1
|
Li Y, Cong S, Chen R, Tang J, Zhai L, Liu Y. Kaili sour soup in alleviation of hepatic steatosis in rats via lycopene route: an experimental study. Ann Med 2025; 57:2479585. [PMID: 40257305 PMCID: PMC12013139 DOI: 10.1080/07853890.2025.2479585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases, with a range of manifestations, such as hepatic steatosis. Our previous study showed that Kaili Sour Soup (KSS) significantly attenuated hepatic steatosis in rats. This study explored the main components of KSS and the mechanisms by which it exerts its protective effects against NAFLD. METHODS Twenty-four 6-week-old male Sprague-Dowley (SD) rats were randomly assigned to three treatments: feeding a normal standard diet, a high-fat diet, or a high-fat diet plus gavage KSS. The effects of KSS treatment on hepatic lipid accumulation were assessed using biochemical, histological, and molecular experiments. The amounts of KSS ingredients were measured using biochemical assays. Network pharmacology analyses were performed to identify the hub genes of KSS targets and enriched pathways. CCK-8 assay was used to determine the effect of free fatty acids (FFA), lycopene, and estrogen on HepG2 viability. Quantitative Real-Time polymerase chain reaction (qRT-PCR) and Western blot assays were performed to determine the effect of KSS or lycopene on estrogen signaling and expression of lipid metabolism-related molecules. Statistical analyses were performed using GraphPad Prism and SPSS. RESULTS KSS alleviated fat deposition in rat liver tissue and affected the expression of hepatic lipid synthesis, catabolism, and oxidative molecules. Lycopene was identified as the ingredient with the highest amount in KSS. Network pharmacology analyses showed that the hub genes were enriched in the estrogen signaling pathway. Cellular experiments showed that lycopene increased the expression of Estrogen Receptor α (ERα), Carnitine palmitoyltransferase 1 A (CPT1A), Peroxisome proliferator-activated receptor α (PPARα) (all p < 0.01), and Hormone sensitive lipase (HSL) (p < 0.05), and reduced the expression of lipid metabolism-related factors 1c(SREBP-1c) (p < 0.01), Acetyl-CoA carboxylase 1 (ACC) and Lipoprotein lipase (LPL) (all p < 0.05). CONCLUSIONS KSS ameliorated abnormal lipid metabolism in patients with NAFLD. Lycopene was the major component of KSS, and it affected estrogen signaling and the expression of lipid metabolism molecules. In short, both KSS and LYC could change lipid metabolism by lowering lipid accumulation and raising lipolysis.
Collapse
Affiliation(s)
- Yi Li
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou Province, China
- The Third People’s Hospital of Guizhou Province, Laboratory Department, Guiyang, Guizhou Province, China
| | - Shuo Cong
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Rui Chen
- Acupuncture and Moxibustion Department, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Juan Tang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Liqiong Zhai
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yongmei Liu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou Province, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Zhang S, Su X, Zhang J, He T, Tang L, Zhao Z, Cao L. Tire rubber derivative 6PPD and 6PPD-Q induce lipid accumulation in hepatocytes through ERRγ pathway. J Environ Sci (China) 2025; 156:173-184. [PMID: 40412923 DOI: 10.1016/j.jes.2024.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 05/27/2025]
Abstract
N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6PPD) is a tire rubber antioxidant that can be oxidized to form derivative 6PPD-quinone (6PPD-Q). 6PPD and 6PPD-Q have been detected in human urine with concentrations reaching nanomolar levels. However, their human adverse effects and toxic mechanisms are not explicit. This study elucidated their lipid metabolism disruption effects on hepatic cells (HepG2) and revealed a potential molecular mechanism via estrogen-related receptor γ (ERRγ) pathway. The results of fluorescence competitive binding assay showed that 6PPD and 6PPD-Q could bind to ERRγ with an IC50 (the concentration of a ligand competing 50 % probe from ERRγ) of 9 nmol/L and 6 nmol/L, respectively. The reporter gene assay indicated that 6PPD-Q activated ERRγ in a concentration-dependent mode with the lowest observable effective concentration (LOEC) of 100 nmol/L and the maximum induction rate of 320 %, while 6PPD displayed weak ERRγ activity. The molecular docking showed that the binding energies of 6PPD/6PPD-Q with agonistic ERRγ were much lower than those with antagonistic ERRγ, implying that 6PPD/6PPD-Q tended to display ERRγ agonistic binding mode. The BODIPY fluorescence staining and triglyceride (TG) assay revealed that 6PPD and 6PPD-Q promoted lipid accumulation and TG production in HepG2 cells with LOEC of 10 nmol/L and 100 nmol/L, respectively. The ERRγ antagonist (GSK5182) co-exposure reversed the lipid induction effects of 6PPD/6PPD-Q, which confirmed the regulatory roles of ERRγ. Overall, our study revealed a novel endocrine disruption mechanism of 6PPD and 6PPD-Q via ERRγ and their hepatic lipid-inducing risks, providing novel information for their health hazard evaluation.
Collapse
Affiliation(s)
- Shike Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyi Su
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jiada Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Tingting He
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zepei Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Linying Cao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Gao F, Ma Y, Yu C, Duan Q. miR-125b-5p regulates FFA-induced hepatic steatosis in L02 cells by targeting estrogen-related receptor alpha. Gene 2025; 959:149419. [PMID: 40113187 DOI: 10.1016/j.gene.2025.149419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND & AIMS NAFLD is a global and complex liver disease caused by multiple factors. Intrahepatocellular steatosis is the primary prerequisite for the occurrence and development of NAFLD. It has been shown that miR-125b-5p is highly correlated with NAFLD, and ESRRA is a factor that regulates lipid metabolism. The purpose of our study is to investigate whether miR-125b-5p regulates FFA-induced steatosis in L02 cells by targeting ESRRA. APPROACHES AND RESULTS Estrogen-related receptor alpha (ESRRA) was identified as a direct target of miR-125b-5p through database prediction and a dual-luciferase reporter gene assay. L02 cells were induced with free fatty acids (OA:PA, 2:1) at concentrations of 0.3 mM, 0.6 mM, 0.9 mM, 1.2 mM and 1.5 mM for 24 h, 48 h and 72 h, respectively. The degree of hepatocyte steatosis and triglyceride content were separately manifested by oil red O staining and colorimetric method. Cell viability per group was detected by CCK-8 assay. Eventually, 0.9 mM and 24 h were screened out as the optimal concentration and time for establishing the in-vitro model of hepatic steatosis. Followingly, miR-125b-5p and ESRRA were knocked down by transient transfection. We monitored the expressions of lipid metabolism factors SREBP-1c, ACC1 and FAS and determine triglyceride content within the cells per group. The data showed that knockdown of ESRRA led to down-regulation of the expressions of SREBP-1, ACC1, FAS and triglyceride content. Meanwhile, knockdown of ESRRA and miR-125b-5p resulted that the expressions of ESRRA, SREBP-1, ACC1, FAS and triglyceride content rebounded. CONCLUSIONS MiR-125b-5p down-regulates the expressions of lipid metabolism-related factors by negatively regulating ESRRA, thereby improving hepatic steatosis.
Collapse
Affiliation(s)
- Fen Gao
- Gansu University of Chinese Medicine, Gansu 730000, China.
| | - Yanhua Ma
- Gansu University of Chinese Medicine, Gansu 730000, China.
| | - Chun Yu
- Gansu University of Chinese Medicine, Gansu 730000, China
| | | |
Collapse
|
4
|
Chen Y, Wang Y, Shen T, Wang N, Bai X, Li Q, Fang S, He Z, Sun C, Feng R. Serum metabolic signatures and MetalnFF diagnostic score for mild and moderate metabolic dysfunction-associated steatotic liver disease. J Pharm Biomed Anal 2025; 260:116772. [PMID: 40048991 DOI: 10.1016/j.jpba.2025.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 04/01/2025]
Abstract
To explore serum metabolic changes in metabolic dysfunction-associated steatotic liver disease (MASLD) with mild or moderate steatosis and develop a diagnostic index based on liver fat content to differentiate these stages. A total of 149 participants were enrolled from the Nutrition Health Atlas Project in 2019 (Stage 1, n = 92) and 2022 (Stage 2, n = 57). Serum levels of amino acids, free fatty acids (FFAs) and other organic acids were quantified using liquid or gas chromatography-mass spectrometry. The relationships between serum metabolites and magnetic resonance imaging proton density hepatic fat fraction were analyzed and a predictive model fitting fat fraction was constructed in Stage 1 and validated in Stage 2. Patients with moderate MASLD had significantly higher pyruvic acid, 2-ketoglutaric acid, malic acid, 2-hydroxyisocaproic acid and FFA(C14:0) than mild MASLD. Pathway analysis indicated that liver fat accumulation is associated with alterations in amino acid, FFA metabolism and tricarboxylic acid cycle (TCA). The MetalnFF score was developed to discriminate among three groups, achieving an area under the curve (AUC) of 0.956 (95 %CI:0.905, 1.00) for MASLD and 0.857 (95 %CI:0.745, 0.968) for moderate MASLD in Stage 1, and was further validated in Stage 2 with an AUC of 0.986 (95 %CI: 0.951, 1.00) and 0.759 (95 %CI:0.607, 0.921), respectively. In the early stages of MASLD, disrupted amino acid, FFAs metabolism and TCA cycle have occurred. As the disease progresses, metabolic disturbances in pyruvate metabolism become more severe. These findings enhance a deeper understanding of pathogenesis and propose MetalnFF score as a potential diagnostic tool.
Collapse
Affiliation(s)
- Yang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China; NHC Specialty Laboratory Cooperation Unit of Food Safety Risk Assessment and Standard Development, Heilongjiang, China
| | - Yiran Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Institute of Cancer Prevention and Treatment, Harbin Medical University, Heilongjiang, China
| | - Tianjiao Shen
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, US
| | - Nan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Xiao Bai
- Haxi New Area Community Health Service Center, Nangang District, Heilongjiang, China
| | - Qiyang Li
- Imaging Center, Harbin Medical University Cancer Hospital, Heilongjiang, China
| | - Siyue Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Zhe He
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China; NHC Specialty Laboratory Cooperation Unit of Food Safety Risk Assessment and Standard Development, Heilongjiang, China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China; NHC Specialty Laboratory Cooperation Unit of Food Safety Risk Assessment and Standard Development, Heilongjiang, China.
| |
Collapse
|
5
|
Li Q, Niu X, Cai Y, Li L, Xia Z. Exposure to submicroplastics promotes the progression of nonalcoholic fatty liver disease in ApoE-deficient mice. Toxicology 2025; 515:154137. [PMID: 40222581 DOI: 10.1016/j.tox.2025.154137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/19/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Microplastics (MPs) pose emerging threats to human health, with growing concerns about liver toxicity and other harmful effects from plastic particles. While aquatic species exhibit hepatic vulnerability to micro/nanoplastics, the role of submicroplastics (100 nm-1 μm) in mammalian non-alcoholic fatty liver disease (NAFLD) progression remains unclear. We investigated the effects of a 12-week exposure to 0.5 μm polystyrene MPs (submicroplastics) in drinking water, administering this to ApoE-deficient mice fed either a chow diet (CD) or a Western diet (WD). Submicroplastics accumulated predominantly in the liver and were excreted in the feces. Histologically, submicroplastics significantly increased NAFLD activity scores, hepatic steatosis (Oil Red O-positive area), and fibrosis (Masson-positive area), with maximal severity in the WD+MPs group. Also, the MPs exposure group had increases in positive areas for F4/80 and inflammatory markers TNF-α, IL-1β and IL-6 expression under both diets. Concurrently, submicroplastics inhibited antioxidant defenses by lowering levels of superoxide dismutase and glutathione, while also increasing the lipid peroxidation marker malondialdehyde. WD-fed mice exhibited pronounced MPs-induced lipid dysregulation, including elevated hepatic triglycerides, total cholesterol, and free fatty acids (FAs). Mechanistically, submicroplastics upregulated FA synthesis regulators (ACC, FASN, SREBP1) while downregulating FA oxidation mediators (CPT1A, ACOX1, PPARα) in the livers under a WD. Our findings demonstrate that chronic submicroplastics-exposure exacerbates the progression of NAFLD in ApoE-deficient mice by disturbing lipid metabolism, enhancing oxidative stress, and amplifying inflammatory responses. This study provides experimental evidence linking environmental plastic pollution to accelerated metabolic liver disease, thereby highlighting the urgent need for plastic exposure control strategies.
