CPNE7: 0.905 [0.852-0.958]; DEF8: 1.186 [1.042, 1.331]; IRF4: 1.260 [1.025, 1.495]; MYO16: 2.303 [1.697, 2.908]; PRDM16: 1.105 [1.084, 1.127]; RORA: 1.391 [1.206, 1.577]; SPG7: 0.922 [0.897, 0.947]; SPON1: 2.214 [1.204, 3.225]; SPTLC1: 1.464 [1.432, 1.495]; TYR: 1.175 [1.007, 1.343]). The lack of significance for many loci may be due to studies analysing different SNPs within the same locus, weakening the overall associations. Several loci were associated with specific phenotypic categories (e.g., skin colour related, skin cancer related, wrinkling and sagging related), suggesting shared biological pathways are involved in the pathogenesis of different skin ageing phenotypes. This pattern was also observed in several of the loci that do not have a significant overall association with skin ageing. CONCLUSION Despite significant heterogeneity among the included studies and the use of subjective visual methods for phenotype assessment, our review highlights the critical role of fundamental biological processes, such as development and cellular organisation, in skin ageing. Future research that targets the same SNP across multiple populations could strengthen the association of additional loci with skin ageing. Further investigation into these underlying biological processes would significantly advance our understanding of the pathogenesis of skin ageing phenotypes.
Collapse
Affiliation(s)
- Chloe Wong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117,543, Singapore
| | - Jun Yan Ng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117,543, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117,543, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117,543, Singapore.
- Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117,543, Singapore.
| |
Collapse
|
11
|
Zhang Y, Zhao X, Li S, Xu Y, Bai S, Zhang W. Melatonin-Mediated Circadian Rhythm Signaling Exhibits Bidirectional Regulatory Effects on the State of Hair Follicle Stem Cells. Biomolecules 2025; 15:226. [PMID: 40001528 PMCID: PMC11852975 DOI: 10.3390/biom15020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The development and regulation of hair are widely influenced by biological rhythm signals. Melatonin plays a crucial role as a messenger in transmitting biological rhythm signals, and its impact on hair development has been well documented. During the process of hair follicle reconstruction, hair follicle stem cells (HFSCs) are the most important cell type, but the regulatory effect of melatonin on the state of HFSCs is still not fully understood. Therefore, it is necessary to conduct a more comprehensive characterization of the effects of melatonin on the state of hair follicle stem cells. The research results indicate that HFSCs express retinoic acid receptor-related orphan receptor alpha (Rorα), and melatonin inhibits the expression level of RORA. Experimental results from CUT&Tag, CUT&RUN, and dual luciferase reporter assays demonstrate that Foxc1 is a downstream target gene of RORA, with RORA regulating Foxc1 expression by binding to the promoter region of Foxc1. The CCK-8 assay results show that low doses of melatonin upregulate the survival rate of hair follicle stem cells, while high doses have the opposite effect. The knockdown of Foxc1 reverses the inhibitory effect of high-dose melatonin on the survival rate of hair follicle stem cells. Based on these findings, we believe that melatonin-mediated circadian signals exert a bidirectional regulatory effect on the state of HFSCs.
Collapse
Affiliation(s)
- Yu Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (X.Z.)
| | - Xuefei Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (X.Z.)
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Shuqi Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (X.Z.)
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (X.Z.)
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
- Detecting Center of Wildlife, State Forestry and Grassland Administration, Harbin 150040, China
| | - Suying Bai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (X.Z.)
- Detecting Center of Wildlife, State Forestry and Grassland Administration, Harbin 150040, China
| | - Wei Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (X.Z.)
- Detecting Center of Wildlife, State Forestry and Grassland Administration, Harbin 150040, China
| |
Collapse
|
12
|
Shen J, Gao J, Wang X, Yan D, Wang Y, Li H, Chen D, Wu J. Melatonin attenuates BDE-209-caused spatial memory deficits in juvenile rats through NMDAR-CaMKⅡγ-mediated synapse-to-nucleus signaling. Food Chem Toxicol 2025; 196:115243. [PMID: 39788477 DOI: 10.1016/j.fct.2025.115243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Flame retardant polybrominated diphenyl ethers (PBDEs) accumulate in human bodies through food and dust ingestion, and cause neurobehavioral deficits with obscure mechanism. We aimed to investigate NMDAR-CaMKⅡγ-mediated synapse-to-nuclear communication involved in BDE-209-induced cognitive impairment, and alleviation from exogenous melatonin. Decreased NMDAR subunits GluN2A and 2B, autophosphorylation of CaMKⅡα, and postsynaptic GluA1 trafficking were observed in the hippocampus of juvenile rats after maternal BDE-209 exposure. Moreover, nuclear shuttling of CaMKⅡγ with CaM, as well as downstream nuclear p-CaMKIV and p-CREB-dependent genes (Bdnf, c-Fos, Arc) expression were all causally down-regulated. These resulted in less dendritic spines in CA1 area and poor spatial learning and memory. Importantly, elevated miR-219a-5p in transcriptome sequencing was identified together with its targets Grin2b and Camk2g mRNA, further elucidated the reduction in GluN2B and CaMKⅡγ protein. These changes on synaptic plasticity caused by BDE-209 were reversed correspondingly under pretreatment of melatonin, partially via miR-219a inhibition. Collectively, our findings suggest that synaptonuclear signaling alterations potentially mediated neurobehavioral deficits induced by early-life BDE-209 exposure and the neuroprotection from melatonin, therefore provided a novel perspective for prevention.
Collapse
Affiliation(s)
- Jinghua Shen
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Jingjing Gao
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Xinyi Wang
- School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Dongying Yan
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Ying Wang
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Hong Li
- School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, PR China
| | - Jie Wu
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China.
| |
Collapse
|
13
|
Camillo L, Zavattaro E, Savoia P. Nicotinamide: A Multifaceted Molecule in Skin Health and Beyond. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:254. [PMID: 40005371 PMCID: PMC11857428 DOI: 10.3390/medicina61020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Nicotinamide (NAM), the amide form of vitamin B3, is a precursor to essential cofactors nicotinamide adenine dinucleotide (NAD⁺) and NADPH. NAD⁺ is integral to numerous cellular processes, including metabolism regulation, ATP production, mitochondrial respiration, reactive oxygen species (ROS) management, DNA repair, cellular senescence, and aging. NAM supplementation has demonstrated efficacy in restoring cellular energy, repairing DNA damage, and inhibiting inflammation by suppressing pro-inflammatory cytokines release. Due to its natural presence in a variety of foods and its excellent safety profile-even at high doses of up to 3 g/day-NAM is extensively used in the chemoprevention of non-melanoma skin cancers and the treatment of dermatological conditions such as blistering diseases, atopic dermatitis, rosacea, and acne vulgaris. Recently, its anti-aging properties have elevated NAM's prominence in skincare formulations. Beyond DNA repair and energy replenishment, NAM significantly impacts oxidative stress reduction, cell cycle regulation, and apoptosis modulation. Despite these multifaceted benefits, the comprehensive molecular mechanisms underlying NAM's actions remain not fully elucidated. This review consolidates recent research to shed light on these mechanisms, emphasizing the critical role of NAM in cellular health and its therapeutic potential. By enhancing our understanding, this work underscores the importance of continued exploration into NAM's applications, aiming to inform future clinical practices and skincare innovations.
Collapse
Affiliation(s)
| | | | - Paola Savoia
- Department of Health Science, Università del Piemonte Orientale, 28100 Novara, Italy; (L.C.); (E.Z.)
| |
Collapse
|
14
|
Colombo F, Alfano S, Milani M. Lipidomic and Instrumental Evaluation of a Melatonin-Based In & Out Strategy Versus Topical Treatment in Skin Aging: A Randomized Prospective Trial. Metabolites 2025; 15:33. [PMID: 39852376 PMCID: PMC11767497 DOI: 10.3390/metabo15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
This study aimed to evaluate the efficacy of a novel "In & Out" strategy, combining topical and oral melatonin supplementation, in managing skin aging compared to topical treatment alone. A randomized, prospective study was conducted on 39 healthy females aged 55-69 years. Participants were divided into two groups: one received both the topical formula and oral melatonin supplementation (Group A), while the other received a topical melatonin-based formula (Group B). Clinical evaluations included lipidomic analysis, skin moisturization, and wrinkle depth analysis at baseline and after 84 days. The addition of oral melatonin supplementation to the topical regimen led to improvements in the skin's lipid profile and moisturization levels. These findings suggest that combining topical and oral melatonin may provide a more comprehensive approach to managing skin aging by addressing both local and systemic factors. Background/Objectives: With age, the endogenous antioxidant capacity of the skin decreases, including melatonin (Mel) synthesis. Skin aging is also associated with alterations in epidermal lipids, particularly a reduction in triglycerides and ceramides, which are essential for maintaining skin structure and hydration. The administration of exogenous melatonin could, therefore, be an effective anti-aging strategy. While some data suggest that melatonin may positively influence the lipid profile, specific data on its effects on skin aging are lacking. This study aimed to evaluate the anti-aging effects of an "In & Out" regimen consisting of a Mel-based cream and dietary supplement in comparison with topical treatment alone, focusing on clinical and lipidomic changes involved in skin homeostasis. Results: A statistically significant variation was observed in both groups compared to baseline (T0) in terms of moisturization (+23.6% in Group A, +18.3% in Group B) and wrinkle depth (-18.5% in Group A, -9.4% in Group B, p < 0.05). Both groups showed improvements in the lipid content of the skin, which typically decreases with age. The "In & Out" strategy resulted in a statistically significant increase in triacylglycerols and ceramides, key lipids that exhibit water-holding properties. Conclusions: The "In & Out" melatonin-based regimen demonstrated greater efficacy in clinical improvement and positive lipid profile modifications compared to topical treatment alone, highlighting its potential as a comprehensive anti-aging strategy.
