1
|
Zhao D, Wang C, Zhang G, Song Z, Luan C. Mechanistic insights into Circ-MBOAT2-mediated regulation of TLK1 through miR-664b-3p in non-small cell lung cancer. Hereditas 2025; 162:77. [PMID: 40369698 PMCID: PMC12076824 DOI: 10.1186/s41065-025-00439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Emerging evidence highlights the critical involvement of dysregulated circular RNAs (circRNAs) in non-small cell lung cancer (NSCLC) pathogenesis. Nevertheless, the precise functional role and mechanistic contributions of circ-MBOAT2 in NSCLC remain poorly characterized. The purpose of this study was to investigate the pathogenesis of NSCLC based on circ-MBOAT2. METHODS Our investigation focused on the interplay among circ-MBOAT2, miR-664b-3p, and Tousled-like kinase 1 (TLK1) mRNA in NSCLC tissues, along with their association with the clinical and pathological characteristics of NSCLC patients. Sequences or plasmids were transfected into A549 cells. Gene expressions were identified using RT-qPCR and Western blot analysis. NSCLC cells' cancerous characteristics were identified using CCK-8, EdU, AnnexinV-PI double staining, and Transwell, while their in vivo growth was assessed through a xenografted tumor assay. To monitor alterations in the CD8+ T cell ratio and inflammatory factors in PBMCs, co-cultures were created with both normal human PBMCs and A549 cells. Evaluations using bioinformatics software, dual luciferase reporter tests, and RIP assays were performed to verify the connection between circ-MBOAT2 and miR-664b-3p, as well as the interaction between miR-664b-3p and TLK1. RESULTS Circ-MBOAT2 expression was up-regulated in NSCLC, and reducing circ-MBOAT2 hampered NSCLC cell proliferation, EMT, immune escape, and tumor growth in vivo. There was a negative correlation between miR-664b-3p expression and circ-MBOAT2, and miR-664b-3p could compete with circ-MBOAT2 for binding. miR-664b-3p downregulation impaired the anti-tumor effect of circ-MBOAT2 reduction on NSCLC cells. TLK1 expression was elevated in NSCLC specimens compared to adjacent normal tissues (p < 0.001), negatively correlated with miR-664b-3p (r=-0.351, p < 0.001), and positively correlated with circ-MBOAT2 (r = 0.341, p < 0.001). In vitro functional experiments showed that silencing TLK1 restrained NSCLC cell proliferation, EMT, and immune escape, whlie TLK1 overexpression rescued the inhibitory effects of miR-664b-3p on NSCLC cell malignant behaviors. CONCLUSION Circ-MBOAT2 promotes NSCLC cell proliferation, EMT and immune escape by competitively binding to miR-664b-3p to promote TLK1 expression.
Collapse
Affiliation(s)
- DanTing Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taishan District, Tai'an City, Shandong Province, 271000, China
| | - Cong Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taishan District, Tai'an City, Shandong Province, 271000, China
| | - GuangCheng Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taishan District, Tai'an City, Shandong Province, 271000, China
| | - ZhengChang Song
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taishan District, Tai'an City, Shandong Province, 271000, China
| | - ChunYu Luan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taishan District, Tai'an City, Shandong Province, 271000, China.
| |
Collapse
|
2
|
Olatunde D, Franco OC, Gaestel M, De Benedetti A. Targeting the TLK1-MK5 Axis Suppresses Prostate Cancer Metastasis. Cancers (Basel) 2025; 17:1187. [PMID: 40227796 PMCID: PMC11988051 DOI: 10.3390/cancers17071187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Background: The spread of metastatic prostate cancer (PCa) is responsible for the majority of PCa-related deaths, yet the precise mechanisms driving this process remain unclear. We have identified a novel interaction between two distinct promotility factors, tousled-like kinase 1 (TLK1) and MAPK-activated protein kinase 5 (MK5), which triggers a signaling cascade that promotes metastasis. In PCa, the TLK1-MK5 pathway may play a critical role, as androgen deprivation therapy (ADT) has been linked to increased expression of both TLK1 and MK5 in metastatic patients linked with poor survival. Objectives: In this study, we directly examined the effects of disrupting the TLK1>MK5 axis on the motility, invasiveness, and metastatic potential of PCa cells. Methods: To establish this, we used both pharmacologic and systemic approaches with genetically engineered mouse models and the use of IVIS. Results: The results of targeting the TLK1>MK5 axis support the notion that this axis is essential for the spread of metastatic cells and the development of age-related metastases.
Collapse
Affiliation(s)
- Damilola Olatunde
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (D.O.); (O.C.F.)
| | - Omar Coronel Franco
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (D.O.); (O.C.F.)