Collapse
Affiliation(s)
- Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
6
|
Zhao C, Li T, Zhang C, Li H, Wang Y, Li C, Wang Z, Zhao M, Shen M, Zhao W. Drying methods affect nutritional value, amino acids, bioactive compounds, and in vitro function of extract in mulberry leaves. Food Chem 2025; 481:144018. [PMID: 40245551 DOI: 10.1016/j.foodchem.2025.144018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/19/2025]
Abstract
Mulberry leaves (ML) are nutrient-rich and beneficial for food and feed. Our study evaluated five drying methods-sun drying (SD), air drying (AD), oven drying (OD), freeze drying (FD), and vacuum-microwave drying (MD) for preserving nutrients and bioactivity. In vitro models tested the bioactivities of ML extracts. Results showed that machine-based methods (OD, FD, and MD) were superior to natural processes (SD, AD) retaining nutrients and bioactivity. OD preserved amino acids effectively, FD and MD retained crude protein and fibers, and MD excelled in maintaining the total polyphenols, vitamin E, minerals, and bioactive compounds, enhancing the antioxidant capacity and beneficial effects on lipid metabolism, ROS scavenging, and anti-apoptotic in lipid-laden HepG2 cells. Overall, FD and MD are ideal for high-value products like food and pharmaceuticals, while OD is cost-effective for animal feed. SD and AD lead to significant nutrient loss and are not recommended unless cost is a major concern.
Collapse
Affiliation(s)
- Chengfeng Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Tao Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Cangning Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haonan Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yuhua Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Chengmin Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhenjiang Wang
- Sericultura & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Manman Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
7
|
Wu W, Wang X, Ma R, Huang S, Li H, Lyu X. Deciphering the roles of neddylation modification in hepatocellular carcinoma: Molecular mechanisms and targeted therapeutics. Genes Dis 2025; 12:101483. [PMID: 40290125 PMCID: PMC12022649 DOI: 10.1016/j.gendis.2024.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 04/30/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of malignant liver tumor with high morbidity and mortality and severely threatens human health and life quality. Thus, it is of great significance to investigate the molecular mechanism underlying the pathogenesis of HCC and seek biomarkers for early diagnosis. Neddylation, one of the most conserved post-translational modification types in eukaryotes, plays vital roles in the progression of HCC. During the process of neddylation, NEDD8 is covalently conjugated to its substrate proteins, thereby modulating multiple necessary biological processes. Currently, increasing evidence shows that the aberrant activation of neddylation is positively correlated with the occurrence and development of tumors and the poor clinical prognosis of HCC patients. Based on the current investigations, neddylation modification has been reported to target both the cullins and non-cullin substrates and subsequently affect HCC progression, including the virus infection, malignant transformation, tumor cell proliferation, migration and invasion ability, and tumor microenvironment. Therefore, inhibitors targeting the neddylation cascade have been developed and entered clinical trials, indicating satisfactory anti-HCC treatment effects. This review aims to summarize the latest progress in the molecular mechanism of pathologically aberrant neddylation in HCC, as well as the advances of neddylation-targeted inhibitors as potential drugs for HCC treatment.
Collapse
Affiliation(s)
- Wenxin Wu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Xuanyi Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Ruijie Ma
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Hongguang Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xinxing Lyu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong 250117, China
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| |
Collapse
|
8
|
Liu Z, Shang Q, Cheng J, He Q, Liu Y, Li H, Fang D, Li X, Zhu Y, Chen J, Chen J. Mechanistic study of a triterpenoid-enriched fraction derived from Cynomorium songaricum against NAFLD: An integrative elucidation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156782. [PMID: 40318532 DOI: 10.1016/j.phymed.2025.156782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a growing global health concern linked to metabolic dysfunction and inflammation. Traditional Chinese Medicine (TCM), with its emphasis on restoring balance and harmony within the body, is well-suited to address the heterogeneity of NAFLD. Effective strategies to manage NAFLD remain limited, emphasizing the need for novel bioactive compounds with therapeutic potential. PURPOSE This study aimed to investigate the protective effects of a triterpenoid-enriched fraction (CST) derived from Cynomorium songaricum and its active compounds on NAFLD and to elucidate their underlying mechanisms. METHODS CST composition was analyzed using UHPLC/ESI-LTQ-Orbitrap-MS. Anti-inflammatory and lipid-lowering effects were assessed through in vitro and in vivo experiments. Integration of RNA-seq and novel network pharmacology identified key molecular targets, while molecular docking confirmed interactions of oleanolic acid (OLA) and ursolic acid (UA) with IKBKB and TACE, crucial components of the NF-κB pathway. RESULTS CST, OLA and UA significantly reduced lipid accumulation and downregulated inflammatory markers, including TNF-α and lipogenesis-related genes in vitro. In vivo, these compounds reduced lipid accumulation and modulated NF-κB activation, demonstrating robust anti-inflammatory and lipid-regulating effects. CONCLUSION CST exhibits promising bioactive properties in managing NAFLD. IKBKB and TACE mediate CST's protective effects against NAFLD by suppressing NF-κB target genes, reducing TNF-α, and inhibiting lipogenesis. These findings provide a foundation for developing CST and its active components, OLA and UA, as potential therapeutic agents for NAFLD.
Collapse
Affiliation(s)
- Zhihao Liu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Qixiang Shang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Juanjuan Cheng
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China; Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, PR China
| | - Quanrun He
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Yining Liu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Haimeng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Daozheng Fang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Xinyue Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Yong Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Jianping Chen
- Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, PR China.
| | - Jihang Chen
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China.
| |
Collapse
|
9
|
Wang L, Tang W, Sun N, Lv J, Hu J, Tao L, Zhang C, Wang H, Chen L, Xu DX, Zhang Y, Huang Y. Low-dose tire wear chemical 6PPD-Q exposure elicit fatty liver via promoting fatty acid biosynthesis in ICR mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137574. [PMID: 39986096 DOI: 10.1016/j.jhazmat.2025.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) as a major metabolite of tire wear chemical 6PPD has been demonstrated to be an emerging burden of exposure in human populations, via contamination from drinking water, air particulate matter and food sources. Whilst increasing attention has been moved toward its adverse effect, the potential hepatotoxicity of 6PPD-Q in mammals at realistic dose remains unknown. Here, the toxic effects of 6PPD-Q at environmentally relevant dose on the liver of adult mice and its underlying mechanism were investigated through an integrative approach combining transcriptomic and lipidomic analyses. We found that 6PPD-Q exposure induced excessive lipid deposition following three weeks of exposure, ultimately contributing to the pathogenesis of fatty liver disease. Mechanistically, 6PPD-Q exposure caused a remarkable increase in the contents of fatty acids within the hepatic tissue of mice by enhancing their biosynthesis, thereby facilitating lipid deposition. In summary, this study provides a new understanding on the endocrine disrupting effects of 6PPD-Q on hepatic lipid metabolism and how it may contribute to elevated risk of fatty liver disease. Our findings call for a potential public health attention on the risk assessment of 6PPD-Q, particularly towards the risk of chronic metabolic diseases.
Collapse
Affiliation(s)
- Lili Wang
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Weitian Tang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Nan Sun
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jia Lv
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jiayue Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lin Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Li Chen
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yihao Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Yichao Huang
- School of Public Health, Anhui Medical University, Hefei 230032, China; Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou 234099, China.
| |
Collapse
|
10
|
Bakrania A, Mo Y, Zheng G, Bhat M. RNA nanomedicine in liver diseases. Hepatology 2025; 81:1847-1877. [PMID: 37725757 PMCID: PMC12077345 DOI: 10.1097/hep.0000000000000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The remarkable impact of RNA nanomedicine during the COVID-19 pandemic has demonstrated the expansive therapeutic potential of this field in diverse disease contexts. In recent years, RNA nanomedicine targeting the liver has been paradigm-shifting in the management of metabolic diseases such as hyperoxaluria and amyloidosis. RNA nanomedicine has significant potential in the management of liver diseases, where optimal management would benefit from targeted delivery, doses titrated to liver metabolism, and personalized therapy based on the specific site of interest. In this review, we discuss in-depth the different types of RNA and nanocarriers used for liver targeting along with their specific applications in metabolic dysfunction-associated steatotic liver disease, liver fibrosis, and liver cancers. We further highlight the strategies for cell-specific delivery and future perspectives in this field of research with the emergence of small activating RNA, circular RNA, and RNA base editing approaches.
Collapse
Affiliation(s)
- Anita Bakrania
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Gastroenterology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Jiang Y, Zhang J, Liu W, Qian X, Zhuang X, Hu C. Scutellariae Radix and Coptidis Rhizoma improve NAFLD via regulation of SIRT6/ACSL5 pathway and SCD1. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119834. [PMID: 40254111 DOI: 10.1016/j.jep.2025.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/06/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herbal pair Scutellariae Radix-Coptidis Rhizoma (SR-CR) has been widely used in Traditional Chinese Medicine (TCM) for treating metabolic disorders, including nonalcoholic fatty liver disease (NAFLD) -related conditions. Its traditional use highlights its potential in addressing the multifaceted pathogenesis of NAFLD, though the underlying mechanisms remain unclear. AIM OF THE STUDY To evaluate the therapeutic efficacy of the SR-CR herbal pair in alleviating NAFLD and to elucidate its mechanisms of action, with a specific focus on lipid metabolism pathways. MATERIALS AND METHODS The therapeutic effects of SR-CR were assessed using a high-fat diet (HFD)-induced NAFLD rat model and HepG2 cell model. Multi-omics analyses were employed to identify molecular targets and pathways, while affinity ultrafiltration-mass spectrometry characterized bioactive constituents. Findings were validated in vivo and in vitro via Western blot and immunofluorescence. Protein-constituent interactions were further characterized by surface plasmon resonance and molecular docking. RESULTS SR-CR significantly alleviated NAFLD symptoms in HFD-fed rats by reducing hepatic lipid accumulation, inflammation, and hepatocyte ballooning while normalizing biochemical indicators. Mechanistic studies revealed that SR-CR regulates the SIRT6/ACSL5 pathway and SCD1, both critical to lipid metabolism. Scutellariae Radix (SR) and its major constituent, baicalin, enhanced ACSL5 activity via SIRT6-mediated deacetylation, promoting fatty acid oxidation and intracellular lipid utilization. Coptidis Rhizoma (CR) and its primary component, berberine, inhibited SCD1, thereby reducing de novo lipogenesis. These complementary effects synergistically enhanced energy expenditure and reduced lipid synthesis. CONCLUSION The SR-CR herbal pair effectively alleviates HFD-induced NAFLD by synergistically modulating lipid metabolism, enhancing energy expenditure, and reducing de novo lipogenesis through the regulation of the SIRT6/ACSL5 pathway and SCD1. These findings provide molecular evidence for the traditional use of SR-CR in treating metabolic disorders and highlight its potential as a plant-based therapeutic for NAFLD.
Collapse
Affiliation(s)
- Yuanye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, China
| | - Jiaqi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wangzhenzu Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaojing Qian
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
12
|
Liu Y, Hu Y, Shan ZL. Mitochondrial DNA release mediates metabolic-associated steatohepatitis via activation of inflammatory pathways. Shijie Huaren Xiaohua Zazhi 2025; 33:344-360. [DOI: 10.11569/wcjd.v33.i5.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/25/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Affiliation(s)
- Ying Liu
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| | - Yang Hu
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| | - Zhao-Liang Shan
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| |
Collapse
|
13
|
Lian K, Fan Q, Sheng S, Zhang K, Sun X, Kan C, Pan R, Guo Z. Metabolic Dysfunction-Associated Steatotic Liver Disease and Chronic Kidney Disease: Unraveling Connections and Advancing Therapies. BRATISL MED J 2025. [DOI: 10.1007/s44411-025-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 06/02/2025]
|
14
|
Yu A, Hao Z, Wei X, Tan X, Zito E, Zheng H, Luo Z. High fat diet (HFD) induced hepatic lipogenic metabolism and lipotoxicity via Parkin-dependent mitophagy and Errα signal of Pelteobagrus fulvidraco. J Anim Sci Biotechnol 2025; 16:71. [PMID: 40394711 DOI: 10.1186/s40104-025-01200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/27/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Mitophagy is an essential cellular autophagic process which maintains mitochondrial homeostasis, but its role in high fat diet (HFD)-induced lipid accumulation is unclear in the yellow catfish. Thus, this study aimed to elucidate mechanism of mitochondria mediating HFD-induced hepatic fat accumulation. RESULTS In the present study, yellow catfish were fed three diets with dietary fat at 6.31% (low fat; LFD, control), 12.03% (middle fat; MFD) and 15.32% (high fat; HFD), respectively, for 8 weeks. High dietary fat addition raised hepatic lipid accumulation, and declined mRNA and protein levels of Parkin-dependent mitophagy, down-regulated the Parkin protein expression and the estrogen-related receptor alpha (Errα) ubiquitination, and induced Errα protein levels; fatty acid (FA) incubation reduced Parkin-dependent mitophagy, inhibited Errα ubiquitination and increased Errα protein expression, and raised TG accumulation. Furthermore, yellow catfish hepatocytes were isolated and cultured. Nicotinamide mononucleotide, N-acetyl-L-cysteine, Parkin and errα siRNA knockdown were used under FA incubation, respectively. Parkin downregulation mediated FA incubation-induced TG accumulation and mitoautophagic inhibition; Parkin ubiquitinated Errα, and K63 was an important ubiquitination site for deubiquitinating Parkin activity; Errα targets fas, acca and pparγ genes, whose activation contributed to FA-induced lipogenesis and lipid accumulation. Thus, high fat diet (HFD) and FA incubation inhibited Parkin activity, suppressed mitophagy and activated Errα pathway, and induced hepatic lipogenic metabolism and lipotoxicity. CONCLUSIONS Overall, our study provided new targets against HFD-induced hepatic lipid accumulation and non-alcoholic fatty liver disease in the vertebrates.