Collapse
Affiliation(s)
- Francesca Colombo
- Medical Department, Cantabria Labs Difa Cooper, 21042 Caronno Pertusella, Italy
| | - Stefano Alfano
- Medical Department, Cantabria Labs Difa Cooper, 21042 Caronno Pertusella, Italy
| | - Massimo Milani
- Medical Department, Cantabria Labs Difa Cooper, 21042 Caronno Pertusella, Italy
| |
Collapse
|
15
|
Errico J. Metabolic syndrome: Understanding its root cause, and the role of macrophages and why vagus nerve stimulation may be an effective treatment. VAGUS NERVE STIMULATION 2025:313-325. [DOI: 10.1016/b978-0-12-816996-4.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Sieminski M, Reimus M, Kałas M, Stępniewska E. Antioxidant and Anti-Inflammatory Properties of Melatonin in Secondary Traumatic Brain Injury. Antioxidants (Basel) 2024; 14:25. [PMID: 39857359 PMCID: PMC11761219 DOI: 10.3390/antiox14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Traumatic brain injury (TBI) is a disease resulting from external physical forces acting against the head, leading to transient or chronic damage to brain tissue. Primary brain injury is an immediate and, therefore, rather irreversible effect of trauma, while secondary brain injury results from a complex cascade of pathological processes, among which oxidative stress and neuroinflammation are the most prominent. As TBI is a significant cause of mortality and chronic disability, with high social costs all over the world, any form of therapy that may mitigate trauma-evoked brain damage is desirable. Melatonin, a sleep-wake-cycle-regulating neurohormone, exerts strong antioxidant and anti-inflammatory effects and is well tolerated when used as a drug. Due to these properties, it is very reasonable to consider melatonin as a potential therapeutic molecule for TBI treatment. This review summarizes data from in vitro studies, animal models, and clinical trials that focus on the usage of melatonin in TBI.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| | - Michalina Reimus
- Emergency Department, University Clinical Center, 80-952 Gdańsk, Poland;
| | - Maria Kałas
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| | - Ewelina Stępniewska
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| |
Collapse
|
17
|
Reiter RJ, De Almeida Chuffa LG, Simão VA, Martín Giménez VM, De Las Heras N, Spandidos DA, Manucha W. Melatonin and vitamin D as potential synergistic adjuvants for cancer therapy (Review). Int J Oncol 2024; 65:114. [PMID: 39450562 PMCID: PMC11575929 DOI: 10.3892/ijo.2024.5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Significant advancements have been made in cancer therapy; however, limitations remain with some conventional approaches. Adjuvants are agents used alongside primary treatments to enhance their efficacy and the treatment outcomes of patients. Modern lifestyles contribute to deficiencies in melatonin and vitamin D. Limited sun exposure affects vitamin D synthesis, and artificial light at night suppresses melatonin production. Both melatonin and vitamin D possess anti‑inflammatory, immune‑boosting and anticancer properties, rendering them potential adjuvants of interest. Studies suggest melatonin and vitamin D supplementation may address antioxidant imbalances in lip, oral and pharyngeal cancers. Moreover, promising results from breast, head and neck, brain, and osteosarcoma research indicate potential for tumor growth inhibition, improved survival, and a better quality of life of patients with cancer. The radioprotective properties of melatonin and vitamin D are another exciting area of exploration, potentially enhancing radiotherapy effectiveness while reducing side effects. For its part, the sleep‑promoting effects of melatonin may indirectly benefit patients with cancer by influencing the immune system. Thus, the prevalence of vitamin D and melatonin deficiencies highlights the importance of supplementation, as lower levels can worsen side‑effects from cancer treatments. The present review explores the potential of combining melatonin and vitamin D as synergistic adjuvants for cancer therapy. These agents have shown promise individually in cancer prevention and treatment, and their combined effects warrant investigation. Therefore, large‑scale controlled trials are crucial to definitively determine the optimal dosage, safety and efficacy of this combination in improving the lives of patients with cancer.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Luiz Gustavo De Almeida Chuffa
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Virna Margarita Martín Giménez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Natalia De Las Heras
- Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Walter Manucha
- Pharmacology Area, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
18
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
19
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
20
|
Lisboa CD, Maciel de Souza JL, Gaspar CJ, Turck P, Ortiz VD, Teixeira Proença IC, Fernandes TRG, Fernandes E, Tasca S, Carraro CC, Belló-Klein A, Sander da Rosa Araujo A, Luz de Castro A. Melatonin effects on oxidative stress and on TLR4/NF-kβ inflammatory pathway in the right ventricle of rats with pulmonary arterial hypertension. Mol Cell Endocrinol 2024; 592:112330. [PMID: 39002930 DOI: 10.1016/j.mce.2024.112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Pulmonary arterial hypertension (PAH) is characterised by an increase in mean pulmonary arterial pressure and a compromised the right ventricle (RV), together with progression to heart failure and premature death. Studies have evaluated the role of melatonin as a promising therapeutic strategy for PAH. The objective of this study was to evaluate melatonin's effects on oxidative stress and on the TLR4/NF-kβ inflammatory pathway in the RV of rats with PAH. Male Wistar rats were divided into the following groups: control, monocrotaline (MCT), and monocrotaline plus melatonin groups. These two last groups received one intraperitoneal injection of MCT (60 mg/kg) on the first day of experimental protocol. The monocrotaline plus melatonin group received 10 mg/kg/day of melatonin by gavage for 21 days. Echocardiographic analysis was performed, and the RV was collected for morphometric analysis oxidative stress and molecular evaluations. The main findings of the present study were that melatonin administration attenuated the reduction in RV function that was induced by monocrotaline, as assessed by TAPSE. In addition, melatonin prevented RV diastolic area reduction caused by PAH. Furthermore, animals treated with melatonin did not show an increase in ROS levels or in NF-kβ expression. In addition, the monocrotaline plus melatonin group showed a reduction in TLR4 expression when compared with control and monocrotaline groups. To our knowledge, this is the first study demonstrating a positive effect of melatonin on the TLR4/NF-kβ pathway in the RV of rats with PAH. In this sense, this study makes it possible to think of melatonin as a possible ally in mitigating RV alterations caused by PAH.
Collapse
Affiliation(s)
- Cristiane Dias Lisboa
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - José Luciano Maciel de Souza
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Custódio José Gaspar
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Patrick Turck
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Vanessa Duarte Ortiz
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Isabel Cristina Teixeira Proença
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Tânia Regina G Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Elissa Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Silvio Tasca
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Cristina Campos Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Alexandre Luz de Castro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Paditz E. Postnatal Development of the Circadian Rhythmicity of Human Pineal Melatonin Synthesis and Secretion (Systematic Review). CHILDREN (BASEL, SWITZERLAND) 2024; 11:1197. [PMID: 39457162 PMCID: PMC11506472 DOI: 10.3390/children11101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Introduction: According to current knowledge, at birth, the pineal gland and melatonin receptors are already present and the suprachiasmatic nucleus is largely functional, and noradrenaline, the key pineal transmitter, can be detected in the early foetal period. It is still unclear why the pineal gland is not able to start its own pulsatile synthesis and secretion of melatonin in the first months of life, and as a result, infants during this time are dependent on an external supply of melatonin. Method: The causes and consequences of this physiological melatonin deficiency in human infancy are examined in a systematic review of the literature, in which 40 of 115 initially selected publications were evaluated in detail. The references of these studies were checked for relevant studies on this topic. References from previous reviews by the author were taken into account. Results: The development and differentiation of the pineal gland, the pinealocytes, as the site of melatonin synthesis, and the development and synaptic coupling of the associated predominantly noradrenergic neural pathways and vessels and the associated Lhx4 homebox only occurs during the first year of life. Discussion: The resulting physiological melatonin deficiency is associated with sleep disorders, infant colic, and increased crying in babies. Intervention studies indicate that this deficiency should be compensated for through breastfeeding, the administration of nonpooled donor milk, or through industrially produced chrononutrition made from nonpooled cow's milk with melatonin-poor day milk and melatonin-rich night milk.