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (D.O.); (O.C.F.)
| |
Collapse
|
3
|
West K, Nguyen TN, Tengler K, Kreiling N, Raney K, Ghosal G, Leung J. Autophosphorylation of the Tousled-like kinases TLK1 and TLK2 regulates recruitment to damaged chromatin via PCNA interaction. Nucleic Acids Res 2025; 53:gkae1279. [PMID: 39727191 PMCID: PMC11879137 DOI: 10.1093/nar/gkae1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair. However, there is no direct evidence that TLK1 and 2 function at DNA damage sites. Here, we show that both TLK1 and TLK2 are hyper-autophosphorylated at their N-termini, at least in part, mediated by their homo- or hetero- dimerization. We found that TLK1 and 2 hyper-autophosphorylation suppresses their recruitment to damaged chromatin. Furthermore, both TLK1 and 2 associate with PCNA specifically through their evolutionarily conserved non-canonical PCNA-interacting protein (PIP) box at the N-terminus, and mutation of the PIP-box abolishes their recruitment to DNA damage sites. Mechanistically, the TLK1 and 2 hyper-autophosphorylation masks the PIP-box and negatively regulates their recruitment to the DNA damage site. Overall, our study dissects the detailed genetic regulation of TLK1 and 2 at damaged chromatin, which provides important insights into their emerging roles in DNA repair.
Collapse
Affiliation(s)
- Kirk L West
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
| | - Tram T N Nguyen
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Kyle A Tengler
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Natasha Kreiling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, S 42nd &, Emile St, Omaha, NE 68198, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, S 42nd &, Emile St, Omaha, NE 68198, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Kim MA, Kim B, Jeon J, Lee J, Jang H, Baek M, Seo SU, Shin D, Dutta A, Lee KY. Tousled-like kinase loss confers PARP inhibitor resistance in BRCA1-mutated cancers by impeding non-homologous end joining repair. Mol Med 2025; 31:18. [PMID: 39844055 PMCID: PMC11753094 DOI: 10.1186/s10020-025-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ. Therefore, identifying novel regulators of NHEJ could provide valuable insights into the mechanisms underlying PARPi resistance. METHODS Cellular DSBs were assessed using neutral comet assays and phospho-H2AX immunoblotting. Fluorescence-based reporter assays quantified repair via NHEJ or HR. The recruitment of proteins that promote NHEJ and HR to DSBs was analyzed using immunostaining, live-cell imaging following laser-induced microirradiation, and FokI-inducible single DSB generation. Loss-of-function experiments were performed in multiple human cancer cell lines using siRNA-mediated knockdown or CRISPR-Cas9 gene knockout. Cell viability assays were conducted to evaluate resistance to PARP inhibitors. Additionally, bioinformatic analyses of public databases were performed to investigate the association between TLK expression and BRCA1 status. RESULTS We demonstrate that human tousled-like kinase (TLK) orthologs are essential for NHEJ-mediated repair of DSBs and for PARPi sensitivity in cells with BRCA1 mutation. TLK1 and TLK2 exhibit redundant roles in promoting NHEJ, and their deficiency results in a significant accumulation of DSBs. TLKs are required for the proper localization of 53BP1, a key factor in promoting the NHEJ pathway. Consequently, TLK deficiency induces PARPi resistance in triple-negative breast cancer (TNBC) and ovarian cancer (OVCA) cell lines with BRCA1 deficiency, as TLK deficiency in BRCA1-depleted cells, impairs 53BP1 recruitment to DSBs and reduces NHEJ efficiency, while restoring HR. CONCLUSIONS We have identified TLK proteins as novel regulators of NHEJ repair and PARPi sensitivity in BRCA1-depleted cells, suggesting that TLK repression may represent a previously unrecognized mechanism by which BRCA1 mutant cancers acquire PARPi resistance.
Collapse
Affiliation(s)
- Min-Ah Kim
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Banseok Kim
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jihyeon Jeon
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jonghyun Lee
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Hyeji Jang
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Minjae Baek
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dongkwan Shin
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, 35233, USA
| | - Kyung Yong Lee
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
| |
Collapse
|
5
|
Bhoir S, De Benedetti A. Beyond the Horizon: Rethinking Prostate Cancer Treatment Through Innovation and Alternative Strategies. Cancers (Basel) 2024; 17:75. [PMID: 39796704 PMCID: PMC11718964 DOI: 10.3390/cancers17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
For nearly a century, fundamental observations that prostate cancer (PCa) cells nearly always require AR stimulation for sustained proliferation have led to a unidirectional quest to abrogate such a pathway. Similarly focused have been efforts to understand AR-driven processes in the context of elevated expression of its target genes, and much less so on products that become overexpressed when AR signaling is suppressed. Treatment with ARSI results in an increased expression of the TLK1B splice variant via a 'translational' derepression driven by the compensatory mTOR activation and consequent activation of the TLK1 > NEK1 > ATR > Chk1 and NEK1 > YAP axes. In due course, this results first in a pro-survival quiescence and then adaptation to ADT and CRPC progression. This constitutes a novel liability for PCa that we have targeted for several years and novel approaches.