Collapse
Affiliation(s)
- Angen Yu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Hao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ester Zito
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, 20156, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, 61029, Italy
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Centre, Qingdao, 266237, China.
| |
Collapse
|
15
|
Zeng F, Hu W, Xu H, Wang X, Zhao C, Wang Y, Wang J. Strontium regulating lipid metabolism of bovine hepatocytes via SIRT1/SREBPs pathway. J Steroid Biochem Mol Biol 2025; 252:106785. [PMID: 40403884 DOI: 10.1016/j.jsbmb.2025.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Periparturient dairy cows are susceptible to negative energy balance (NEB), which triggers excessive adipose mobilization, leading to elevated plasma non-esterified fatty acids (NEFA) and hepatic lipid accumulation. While strontium (Sr) has shown metabolic regulatory potential, its role in hepatic lipid homeostasis remains unclear. Using an NEFA-induced lipid accumulation model in bovine hepatocytes, we demonstrated that Sr (5-20 μM) significantly reduced intracellular triglyceride (TG) and total cholesterol (TC) levels. Further mechanistic studies revealed that Sr enhances SIRT1 expression and suppresses the expression and nuclear translocation of SREBP-1C/SREBP2, thereby downregulating downstream lipogenic enzymes including ACC, FASN, SCD1, and HMGCR. Molecular docking indicated that Sr²⁺ binds with high affinity to Asp-481/483 of SIRT1, while SIRT1 inhibition with EX-527 abolished Sr-mediated lipid-lowering effects. Additionally, Sr promoted PPARα nuclear translocation to enhance β-oxidation and upregulated LDLR expression to facilitate lipid efflux. This study elucidated the multi-target molecular mechanism of Sr alleviating lipid metabolism disorders in bovine hepatocytes through the SIRT1/SREBPs pathway, providing a theoretical foundation for the application of Sr in preventing metabolic diseases in dairy cows.
Collapse
Affiliation(s)
- Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjuan Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haichuan Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinxin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Lim DS, Ahn SH, Gwon HJ, Cho W, Abd El-Aty AM, Aydemir HA, Sharma N, Hong SA, Jung TW, Jeong JH. Resolvin D5: A lipid mediator with a therapeutic effect on hepatic steatosis through SIRT6/autophagy. Tissue Cell 2025; 96:102980. [PMID: 40398078 DOI: 10.1016/j.tice.2025.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Resolvin D5 (RD5), a lipid mediator derived from DHA via 5-lipoxygenase signaling, has been shown to resolve inflammation in various disease models. This study aimed to investigate the role of RD5 in the development of hepatic steatosis in individuals with obesity and explore the detailed mechanisms involved. Protein expression was evaluated via Western blot analysis, whereas hepatic lipid deposition was examined via Oil Red O staining and triglyceride quantification. Autophagosomes were detected via MDC staining. Our findings indicated that RD5 treatment normalized lipogenic lipid accumulation, fatty acid uptake, oxidation, apoptosis, and endoplasmic reticulum (ER) stress in palmitate-treated primary hepatocytes. As a cytoprotective signaling pathway, RD5 treatment increased the expression of SIRT6 and autophagy markers, such as those involved in LC3 conversion and p62 degradation. The beneficial effects of RD5 on hepatic lipid metabolism, apoptosis, and ER stress were negated by SIRT6 small interfering RNA or 3-methyladenine, an inhibitor of autophagy. Furthermore, RD5 administration decreased hepatic steatosis, apoptosis, and ER stress in the livers of high-fat diet (HFD)-fed mice. In line with the in vitro results, RD5 treatment elevated SIRT6 and autophagy levels in the livers of HFD-fed mice. These novel findings suggest that RD5 improves hepatic lipid metabolism, apoptosis and ER stress through SIRT6/autophagy signaling, thereby attenuating hepatic steatosis. RD5 may have therapeutic potential for treating nonalcoholic fatty liver disease with minimal side effects.
Collapse
Affiliation(s)
- Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Sung Ho Ahn
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| | - Haci Ahmet Aydemir
- Department of Family Medicine, Erzurum Regional Training and Research Hospital, Erzurum 25000, Turkey
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Liu Y, Gilchrist AE, Johansson PK, Guan Y, Deras JD, Liu YC, Ceva S, Huang MS, Navarro RS, Enejder A, Peltz G, Heilshorn SC. Engineered Hydrogels for Organoid Models of Human Nonalcoholic Fatty Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e17332. [PMID: 40364726 DOI: 10.1002/advs.202417332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by increased lipid accumulation and excessive deposition of extracellular matrix (ECM) that results in tissue stiffening. The potential interplay between matrix stiffness and hepatocyte lipid accumulation during NAFLD has not been established. Here, an in vitro NAFLD model is developed using chemically defined, engineered hydrogels and human induced pluripotent stem cell-derived hepatic organoids (HOs). Specifically, dynamic covalent chemistry crosslinking, along with transient small molecule competitors, are used to create dynamic stiffening hydrogels that enable the reproducible culture of HOs. Within matrices that mimic the stiffness of healthy to diseased tissue (≈1-6 kPa), lipid droplet accumulation in HOs is triggered by exposure to an NAFLD-associated free fatty acid. These NAFLD model suggests that higher stiffness microenvironments result in increased hepatic lipid droplet accumulation, increased expression of fibrosis markers, and increased metabolic dysregulation. By targeting the ROCK mechanosignaling pathway, the synergy between matrix stiffness and lipid droplet accumulation is disrupted. The in vitro model of NAFLD has the potential to understand the role of mechanosignaling in disease progression and identify new pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Yueming Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Aidan E Gilchrist
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Patrik K Johansson
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yuan Guan
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jaydon D Deras
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yu-Chung Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sofia Ceva
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Renato S Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gary Peltz
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Cebi M, Yilmaz Y. Epithelial barrier hypothesis in the context of nutrition, microbial dysbiosis, and immune dysregulation in metabolic dysfunction-associated steatotic liver. Front Immunol 2025; 16:1575770. [PMID: 40438102 PMCID: PMC12116361 DOI: 10.3389/fimmu.2025.1575770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
In recent years, the prevalence of chronic liver diseases, particularly Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), has increased significantly. This upward trend is largely associated with lifestyle-related factors such as unhealthy dietary habits, physical inactivity, and various environmental influences. Among the key elements contributing to the pathogenesis of MASLD, the integrity of the intestinal epithelial barrier emerges as a critical determinant, given its central role in maintaining immune homeostasis along the gut-liver axis. Disruption of this barrier, often driven by excessive consumption of saturated fats and refined carbohydrates in combination with low dietary fiber intake, can lead to microbial dysbiosis. This imbalance in the gut microbiota triggers immune dysregulation and promotes systemic inflammation, thereby exacerbating hepatic injury. This review discusses the contribution of epithelial barrier dysfunction to the development and progression of MASLD, with a particular focus on how increased intestinal permeability may initiate and sustain chronic liver inflammation. Additionally, the influence of dietary and environmental factors on epithelial integrity, immune responses, and the inflammatory cascade is addressed. A better understanding of the complex interplay between gut barrier impairment, immune modulation, and liver pathology may offer valuable insights into MASLD pathophysiology and contribute to the development of more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Merve Cebi
- Department of Medical Biology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, United States
| |
Collapse
|
19
|
Jiang Y, Jiang K, Sun P, Liu Y, Nie H. Oroxylin A ameliorates non-alcoholic fatty liver disease by modulating oxidative stress and ferroptosis through the Nrf2 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159628. [PMID: 40368273 DOI: 10.1016/j.bbalip.2025.159628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/26/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent and progressive liver disorder posing a global health challenge. Oroxylin A, a naturally occurring flavonoid, with a broad spectrum of pharmacological activities. This study aimed to explore the therapeutic potential of oroxylin A and unravel its molecular mechanisms in mitigating high-fat diet (HFD)-induced NAFLD in murine models. Wild-type (WT) and nuclear factor erythroid 2-related factor 2 knockout (Nrf2-/-) mice were administered a HFD to generate in vivo models, while free fatty acids-treated HepG2 cells served as the in vitro model. To investigate the effects of oroxylin A, serum and liver biochemical markers, hepatic histology, lipid metabolism, and oxidative stress were assessed in a NAFLD mouse model. The underlying mechanisms of oroxylin A were further explored through Western blotting, immunohistochemistry, and immunofluorescence analysis. Oroxylin A mitigated hepatic steatosis and injury by reducing liver index, AST, ALT, TG, and TC levels, improving histology, and restoring lipid metabolism. Glucose and insulin tolerance tests demonstrated improved glucose homeostasis and insulin sensitivity. Moreover, oroxylin A suppressed inflammation, apoptosis, and fibrosis, while enhancing antioxidant defenses, and improving mitochondrial function. Mechanistically, oroxylin A activated the Keap1/Nrf2/GPX4/SLC7A11 axis, upregulating Nrf2 and HO-1. These effects were abolished in Nrf2-/- mice. In vitro results were consistent, and molecular docking, dynamics simulations, and CETSA confirmed its direct Keap1 binding. Oroxylin A protects against NAFLD by modulating the Nrf2 pathway, reducing oxidative stress and ferroptosis, making it a promising candidate for clinical NAFLD therapy.
Collapse
Affiliation(s)
- Yuzi Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Kangwei Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Peilin Sun
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Yuan Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Hongming Nie
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China.
| |
Collapse
|
20
|
Wei J, Fu Y, Feng S, Zhang J, Zhang Y, Yu J, Kang P, Wu C, Mi H. The Effects of Fishmeal Replacement with Degossypolled Cottonseed Protein on Growth, Serum Biochemistry, Endocrine Responses, Lipid Metabolism, and Antioxidant and Immune Responses in Black Carp ( Mylopharyngodon piceus). Animals (Basel) 2025; 15:1404. [PMID: 40427281 PMCID: PMC12108466 DOI: 10.3390/ani15101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
This research investigated the growth, serum biochemistry, antioxidant capability, and immunity impact of black carp fed degossypolled cottonseed protein replacing fishmeal at the levels of 0%, 10%, 20%, 30%, 40%, and 50% (DCP0, DCP10, DCP20, DCP30, DCP40, and DCP50), respectively. The results showed there were no significant changes in growth among these test groups. The activities and mRNA expression levels of amylase and trypsin were heightened in conjunction with 30-40% DCP. Although the insulin contents were reduced with a rise in DCP content, 5-hydroxytryptamino was increased in the DCP40 and DCP50 groups. DCP40 could heighten the levels of low-density lipoprotein cholesterol, triglycerides, total cholesterol, and urea nitrogen. Although lower levels of DCP (≤20%) could increase the total antioxidant capacity compared with the DCP50 group, DCP50 could markedly heighten levels of catalase, glutathione S-transferase, H2O2, and malondialdehyde. Meanwhile, the mRNA levels of Mn-superoxide dismutase, glutathione reductase, glutathione peroxidase, glutamate-cysteine ligase regulatory subunit, and nuclear factor E2-related factor 2 were heightened in the DCP30 group compared with the DCP50 group. The levels of alkaline phosphatase, immunoglobulin M, and liver-expressed antimicrobial peptide 2 were markedly heightened in the liver of the DCP20 group compared with the DCP50 group. In conclusion, a suitable level of DCP (20%) could improve serum biochemical indices and hormone variation, enhance antioxidant capability, and increase immunity in black carp.