Collapse
Affiliation(s)
- Ekkehart Paditz
- Center for Applied Prevention®, Blasewitzer Str. 41, D-01307 Dresden, Germany
| |
Collapse
|
22
|
Santos R, Turck P, de Mello Palma V, Visioli F, Ortiz VD, Proença ICT, Fernandes TRG, Fernandes E, Tasca S, Carraro CC, Belló-Klein A, da Rosa Araujo AS, Khaper N, de Castro AL. Melatonin improves nitric oxide bioavailability in isoproterenol induced myocardial injury. Mol Cell Endocrinol 2024; 591:112279. [PMID: 38797355 DOI: 10.1016/j.mce.2024.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Isoproterenol administration is associated with cardiac inflammation and decreased NO availability. Melatonin has been reported to have cardioprotective effect. The aim of this study was to investigate the effect of melatonin on NO bioavailability and inflammation in myocardial injury induced by isoproterenol. Isoproterenol was administrated in male Wistar rats for 7 days to induce cardiac injury. The animals were divided into 3 groups: Control, Isoproterenol, Isoproterenol + Melatonin. Animals received melatonin for 7 days. Echocardiographic analysis was performed and the hearts were collected for molecular analysis. Animals that received isoproterenol demonstrated a reduction in left ventricle systolic and diastolic diameter, indicating the presence of concentric hypertrophy. Melatonin was able to attenuate this alteration. Melatonin also improved NO bioavailability and decreased NF-κβ, TNFα and IL-1β expression. In conclusion, melatonin exhibited a cardioprotective effect which was associated with improving NO bioavailability and decreasing the pro-inflammatory proteins.
Collapse
Affiliation(s)
- Ramison Santos
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Patrick Turck
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Victor de Mello Palma
- Faculdade de Odontologia. Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2492 - Santa Cecília, CEP: 90035-004, Porto Alegre, RS, Brazil
| | - Fernanda Visioli
- Faculdade de Odontologia. Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2492 - Santa Cecília, CEP: 90035-004, Porto Alegre, RS, Brazil
| | - Vanessa Duarte Ortiz
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Isabel Cristina Teixeira Proença
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Tânia Regina G Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Elissa Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Silvio Tasca
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Cristina Campos Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Neelam Khaper
- Northern Ontario School of Medicine University, 955 Oliver Road, Thunder Bay, ON, Canada
| | - Alexandre Luz de Castro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Zhao R, Bai Y, Yang F. Melatonin in animal husbandry: functions and applications. Front Vet Sci 2024; 11:1444578. [PMID: 39286597 PMCID: PMC11402905 DOI: 10.3389/fvets.2024.1444578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an essential small molecule with diverse biological functions. It plays several key roles, including regulating the secretion of reproductive hormones and the reproductive cycle, enhancing the functionality of reproductive organs, improving the quality of sperm and eggs, and mitigating oxidative stress in the reproductive system. Melatonin effectively inhibits and scavenges excess free radicals while activating the antioxidant enzyme system and reduces the production of inflammatory factors and alleviates tissue damage caused by inflammation by regulating inflammatory pathways. Additionally, melatonin contributes to repairing the intestinal barrier and regulating the gut microbiota, thereby reducing bacterial and toxin permeation. The use of melatonin as an endogenous hormone in animal husbandry has garnered considerable attention because of its positive effects on animal production performance, reproductive outcomes, stress adaptation, disease treatment, and environmental sustainability. This review explores the characteristics and biological functions of melatonin, along with its current applications in animal production. Our findings may serve as a reference for the use of melatonin in animal farming and future developmental directions.
Collapse
Affiliation(s)
- Ruohan Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yicheng Bai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangxiao Yang
- College of Animal Science and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| |
Collapse
|
24
|
Martins TMDM, Ferrari FR, de Queiroz AA, Dalcin LDL, França DCH, Honório-França AC, França EL, Fagundes-Triches DLG. The Role of Melatonin in the Inflammatory Process in Patients with Hyperglycemia and Leishmania Infection. Biomolecules 2024; 14:950. [PMID: 39199338 PMCID: PMC11352828 DOI: 10.3390/biom14080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Type 2 diabetes mellitus is a metabolic disorder that causes chronic high blood sugar levels, and diabetic patients are more susceptible to infections. American cutaneous leishmaniasis is an infectious disease caused by a parasite that affects the skin and mucous membranes, leading to one or multiple ulcerative lesions. Chronic inflammation and functional changes in various organs and systems, including the immune system, are the primary causes of both diseases. Melatonin, an essential immunomodulatory, antioxidant, and neuroprotective agent, can benefit many immunological processes and infectious diseases, including leishmaniasis. Although, limited reports are available on diabetic patients with leishmaniasis. The literature suggests that melatonin may play a promising role in inflammatory disorders. This study was designed to assess melatonin levels and inflammatory mediators in diabetic patients affected by leishmaniasis. Blood samples from 25 individuals were analyzed and divided into four groups: a control group (without any diseases), a Leishmania-positive group, patients with type 2 diabetes mellitus, and patients with a combination of both diseases. This study measured the serum levels of melatonin through ELISA, while IL-4 and TNF-α were measured using flow cytometry, and C-reactive protein was measured through turbidimetry. This study found that patients with leishmaniasis significantly increased TNF-α and decreased melatonin levels. However, the group of diabetic patients with leishmaniasis showed higher melatonin levels than the control group. These observations suggest that TNF-α may influence melatonin production in patients with American cutaneous leishmaniasis, potentially contributing to the inflammatory characteristics of both diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78605-091, MT, Brazil; (T.M.d.M.M.); (F.R.F.); (A.A.d.Q.); (L.D.L.D.); (D.C.H.F.); (D.L.G.F.-T.)
| | | |
Collapse
|
25
|
Duarte M, Pedrosa SS, Khusial PR, Madureira AR. Exploring the interplay between stress mediators and skin microbiota in shaping age-related hallmarks: A review. Mech Ageing Dev 2024; 220:111956. [PMID: 38906383 DOI: 10.1016/j.mad.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Psychological stress is a major contributing factor to several health problems (e.g., depression, cardiovascular disease). Around 35 % of the world's population suffers from it, including younger generations. Physiologically, stress manifests through neuroendocrine pathways (Hypothalamic-Pituitary-Adrenal (HPA) axis and Sympathetic-Adrenal-Medullary (SAM) system) which culminate in the production of stress mediators like cortisol, epinephrine and norepinephrine. Stress and its mediators have been associated to body aging, through molecular mechanisms such as telomere attrition, mitochondrial dysfunction, cellular senescence, chronic inflammation, and dysbiosis, among others. Regarding its impact in the skin, stress impacts its structural integrity and physiological function. Despite this review focusing on several hallmarks of aging, emphasis was placed on skin microbiota dysbiosis. In this line, several studies, comprising different age groups, demographic contexts and body sites, have reported skin microbiota alterations associated with aging, and some effects of stress mediators on skin microbiota have also been reviewed in this paper. From a different perspective, since it is not a "traditional" stress mediator, oxytocin, a cortisol antagonist, has been related to glucorticoids inhibition and to display positive effects on cellular aging. This hormone dysregulation has been associated to psychological issues such as depression, whereas its upregulation has been linked to positive social interaction.