Collapse
Affiliation(s)
- Siddhant Bhoir
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA;
- Department of Therapeutic Radiology, School of Medicine, Yale University, 15 York Street, New Haven, CT 06510, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA;
| |
Collapse
|
6
|
Li HY, Jiang CM, Liu RY, Zou CC. Report of one case with de novo mutation in TLK2 and literature review. BMC Pediatr 2024; 24:732. [PMID: 39538191 PMCID: PMC11559194 DOI: 10.1186/s12887-024-05205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
TLK2 variants were identified as the cause for several neurodevelopmental disorders by impacting brain development. The incidence of mutation in TLK2 is low, which has common clinical features with other rare diseases. Herein, we reported a 5-year-old boy with TLK2 heterozygous mutation who presented distinctive facial features, gastrointestinal diseases, short stature, language delay, autism spectrum disorder, heart diseases, abnormal genitourinary system and skeletal abnormality. Moreover, we reviewed previous reported patients and our case in order to investigate more information on genotype-phenotype correlation and identify significant clinical characteristics for better diagnosis.
Collapse
Affiliation(s)
- Han-Yue Li
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China
| | - Chun-Ming Jiang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Ruo-Yan Liu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China
| | - Chao-Chun Zou
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|
7
|
Abrishamcar S, Zhuang BC, Thomas M, Gladish N, MacIsaac JL, Jones MJ, Simons E, Moraes TJ, Mandhane PJ, Brook JR, Subbarao P, Turvey SE, Chen E, Miller GE, Kobor MS, Hüls A. Association between maternal perinatal stress and depression and infant DNA methylation in the first year of life. Transl Psychiatry 2024; 14:445. [PMID: 39438450 PMCID: PMC11496819 DOI: 10.1038/s41398-024-03148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Maternal stress and depression during pregnancy and the first year of the infant's life affect a large percentage of mothers. Maternal stress and depression have been associated with adverse fetal and childhood outcomes as well as differential child DNA methylation (DNAm). However, the biological mechanisms connecting maternal stress and depression to poor health outcomes in children are still largely unknown. Here we aim to determine whether prenatal stress and depression are associated with differences in cord blood mononuclear cell DNAm (CBMC-DNAm) in newborns (n = 119) and whether postnatal stress and depression are associated with differences in peripheral blood mononuclear cell DNAm (PBMC-DNAm) in children of 12 months of age (n = 113) from the Canadian Healthy Infant Longitudinal Development (CHILD) cohort. Stress was measured using the 10-item Perceived Stress Scale (PSS) and depression was measured using the 20-item Center for Epidemiologic Studies Depression Questionnaire (CESD). Both stress and depression were measured longitudinally at 18 weeks and 36 weeks of pregnancy and six months and 12 months postpartum. We conducted epigenome-wide association studies (EWAS) using robust linear regression followed by a sensitivity analysis in which we bias-adjusted for inflation and unmeasured confounding using the bacon and cate methods. To quantify the cumulative effect of maternal stress and depression, we created composite prenatal and postnatal adversity scores. We identified a significant association between prenatal stress and differential CBMC-DNAm at 8 CpG sites and between prenatal depression and differential CBMC-DNAm at 2 CpG sites. Additionally, we identified a significant association between postnatal stress and differential PBMC-DNAm at 8 CpG sites and between postnatal depression and differential PBMC-DNAm at 11 CpG sites. Using our composite scores, we further identified 2 CpG sites significantly associated with prenatal adversity and 7 CpG sites significantly associated with postnatal adversity. Several of the associated genes, including PLAGL1, HYMAI, BRD2, and ERC2 have been implicated in adverse fetal outcomes and neuropsychiatric disorders. These data further support the finding that differential DNAm may play a role in the relationship between maternal mental health and child health.
Collapse
Affiliation(s)
- Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Beryl C Zhuang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada
| | - Mara Thomas
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Elinor Simons
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Theo J Moraes
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, ON, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Padmaja Subbarao
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Edith Chen
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Gregory E Miller
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada.