Collapse
Affiliation(s)
- Jiao Wei
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (J.W.); (Y.F.); (S.F.); (J.Z.); (Y.Z.); (J.Y.)
| | - Yifan Fu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (J.W.); (Y.F.); (S.F.); (J.Z.); (Y.Z.); (J.Y.)
| | - Shinan Feng
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (J.W.); (Y.F.); (S.F.); (J.Z.); (Y.Z.); (J.Y.)
| | - Jinjing Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (J.W.); (Y.F.); (S.F.); (J.Z.); (Y.Z.); (J.Y.)
| | - Yuanyuan Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (J.W.); (Y.F.); (S.F.); (J.Z.); (Y.Z.); (J.Y.)
| | - Jiaxing Yu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (J.W.); (Y.F.); (S.F.); (J.Z.); (Y.Z.); (J.Y.)
| | - Pengtian Kang
- Gansu Provincial Aquatic Technology Extension Station, 113 Zhongshan Road, Lanzhou 730030, China
| | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (J.W.); (Y.F.); (S.F.); (J.Z.); (Y.Z.); (J.Y.)
| | - Haifeng Mi
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., 588 Tianfu Avenue, Chengdu 610093, China;
| |
Collapse
|
21
|
Hedayati S, Doustmohammadian A, Jambarsang S, Maadi M, Zamani F, Hosseinzadeh M. Dietary lipophilic index and odds of metabolic dysfunction-associated steatotic liver disease (MASLD): A population-based study. Dig Liver Dis 2025:S1590-8658(25)00312-3. [PMID: 40368699 DOI: 10.1016/j.dld.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (MASLD) is one of the highly prevalent metabolic disorders worldwide The present study aimed to determine the association between a novel dietary lipophilic index (LI) with metabolic profile and MASLD in a population-based study in Amol, Iran. PATIENTS AND METHODS A cross-sectional study was conducted among 2979 Iranian adults within the framework of the Amol cohort study (AmolCS) Dietary assessments were performed using a validated 168-item food frequency questionnaire (FFQ) The dietary fatty acids were determined using the food composition table in Food Data Central of the USDA to indicate the lipophilic index Information about the melting point of fatty acids was obtained from the lipid bank database MASLD was defined as the ultrasound detection of hepatic steatosis that ruled out other causes of hepatic fat accumulation Then, dietary LI and lipophilic load (LL) were calculated using dietary fatty acid intake and melting point Multivariate MASLD The analysis was carried out for all participants stratified by sex and BMI Potential confounders were included in three different adjusted models. RESULTS The results revealed that dietary LI was associated with higher BMI and (WHtR), low physical activity, being female, living in urban residencies, and diabetes After adjustment for potential confounders, age, and energy intake, the odds ratio of MASLD in women was 1.33 (95 % CI: 1.05-1.99, p = 0.048) in the last tertile of dietary LI compared to the first tertile In adjustment by age and energy intake, chronic disease, smoking, physical activity, waist circumference, and residency women have a higher chance of MASLD in the second tertile of dietary LI (OR:1.38 95 % CI: 1.01-1.89) as well as in the third LI (OR:1.39, 95 % CI: 1.02-1.91) compared to the first tertile When the body mass index (BMI) was added to other confounders variables, the odds ratio of MASLD was 1.44 (95 % CI: 1.05-1.99) in the second tertile of LI and 1.41(95 % CI:1.02-1.95) in the third tertiles, Ptrend=0.04 In normal weight participants (BMI< 25), after adjustment for age and energy intake, the odds of MASLD were 86 % higher (CI; 1.07-3.25, Ptrend< 0.03) in the last tertile of LL compared to the first one. CONCLUSIONS This study found that higher levels of dietary fatty acids are associated with 40 % higher odds of MASLD in women Additionally, higher levels of fatty acids in normal-weight individuals were linked to an 86 % higher chance of MASLD It is highly recommended to reduce intake of saturated fatty acids and trans fatty acids, which are associated with a lower risk of MASLD.
Collapse
Affiliation(s)
- Safoora Hedayati
- International campus of shahidsadoughiUniversity of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azam Doustmohammadian
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Jambarsang
- Center for Healthcare Data Modeling, Departments of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mansooreh Maadi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahdieh Hosseinzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
22
|
Sun X. Dapagliflozin ameliorates metabolic and hepatic outcomes in a mouse model of metabolic dysfunction-associated steatotic liver disease and diabetes. Acta Diabetol 2025:10.1007/s00592-025-02488-1. [PMID: 40353918 DOI: 10.1007/s00592-025-02488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/04/2025] [Indexed: 05/14/2025]
Abstract
AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), has become a great public healthcare burden and is closely associated with type 2 diabetes (T2D) and insulin resistance. However, there is no specific treatment for MASLD. Recent clinical findings have indicated a possible beneficial effect of sodium-glucose cotransporter 2 (SGLT2) on MASLD. This study aimed to investigate the effects of dapagliflozin (Dapa) on MASLD in T2D mice. METHODS Four-week-old ob/ob mice were fed with a high-fat diet (HFD) for 8 weeks and then randomly divided into two groups supplemented with Dapa or vehicle for another 12 weeks. C57BL/6J mice fed with a standard chow diet (CD) were used as the control group. Metabolic outcomes, liver pathology, lipidomics and insulin signaling were assessed. RESULTS We showed that Dapa reduced body weight and ameliorated hyperglycemia and fatty liver in obese diabetic ob/ob mice. Compared with vehicle, dapa improved the NAFLD activity score mainly by attenuating fat deposition. Importantly, Dapa decreased the expression levels of mRNAs and proteins related to fatty acid synthesis and increased the expression levels of β-oxidation-related factors. We also found that Dapa treatment improved insulin signaling by increasing PI3K and Akt phosphorylation. CONCLUSIONS Dapa protects mice from diet-induced weight gain and improves hepatic lipotoxicity and insulin resistance in diabetic MASLD mice. Our results revealed that Dapa has a therapeutic effect on MASLD and could be a potential drug candidate for the treatment of MASLD.
Collapse
Affiliation(s)
- Xiaoya Sun
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
Reyes MLE, Hernandez AI, Dos Santos Azevedo R, Figueiredo BX, Dos Santos Flores I, Cardoso A, Silveira T, Anni ISA, Junior ASV, Nornberg BF, Marins LF. Hepatic protective effects and oxidative stress modulation via gene expression in zebrafish (Danio rerio) fed with Synechococcus elongatus PCC 7942 as a functional feed additive. Comp Biochem Physiol B Biochem Mol Biol 2025; 279:111111. [PMID: 40360051 DOI: 10.1016/j.cbpb.2025.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/10/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
The inclusion of cyanobacteria in aquafeeds is a sustainable alternative to traditional fishmeal. This study evaluated the effects of Synechococcus elongatus PCC 7942 supplementation on intestinal morphology, liver histopathology, and antioxidant gene expression in zebrafish (Danio rerio). Fish were fed a commercial diet (CF) or the same diet supplemented with S. elongatus (EF) for 35 days. Liver histopathology revealed that 62 % of fish in the CF group exhibited generalized liver alteration, while fish in the EF group showed a lower frequency of generalized alteration (31 %) and a higher frequency of multifocal lesions (46 %), suggesting improved hepatic homeostasis. Intestinal morphometry showed no significant changes in villus length between groups. Gene expression analysis demonstrated a significant downregulation of xenobiotic metabolism genes (cyp1a, gst), antioxidant defense genes (sod1, sod2, cat), and steroid metabolism (cyp19a1a) in fish fed S. elongatus, except for gpx, which remained unchanged. The reduction in antioxidant gene expression, along with improved liver histology, suggests a lower oxidative stress in the EF group, likely due to synergistic effects of S. elongatus in mitigating oxidative damage. These findings indicate that S. elongatus supplementation does not impair intestinal morphology or liver function but supports hepatic homeostasis by reducing oxidative stress and modulating liver histopathology. This highlights its potential as a functional feed additive in aquaculture.
Collapse
Affiliation(s)
- Mirna Leandra Enriquez Reyes
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Andrea Idelette Hernandez
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Raíza Dos Santos Azevedo
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Beatriz Xavier Figueiredo
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Isaac Dos Santos Flores
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Arthur Cardoso
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Tony Silveira
- Department of Morphology (DM), Institute of Biology (IB), Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Iuri Salim Abou Anni
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Antonio Sergio Varela Junior
- Histology Laboratory, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Bruna Felix Nornberg
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Luis Fernando Marins
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
24
|
Johnston EK, Fang Z, Soto-Gutierrez A, Taner CB, Cook KE, Yang L, Abbott RD. Engineering a three-dimensional liver steatosis model. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167888. [PMID: 40328412 DOI: 10.1016/j.bbadis.2025.167888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
Liver transplantation is the key treatment for liver failure, yet organ scarcity, exacerbated by high discard rates of steatotic livers, leads to high waitlist mortality. Preclinical models of steatosis are necessary to understand the pathophysiology of the disease and to develop pharmacological interventions to decrease disease burden and liver discard rate. In this paper, we develop an expedited 3D steatotic organoid model containing primary human hepatocytes and non-parenchymal cells. We present our iterative approach as we transition from 2D to 3D models and from immortalized to primary cells to optimize conditions for the development of a 3D human steatosis model. Both primary cell aggregation and steatosis induction time were reduced from the standard, 5-7 days, to 2 days. Our 3D model incorporates human primary hepatocytes from discarded liver tissues, which have not been used in organoids previously due to their rapid loss of phenotype in culture. After optimizing our steatosis induction media there was a mix of macro- and micro-steatosis in these primary hepatocytes which is consistent with the human pathology. Our approach achieves a model reflective of the liver pathology, preserving cellular phenotypes and viability while exhibiting markers of oxidative stress, a key factor contributing to complications in the transplantation of steatotic livers.
Collapse
Affiliation(s)
- Elizabeth K Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zhou Fang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - C Burcin Taner
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Keith E Cook
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Liu Yang
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rosalyn D Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
25
|
Zhao L, Chen Y, Clay-Gilmour A, Zhang J, Zhang X, Steck SE. Metabolomic and Proteomic Signatures of Ultra-processed Foods Are Positively Associated with Adverse Liver Outcomes. J Nutr 2025:S0022-3166(25)00280-9. [PMID: 40334783 DOI: 10.1016/j.tjnut.2025.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Higher consumption of ultra-processed foods is associated with increased risk of obesity and type 2 diabetes; however, evidence on liver diseases and the underlying mechanisms remain limited. OBJECTIVES This study aimed to evaluate associations between metabolomic and proteomic signatures of ultra-processed food intake and adverse liver outcomes. METHODS Data of participants aged 40 to 69 y from the UK Biobank (N = 173,840) were analyzed. Ultra-processed food intake was assessed using multiple 24-h dietary recalls. Plasma metabolites were measured using nuclear magnetic resonance spectroscopy, and plasma proteome was profiled using the Olink platform. Adverse liver outcomes (metabolic dysfunction-associated steatotic liver disease [MASLD], cirrhosis, liver cancer, and severe liver disease) were ascertained using data from the in-hospital records or cancer or death registries. We used elastic net regression to calculate omics signatures of ultra-processed foods and Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for ultra-processed foods and their omics signatures and adverse liver outcomes, adjusting for multiple potential confounding factors. RESULTS With a median follow-up of 8.9 years, an increase of 1 standard deviation (SD) in metabolic signature score of ultra-processed foods was associated with increased risk of MASLD (HR: 1.61; 95% CI: 1.38, 1.87). An increase of 1 SD in proteomic signature score of ultra-processed foods was associated with increased risk of MASLD (HR: 1.84; 95% CI: 1.45, 2.35), cirrhosis (HR: 1.49; 95% CI: 1.16, 1.91), and severe liver disease (HR: 1.48; 95% CI: 1.07, 2.03). Thirty-four metabolites and 65 proteins were significantly associated with ultra-processed food intake and were enriched in biological pathways such as lipid metabolism, immune, and inflammatory response. About half of these metabolites and proteins are significantly associated with risk of MASLD and cirrhosis. CONCLUSIONS Ultra-processed food intake and its metabolic and proteomic signatures are positively associated with risk of MASLD.