Collapse
Affiliation(s)
- Marco Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Sílvia Santos Pedrosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - P Raaj Khusial
- Amyris Biotech INC, 5885 Hollis St Ste 100, Emeryville, CA 94608-2405, USA
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
26
|
Zhang Y, Wang Y. The dual roles of serotonin in antitumor immunity. Pharmacol Res 2024; 205:107255. [PMID: 38862071 DOI: 10.1016/j.phrs.2024.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Research has shown that a significant portion of cancer patients experience depressive symptoms, often accompanied by neuroendocrine hormone imbalances. Depression is frequently associated with decreased levels of serotonin with the alternate name 5-hydroxytryptamine (5-HT), leading to the common use of selective serotonin reuptake inhibitors (SSRIs) as antidepressants. However, the role of serotonin in tumor regulation remains unclear, with its expression levels displaying varied effects across different types of tumors. Tumor initiation and progression are closely intertwined with the immune function of the human body. Neuroimmunity, as an interdisciplinary subject, has played a unique role in the study of the relationship between psychosocial factors and tumors and their mechanisms in recent years. This article offers a comprehensive review of serotonin's regulatory roles in tumor onset and progression, as well as its impacts on immune cells in the tumor microenvironment. The aim is to stimulate further interdisciplinary research and discover novel targets for tumor treatment.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
27
|
Yang Y, Sun L, Liu X, Liu W, Zhang Z, Zhou X, Zhao X, Zheng R, Zhang Y, Guo W, Wang X, Li X, Pang J, Li F, Tao Y, Shi D, Shen W, Wang L, Zang J, Li S. Neurotransmitters: Impressive regulators of tumor progression. Biomed Pharmacother 2024; 176:116844. [PMID: 38823279 DOI: 10.1016/j.biopha.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
In contemporary times, tumors have emerged as the primary cause of mortality in the global population. Ongoing research has shed light on the significance of neurotransmitters in the regulation of tumors. It has been established that neurotransmitters play a pivotal role in tumor cell angiogenesis by triggering the transformation of stromal cells into tumor cells, modulating receptors on tumor stem cells, and even inducing immunosuppression. These actions ultimately foster the proliferation and metastasis of tumor cells. Several major neurotransmitters have been found to exert modulatory effects on tumor cells, including the ability to restrict emergency hematopoiesis and bind to receptors on the postsynaptic membrane, thereby inhibiting malignant progression. The abnormal secretion of neurotransmitters is closely associated with tumor progression, suggesting that focusing on neurotransmitters may yield unexpected breakthroughs in tumor therapy. This article presents an analysis and outlook on the potential of targeting neurotransmitters in tumor therapy.
Collapse
Affiliation(s)
- Yumei Yang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Lei Sun
- Department of Critical Care Medicine, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Xuerou Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Wei Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Zhen Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xingqi Zhou
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xinli Zhao
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Ruijie Zheng
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Yongjun Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Wanqing Guo
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xiaoli Wang
- College of Pharmacy, Anhui University of Traditional Chinese Medicine, China
| | - Xian Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Jinlong Pang
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Feng Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yu Tao
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Dongmin Shi
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Wenyi Shen
- Department of Respiratory and Critical Care Medicine, Lianshui County People's Hospital, Jiangsu, China
| | - Liping Wang
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Jialan Zang
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China.
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| |
Collapse
|
28
|
Villani A, Potestio L, Lallas A, Apalla Z, Scalvenzi M, Martora F. Unaddressed Challenges in the Treatment of Cutaneous Melanoma? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:884. [PMID: 38929501 PMCID: PMC11205306 DOI: 10.3390/medicina60060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: While the management of noninvasive cutaneous melanoma (CM) is typically limited to a secondary excision to reduce recurrence risk and periodic follow-up, treating patients with advanced melanoma presents ongoing challenges. Materials and Methods: This review provides a comprehensive examination of both established and emerging pharmacologic strategies for advanced CM management, offering an up-to-date insight into the current therapeutic milieu. The dynamic landscape of advanced CM treatment is explored, highlighting the efficacy of immune checkpoint inhibitors and targeted therapies, either in monotherapy or combination regimens. Additionally, ongoing investigations into novel treatment modalities are thoroughly discussed, reflecting the evolving nature of melanoma management. Results: The therapeutic landscape for melanoma management is undergoing significant transformation. Although various treatment modalities exist, there remains a critical need for novel therapies, particularly for certain stages of melanoma or cases resistant to current options. Conclusions: Consequently, further studies are warranted to identify new treatment avenues and optimize the utilization of existing drugs.
Collapse
Affiliation(s)
- Alessia Villani
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Luca Potestio
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Aimilios Lallas
- First Department of Dermatology, School of Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece;
| | - Zoe Apalla
- Second Department of Dermatology, School of Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Massimiliano Scalvenzi
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Fabrizio Martora
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| |
Collapse
|
29
|
Reiter RJ, Sharma R, Tan DX, Chuffa LGDA, da Silva DGH, Slominski AT, Steinbrink K, Kleszczynski K. Dual sources of melatonin and evidence for different primary functions. Front Endocrinol (Lausanne) 2024; 15:1414463. [PMID: 38808108 PMCID: PMC11130361 DOI: 10.3389/fendo.2024.1414463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
This article discusses data showing that mammals, including humans, have two sources of melatonin that exhibit different functions. The best-known source of melatonin, herein referred to as Source #1, is the pineal gland. In this organ, melatonin production is circadian with maximal synthesis and release into the blood and cerebrospinal fluid occurring during the night. Of the total amount of melatonin produced in mammals, we speculate that less than 5% is synthesized by the pineal gland. The melatonin rhythm has the primary function of influencing the circadian clock at the level of the suprachiasmatic nucleus (the CSF melatonin) and the clockwork in all peripheral organs (the blood melatonin) via receptor-mediated actions. A second source of melatonin (Source # 2) is from multiple tissues throughout the body, probably being synthesized in the mitochondria of these cells. This constitutes the bulk of the melatonin produced in mammals and is concerned with metabolic regulation. This review emphasizes the action of melatonin from peripheral sources in determining re-dox homeostasis, but it has other critical metabolic effects as well. Extrapineal melatonin synthesis does not exhibit a circadian rhythm and it is not released into the blood but acts locally in its cell of origin and possibly in a paracrine matter on adjacent cells. The factors that control/influence melatonin synthesis at extrapineal sites are unknown. We propose that the concentration of melatonin in these cells is determined by the subcellular redox state and that melatonin synthesis may be inducible under stressful conditions as in plant cells.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio TX, United States
| | - Ramaswamy Sharma
- Applied Biomedical Sciences, University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX, United States
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio TX, United States
| | - Luiz Gustavo de Almieda Chuffa
- Departamento de Biologia Estrutural e Funcional, Setor de Anatomia - Instituto de Biociências, IBB/UNESP, Botucatu, São Paulo, Brazil
| | - Danilo Grunig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
- Department of Biology, Universidade Federal de Mato Grosso Do Sul, Três Lagoas, Mato Grosso Do Sul, Brazil
| | - Andrzej T. Slominski
- US and Pathology Laboratory Service, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
30
|
Greco G, Di Lorenzo R, Ricci L, Di Serio T, Vardaro E, Laneri S. Clinical Studies Using Topical Melatonin. Int J Mol Sci 2024; 25:5167. [PMID: 38791203 PMCID: PMC11121188 DOI: 10.3390/ijms25105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Melatonin is ubiquitously present in all animals and plants, where it exerts a variety of physiological activities thanks to its antioxidant properties and its key role as the first messenger of extracellular signaling functions. Most of the clinical studies on melatonin refer to its widespread oral use as a dietary supplement to improve sleep. A far smaller number of articles describe the clinical applications of topical melatonin to treat or prevent skin disorders by exploiting its antioxidant and anti-inflammatory activities. This review focuses on the clinical studies in which melatonin was applied on the skin as a photoprotective, anti-aging, or hair growth-promoting agent. The methodologies and results of such studies are discussed to provide an overall picture of the state of the art in this intriguing field of research. The clinical studies in which melatonin was applied on the skin before exposure to radiation (UV, sunlight, and high-energy beams) were all characterized by an appropriate design (randomized, double-blind, and placebo-controlled) and strongly support its clinical efficacy in preventing or reducing skin damage such as dermatitis, erythema, and sunburn. Most of the studies examined in this review do not provide a clear demonstration of the efficacy of topical melatonin as a skin anti-aging or as a hair growth-promoting agent owing to limitations in their design and/or to the use of melatonin combined with extra active ingredients, except for one trial that suggests a possible beneficial role of melatonin in treating some forms of alopecia in women. Further research efforts are required to reach definitive conclusions concerning the actual benefits of topical melatonin to counteract skin aging and hair loss.