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Lin HY, Mohammadhosseini M, McClatchy J, Villamor-Payà M, Jeng S, Bottomly D, Tsai CF, Posso C, Jacobson J, Adey A, Gosline S, Liu T, McWeeney S, Stracker TH, Agarwal A. The TLK-ASF1 histone chaperone pathway plays a critical role in IL-1β-mediated AML progression. Blood 2024; 143:2749-2762. [PMID: 38498025 PMCID: PMC11340594 DOI: 10.1182/blood.2023022079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Identifying and targeting microenvironment-driven pathways that are active across acute myeloid leukemia (AML) genetic subtypes should allow the development of more broadly effective therapies. The proinflammatory cytokine interleukin-1β (IL-1β) is abundant in the AML microenvironment and promotes leukemic growth. Through RNA-sequencing analysis, we identify that IL-1β-upregulated ASF1B (antisilencing function-1B), a histone chaperone, in AML progenitors compared with healthy progenitors. ASF1B, along with its paralogous protein ASF1A, recruits H3-H4 histones onto the replication fork during S-phase, a process regulated by Tousled-like kinase 1 and 2 (TLKs). Although ASF1s and TLKs are known to be overexpressed in multiple solid tumors and associated with poor prognosis, their functional roles in hematopoiesis and inflammation-driven leukemia remain unexplored. In this study, we identify that ASF1s and TLKs are overexpressed in multiple genetic subtypes of AML. We demonstrate that depletion of ASF1s significantly reduces leukemic cell growth in both in vitro and in vivo models using human cells. Using a murine model, we show that overexpression of ASF1B accelerates leukemia progression. Moreover, Asf1b or Tlk2 deletion delayed leukemia progression, whereas these proteins are dispensable for normal hematopoiesis. Through proteomics and phosphoproteomics analyses, we uncover that the TLK-ASF1 pathway promotes leukemogenesis by affecting the cell cycle and DNA damage pathways. Collectively, our findings identify the TLK1-ASF1 pathway as a novel mediator of inflammatory signaling and a promising therapeutic target for AML treatment across diverse genetic subtypes. Selective inhibition of this pathway offers potential opportunities to intervene effectively, address intratumoral heterogeneity, and ultimately improve clinical outcomes in AML.
Collapse
Affiliation(s)
- Hsin-Yun Lin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Mona Mohammadhosseini
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - John McClatchy
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Chia-Feng Tsai
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Camilo Posso
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Jeremy Jacobson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Andrew Adey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
| | - Sara Gosline
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Tao Liu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Shannon McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Travis H. Stracker
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
9
|
Villamor-Payà M, Sanchiz-Calvo M, Smak J, Pais L, Sud M, Shankavaram U, Lovgren AK, Austin-Tse C, Ganesh VS, Gay M, Vilaseca M, Arauz-Garofalo G, Palenzuela L, VanNoy G, O’Donnell-Luria A, Stracker TH. De novo TLK1 and MDM1 mutations in a patient with a neurodevelopmental disorder and immunodeficiency. iScience 2024; 27:109984. [PMID: 38868186 PMCID: PMC11166698 DOI: 10.1016/j.isci.2024.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin maintenance. TLK2 variants underlie the neurodevelopmental disorder (NDD) 'Intellectual Disability, Autosomal Dominant 57' (MRD57), characterized by intellectual disability and microcephaly. Several TLK1 variants have been reported in NDDs but their functional significance is unknown. A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and primary immunodeficiency was determined to have a heterozygous TLK1 variant (c.1435C>G, p.Q479E), as well as a mutation in MDM1 (c.1197dupT, p.K400∗). Cells expressing TLK1 p.Q479E exhibited reduced cytokine responses and elevated DNA damage, but not increased radiation sensitivity or DNA repair defects. The TLK1 p.Q479E variant impaired kinase activity but not proximal protein interactions. Our study provides the first functional characterization of NDD-associated TLK1 variants and suggests that, such as TLK2, TLK1 variants may impact development in multiple tissues and should be considered in the diagnosis of rare NDDs.
Collapse
Affiliation(s)
- Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - María Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Jordann Smak
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Lynn Pais
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Malika Sud
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Uma Shankavaram
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Alysia Kern Lovgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay S. Ganesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Grace VanNoy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne O’Donnell-Luria
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Travis H. Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Shrestha B, Nieminen AI, Matilainen O. Loss of the histone chaperone UNC-85/ASF1 inhibits the epigenome-mediated longevity and modulates the activity of one-carbon metabolism. Cell Stress Chaperones 2024; 29:392-403. [PMID: 38608859 PMCID: PMC11039323 DOI: 10.1016/j.cstres.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Histone H3/H4 chaperone anti-silencing function 1 (ASF1) is a conserved factor mediating nucleosomal assembly and disassembly, playing crucial roles in processes such as replication, transcription, and DNA repair. Nevertheless, its involvement in aging has remained unclear. Here, we utilized the model organism Caenorhabditis elegans to demonstrate that the loss of UNC-85, the homolog of ASF1, leads to a shortened lifespan in a multicellular organism. Furthermore, we show that UNC-85 is required for epigenome-mediated longevity, as knockdown of the histone H3 lysine K4 methyltransferase ash-2 does not extend the lifespan of unc-85 mutants. In this context, we found that the longevity-promoting ash-2 RNA interference enhances UNC-85 activity by increasing its nuclear localization. Finally, our data indicate that the loss of UNC-85 increases the activity of one-carbon metabolism, and that downregulation of the one-carbon metabolism component dao-3/MTHFD2 partially rescues the short lifespan of unc-85 mutants. Together, these findings reveal UNC-85/ASF1 as a modulator of the central metabolic pathway and a factor regulating a pro-longevity response, thus shedding light on a mechanism of how nucleosomal maintenance associates with aging.