Collapse
Affiliation(s)
- Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC; Yale School of Nursing, Orange, CT.
| | - Yun Chen
- Yale School of Nursing, Orange, CT
| | - Alyssa Clay-Gilmour
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Xuehong Zhang
- Yale School of Nursing, Orange, CT; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Susan E Steck
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC
| |
Collapse
|
26
|
Singh V, Chattopadhyay P, Fatima F, Singh P, Pandey R, Agrawal A, Roy SS. Generation and characterization of a chronic in vitro model to study the early stage of metabolic dysfunction-associated steatotic liver disease (MASLD). Biochim Biophys Acta Mol Basis Dis 2025; 1871:167886. [PMID: 40324734 DOI: 10.1016/j.bbadis.2025.167886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic and progressive liver disease with an increasing global burden that starts with an early stage of simple steatosis (MASL) which frequently progresses to liver cirrhosis and hepatocellular carcinoma (HCC). Despite its widespread occurrence, the MASL or steatotic stage, characterized by excessive fat accumulation in the liver and considered reversible and benign, has not been extensively studied. To study MASL effectively, it is imperative to have a clinically relevant model system that focuses solely on steatosis, in a progressive and time-dependent manner, recapitulating molecular changes associated with human disease. We established a chronic cellular model of MASL using a primary immortalized human hepatocyte cell line treated with a low dose mixture of fatty acids. This model mimics the pattern of chronic disease progression, shows minimal lipotoxicity, exhibits progressive lipid accumulation (from early to moderate steatosis), and demonstrates macrosteatosis, a hallmark of MASL. To determine whether this model recapitulates both morphological and molecular aspects of steatosis, we measured the expression of key genes and pathways found to be dysregulated in a recently available early MASL patient dataset as well as a non-human primate model of MASL. In support of the relevance of our model, we observed increased fatty acid uptake, lipogenesis, mitochondrial activity, metabolic rewiring, and autophagic alterations that significantly overlap with the pathological features of human and non-human primate MASL. In conclusion, we generate a relevant cellular model of steatosis that can serve as a robust platform for screening of existing chemical libraries to identify potent inhibitors of MASL as well as discovering novel therapeutic targets by mechanistically studying altered molecular signatures associating early stages of MASLD.
Collapse
Affiliation(s)
- Vandana Singh
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Partha Chattopadhyay
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Fabeha Fatima
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
| | - Praveen Singh
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat 131029, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
27
|
Byrne CD, Armandi A, Pellegrinelli V, Vidal-Puig A, Bugianesi E. Μetabolic dysfunction-associated steatotic liver disease: a condition of heterogeneous metabolic risk factors, mechanisms and comorbidities requiring holistic treatment. Nat Rev Gastroenterol Hepatol 2025; 22:314-328. [PMID: 39962331 DOI: 10.1038/s41575-025-01045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/09/2025]
Abstract
Μetabolic dysfunction-associated steatotic liver disease (MASLD) comprises a heterogeneous condition in the presence of steatotic liver. There can be a hierarchy of metabolic risk factors contributing to the severity of metabolic dysfunction and, thereby, the associated risk of both liver and extrahepatic outcomes, but the precise ranking and combination of metabolic syndrome (MetS) traits that convey the highest risk of major adverse liver outcomes and extrahepatic disease complications remains uncertain. Insulin resistance, low-grade inflammation, atherogenic dyslipidaemia and hypertension are key to the mechanisms of liver and extrahepatic complications. The liver is pivotal in MetS progression as it regulates lipoprotein metabolism and secretes substances that affect insulin sensitivity and inflammation. MASLD affects the kidneys, heart and the vascular system, contributing to hypertension and oxidative stress. To address the global health burden of MASLD, intensified by obesity and type 2 diabetes mellitus epidemics, a holistic, multidisciplinary approach is essential. This approach should focus on both liver disease management and cardiometabolic risk factors. This Review examines the link between metabolic dysfunction and liver dysfunction and extrahepatic disease outcomes, the diverse mechanisms in MASLD due to metabolic dysfunction, and a comprehensive, personalized management model for patients with MASLD.
Collapse
Affiliation(s)
- Christopher D Byrne
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Angelo Armandi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vanessa Pellegrinelli
- Institute of Metabolic Science, MRC MDU Unit, University of Cambridge, Cambridge, UK
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - Antonio Vidal-Puig
- Institute of Metabolic Science, MRC MDU Unit, University of Cambridge, Cambridge, UK
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
28
|
Liu W, Sun M, Zhang H, Wang WT, Song J, Wang MY, Wang CM, Sun HM. Targeting regulation of lipid metabolism with polysaccharide of traditional Chinese medicine for the treatment of non-alcoholic fatty liver disease: A review. Int J Biol Macromol 2025; 306:141660. [PMID: 40032085 DOI: 10.1016/j.ijbiomac.2025.141660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic diseases in the world, and the effective treatment of NAFLD has been listed as a key problem to be solved urgently in contemporary medicine. Polysaccharides in traditional Chinese medicine (TCM) have a wide range of pharmacological activities. A large number of preclinical studies have confirmed that TCM polysaccharides can interfere with the occurrence and development of NAFLD at multiple interrelated levels, such as improving lipid metabolism and insulin resistance, regulating oxidative stress, alleviating immune inflammatory response, and regulating intestinal microbiota, thus showing great potential as a new anti-NAFLD drug. This paper summarizes the prevention and treatment effect and mechanism of TCM polysaccharides on NAFLD, which provides a basis for the application of TCM polysaccharides in plant medicine and modern medicines, and provides a reference for promoting the development and utilization of TCM polysaccharide resources and the research and development of new drugs for NAFLD.
Collapse
Affiliation(s)
- Wei Liu
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Hao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Meng-Yang Wang
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Chun-Mei Wang
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin 132013, China.
| |
Collapse
|
29
|
Zhang J, Song L, Li T, Zhu L, Wang T, Zhao P, Ma Y, Zhao J, Huang X. Steam explosion modified pea peptides alleviates hepatosteatosis by regulating lipid metabolism pathways and promoting autophagy. Food Res Int 2025; 208:116182. [PMID: 40263790 DOI: 10.1016/j.foodres.2025.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Pea peptides (PP) are natural compounds with multiple biological activities. The purpose of this study was to explore the effect and mechanisms of steam explosion (SE)-modified PP on lipid metabolism in vivo and in vitro. The findings demonstrated that SE-modified PP treatment significantly inhibited lipid accumulation in HepG2 cells induced by free fatty acids (FFA). In addition, SE-modified PP treatment significantly alleviated liver index, improved biochemical parameters in high-fat diet (HFD) mice. SE-modified PP prevented lipid accumulation through regulating AMPK activity and decreased lipogenesis associated proteins (SREBP, FAS, and ACC), upregulated fatty acid oxidation proteins (PPARα, PGC1α, and CPT-1 A). Moreover, SE-modified PP alleviated hepatic oxidative stress by regulating Nrf2/HO-1 pathway, and relieved liver mitochondrial autophagy by upregulating Beclin 1 and LC3B expression. These results demonstrate that SE-modified PP alleviates NAFLD by reducing lipid accumulation, inhibiting hepatic oxidative stress, and increasing liver mitochondrial autophagy, which providing reference for the development of dietary supplements for the treatment and prevention of NAFLD.
Collapse
Affiliation(s)
- Jingjing Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.
| | - Li Zhu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Peijun Zhao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yan Ma
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiansheng Zhao
- Henan Shuanghui Investment & Development Co., Ltd., Luohe 462000, China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
30
|
Chen H, Nisar MA, Mulla J, Li X, Cao K, Lu S, Nagaoka K, Wu S, Ting PS, Tseng TS, Lin HY, Yin XM, Feng W, Wu Z, Cheng Z, Mueller W, Bay A, Schechner L, Bai X, Huang CK. Liver TET1 promotes metabolic dysfunction-associated steatotic liver disease. EMBO Mol Med 2025; 17:1101-1117. [PMID: 40164757 DOI: 10.1038/s44321-025-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
Global hepatic DNA methylation change has been linked to human patients with metabolic dysfunction-associated steatotic liver disease (MASLD). DNA demethylation is regulated by the TET family proteins, whose enzymatic activities require 2-oxoglutarate (2-OG) and iron that both are elevated in human MASLD patients. We aimed to investigate liver TET1 in MASLD progression. Depleting TET1 using two different strategies substantially alleviated MASLD progression. Knockout (KO) of TET1 slightly improved diet induced obesity and glucose homeostasis. Intriguingly, hepatic cholesterols, triglycerides, and CD36 were significantly decreased upon TET1 depletion. Consistently, liver specific TET1 KO led to improvement of MASLD progression. Mechanistically, TET1 promoted CD36 expression through transcriptional upregulation via DNA demethylation control. Overexpression of CD36 reversed the impacts of TET1 downregulation on fatty acid uptake in hepatocytes. More importantly, targeting TET1 with a small molecule inhibitor significantly suppressed MASLD progression. Conclusively, liver TET1 plays a deleterious role in MASLD, suggesting the potential of targeting TET1 in hepatocytes to suppress MASLD.
Collapse
Affiliation(s)
- Hongze Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Muhammad Azhar Nisar
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joud Mulla
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Xinjian Li
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Kevin Cao
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Katsuya Nagaoka
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Shang Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Peng-Sheng Ting
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tung-Sung Tseng
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Hui-Yi Lin
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wenke Feng
- Department Structural Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zhijin Wu
- Department of Biostatistics, School of Public Health, Brown University, Providence, RI, USA
| | - Zhixiang Cheng
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - William Mueller
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Amalia Bay
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Layla Schechner
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xuewei Bai
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Chiung-Kuei Huang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
31
|
Li X, Chen W, Jia Z, Xiao Y, Shi A, Ma X. Mitochondrial Dysfunction as a Pathogenesis and Therapeutic Strategy for Metabolic-Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2025; 26:4256. [PMID: 40362504 PMCID: PMC12072025 DOI: 10.3390/ijms26094256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) has emerged as a significant public health concern, attributed to its increasing prevalence and correlation with metabolic disorders, including obesity and type 2 diabetes. Recent research has highlighted that mitochondrial dysfunction can result in the accumulation of lipids in non-adipose tissues, as well as increased oxidative stress and inflammation. These factors are crucial in advancing the progression of MASLD. Despite advances in the understanding of MASLD pathophysiology, challenges remain in identifying effective therapeutic strategies targeting mitochondrial dysfunction. This review aims to consolidate current knowledge on how mitochondrial imbalance affects the development and progression of MASLD, while addressing existing research gaps and potential avenues for future research. This review was conducted after a systematic search of comprehensive academic databases such as PubMed, Embase, and Web of Science to gather information on mitochondrial dysfunction as well as mitochondrial-based treatments for MASLD.