Collapse
Affiliation(s)
| | | | | | | | | | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (G.G.); (R.D.L.); (L.R.); (T.D.S.); (E.V.)
| |
Collapse
|
31
|
Bocheva G, Bakalov D, Iliev P, Tafradjiiska-Hadjiolova R. The Vital Role of Melatonin and Its Metabolites in the Neuroprotection and Retardation of Brain Aging. Int J Mol Sci 2024; 25:5122. [PMID: 38791160 PMCID: PMC11121732 DOI: 10.3390/ijms25105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
While primarily produced in the pineal gland, melatonin's influence goes beyond its well-known role in regulating sleep, nighttime metabolism, and circadian rhythms, in the field of chronobiology. A plethora of new data demonstrates melatonin to be a very powerful molecule, being a potent ROS/RNS scavenger with anti-inflammatory, immunoregulatory, and oncostatic properties. Melatonin and its metabolites exert multiple beneficial effects in cutaneous and systemic aging. This review is focused on the neuroprotective role of melatonin during aging. Melatonin has an anti-aging capacity, retarding the rate of healthy brain aging and the development of age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. Melatonin, as well as its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), can reduce oxidative brain damage by shielding mitochondria from dysfunction during the aging process. Melatonin could also be implicated in the treatment of neurodegenerative conditions, by modifying their characteristic low-grade neuroinflammation. It can either prevent the initiation of inflammatory responses or attenuate the ongoing inflammation. Drawing on the current knowledge, this review discusses the potential benefits of melatonin supplementation in preventing and managing cognitive impairment and neurodegenerative diseases.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Dimitar Bakalov
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Petar Iliev
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | |
Collapse
|
32
|
Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int J Mol Sci 2024; 25:4858. [PMID: 38732075 PMCID: PMC11084828 DOI: 10.3390/ijms25094858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Vivian A. Gaida
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Jasmin Schäfer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Lina Bosse
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Clara Diemer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| |
Collapse
|
33
|
Slominski RM, Chen JY, Raman C, Slominski AT. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc Natl Acad Sci U S A 2024; 121:e2308374121. [PMID: 38489380 PMCID: PMC10998607 DOI: 10.1073/pnas.2308374121] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Departments of Genetics, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Jake Y. Chen
- Department of Biomedical Informatics and Data Science, the University of Alabama at Birmingham, Birmingham, AL35294
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chander Raman
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Andrzej T. Slominski
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
- Veteran Administration Medical Center, Birmingham, AL35294
| |
Collapse
|
34
|
Charrasse S, Racine V, Saint-Omer C, Poquillon T, Lionnard L, Ledru M, Gonindard C, Delaunois S, Kissa K, Frye RE, Pastore M, Reynes C, Frechet M, Chajra H, Aouacheria A. Quantitative imaging and semiotic phenotyping of mitochondrial network morphology in live human cells. PLoS One 2024; 19:e0301372. [PMID: 38547143 PMCID: PMC10977735 DOI: 10.1371/journal.pone.0301372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
The importance of mitochondria in tissue homeostasis, stress responses and human diseases, combined to their ability to transition between various structural and functional states, makes them excellent organelles for monitoring cell health. There is therefore a need for technologies to accurately analyze and quantify changes in mitochondrial organization in a variety of cells and cellular contexts. Here we present an innovative computerized method that enables accurate, multiscale, fast and cost-effective analysis of mitochondrial shape and network architecture from confocal fluorescence images by providing more than thirty features. In order to facilitate interpretation of the quantitative results, we introduced two innovations: the use of Kiviat-graphs (herein named MitoSpider plots) to present highly multidimensional data and visualization of the various mito-cellular configurations in the form of morphospace diagrams (called MitoSigils). We tested our fully automated image analysis tool on rich datasets gathered from live normal human skin cells cultured under basal conditions or exposed to specific stress including UVB irradiation and pesticide exposure. We demonstrated the ability of our proprietary software (named MitoTouch) to sensitively discriminate between control and stressed dermal fibroblasts, and between normal fibroblasts and other cell types (including cancer tissue-derived fibroblasts and primary keratinocytes), showing that our automated analysis captures subtle differences in morphology. Based on this novel algorithm, we report the identification of a protective natural ingredient that mitigates the deleterious impact of hydrogen peroxide (H2O2) on mitochondrial organization. Hence we conceived a novel wet-plus-dry pipeline combining cell cultures, quantitative imaging and semiotic analysis for exhaustive analysis of mitochondrial morphology in living adherent cells. Our tool has potential for broader applications in other research areas such as cell biology and medicine, high-throughput drug screening as well as predictive and environmental toxicology.
Collapse
Affiliation(s)
- Sophie Charrasse
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
| | - Victor Racine
- QuantaCell SAS, Institute for Regenerative Medicine and Biotherapy (IRMB), Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Charlotte Saint-Omer
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
| | - Titouan Poquillon
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
- QuantaCell SAS, Institute for Regenerative Medicine and Biotherapy (IRMB), Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
| | - Marine Ledru
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
| | | | | | - Karima Kissa
- VBIC, INSERM U1047, Université de Montpellier, Montpellier, France
| | - Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, United States America
| | - Manuela Pastore
- STATABIO BioCampus, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Christelle Reynes
- STATABIO BioCampus, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Abdel Aouacheria
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
35
|
Gui Q, Ding N, Yao Z, Wu M, Fu R, Wang Y, Zhao Y, Zhu L. Extracellular vesicles derived from mesenchymal stem cells: the wine in Hebe's hands to treat skin aging. PRECISION CLINICAL MEDICINE 2024; 7:pbae004. [PMID: 38516531 PMCID: PMC10955876 DOI: 10.1093/pcmedi/pbae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Owing to its constant exposure to the external environment and various stimuli, skin ranks among the organs most vulnerable to manifestations of aging. Preventing and delaying skin aging has become one of the prominent research subjects in recent years. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from mesoderm with high self-renewal ability and multilineage differentiation potential. MSC-derived extracellular vesicles (MSC-EVs) are nanoscale biological vesicles that facilitate intercellular communication and regulate biological behavior. Recent studies have shown that MSC-EVs have potential applications in anti-aging therapy due to their anti-inflammatory, anti-oxidative stress, and wound healing promoting abilities. This review presents the latest progress of MSC-EVs in delaying skin aging. It mainly includes the MSC-EVs promoting the proliferation and migration of keratinocytes and fibroblasts, reducing the expression of matrix metalloproteinases, resisting oxidative stress, and regulating inflammation. We then briefly discuss the recently discovered treatment methods of MSC-EVs in the field of skin anti-aging. Moreover, the advantages and limitations of EV-based treatments are also presented.
Collapse
Affiliation(s)
- Qixiang Gui
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| | - Neng Ding
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery of Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Minjuan Wu
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
| | - Ruifeng Fu
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
| | - Yue Wang
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China
| | - Yunpeng Zhao
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
| | - Lie Zhu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| |
Collapse
|
36
|
Balci-Ozyurt A, Yirün A, Cakır DA, Zeybek ND, Oral D, Sabuncuoğlu S, Erkekoğlu P. Evaluation of possible cytotoxic, genotoxic and epigenotoxic effects of titanium dioxide nanoparticles and possible protective effect of melatonin. Toxicol Mech Methods 2024; 34:109-121. [PMID: 37794599 DOI: 10.1080/15376516.2023.2259980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Nanoparticles (NPs) are particles of matter that are between 1 to 100 nm in diameter. They are suggested to cause toxic effects in both humans and environment thorough different mechanisms. However, their toxicity profile may be different from the parent material. Titanium dioxide (TiO2) NPs are widely used in cosmetic, pharmaceutical and food industries. As a white pigment, the use of TiO2 is used in food coloring, industrial paints, clothing and UV filters has increased tremendously in recent years. Melatonin, on the other hand, is a well-known antioxidant and may prevent oxidative stress caused by a variety of different substances, including NPs. In the current study, we aimed to comparatively investigate the effects of normal-sized TiO2 (220 nm) and nano-sized TiO2 (21 nm) on cytopathology, cytotoxicity, oxidative damage (lipid peroxidation, protein oxidation and glutathione), genotoxicity (8-hydroxydeoxyguanosine), apoptosis (caspase 3, 8 and 9) and epigenetic alterations (global DNA methylation, H3 acetylation) on 3T3 fibroblast cells. In addition, the possible protective effects of melatonin, which is known to have strong antioxidant effects, against the toxicity of TiO2 were also evaluated. Study groups were: a. the control group; b. melatonin group; c. TiO2 group; d. nano-sized TiO2 group; e. TiO2 + melatonin group and f. nano-sized TiO2 + melatonin group. We observed that both normal-sized and nano-sized TiO2 NPs showed significant toxic effects. However, TiO2 NPs caused higher DNA damage and global DNA methylation compared to normal-sized TiO2 whereas normal-sized TiO2 led to lower H3 acetylation vs. TiO2 NPs. Melatonin showed partial protective effect against the toxicity caused by TiO2 NPs.