Collapse
Affiliation(s)
- Bideep Shrestha
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
West KL, Kreiling N, Raney KD, Ghosal G, Leung JW. Autophosphorylation of the Tousled-like kinases TLK1 and TLK2 regulates recruitment to damaged chromatin via PCNA interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590659. [PMID: 38712247 PMCID: PMC11071368 DOI: 10.1101/2024.04.22.590659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair. However, there is no direct evidence that TLK1 and 2 function at DNA damage sites. Here, we show that both TLK1 and TLK2 are hyper-autophosphorylated at their N-termini, at least in part, mediated by their homo- or hetero-dimerization. We found that TLK1 and 2 hyper-autophosphorylation suppresses their recruitment to damaged chromatin. Furthermore, both TLK1 and 2 associate with PCNA specifically through their evolutionarily conserved non-canonical PCNA-interacting protein (PIP) box at the N-terminus, and mutation of the PIP-box abolishes their recruitment to DNA damage sites. Mechanistically, the TLK1 and 2 hyper-autophosphorylation masks the PIP-box and negatively regulates their recruitment to the DNA damage site. Overall, our study dissects the detailed genetic regulation of TLK1 and 2 at damaged chromatin, which provides important insights into their emerging roles in DNA repair.
Collapse
Affiliation(s)
- Kirk L. West
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Natasha Kreiling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kevin D. Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Justin W Leung
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| |
Collapse
|
12
|
Abrishamcar S, Zhuang B, Thomas M, Gladish N, MacIsaac J, Jones M, Simons E, Moraes T, Mandhane P, Brook J, Subbarao P, Turvey S, Chen E, Miller G, Kobor M, Huels A. Association between Maternal Perinatal Stress and Depression on Infant DNA Methylation in the First Year of Life. RESEARCH SQUARE 2024:rs.3.rs-3962429. [PMID: 38562779 PMCID: PMC10984027 DOI: 10.21203/rs.3.rs-3962429/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Maternal stress and depression during pregnancy and the first year of the infant's life affect a large percentage of mothers. Maternal stress and depression have been associated with adverse fetal and childhood outcomes as well as differential child DNA methylation (DNAm). However, the biological mechanisms connecting maternal stress and depression to poor health outcomes in children are still largely unknown. Here we aim to determine whether prenatal stress and depression are associated with changes in cord blood mononuclear cell DNAm (CBMC-DNAm) in newborns (n = 119) and whether postnatal stress and depression are associated with changes in peripheral blood mononuclear cell DNAm (PBMC-DNAm) in children of 12 months of age (n = 113) from the Canadian Healthy Infant Longitudinal Development (CHILD) cohort. Stress was measured using the 10-item Perceived Stress Scale (PSS) and depression was measured using the Center for Epidemiologic Studies Depression Questionnaire (CESD). Both stress and depression were measured at 18 weeks and 36 weeks of pregnancy and six months and 12 months postpartum. We conducted epigenome-wide association studies (EWAS) using robust linear regression followed by a sensitivity analysis in which we bias-adjusted for inflation and unmeasured confounding using the bacon and cate methods. To investigate the cumulative effect of maternal stress and depression, we created composite prenatal and postnatal adversity scores. We identified a significant association between prenatal stress and differential CBMC-DNAm at 8 CpG sites and between prenatal depression and differential CBMC-DNAm at 2 CpG sites. Additionally, we identified a significant association between postnatal stress and differential PBMC-DNAm at 8 CpG sites and between postnatal depression and differential PBMC-DNAm at 11 CpG sites. Using our composite scores, we further identified 2 CpG sites significantly associated with prenatal adversity and 7 CpG sites significantly associated with postnatal adversity. Several of the associated genes, including PLAGL1, HYMAI, BRD2, and ERC2 have been implicated in adverse fetal outcomes and neuropsychiatric disorders. This suggested that differential DNAm may play a role in the relationship between maternal mental health and child health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anke Huels
- Rollins School of Public Health, Emory University