Collapse
Affiliation(s)
- Xiangqiong Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Wenling Chen
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Zhuangzhuang Jia
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Yahui Xiao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Anhua Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Xuan Ma
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| |
Collapse
|
32
|
Choi YJ, Park J, Cho HI, Shin MG, Nah EH. Metabolic Dysfunction-Associated Steatotic Liver Disease in the Korean General Population: Epidemiology, Risk Factors, and Non-Invasive Screening. Metabolites 2025; 15:299. [PMID: 40422876 DOI: 10.3390/metabo15050299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a contemporary classification of liver disease linked to metabolic dysfunction. It is recognized as the main form of chronic liver disease and significantly contributes to liver-related morbidity and mortality rates. The epidemiology of MASLD is affected by ethnic background, sex, age, and environmental factors. South Korea is one of the countries that has experienced rapid urbanization. Geographical differences also play a crucial role in the prevalence and progression of the disease. Consequently, it is essential to investigate the prevalence of MASLD; its associated risk factors, particularly in relation to liver fibrosis; and the effectiveness of non-invasive screening techniques within the Korean population. Methods: This review describes the prevalence of MASLD, the risk factors related to MASLD with liver fibrosis, and the non-invasive screening approaches suitable for the Korean general population. Results: This review underscores the rising incidence and implications of MASLD in South Korea. Notably, among younger demographics, there is a swift increase in both the prevalence of MASLD and its associated risk factors, indicating that MASLD is poised to become a significant public health concern. Non-invasive testing methods are increasingly utilized within at-risk groups to determine the presence of advanced fibrosis. Conclusions: Addressing these complex liver diseases necessitates not only ongoing monitoring of MASLD epidemiological patterns but also a unified approach to care that integrates medical interventions with lifestyle changes.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Jooheon Park
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Han-Ik Cho
- MEDIcheck LAB, Korea Association of Health Promotion, Seoul 07572, Republic of Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Eun-Hee Nah
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
- Department of Laboratory Medicine, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
33
|
Zhao E, Xie H, Gao Y, Wen X, Dong B, Zhang C. Association Between High Sensitivity Cardiac Troponin and All-Cause and Cardiovascular Mortality in Adults at Risk of Non-Alcoholic Fatty Liver Disease: A Cohort Study. Glob Heart 2025; 20:40. [PMID: 40322053 PMCID: PMC12047645 DOI: 10.5334/gh.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Objective Cardiovascular disease (CVD) is the leading cause of death among patients with non-alcoholic fatty liver disease (NAFLD). This study investigates the association between high-sensitivity cardiac troponin (hs-cTn) levels and mortality in adults at risk of NAFLD in a representative U.S. population sample. Methods Among participants aged 18 years and older in the 1999-2004 National Health and Nutrition Examination Survey, we measured high-sensitivity troponin T using a single assay (Roche) and high-sensitivity troponin I using three assays (Abbott, Siemens, and Ortho). Myocardial injury was identified by elevated levels of hs-cTn. Mortality outcomes were determined through linkage with the National Death Index database, with follow-up until December 31, 2019. A multivariable Cox proportional hazards model was used to evaluate the associations between myocardial injury and mortality in the NAFLD population. Sensitivity analyses were conducted to assess the robustness of the main findings. Results A total of 2581 at risk of NAFLD were included in this observational study, with myocardial injury identified in 7.01%. Over a median follow-up of 16.7 years, 937 all-cause deaths occurred, including 319 cardiovascular disease-related deaths. NAFLD individuals with myocardial injury had worse survival rates at 5, 10, and 15 years compared to those without myocardial injury. After adjusting for baseline characteristics, myocardial injury was associated with an increased risk of all-cause mortality (adjusted Hazard Ratio [aHR] 1.785, 95% CI 1.494-2.134, P < 0.001) and cardiovascular mortality (aHR 2.155, 95% CI 1.606-2.893, P < 0.001). Conclusion This large, nationally representative study demonstrates that myocardial injury, defined by elevated hs-cTn levels, is independently associated with increased all-cause and cardiovascular mortality risks in the adult population at risk of NAFLD in the United States. This association persisted after adjusting for various factors and in patients without pre-existing cardiovascular disease. The Siemens hs-cTn I assay demonstrated the strongest association with all-cause mortality. These findings highlight the potential of hs-cTn as a valuable prognostic marker in NAFLD patients, even in those without clinically apparent cardiovascular disease. Routine hs-cTn assessment may aid in risk stratification and guide targeted interventions to reduce mortality risk in this population.
Collapse
Affiliation(s)
- Enfa Zhao
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Hang Xie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Yuan Gao
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xiaolin Wen
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Bingtian Dong
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Chaoxue Zhang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
34
|
Shang DF, Xu WQ, Zhao Q, Zhao CL, Wang SY, Han YL, Li HG, Liu MH, Zhao WX. Molecular mechanisms of pyroptosis in non-alcoholic steatohepatitis and feasible diagnosis and treatment strategies. Pharmacol Res 2025; 216:107754. [PMID: 40306603 DOI: 10.1016/j.phrs.2025.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Pyroptosis is a distinct form of cell death that plays a critical role in intensifying inflammatory responses. It primarily occurs via the classical pathway, non-classical pathway, caspase-3/6/7/8/9-mediated pathways, and granzyme-mediated pathways. Key effector proteins involved in the pyroptosis process include gasdermin family proteins and pannexin-1 protein. Pyroptosis is intricately linked to the onset and progression of non-alcoholic steatohepatitis (NASH). During the development of NASH, factors such as pyroptosis, innate immunity, lipotoxicity, endoplasmic reticulum stress, and gut microbiota imbalance interact and interweave, collectively driving disease progression. This review analyzes the molecular mechanisms of pyroptosis and its role in the pathogenesis of NASH. Furthermore, it explores potential diagnostic and therapeutic strategies targeting pyroptosis, offering new avenues for improving the diagnosis and treatment of NASH.
Collapse
Affiliation(s)
- Dong-Fang Shang
- Henan University of CM, Zhengzhou 450000, China; The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Wen-Qian Xu
- Henan University of CM, Zhengzhou 450000, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Chen-Lu Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Si-Ying Wang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Yong-Li Han
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - He-Guo Li
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Ming-Hao Liu
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Wen-Xia Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| |
Collapse
|
35
|
Accacha S, Barillas-Cerritos J, Srivastava A, Ross F, Drewes W, Gulkarov S, De Leon J, Reiss AB. From Childhood Obesity to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Hyperlipidemia Through Oxidative Stress During Childhood. Metabolites 2025; 15:287. [PMID: 40422865 DOI: 10.3390/metabo15050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND/OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is rapidly becoming the most prevalent form of chronic liver disease in both pediatric and adult populations. It encompasses a wide spectrum of liver abnormalities, ranging from simple fat accumulation to severe conditions such as inflammation, fibrosis, cirrhosis, and liver cancer. Major risk factors for MASLD include obesity, insulin resistance, type 2 diabetes, and hypertriglyceridemia. METHODS This narrative review employed a comprehensive search of recent literature to identify the latest studies on the relationship between MAFLD and obesity, the health consequences and the latest treatment options to prevent long-term damage to the liver and other organs. Additionally, the article presents perspectives on diagnostic biomarkers. RESULTS Childhood obesity is linked to a multitude of comorbid conditions and remains a primary risk factor for adult obesity. This abnormal fat accumulation is known to have long-term detrimental effects into adulthood. Scientific evidence unequivocally demonstrates the role of obesity-related conditions, such as insulin resistance, dyslipidemia, and hyperglycemia, in the development and progression of MASLD. Oxidative stress, stemming from mitochondrial dysfunction, is a leading factor in MASLD. This review discusses the interconnections between oxidative stress, obesity, dyslipidemia, and MASLD. CONCLUSIONS Atherogenic dyslipidemia, oxidative stress, inflammation, insulin resistance, endothelial dysfunction, and cytokines collectively contribute to the development of MASLD. Potential treatment targets for MASLD are focused on prevention and the use of drugs to address obesity and elevated blood lipid levels.
Collapse
Affiliation(s)
- Siham Accacha
- Department of Pediatrics, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Julia Barillas-Cerritos
- Department of Pediatrics, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Ankita Srivastava
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Frances Ross
- Department of Pediatrics, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Wendy Drewes
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Shelly Gulkarov
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Allison B Reiss
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
36
|
Liu B, He N, Li H, Yang Z, Lin Y, Wu X, Zhang H, Zhang Z, Zhang Z, Tian Y, Wu Z, Zou Y, Peng J, Li S. 3-Fucosyllactose Prevents Nonalcoholic Fatty Liver Disease by Modulating the Gut Microbiota-Derived Pantothenate in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9637-9649. [PMID: 40230307 DOI: 10.1021/acs.jafc.5c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing global health threat. Human milk oligosaccharides (HMOs) exhibit prebiotic properties that may alleviate NAFLD progression. Herein, our study demonstrates that 3-fucosyllactose (3-FL), a distinctive and crucial HMO, significantly attenuates body weight gain, enhances hepatic lipid metabolism, and reduces inflammation in a high-fat diet (HFD)-induced NAFLD mouse model. These findings suggest its potential as a dietary supplement for preventing and alleviating NAFLD progression. Subsequently, fecal metagenomic and nontargeted metabolomics analyses revealed that 3-FL treatment significantly alleviated HFD-induced gut microbiota dysbiosis, with a specific enhancement of the pantothenate (vitamin B5) metabolic pathways. Our targeted metabolite analysis further revealed a significant increase in both hepatic and fecal pantothenate concentrations, which contributed to the enhancement of the coenzyme A (CoA)-mediated lipid metabolism pathway. Furthermore, the subsequent population cohort analyses revealed a significant correlation between serum pantothenate levels and the progression of NAFLD, thereby reinforcing its candidacy as a noninvasive diagnostic biomarker. These findings show that 3-FL acts as an effective prebiotic to alleviate NAFLD symptoms, in part by enhancing the gut microbiota-mediated pantothenate/CoA metabolic pathway.
Collapse
Affiliation(s)
- Bei Liu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Hui Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yichen Lin
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaoyu Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Haoyan Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Ziheng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Zishuai Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yu Tian
- BGI Research, Shenzhen 518083, China
- College of Life Sciences, Northwest University, Xian 710069, China
| | - Zhinan Wu
- BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanqiang Zou
- BGI Research, Shenzhen 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen 518083, China
| | - Jixing Peng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
37
|
Lei S, Wu Q, Zhang B, Lu M, Xia Y, Li N. Liver-Targeting Nanoparticles GA-MSe@AR Treat NAFLD Through Dual Lipid-Lowering and Antioxidant Efficacy. Int J Nanomedicine 2025; 20:5017-5037. [PMID: 40271147 PMCID: PMC12015739 DOI: 10.2147/ijn.s510577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/04/2025] [Indexed: 04/25/2025] Open
Abstract
Background and Purpose Non-alcoholic fatty liver disease (NAFLD) is prevalent worldwide and lacks effective treatments. Arctiin (AR), a natural product, has shown promise for NAFLD therapy, due to its antioxidant, anti-inflammatory, and inhibition adipogenesis properties. However, its therapeutic efficacy is hindered by low water solubility, poor bioavailability, and inadequate liver targeting. In this study, selenium-based antioxidant nanoparticles were developed to load and deliver AR to the liver for synergistic AR and selenium effective treatment of NAFLD. Methods The therapeutic potential of AR was analyzed by network pharmacology. GA-MSe@AR was synthesized by encapsulating AR within galactose-modified mesoporous selenium nanoparticles (GA-MSe) for liver-specific targeting. The nanoparticle size, chemical structure, and elemental composition were explored. The toxicity, cellular uptake, lysosomal escape, and AR release efficiency of GA-MSe@AR were investigated by in vitro experiments. The liver targeting ability of GA-MSe@AR was evaluated through live imaging. The lipid-lowering and antioxidant activities of GA-MSe@AR were assessed in both in vitro and in vivo NAFLD models. Additionally, its effects on inflammation and pancreatic function were analyzed in vivo. Results Network pharmacology analysis revealed AR may against NAFLD through regulating metabolism, inflammation, and oxidative stress. GA-MSe@AR exhibited low toxicity, efficient cellular uptake, remarkable lysosomal escape ability, and high AR release efficiency in vitro. In both in vitro and in vivo NAFLD models, GA-MSe@AR demonstrated more pronounced lipid-lowering and antioxidant properties than AR and GA-MSe. Additionally, GA-MSe@AR effectively targeted the liver, resulting in a greater decrease in blood glucose, lipids, ALT, AST levels, and reduction liver inflammation, as well as improved pancreatic function in high-fat diet (HFD)-fed mice compared to AR alone. Conclusion The GA-specific modification enhanced liver-targeted accumulation of the selenium-based nanoparticles, enabling precise targeted delivery of AR. GA-MSe@AR demonstrated superior lipid-lowering efficacy and antioxidant activity in a NAFLD mice model. These findings collectively establish GA-MSe@AR as a promising therapeutic candidate for NAFLD treatment.
Collapse
Affiliation(s)
- Sheng Lei
- Department of HBP Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Qiang Wu
- Department of HBP Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Bin Zhang
- Department of HBP Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Minqiang Lu
- Department of HBP Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Yu Xia
- Department of HBP Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Ning Li
- Department of HBP Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| |
Collapse
|
38
|
Pecani M, Andreozzi P, Cangemi R, Corica B, Miglionico M, Romiti GF, Stefanini L, Raparelli V, Basili S. Metabolic Syndrome and Liver Disease: Re-Appraisal of Screening, Diagnosis, and Treatment Through the Paradigm Shift from NAFLD to MASLD. J Clin Med 2025; 14:2750. [PMID: 40283580 PMCID: PMC12028215 DOI: 10.3390/jcm14082750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), encompasses a spectrum of liver diseases characterized by hepatic steatosis, the presence of at least one cardiometabolic risk factor, and no other apparent cause. Metabolic syndrome (MetS) is a cluster of clinical conditions associated with increased risk of cardiovascular disease, type 2 diabetes, and overall morbidity and mortality. This narrative review summarizes the changes in the management of people with MetS and NAFLD/MASLD from screening to therapeutic strategies that have occurred in the last decades. Specifically, we underline the clinical importance of considering the different impacts of simple steatosis and advanced fibrosis and provide an up-to-date overview on non-invasive diagnostic tests (i.e., imaging and serum biomarkers), which now offer acceptable accuracy and are globally more accessible. Early detection of MetS and MASLD is a top priority as it allows for timely interventions, primarily through lifestyle modification. The liver and cardiovascular benefits of a global and multidimensional approach are not negligible. Therefore, a holistic approach to both conditions, MetS and related chronic liver disease, should be applied to improve overall health and longevity.