Collapse
Affiliation(s)
- Aylin Balci-Ozyurt
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Bahçeşehir University School of Pharmacy, İstanbul, Turkey
| | - Anıl Yirün
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Çukurova University Faculty of Pharmacy, Adana, Turkey
| | - Deniz Arca Cakır
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| | - N Dilara Zeybek
- Department of Histology and Embryology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Didem Oral
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Düzce University Faculty of Pharmacy, Düzce, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| |
Collapse
|
37
|
Kamfar WW, Khraiwesh HM, Ibrahim MO, Qadhi AH, Azhar WF, Ghafouri KJ, Alhussain MH, Aldairi AF, AlShahrani AM, Alghannam AF, Abdulal RH, Al-Slaihat AH, Qutob MS, Elrggal ME, Ghaith MM, Azzeh FS. Comprehensive review of melatonin as a promising nutritional and nutraceutical supplement. Heliyon 2024; 10:e24266. [PMID: 38293391 PMCID: PMC10825492 DOI: 10.1016/j.heliyon.2024.e24266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/05/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Background Melatonin is an indoleamine hormone secreted by the pineal gland at night and has an essential role in regulating human circadian rhythms (the internal 24-h clock) and sleep-wake patterns. However, it has recently gained considerable attention for its demonstrated ability in disease management. This review discusses the major biological activities of melatonin, its metabolites as nutritional supplements, and its bioavailability in food sources. Methods The information acquisition process involved conducting a comprehensive search across academic databases including PubMed, Scopus, Wiley, Embase, and Springer using relevant keywords. Only the most recent, peer-reviewed articles published in the English language were considered for inclusion. Results The molecular mechanisms by which melatonin induces its therapeutic effects have been the subject of various studies. Conclusion While melatonin was initially understood to only regulate circadian rhythms, recent studies indicate that it has a far-reaching effect on various organs and physiological systems, such as immunity, cardiovascular function, antioxidant defense, and lipid hemostasis. As a potent antioxidant, anti-cancer, anti-inflammatory, and immunoregulatory agent, multiple therapeutic applications have been proposed for melatonin.
Collapse
Affiliation(s)
- Waad W. Kamfar
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
- Medical Nutrition and Food Services Department, Almana Hospitals, Aziziah, Dammam, Saudi Arabia
| | - Husam M. Khraiwesh
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa’ Applied University, Salt, Jordan
| | - Mohammed O. Ibrahim
- Department of Nutrition and Food Technology, Faculty of Agriculture, Mu'tah University, Karak, Jordan
| | - Alaa H. Qadhi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| | - Wedad F. Azhar
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| | - Khloud J. Ghafouri
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| | - Maha H. Alhussain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah F. Aldairi
- Faculty of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Umm Al-Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushayt, King Khalid University, Abha, 62561, Saudi Arabia
| | - Abdullah F. Alghannam
- Lifestyle and Health Research Center, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abed H. Al-Slaihat
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Maysoun S. Qutob
- Clinical Nutrition and Dietetics Department, Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | | | - Mazen M. Ghaith
- Faculty of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Umm Al-Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Firas S. Azzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| |
Collapse
|
38
|
Lu J, Zou R, Yang Y, Bai X, Wei W, Ding R, Hua X. Association between nocturnal light exposure and melatonin in humans: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3425-3434. [PMID: 38123771 DOI: 10.1007/s11356-023-31502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Night shift workers are more susceptible to circadian rhythm disturbances due to their prolonged exposure to nighttime light. This exposure during abnormal periods causes inappropriate suppression of melatonin synthesis and secretion in the pineal gland, thereby disrupting circadian rhythms. While it is believed that nocturnal light exposure is involved in suppressing melatonin secretion, research findings in this area have been inconsistent. METHODS Thirteen publications retrieved from PubMed and Web of Science databases were included to compare the differences between night shift workers and controls using aggregated mean differences (MD) and 95% confidence intervals (CI). RESULTS After a comprehensive review, 13 publications were included and data on urinary melatonin metabolite 6-sulfameoxymelatonin(aMT6s) were collected for meta-analysis. The results showed that the morning urinary aMT6s levels were significantly lower in the exposed group than in the non-exposed group (MD = -3.69, 95%CI = (-5.41, -1.98), P < 0.0001), with no significant heterogeneity among the original studies (I2 = 42%, P = 0.13). In addition, night shift workers had significantly lower mean levels of 24-h urinary aMT6s than day shift workers (MD = -3.38, 95%CI = (-4.27, -2.49), P < 0.00001, I2 = 0). Nocturnal light was correlated with nocturnal urine aMT6s secretion and inhibited nocturnal aMT6s secretion (MD = -11.68, 95%CI = (-15.70, -7.67), P < 0.00001, I2 = 0). Additionally, nocturnal light inhibited the secretion of melatonin in the blood, with no significant heterogeneity between studies (MD = -11.37, 95%CI = (-15.41, -7.33), P < 0.00001, I2 = 0). CONCLUSION The findings of this study indicate that exposure to nocturnal light among night shift workers leads to inhibition of melatonin secretion.
Collapse
Affiliation(s)
- Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Wei Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| |
Collapse
|
39
|
Golubnitschaja O. Mitochondrion: The Subordinated Partner Who Agreed to Come Short But Insists in Healthy Life. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2024:17-29. [DOI: 10.1007/978-3-031-46891-9_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
40
|
da Silveira EJD, Barros CCDS, Bottino MC, Castilho RM, Squarize C. The rhythms of histones in regeneration: The epigenetic modifications determined by clock genes. Exp Dermatol 2024; 33:e15005. [PMID: 38284199 PMCID: PMC10865818 DOI: 10.1111/exd.15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
The evolutionary establishment of an internal biological clock is a primordial event tightly associated with a 24-h period. Changes in the circadian rhythm can affect cellular functions, including proliferation, DNA repair and redox state. Even isolated organs, tissues and cells can maintain an autonomous circadian rhythm. These cell-autonomous molecular mechanisms are driven by intracellular clock genes, such as BMAL1. Little is known about the role of core clock genes and epigenetic modifications in the skin. Our focus was to identify BMAL1-driven epigenetic modifications associated with gene transcription by mapping the acetylation landscape of histones in epithelial cells responding to injury. We explored the role of BMAL1 in epidermal wound and tissue regeneration using a loss-of-function approach in vivo. We worked with BMAL1 knockout mice and a contraction-resistance wound healing protocol, determining the histone modifications using specific antibodies to detect the acetylation levels of histones H3 and H4. We found significant differences in the acetylation levels of histones in both homeostatic and injured skin with deregulated BMAL1. The intact skin displayed varied acetylation levels of histones H3 and H4, including hyperacetylation of H3 Lys 9 (H3K9). The most pronounced changes were observed at the repair site, with notable alterations in the acetylation pattern of histone H4. These findings reveal the importance of histone modifications in response to injury and indicate that modulation of BMAL1 and its associated epigenetic events could be therapeutically harnessed to improve skin regeneration.
Collapse
Affiliation(s)
- Ericka J. D. da Silveira
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Caio C. D. S. Barros
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Michigan Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Cristiane Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Michigan Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Rafiyan M, Davoodvandi A, Reiter RJ, Mansournia MA, Rasooli Manesh SM, Arabshahi V, Asemi Z. Melatonin and cisplatin co-treatment against cancer: A mechanistic review of their synergistic effects and melatonin's protective actions. Pathol Res Pract 2024; 253:155031. [PMID: 38103362 DOI: 10.1016/j.prp.2023.155031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Combination chemotherapy appears to be a preferable option for some cancer patients, especially when the medications target multiple pathways of oncogenesis; individuals treated with combination treatments may have a better prognosis than those treated with single agent chemotherapy. However, research has revealed that this is not always the case, and that this technique may just enhance toxicity while having little effect on boosting the anticancer effects of the medications. Cisplatin (CDDP) is a chemotherapeutic medicine that is commonly used to treat many forms of cancer. However, it has major adverse effects such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many research have been conducted to investigate the effectiveness of melatonin (MLT) as an anticancer medication. MLT operates in a variety of ways, including decreasing cancer cell growth, causing apoptosis, and preventing metastasis. We review the literature on the role of MLT as an adjuvant in CDDP-based chemotherapies and discuss how MLT may enhance CDDP's antitumor effects (e.g., by inducing apoptosis and suppressing metastasis) while protecting other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vajiheh Arabshahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
42
|
Shao R, Wang Y, He C, Chen L. Melatonin and its Emerging Physiological Role in Reproduction: A Review and Update. Curr Mol Med 2024; 24:449-456. [PMID: 37070447 DOI: 10.2174/1566524023666230417103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 04/19/2023]
Abstract
Melatonin is a neuroendocrine hormone secreted by the pineal gland. The secretion of melatonin follows a circadian rhythm controlled by the suprachiasmatic nucleus, and its secretion is synchronized with the changes in light and dark periods in nature, with the highest secretion level at night. Melatonin is a critical hormone that coordinates external light stimulation and cellular responses of the body. It transmits information about the environmental light cycle, including the circadian and seasonal rhythms, to the relevant tissues and organs in the body, which, along with changes in its secretion level, ensures that its regulated functional activities are adapted in response to changes in the outside environment. Melatonin takes beneficial actions mainly through the interaction with specific membrane-bound receptors, termed MT1 and MT2. Melatonin also acts as a scavenger of free radicals via non-receptor-mediated mechanism. For more than half of acentury melatonin has been associated with vertebrate reproduction, especially in the context of seasonal breeding. Though modern humans show little remaining reproductive seasonality, the relationships between melatonin and human reproduction continue to attract extensive attention. Melatonin plays important roles in improving mitochondrial function, reducing the damage of free radicals, inducing oocyte maturation, increasing fertilization rate and promoting embryonic development, which improves the outcomes of in vitro fertilization and embryo transfer. The present article reviews the progress that has been made in our evolving understanding of the physiological role of melatonin in reproduction and its potential clinical applications in reproductive medicine.