| |
Collapse
|
13
|
Shrivastava A, Magani SKJ, Lokhande KB, Chintakhindi M, Singh A. Exploring the role of TLK2 mutation in tropical calcific pancreatitis: an in silico and molecular dynamics simulation study. J Biomol Struct Dyn 2024:1-20. [PMID: 38500246 DOI: 10.1080/07391102.2024.2329797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Tropical calcific pancreatitis (TCP) is a juvenile form of non-alcoholic chronic pancreatitis seen exclusively in tropical countries. The disease poses a high risk of complications, including pancreatic diabetes and cancer, leading to significant mortality due to poor diagnosis and ineffective treatments. This study employed whole exome sequencing (WES) of 5 TCP patient samples to identify genetic variants associated with TCP. Advanced computational techniques were used to gain atomic-level insights into disease progression, including microsecond-scale long MD simulations and essential dynamics. In silico virtual screening was performed to identify potential therapeutic compounds targeting the mutant protein using the Asinex and DrugBank compound library. WES analysis predicted several single nucleotide variants (SNVs) associated with TCP, including a novel missense variant (c.T1802A or p.V601E) in the TLK2 gene. Computational analysis revealed that the p.V601E mutation significantly affected the structure of the TLK2 kinase domain and its conformational dynamics, altering the interaction profile between ATP and the binding pocket. These changes could impact TLK2's kinase activity and functions, potentially correlating with TCP progression. Promising lead compounds that selectively bind to the TLK2 mutant protein were identified, offering potential for therapeutic interventions in TCP. These findings hold great potential for future research.
Collapse
Affiliation(s)
- Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Sri Krishna Jayadev Magani
- Cancer Biology Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | | | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| |
Collapse
|
14
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
15
|
Zhang Z, Liu S. The interaction between ASF1B and TLK1 promotes the malignant progression of low-grade glioma. Ann Med 2023; 55:1111-1122. [PMID: 36947060 PMCID: PMC10035952 DOI: 10.1080/07853890.2023.2169751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
AIM Low-grade glioma (LGG), which is the second most frequent adult brain malignancy, severely threatens patients' health and has a high recurrence rate. Histone H3/H4 chaperone anti-silencing function 1 B (ASF1B) has a tight association with the initiation and development of tumours. The expression and regulation mechanism of ASF1B in LGG were discussed. METHODS ASF1B expression in LGG patients as well as the association of ASF1B with overall survival and disease-free survival of LGG patients were predicted by GEPIA database. The independent prognostic value of ASF1B in LGG patients was investigated by TCGA database. RT-qPCR, together with western blot was applied for the assessment of ASF1B in LGG cell lines. After ASF1B expression was inhibited, CCK8 and colony formation assays judged cell proliferation. Flow cytometry analysis and TUNEL assay appraised cell cycle as well as apoptosis. Cell migratory and invasive capacities were measured by wound healing as well as Transwell assays. Western blot tested the expression of proliferation-, cycle-, apoptosis-, and metastasis-associated proteins. STRING and GeneMANIA database predicted the relationship between ASF1B and tousled-like kinase 1 (TLK1). ChIP assay testified the affinity of ASF1B with TLK1. Subsequently, TLK1 was overexpressed and ASF1B expression interfered, and the functional assays were executed. RESULTS ASF1B was discovered to be increased in LGG tissues and cells and indicates an unfavourable prognosis for LGG patients. ASF1B was not an independent prognostic factor for LGG. ASF1B deficiency obstructed the proliferation, cell cycle as well as metastasis of LGG cells, and induced cell death, which might be realized through the interaction with TLK1. CONCLUSION The interaction between ASF1B and TLK1 promoted the malignant progression of LGG.Key messagesTLK1 interacts with ASF1B.Interference with ASF1B inhibits the proliferative, invasive and migratory capabilities and induces the cycle arrest, along with the apoptosis of LGG cells.The interaction between ASF1B and TLK1 promotes the malignant progression of LGG.