Collapse
Affiliation(s)
- Marin Pecani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Paola Andreozzi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Bernadette Corica
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Polyclinic of Modena, 41121 Modena, Italy
| | - Marzia Miglionico
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Valeria Raparelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
39
|
Song Z, Gu HQ, Xu C. Association of the non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio with non-alcoholic fatty liver disease and hepatic steatosis in United States adults: insights from NHANES 2017-2020. Front Nutr 2025; 12:1540903. [PMID: 40290661 PMCID: PMC12021641 DOI: 10.3389/fnut.2025.1540903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Objective This study aimed to investigate the association between the non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and NAFLD, as well as its relationship with hepatic steatosis and liver fibrosis, in a nationally representative sample of U.S. adults. Methods This cross-sectional study analyzed data from 3,529 participants from the National Health and Nutrition Examination Survey in 2017-2020. Multivariable logistic regression and subgroup analyses were used to assess the association between NHHR and NAFLD. Multivariate linear regression was employed to evaluate the relationship between NHHR and hepatic steatosis (controlled attenuation parameter) and liver fibrosis (liver stiffness measurement). Nonlinear relationships were explored through fitted smoothing curves and threshold effect analysis. Receiver operating curve (ROC) analysis was performed to compare the diagnostic performance of NHHR with body mass index (BMI), high-density lipoprotein cholesterol (HDL-C), and total cholesterol (TC). Results The study included 3,529 participants (mean age: 51.34 years, 95% CI: 49.97, 52.72), with 53.53% male. NHHR showed a significant positive association with NAFLD after adjusting for confounders (OR: 1.33, 95% CI: 1.24, 1.42). Subgroup analysis indicated a stronger association in females and individuals with normal weight. A nonlinear relationship was identified, with a significant positive association below an inflection point of 4 (OR: 1.52, 95% CI: 1.38, 1.68). NHHR was positively associated with hepatic steatosis but not with liver fibrosis. For NAFLD diagnosis, NHHR achieved an area under the curve (AUC) of 0.66, outperforming TC (AUC = 0.51) but indicating lower accuracy than BMI (AUC = 0.77) and HDL-C (AUC = 0.68). Conclusion NHHR is positively associated with NAFLD and hepatic steatosis in U.S. population, highlighting the important role of lipid control in the prevention and clinical management of NAFLD.
Collapse
Affiliation(s)
- Zhen Song
- Yancheng Binhai Hospital of Traditional Chinese Medicine, Yancheng, China
| | - Hai-Qi Gu
- Yancheng Binhai Hospital of Traditional Chinese Medicine, Yancheng, China
| | - Cheng Xu
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
40
|
Hong J, Kim YH. Cutting-edge biotherapeutics and advanced delivery strategies for the treatment of metabolic dysfunction-associated steatotic liver disease spectrum. J Control Release 2025; 380:433-456. [PMID: 39923856 DOI: 10.1016/j.jconrel.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/22/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a condition with the potential to progress into liver cirrhosis or hepatocellular carcinoma, has become a significant global health concern due to its increasing prevalence alongside obesity and metabolic syndrome. Despite the promise of existing therapies such as thyroid hormone receptor-β (THR-β) agonists, PPAR agonists, FXR agonists, and GLP-1 receptor agonists, their effectiveness is limited by the complexity of the metabolic, inflammatory, and fibrotic pathways that drive MASLD progression, encompassing steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and reversible liver fibrosis. Recent advances in targeted therapeutics, including RNA interference (RNAi), mRNA-based gene therapies, monoclonal antibodies, proteolysis-targeting chimeras (PROTAC), peptide-based strategies, cell-based therapies such as CAR-modified immune cells and stem cells, and extracellular vesicle-based approaches, have emerged as promising interventions. Alongside these developments, innovative drug delivery systems are being actively researched to enhance the stability, precision, and therapeutic efficacy of these biotherapeutics. These delivery strategies aim to optimize biodistribution, improve target-specific action, and reduce systemic exposure, thus addressing critical limitations of existing treatment modalities. This review provides a comprehensive exploration of the underlying biological mechanisms of MASLD and evaluates the potential of these cutting-edge biotherapeutics in synergy with advanced delivery approaches to address unmet clinical needs. By integrating fundamental disease biology with translational advancements, it aims to highlight future directions for the development of effective, targeted treatments for MASLD and its associated complications.
Collapse
Affiliation(s)
- Juhyeong Hong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763 Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763 Seoul, South Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763 Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763 Seoul, South Korea; Cursus Bio Inc., Icure Tower, Gangnam-gu, Seoul 06170, Republic of Korea.
| |
Collapse
|
41
|
Chen A, Nguyen K, Jiang X, Yu X, Xie Y, Liu W, Davidson NO, Ding WX, Ni HM. Distinct yet Overlapping Functions of VMP1 and TMEM41B in Modulating Hepatic Lipoprotein Secretion and Autophagy in MASH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647617. [PMID: 40291711 PMCID: PMC12026991 DOI: 10.1101/2025.04.07.647617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background Transmembrane protein 41B (TMEM41B) and vacuolar membrane protein 1 (VMP1) are endoplasmic reticulum (ER) transmembrane scramblase proteins that have been recently identified to have important roles in autophagy and hepatic lipoprotein secretion. While TMEM41B and VMP1 are structurally and functionally similar, the nature of their interactions and how they coordinately regulate hepatic lipoprotein secretion and autophagy in metabolic-associated steatotic liver disease (MASLD) and metabolic-associated steatohepatitis (MASH) remains unclear. Methods Liver-specific and hepatocyte-specific Tmem41b knockout (KO) mice as well as Tmem41b knock-in (KI) mice were generated from Tmem41b flox or Tmem41b KI mice by crossing with albumin-Cre mice or by injecting AAV8-TBG-cre, respectively. Lipid metabolism in these mice was characterized by lipidomic analyses. Mice with hepatic overexpression of TMEM41B that were fed a MASH diet were also characterized. To explore the relationship between TMEM41B and VMP1, Tmem41b/Vmp1 double KO (DKO), Tmem41b KO/ Vmp1 KI, and Vmp1 KO/ Tmem41b KI mice were generated, and steatosis and autophagy were characterized. Results The loss of hepatic Tmem41b severely impaired very low-density lipoprotein (VLDL) secretion, resulting in significant microsteatosis, increased hepatic triglycerides, inflammation, fibrosis, and ultimately the MASH development. TMEM41B protein was decreased in human MASLD livers. Overexpression of TMEM41B mitigated the effects of diet-induced MASLD. Mice lacking both Vmp1 and Tmem41b (DKO) showed further impairment in VLDL secretion compared to single Tmem41b KO, but were similar that of Vmp1 KO mice. Lipidomic analysis of liver tissues revealed decreased levels of phosphatidylcholine and phosphatidylethanolamine, along with increased neutral lipids. Cellular fractionation studies indicated that VMP1 and TMEM41B localize at the mitochondrial-associated membrane (MAM). Electron microscopy analysis showed reduced contact between mitochondria and the ER in hepatocytes deficient in either VMP1 or TMEM41B. The loss of hepatic VMP1 or TMEM41B led to markedly increased levels of LC3B-II and p62/SQSTM1, which were not further affected by double deletion of VMP1 and TMEM41B. Restoring VMP1 in Tmem41b KO mice partially improved defective VLDL secretion, though autophagy was only partially corrected by overexpression of VMP1 at a low but not high level. In contrast, restoring TMEM41B in Vmp1 KO mice dose-dependently improved both defective VLDL secretion and autophagy. Conclusion Loss of hepatic VMP1 or TMEM41B decreases MAM and phospholipid content and reduces VLDL secretion, resulting in the development of MASH. TMEM41B and VMP1 may have overlapping but distinct mechanisms in regulating lipoprotein secretion and autophagy.
Collapse
|
42
|
Zhang S, Li G, He L, Wang F, Gao M, Dai T, Su Y, Li L, Cao Y, Zheng M, Chen L, Cao J, Zhou H. Sphingosine kinase 2 deficiency impairs VLDL secretion by inhibiting mTORC2 phosphorylation and activating chaperone-mediated autophagy. Cell Death Differ 2025:10.1038/s41418-025-01507-6. [PMID: 40200091 DOI: 10.1038/s41418-025-01507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
Hepatic very low-density lipoprotein (VLDL) is essential for maintaining lipid metabolism in the liver. Sphingosine kinases (SphKs) are essential rate-limiting enzymes that catalyze sphingosine phosphorylation to Sphingosine-1-phosphate (S1P). SphKs exist as two isoforms, SphK1 and SphK2, both highly expressed in the liver. SphK1 plays a critical role in regulating hepatic inflammation and drug metabolism. This study aimed to determine whether SphK2 regulates hepatic lipid metabolism, particularly VLDL secretion. Immunohistochemical staining revealed decreased SphK2 protein levels within regions proximal to hepatic lipid accumulation in individuals diagnosed with metabolic dysfunction-associated steatotic liver disease (MASLD). Sphk2-/- mice exhibited spontaneous hepatocyte lipid accumulation and reduced VLDL secretion. Proteomic analysis revealed that SphK2 deficiency impaired soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) complex interactions involved in vesicular transport and organelle membrane fusion. Furthermore, SphK2 deficiency results in accelerated degradation of the SEC22B, STX5A, and GS28 proteins via chaperone-mediated autophagy (CMA), impeding VLDL transport to the Golgi apparatus. MYH1485, a specific activator of mTOR, induces mTORC2 phosphorylation, thereby inhibiting the degradation of SNARE complexes by CMA and counteracting the lipid accumulation induced by SphK2 deficiency. Exogenous S1P supplementation markedly reversed the reduction in mTORC2 phosphorylation and suppressed CMA, thereby improving VLDL secretion. Our study elucidates an inventive regulatory mechanism by which SphK2 modulates CMA by activating mTORC2 phosphorylation, promoting VLDL secretion, and balancing lipid metabolism in the liver. These findings provide insights into SphK2 function and the underlying mechanisms involved in the regulation of VLDL secretion, which may facilitate MASLD treatment. Proposed model for the role of SphK2 in hepatic VLDL secretion. In hepatocytes, the inhibition of SphK2 activity decreased S1P production, which subsequently downregulates the mTORC2 pathway. This process accelerates the degradation of the SNARE complex components STX5A, GS28, and SEC22B via CMA, which regulates the mutual recognition between VTVs and the Golgi apparatus, ultimately reducing VLDL secretion in hepatocytes.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Gaoxiang Li
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Lianping He
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Fei Wang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengru Gao
- Clinical Pathology Center, the First Affiliated Hospital of Anhui Medical University, Hefei, 230012, Anhui, China
- Anhui Public Health Clinical Center, Hefei, 230012, Anhui, China
| | - Tianliang Dai
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yushuang Su
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Luyan Li
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ying Cao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Minghua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, 325000, China
| | - Liang Chen
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jun Cao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hong Zhou
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
43
|
Wang D, Zhang M, Zhang Y, Yin Z, Zhang S, Zhao Z, Duan Y. Hepatoprotective effects of polysaccharide from Morchella esculenta are associated with activation of the AMPK/Sirt1 signaling pathway in mice with NAFLD. Int J Biol Macromol 2025; 301:140444. [PMID: 39884630 DOI: 10.1016/j.ijbiomac.2025.140444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The functional food application of edible fungus polysaccharides has been widely studied based on their variety of potential pharmacological activities. However, the hepatoprotective effects and mechanisms of Morchella esculenta polysaccharide against nonalcoholic fatty liver disease (NAFLD) remain unknown. A high-fat diet (HFD) fed C57BL/6 J mice for 8 weeks was employed to establish NAFLD with simple steatosis, methionine choline deficiency (MCD) diet for 4 weeks induced hepatic steatohepatitis and fibrosis. The M. esculenta polysaccharide (MCP) or saline was administered intragastrically. MCP markedly reduced hepatic and serum triglyceride (TG) and cholesterol contents in HFD-fed mice. Moreover, treatment with MCP ameliorated nonalcoholic steatohepatitis (NASH) progression in MCD-fed mice, as evidenced by ameliorated hepatic steatosis, inflammatory response, and fibrosis. Mechanistically, MCP suppressed the expression of lipogenic genes and inflammatory cytokines and upregulated peroxisome proliferator-activated receptor (PPAR)-α expression to induce fatty acid β-oxidation. These beneficial effects were attributed to activating the AMP-activated kinase (AMPK)/Sirtuin 1 (Sirt1) signaling pathway. Therefore, we provided evidence that MCP might be an effective dietary supplement to ameliorate NAFLD.