Collapse
Affiliation(s)
- Ruifeng Shao
- Reproductive Medicine Center, Jingzhou Hospital affiliated to Yangtze University, No.60 Jingzhong Road, Jingzhou 434020, Hubei, China
| | - Ying Wang
- Reproductive Medicine Center, Jingzhou Hospital affiliated to Yangtze University, No.60 Jingzhong Road, Jingzhou 434020, Hubei, China
| | - Chihua He
- Reproductive Medicine Center, Jingzhou Hospital affiliated to Yangtze University, No.60 Jingzhong Road, Jingzhou 434020, Hubei, China
| | - Ligang Chen
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Jingzhou, No.55 Jianghan North Road, Jingzhou 434021, Hubei, China
| |
Collapse
|
43
|
Baker P, Huang C, Radi R, Moll SB, Jules E, Arbiser JL. Skin Barrier Function: The Interplay of Physical, Chemical, and Immunologic Properties. Cells 2023; 12:2745. [PMID: 38067173 PMCID: PMC10706187 DOI: 10.3390/cells12232745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
An intact barrier function of the skin is important in maintaining skin health. The regulation of the skin barrier depends on a multitude of molecular and immunological signaling pathways. By examining the regulation of a healthy skin barrier, including maintenance of the acid mantle and appropriate levels of ceramides, dermatologists can better formulate solutions to address issues that are related to a disrupted skin barrier. Conversely, by understanding specific skin barrier disruptions that are associated with specific conditions, such as atopic dermatitis or psoriasis, the development of new compounds could target signaling pathways to provide more effective relief for patients. We aim to review key factors mediating skin barrier regulation and inflammation, including skin acidity, interleukins, nuclear factor kappa B, and sirtuin 3. Furthermore, we will discuss current and emerging treatment options for skin barrier conditions.
Collapse
Affiliation(s)
- Paola Baker
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Christina Huang
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rakan Radi
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Samara B. Moll
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Emmanuela Jules
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Jack L. Arbiser
- Metroderm/United Derm Partners, 875 Johnson Ferry Road, Atlanta, GA 30342, USA
| |
Collapse
|
44
|
YILMAZ SEHER, DOĞANYIĞIT ZÜLEYHA, OCAK MERT, SÖYLEMEZ EVRIMSUNAARIKAN, OFLAMAZ ASLIOKAN, UÇAR SÜMEYYE, ATEŞ ŞÜKRÜ, FAROOQI AMMADAHMAD. Inhibition of Ehrlich ascites carcinoma growth by melatonin: Studies with micro-CT. Oncol Res 2023; 32:175-185. [PMID: 38188676 PMCID: PMC10767232 DOI: 10.32604/or.2023.042350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/16/2023] [Indexed: 01/09/2024] Open
Abstract
Melatonin is a versatile indolamine synthesized and secreted by the pineal gland in response to the photoperiodic information received by the retinohypothalamic signaling pathway. Melatonin has many benefits, such as organizing circadian rhythms and acting as a powerful hormone. We aimed to show the antitumor effects of melatonin in both in vivo and in vitro models through the mammalian target of rapamycin (mTOR) signaling pathway and the Argyrophilic Nucleolar Regulatory Region (AgNOR), using the Microcomputed Tomography (Micro CT). Ehrlich ascites carcinoma (EAC) cells were administered into the mice by subcutaneous injection. Animals with solid tumors were injected intraperitoneally with 50 and 100 mg/kg melatonin for 14 days. Volumetric measurements for the taken tumors were made with micro-CT imaging, immunohistochemistry (IHC), real-time polymerase chain reaction (PCR) and AgNOR. Statistically, the tumor tissue volume in the Tumor+100 mg/kg melatonin group was significantly lower than that in the other groups in the data obtained from micro-CT images. In the IHC analysis, the groups treated with Tumor+100 mg/kg melatonin were compared when the mTOR signaling pathway and factor 8 (F8) expression were compared with the control group. It was determined that there was a significant decrease (p < 0.05). Significant differences were found in the total AgNOR area/nuclear area (TAA/NA) ratio in the treatment groups (p < 0.05). Furthermore, there were significant differences between the amount of mTOR mRNA for the phosphatidylinositol 3-kinase (PI3K), AKT Serine/Threonine Kinase (PKB/AKT) genes (p < 0.05). Cell apoptosis was evaluated with Annexin V in an in vitro study with different doses of melatonin; It was observed that 100 µg/mL melatonin dose caused an increase in the apoptotic cell death. In this study, we have reported anti-tumor effects of melatonin in cell culture studies as well as in mice models. Comprehensive characterization of the melatonin-mediated cancer inhibitory effects will be valuable in advancing our fundamental molecular understanding and translatability of pre-clinical findings to earlier phases of clinical trials.
Collapse
Affiliation(s)
- SEHER YILMAZ
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - ZÜLEYHA DOĞANYIĞIT
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - MERT OCAK
- Department of Anatomy, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - EVRIM SUNA ARIKAN SÖYLEMEZ
- Department of Medical Biology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyon, Turkey
| | - ASLI OKAN OFLAMAZ
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - SÜMEYYE UÇAR
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - ŞÜKRÜ ATEŞ
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - AMMAD AHMAD FAROOQI
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
45
|
Slominski AT, Kim TK, Slominski RM, Song Y, Qayyum S, Placha W, Janjetovic Z, Kleszczyński K, Atigadda V, Song Y, Raman C, Elferink CJ, Hobrath JV, Jetten AM, Reiter RJ. Melatonin and Its Metabolites Can Serve as Agonists on the Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor Gamma. Int J Mol Sci 2023; 24:15496. [PMID: 37895177 PMCID: PMC10607054 DOI: 10.3390/ijms242015496] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Melatonin is widely present in Nature. It has pleiotropic activities, in part mediated by interactions with high-affinity G-protein-coupled melatonin type 1 and 2 (MT1 and MT2) receptors or under extreme conditions, e.g., ischemia/reperfusion. In pharmacological concentrations, it is given to counteract the massive damage caused by MT1- and MT2-independent mechanisms. The aryl hydrocarbon receptor (AhR) is a perfect candidate for mediating the latter effects because melatonin has structural similarity to its natural ligands, including tryptophan metabolites and indolic compounds. Using a cell-based Human AhR Reporter Assay System, we demonstrated that melatonin and its indolic and kynuric metabolites act as agonists on the AhR with EC50's between 10-4 and 10-6 M. This was further validated via the stimulation of the transcriptional activation of the CYP1A1 promoter. Furthermore, melatonin and its metabolites stimulated AhR translocation from the cytoplasm to the nucleus in human keratinocytes, as demonstrated by ImageStream II cytometry and Western blot (WB) analyses of cytoplasmic and nuclear fractions of human keratinocytes. These functional analyses are supported by in silico analyses. We also investigated the peroxisome proliferator-activated receptor (PPAR)γ as a potential target for melatonin and metabolites bioregulation. The binding studies using a TR-TFRET kit to assay the interaction of the ligand with the ligand-binding domain (LBD) of the PPARγ showed agonistic activities of melatonin, 6-hydroxymelatonin and N-acetyl-N-formyl-5-methoxykynuramine with EC50's in the 10-4 M range showing significantly lower affinities that those of rosiglitazone, e.g., a 10-8 M range. These interactions were substantiated by stimulation of the luciferase activity of the construct containing PPARE by melatonin and its metabolites at 10-4 M. As confirmed by the functional assays, binding mode predictions using a homology model of the AhR and a crystal structure of the PPARγ suggest that melatonin and its metabolites, including 6-hydroxymelatonin, 5-methoxytryptamine and N-acetyl-N-formyl-5-methoxykynuramine, are excellent candidates to act on the AhR and PPARγ with docking scores comparable to their corresponding natural ligands. Melatonin and its metabolites were modeled into the same ligand-binding pockets (LBDs) as their natural ligands. Thus, functional assays supported by molecular modeling have shown that melatonin and its indolic and kynuric metabolites can act as agonists on the AhR and they can interact with the PPARγ at high concentrations. This provides a mechanistic explanation for previously reported cytoprotective actions of melatonin and its metabolites that require high local concentrations of the ligands to reduce cellular damage under elevated oxidative stress conditions. It also identifies these compounds as therapeutic agents to be used at pharmacological doses in the prevention or therapy of skin diseases.