Collapse
Affiliation(s)
- Zifa Zhang
- Neurosurgery Department, Shanxi Bethune Hospital, Taiyuan, Shanxi, P. R. China
- Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, P. R. China
| | - Shuming Liu
- Emergency Department, Taiyuan People's Hospital, Taiyuan, Shanxi, P. R. China
| |
Collapse
|
16
|
Ghosh I, Kwon Y, Shabestari AB, Chikhale R, Chen J, Wiese C, Sung P, De Benedetti A. TLK1-mediated RAD54 phosphorylation spatio-temporally regulates Homologous Recombination Repair. Nucleic Acids Res 2023; 51:8643-8662. [PMID: 37439356 PMCID: PMC10484734 DOI: 10.1093/nar/gkad589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/17/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Environmental agents like ionizing radiation (IR) and chemotherapeutic drugs can cause severe damage to the DNA, often in the form of double-strand breaks (DSBs). Remaining unrepaired, DSBs can lead to chromosomal rearrangements, and cell death. One major error-free pathway to repair DSBs is homologous recombination repair (HRR). Tousled-like kinase 1 (TLK1), a Ser/Thr kinase that regulates the DNA damage checkpoint, has been found to interact with RAD54, a central DNA translocase in HRR. To determine how TLK1 regulates RAD54, we inhibited or depleted TLK1 and tested how this impacts HRR in human cells using a ISce-I-GR-DsRed fused reporter endonuclease. Our results show that TLK1 phosphorylates RAD54 at three threonines (T41, T59 and T700), two of which are located within its N-terminal domain (NTD) and one is located within its C-terminal domain (CTD). Phosphorylation at both T41 and T59 supports HRR and protects cells from DNA DSB damage. In contrast, phosphorylation of T700 leads to impaired HRR and engenders no protection to cells from cytotoxicity and rather results in repair delay. Further, our work enlightens the effect of RAD54-T700 (RAD54-CTD) phosphorylation by TLK1 in mammalian system and reveals a new site of interaction with RAD51.
Collapse
Affiliation(s)
- Ishita Ghosh
- Department of Biochemistry and Molecular Biology, Louisiana Health Science Center-Shreveport, Shreveport, Louisiana 71130, US2. Texas 78229, USA
| | - Youngho Kwon
- Department of Biochemistry & Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Aida Badamchi Shabestari
- Department of Biochemistry & Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Rupesh Chikhale
- Division of Pharmacy & Optometry, University of Manchester, Manchester, UK
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry and Proteomics Core, Center for Structural Biology, University of Kentucky, Lexington, KY, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Patrick Sung
- Department of Biochemistry & Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana Health Science Center-Shreveport, Shreveport, Louisiana 71130, US2. Texas 78229, USA
| |
Collapse
|
17
|
Ghosh I, De Benedetti A. Untousling the Role of Tousled-like Kinase 1 in DNA Damage Repair. Int J Mol Sci 2023; 24:13369. [PMID: 37686173 PMCID: PMC10487508 DOI: 10.3390/ijms241713369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
DNA damage repair lies at the core of all cells' survival strategy, including the survival strategy of cancerous cells. Therefore, targeting such repair mechanisms forms the major goal of cancer therapeutics. The mechanism of DNA repair has been tousled with the discovery of multiple kinases. Recent studies on tousled-like kinases have brought significant clarity on the effectors of these kinases which stand to regulate DSB repair. In addition to their well-established role in DDR and cell cycle checkpoint mediation after DNA damage or inhibitors of replication, evidence of their suspected involvement in the actual DSB repair process has more recently been strengthened by the important finding that TLK1 phosphorylates RAD54 and regulates some of its activities in HRR and localization in the cell. Earlier findings of its regulation of RAD9 during checkpoint deactivation, as well as defined steps during NHEJ end processing, were earlier hints of its broadly important involvement in DSB repair. All this has opened up new avenues to target cancer cells in combination therapy with genotoxins and TLK inhibitors.
Collapse
Affiliation(s)
| | - Arrigo De Benedetti
- Department of Medicine, Department of Biochemistry, Louisiana Health Science Center-Shreveport, Shreveport, LA 71103, USA;
| |
Collapse
|
18
|
Villamor-Payà M, Sanchiz-Calvo M, Smak J, Pais L, Sud M, Shankavaram U, Lovgren AK, Austin-Tse C, Ganesh VS, Gay M, Vilaseca M, Arauz-Garofalo G, Palenzuela L, VanNoy G, O'Donnell-Luria A, Stracker TH. Identification of a de novo mutation in TLK1 associated with a neurodevelopmental disorder and immunodeficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294267. [PMID: 37662408 PMCID: PMC10473813 DOI: 10.1101/2023.08.22.23294267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin maintenance. TLK2 variants are associated with 'Intellectual Disability, Autosomal Dominant 57' (MRD57), a neurodevelopmental disorder (NDD) characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. Several TLK1 variants have been reported in NDDs but their functional significance is unknown. Methods A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and primary immunodeficiency was determined to have a novel, heterozygous variant in TLK1 (c.1435C>G, p.Q479E) by genome sequencing (GS). Single cell gel electrophoresis, western blot, flow cytometry and RNA-seq were performed in patient-derived lymphoblast cell lines. In silico, biochemical and proteomic analysis were used to determine the functional impact of the p.Q479E variant and previously reported NDD-associated TLK1 variant, p.M566T. Results Transcriptome sequencing in patient-derived cells confirmed expression of TLK1 transcripts carrying the p.Q479E variant and revealed alterations in genes involved in class switch recombination and cytokine signaling. Cells expressing the p.Q479E variant exhibited reduced cytokine responses and higher levels of spontaneous DNA damage but not increased sensitivity to radiation or DNA repair defects. The p.Q479E and p.M566T variants impaired kinase activity but did not strongly alter localization or proximal protein interactions. Conclusion Our study provides the first functional characterization of TLK1 variants associated with NDDs and suggests potential involvement in central nervous system and immune system development. Our results indicate that, like TLK2 variants, TLK1 variants may impact development in multiple tissues and should be considered in the diagnosis of rare NDDs.