Collapse
Affiliation(s)
- Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230011, China; College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
| | - Menglian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230011, China
| | - Yaowen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230011, China
| | - Zequn Yin
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shuang Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
| | - Zhiwei Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
44
|
Zhang QR, Dong Y, Fan JG. Early-life exposure to gestational diabetes mellitus predisposes offspring to pediatric nonalcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2025; 24:128-137. [PMID: 38195352 DOI: 10.1016/j.hbpd.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the prevailing chronic liver disease in the pediatric population due to the global obesity pandemic. Evidence shows that prenatal and postnatal exposure to maternal abnormalities leads to a higher risk of pediatric NAFLD through persistent alterations in developmental programming. Gestational diabetes mellitus (GDM) is a hyperglycemic syndrome which has become the most prevalent complication in pregnant women. An increasing number of both epidemiologic investigations and animal model studies have validated adverse and long-term outcomes in offspring following GDM exposure in utero. Similarly, GDM is considered a crucial risk factor for pediatric NAFLD. This review aimed to summarize currently published studies concerning the inductive roles of GDM in offspring NAFLD development during childhood and adolescence. Dysregulations in hepatic lipid metabolism and gut microbiota in offspring, as well as dysfunctions in the placenta are potential factors in the pathogenesis of GDM-associated pediatric NAFLD. In addition, potentially effective interventions for GDM-associated offspring NAFLD are also discussed in this review. However, most of these therapeutic approaches still require further clinical research for validation.
Collapse
Affiliation(s)
- Qian-Ren Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Dong
- Department of Endocrinology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China.
| |
Collapse
|
45
|
Zhang J, Liu X, Jin X, Mao X, Xu X, Zhang X, Shang K, Xu Y, Zhang Y, Meng G, Yue M, Cai G, Yang S, Huang J, Fang J, Pan L, Jiang L, Shi S, Shou J. Liver-specific inactivation of Cideb improves metabolic profiles and ameliorates steatohepatitis and fibrosis in animal models for MASH. Pharmacol Res 2025; 214:107664. [PMID: 39984006 DOI: 10.1016/j.phrs.2025.107664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Germline mutations of CIDEB, a lipid droplets (LDs)-associated protein, confer protection against various liver diseases in humans. It remains to be determined whether liver-specific inhibition of CIDEB will bring clinical benefits. We aim to establish pharmacological proof of concept by testing GalNAc-conjugated Cideb surrogate siRNAs in respective animal models of obesity and MASH and to develop siRNA drug candidates for clinical investigations. Surrogate siRNAs targeting mouse Cideb were designed and evaluated via a panel of assays. Concurrently, humanized CIDEB knock-in mice were generated as a research tool to facilitate human therapeutic siRNA discovery. In vivo administration of the surrogate siRNAs was conducted in the diet-induced obesity (DIO) model and CDAA-HFD model of MASH. In the DIO model, Cideb knockdown led to significant reductions of serum total cholesterol (TC) and triglyceride (TG) levels, a significant decrease in hepatic macro-steatosis and notable weight loss. In the CDAA-HFD model, Cideb siRNA treatment significantly reduced liver TC and TG levels. Furthermore, remarkable reductions of hepatic steatosis and the composite NAS score were observed with a concomitant amelioration of liver fibrosis. Transcriptome analyses revealed that integrin pathways may contribute to the major pharmacological activities upon Cideb inactivation beyond lipid metabolism. CIDEB exhibits significant potential as a therapeutic target for the treatment of MASH. Liver-targeting siRNA candidates are under development for therapeutic hypothesis testing in humans.
Collapse
Affiliation(s)
- Jianhua Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Xujie Liu
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Xian Jin
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Xudong Mao
- EnnovaBio Pharmaceuticals, Shanghai 201206, China
| | - Xueli Xu
- EnnovaBio Pharmaceuticals, Shanghai 201206, China
| | - Xing Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201206, China
| | - Ke Shang
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Yuan Xu
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | | | - Guofeng Meng
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Ming Yue
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Guoqing Cai
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Song Yang
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Jinyu Huang
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Jianwu Fang
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Ling Pan
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Lei Jiang
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Stella Shi
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Jianyong Shou
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China.
| |
Collapse
|
46
|
Kantapan J, Katsube T, Wang B. High-Fat Diet and Altered Radiation Response. BIOLOGY 2025; 14:324. [PMID: 40282189 PMCID: PMC12024794 DOI: 10.3390/biology14040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025]
Abstract
High-fat diets (HFDs) have become increasingly prevalent in modern societies, driving rising rates of obesity and metabolic syndrome. Concurrently, radiation exposure from medical treatments and environmental sources poses health risks shaped by both biological and environmental factors. This review explores the intersection between HFDs and radiation sensitivity/susceptibility, focusing on how diet-induced metabolic alterations influence the body's response to radiation. Evidence from preclinical and clinical studies indicates that HFDs significantly alter metabolism, leading to increased oxidative stress and immune system dysregulation. These metabolic changes can exacerbate radiation-induced oxidative stress, inflammation, and DNA damage, potentially increasing radiation sensitivity in normal tissues. Conversely, obesity and HFD-induced metabolic disruptions may activate cellular pathways involved in DNA repair, cell survival, and inflammatory responses, fostering tumor resistance and modifying the tumor microenvironment, which may impair the efficacy of radiation therapy in cancer treatment. Understanding the interplay between diet and radiation exposure is critical for optimizing public health guidelines and improving therapeutic outcomes. These findings underscore the need for further research into dietary interventions that may mitigate radiation-associated risks.
Collapse
Affiliation(s)
- Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Takanori Katsube
- Institute for Radiological Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan;
| | - Bing Wang
- Institute for Radiological Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan;
| |
Collapse
|
47
|
Qin M, Yi X, Duan Z, Chang B, Li T. Recent insights on the impact of SWELL1 on metabolic syndromes. Front Pharmacol 2025; 16:1552176. [PMID: 40191429 PMCID: PMC11968765 DOI: 10.3389/fphar.2025.1552176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
SWELL1 is a key component of the volume-regulated anion channel (VRAC) and participates in cell volume regulation as an ion channel plasma membrane protein. While early studies focused on its role in immune cell development and tumor progression, recent studies have revealed that SWELL1 plays an important role in metabolic diseases. Studies have shown that SWELL1 is extensively involved in physiological processes in peripheral metabolic tissues, including adipocyte hypertrophy, skeletal muscle volume regulation, insulin secretion, and hepatic lipid metabolism through interactions with the insulin signaling pathway. These functions play key roles in the pathogenesis of obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD), suggesting that SWELL1 may be a new target for the treatment of metabolic diseases. In this review, we focus on the structural and functional characteristics of SWELL1 to provide an in-depth explanation of its role in the development of metabolic syndrome, especially the regulation of the insulin signaling pathway, and provide a basis for the development of therapeutic strategies for metabolic diseases targeting SWELL1.
Collapse
Affiliation(s)
- Mianhong Qin
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ziqiang Duan
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Tao Li
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
48
|
Lai S, Tang D, Feng J. Mitochondrial targeted therapies in MAFLD. Biochem Biophys Res Commun 2025; 753:151498. [PMID: 39986088 DOI: 10.1016/j.bbrc.2025.151498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a clinical-pathological syndrome primarily characterized by excessive accumulation of fat in hepatocytes, independent of alcohol consumption and other well-established hepatotoxic agents. Mitochondrial dysfunction is widely acknowledged as a pivotal factor in the pathogenesis of various diseases, including cardiovascular diseases, cancer, neurodegenerative disorders, and metabolic diseases such as obesity and obesity-associated MAFLD. Mitochondria are dynamic cellular organelles capable of modifying their functions and structures to accommodate the metabolic demands of cells. In the context of MAFLD, the excess production of reactive oxygen species induces oxidative stress, leading to mitochondrial dysfunction, which subsequently promotes metabolic disorders, fat accumulation, and the infiltration of inflammatory cells in liver and adipose tissue. This review aims to systematically analyze the role of mitochondria-targeted therapies in MAFLD, evaluate current therapeutic strategies, and explore future directions in this rapidly evolving field. We specifically focus on the molecular mechanisms underlying mitochondrial dysfunction, emerging therapeutic approaches, and their clinical implications. This is of significant importance for the development of new therapeutic approaches for these metabolic disorders.
Collapse
Affiliation(s)
- Sien Lai
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Dongsheng Tang
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Juan Feng
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| |
Collapse
|
49
|
Kang P, Chen Q, Wu J, Zhang Q, Crump D, Su G. Novel Organophosphate Ester Tris(2,4-di- tert-butylphenyl)phosphate Alters Lipid Metabolism: Insights from Lipidomic Analysis and mRNA Expression. Chem Res Toxicol 2025; 38:448-457. [PMID: 39928661 DOI: 10.1021/acs.chemrestox.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Tris(2,4-di-tert-butylphenyl)phosphate (TDTBPP), a novel organophosphate ester (OPE), has been extensively detected in various environmental and biological samples; however, its potential biological effects remain unexplored. In this study, we investigated biotransformation characteristics, alteration of lipid metabolism, and mRNA expression in primary mouse hepatocytes (PMHs) following exposure to TDTBPP. After 36-h exposure in PMHs, TDTBPP exhibited a high stability potential with no statistically significant degradation trend. Subsequently, we analyzed the disruption of lipid homeostasis in PMHs following exposure to 0-4.5 μM TDTBPP. Lipidomic analysis indicated that TDTBPP disrupted lipid homeostasis in PMHs, and several lipid classes were dysregulated, in particular, glycerolipids and glycerophospholipids. Additionally, three lipids were proposed as potential lipid biomarkers of TDTBPP exposure, including triglycerides (TGs) and phosphatidylcholines (PCs). These observations were further supported by transcriptional changes, with significant alteration observed in genes associated with lipid uptake, de novo lipogenesis, β-oxidation of fatty acids, glycerolipid metabolism, and lipid export. Overall, these findings highlight the detrimental effects of TDTBPP on lipid homeostasis, providing important insights for health risk assessments of this abundant OPE in the environment.
Collapse
Affiliation(s)
- Pingping Kang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qianyu Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Wu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qi Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, K1A0H3, Canada
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
50
|
Zdanowicz K, Bobrus-Chociej A, Flisiak-Jackiewicz M, Kowalczuk-Kryston M, Jamiolkowski J, Mielech W, Lebensztejn DM. Apoptosis markers in children with metabolic-associated fatty liver disease: a preliminary study. PRZEGLAD GASTROENTEROLOGICZNY 2025; 20:41-47. [PMID: 40191505 PMCID: PMC11966513 DOI: 10.5114/pg.2025.148527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/08/2024] [Indexed: 04/09/2025]
Abstract
Introduction Metabolic-associated fatty liver disease (MAFLD) is a new disease definition. The development of hepatic steatosis is complex and may also be influenced by apoptotic mechanisms. Aim We aimed to assess serum concentrations of selected apoptosis markers, cytokeratin-18 fragments (M30) and agiopoietin-2 (Ang2) in children and adolescents with obesity and to evaluate the association of these parameters with paediatric MAFLD. Material and methods The prospective study included 76 overweight/obese children with suspected liver disease. MAFLD was diagnosed according to the latest consensus. The concentrations of M30 and Ang2 in serum were measured using an enzyme-linked immunosorbent assay (ELISA). Results Liver steatosis was diagnosed in abdominal ultrasound in 45 obese patients (59.2%) who were classified as the MAFLD group. Children with MAFLD had elevated levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), uric acid and M30 in comparison to non-MAFLD children. M30 positively correlated with ALT, AST, GGT, uric acid, Ang2 and the stage of liver steatosis. In receiver operating characteristic (ROC) analysis, M30 (cut-off = 173.74 IU/ml with sensitivity = 76.9% and specificity = 69.6%) allowed overweight/obese patients with and without MAFLD to be differentiated. Conclusions Our results suggest that the mechanism of apoptosis may play an important role in the development of MAFLD in children. There is a need for further studies in children to determine whether the M30 concentration may be an indicator of MAFLD progression and whether inhibition of apoptosis may become one of the therapeutic options for this disease.
Collapse
Affiliation(s)
- Katarzyna Zdanowicz
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bobrus-Chociej
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| | - Marta Flisiak-Jackiewicz
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| | - Monika Kowalczuk-Kryston
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Jamiolkowski
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| | - Wlodzimierz Mielech
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz M. Lebensztejn
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|