Collapse
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Radomir M. Slominski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
- Brigham’s Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Wojciech Placha
- Department of Medicinal Biochemistry, Collegium Medicum, Jagiellonian University, 31-008 Kraków, Poland;
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48161 Münster, Germany;
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Cornelis J. Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 79567, USA;
| | | | - Anton M. Jetten
- Cell Biology Section, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| |
Collapse
|
46
|
Islam F, Dehbia Z, Zehravi M, Das R, Sivakumar M, Krishnan K, Billah AAM, Bose B, Ghosh A, Paul S, Nainu F, Ahmad I, Emran TB. Indole alkaloids from marine resources: Understandings from therapeutic point of view to treat cancers. Chem Biol Interact 2023; 383:110682. [PMID: 37648047 DOI: 10.1016/j.cbi.2023.110682] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Cancer is the leading cause of mortality all over the world. Scientific investigation has demonstrated that disruptions in the process of autophagy are frequently interrelated with the emergence of cancer. Hence, scientists are seeking permanent solutions to counter the deadly disease. Indole alkaloids have been extensively studied and are acknowledged to exhibit several bioactivities. The current state of disease necessitates novel pharmacophores development. In recent decades, indole alkaloids have become increasingly significant in cancer treatment and are also used as adjuvants. A substantial amount of pharmacologically active molecules come from indole alkaloids, which are widely distributed in nature. Indole alkaloids derived from marine organisms show immense potential for therapeutic applications and seem highly effective in cancer treatment. A couple of experiments have been conducted preclinically to investigate the possibility of indole alkaloids in cancer treatment. Marine-derived indole alkaloids possess the ability to exhibit anticancer properties through diverse antiproliferative mechanisms. Certain indole alkaloids, including vincristine and vinblastine, were verified in clinical trials or are presently undergoing clinical assessments for preventing and treating cancer. Indole alkaloids from marine resources hold a significant functionality in identifying new antitumor agents. The current literature highlights recent advancements in indole alkaloids that appear to be anticancer agents and the underlying mechanisms.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of Agro - Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - M Sivakumar
- Department of Pharmacognosy, Faculty of Pharmacy, Sree Balaji Medical College and Hospital BIHER (DU), Chromepet, Chennai, 600044, India
| | - Karthickeyan Krishnan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, 600117, India
| | - Abdul Ajeed Mohathasim Billah
- Department of Pharmacy Practice, Sri Ramachandra Faculty of Pharmacy, SRIHER (DU), Porur, Chennai, Tamil Nadu, India
| | - Bharadhan Bose
- Department of Pharmacognosy, Karpagam College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Avoy Ghosh
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
47
|
Sieminski M, Szaruta-Raflesz K, Szypenbejl J, Krzyzaniak K. Potential Neuroprotective Role of Melatonin in Sepsis-Associated Encephalopathy Due to Its Scavenging and Anti-Oxidative Properties. Antioxidants (Basel) 2023; 12:1786. [PMID: 37760089 PMCID: PMC10525116 DOI: 10.3390/antiox12091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The brain is one of the organs involved in sepsis, and sepsis-induced brain injury manifests as sepsis-associated encephalopathy (SAE). SAE may be present in up to 70% of septic patients. SAE has a very wide spectrum of clinical symptoms, ranging from mild behavioral changes through cognitive disorders to disorders of consciousness and coma. The presence of SAE increases mortality in the population of septic patients and may lead to chronic cognitive dysfunction in sepsis survivors. Therefore, therapeutic interventions with neuroprotective effects in sepsis are needed. Melatonin, a neurohormone responsible for the control of circadian rhythms, exerts many beneficial physiological effects. Its anti-inflammatory and antioxidant properties are well described. It is considered a potential therapeutic factor in sepsis, with positive results from studies on animal models and with encouraging results from the first human clinical trials. With its antioxidant and anti-inflammatory potential, it may also exert a neuroprotective effect in sepsis-associated encephalopathy. The review presents data on melatonin as a potential drug in SAE in the wider context of the pathophysiology of SAE and the specific actions of the pineal neurohormone.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (K.S.-R.); (K.K.)
| | | | - Jacek Szypenbejl
- Department of Emergency Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (K.S.-R.); (K.K.)
| | | |
Collapse
|
48
|
Holtkamp CE, Warmus D, Bonowicz K, Gagat M, Linowiecka K, Wolnicka-Glubisz A, Reiter RJ, Böhm M, Slominski AT, Steinbrink K, Kleszczyński K. Ultraviolet Radiation-Induced Mitochondrial Disturbances Are Attenuated by Metabolites of Melatonin in Human Epidermal Keratinocytes. Metabolites 2023; 13:861. [PMID: 37512568 PMCID: PMC10383625 DOI: 10.3390/metabo13070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is recognized as an effective antioxidant produced by the pineal gland, brain and peripheral organs, which also has anti-inflammatory, immunomodulatory, and anti-tumour capacities. Melatonin has been reported as a substance that counteracts ultraviolet radiation B (UVB)-induced intracellular disturbances. Nevertheless, the mechanistic actions of related molecules including its kynurenic derivatives (N1-acetyl-N2-formyl-5-methoxykynurenine (AFMK)), its indolic derivatives (6-hydroxymelatonin (6(OH)MEL) and 5-methoxytryptamine (5-MT)) and its precursor N-acetylserotonin (NAS) are only poorly understood. Herein, we treated human epidermal keratinocytes with UVB and assessed the protective effect of the studied substances in terms of the maintenance of mitochondrial function or their radical scavenging capacity. Our results show that UVB caused the significant elevation of catalase (CAT) and superoxide dismutase (Mn-SOD), the dissipation of mitochondrial transmembrane potential (mtΔΨ), a reduction in ATP synthesis, and the enhanced release of cytochrome c into cytosol, leading subsequently to UVB-mediated activation of the caspases and apoptosis (appearance of sub-G1 population). Our findings, combined with data reported so far, indicate the counteracting and beneficial actions of melatonin and its molecular derivatives against these deleterious changes within mitochondria. Therefore, they define a path to the development of novel strategies delaying mitochondrial aging and promoting the well-being of human skin.
Collapse
Affiliation(s)
- Chantal E. Holtkamp
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| | - Dawid Warmus
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (D.W.); (A.W.-G.)
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (M.G.)
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (M.G.)
| | - Kinga Linowiecka
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland;
- Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (D.W.); (A.W.-G.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| |
Collapse
|
49
|
Flynn K, Mahmoud NN, Sharifi S, Gould LJ, Mahmoudi M. Chronic Wound Healing Models. ACS Pharmacol Transl Sci 2023; 6:783-801. [PMID: 37200810 PMCID: PMC10186367 DOI: 10.1021/acsptsci.3c00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 05/20/2023]
Abstract
In this paper, we review and analyze the commonly available wound healing models reported in the literature and discuss their advantages and issues, considering their relevance and translational potential to humans. Our analysis includes different in vitro and in silico as well as in vivo models and experimental techniques. We further explore the new technologies in the study of wound healing to provide an all encompassing review of the most efficient ways to proceed with wound healing experiments. We revealed that there is not one model of wound healing that is superior and can give translatable results to human research. Rather, there are many different models that have specific uses for studying certain processes or stages of wound healing. Our analysis suggests that when performing an experiment to assess stages of wound healing or different therapies to enhance healing, one must consider not only the species that will be used but also the type of model and how this can best replicate the physiology or pathophysiology in humans.
Collapse
Affiliation(s)
- Kiley Flynn
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shahriar Sharifi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Lisa J. Gould
- Department
of Surgery, South Shore Hospital, South Weymouth, Massachusetts 02190, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| |
Collapse
|
50
|
Tang KS, Ho CY, Hsu CN, Tain YL. Melatonin and Kidney Health: From Fetal Stage to Later Life. Int J Mol Sci 2023; 24:ijms24098105. [PMID: 37175813 PMCID: PMC10179476 DOI: 10.3390/ijms24098105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Melatonin, an endogenous hormone mainly released at night by the pineal gland, has multifaceted biofunctions. Emerging evidence points to melatonin having a crucial role in kidney health and disease. As the prevalence of chronic kidney disease (CKD) is still rising, a superior strategy to advance global kidney health is needed to not just treat CKD, but prevent it early on. Adult kidney disease can have its origins in early life. This review aims to evaluate the recent literature regarding melatonin's effect on kidney development, its clinical uses in the early stage of life, animal models documenting preventive applications of melatonin on offspring's kidney-related disease, and a thorough summary of therapeutic considerations concerning melatonin supplementation.
Collapse
Affiliation(s)
- Kuo-Shu Tang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chun-Yi Ho
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Feng Shan Hospital-Under the Management of Chang Gung Medical Foundation, Kaohsiung 830, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|