Collapse
Affiliation(s)
- Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - María Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jordann Smak
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Lynn Pais
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Malika Sud
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Uma Shankavaram
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Alysia Kern Lovgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay S Ganesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Grace VanNoy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne O'Donnell-Luria
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Bhoir S, De Benedetti A. Targeting Prostate Cancer, the 'Tousled Way'. Int J Mol Sci 2023; 24:11100. [PMID: 37446279 DOI: 10.3390/ijms241311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Androgen deprivation therapy (ADT) has been the mainstay of prostate cancer (PCa) treatment, with success in developing more effective inhibitors of androgen synthesis and antiandrogens in clinical practice. However, hormone deprivation and AR ablation have caused an increase in ADT-insensitive PCas associated with a poor prognosis. Resistance to ADT arises through various mechanisms, and most castration-resistant PCas still rely on the androgen axis, while others become truly androgen receptor (AR)-independent. Our research identified the human tousled-like kinase 1 (TLK1) as a crucial early mediator of PCa cell adaptation to ADT, promoting androgen-independent growth, inhibiting apoptosis, and facilitating cell motility and metastasis. Although explicit, the growing role of TLK1 biology in PCa has remained underrepresented and elusive. In this review, we aim to highlight the diverse functions of TLK1 in PCa, shed light on the molecular mechanisms underlying the transition from androgen-sensitive (AS) to an androgen-insensitive (AI) disease mediated by TLK1, and explore potential strategies to counteract this process. Targeting TLK1 and its associated signaling could prevent PCa progression to the incurable metastatic castration-resistant PCa (mCRPC) stage and provide a promising approach to treating PCa.
Collapse
Affiliation(s)
- Siddhant Bhoir
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
20
|
Fang Y, Zhang X, Huang H, Zeng Z. The interplay between noncoding RNAs and drug resistance in hepatocellular carcinoma: the big impact of little things. J Transl Med 2023; 21:369. [PMID: 37286982 DOI: 10.1186/s12967-023-04238-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death in people, and a common primary liver cancer. Lacking early diagnosis and a high recurrence rate after surgical resection, systemic treatment is still an important treatment method for advanced HCC. Different drugs have distinct curative effects, side effects and drug resistance due to different properties. At present, conventional molecular drugs for HCC have displayed some limitations, such as adverse drug reactions, insensitivity to some medicines, and drug resistance. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), have been well documented to be involved in the occurrence and progression of cancer. Novel biomarkers and therapeutic targets, as well as research into the molecular basis of drug resistance, are urgently needed for the management of HCC. We review current research on ncRNAs and consolidate the known roles regulating drug resistance in HCC and examine the potential clinical applications of ncRNAs in overcoming drug resistance barriers in HCC based on targeted therapy, cell cycle non-specific chemotherapy and cell cycle specific chemotherapy.
Collapse
Affiliation(s)
- Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - XiaoLi Zhang
- Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - HanFei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
21
|
Christmas MJ, Kaplow IM, Genereux DP, Dong MX, Hughes GM, Li X, Sullivan PF, Hindle AG, Andrews G, Armstrong JC, Bianchi M, Breit AM, Diekhans M, Fanter C, Foley NM, Goodman DB, Goodman L, Keough KC, Kirilenko B, Kowalczyk A, Lawless C, Lind AL, Meadows JRS, Moreira LR, Redlich RW, Ryan L, Swofford R, Valenzuela A, Wagner F, Wallerman O, Brown AR, Damas J, Fan K, Gatesy J, Grimshaw J, Johnson J, Kozyrev SV, Lawler AJ, Marinescu VD, Morrill KM, Osmanski A, Paulat NS, Phan BN, Reilly SK, Schäffer DE, Steiner C, Supple MA, Wilder AP, Wirthlin ME, Xue JR, Zoonomia Consortium, Birren BW, Gazal S, Hubley RM, Koepfli KP, Marques-Bonet T, Meyer WK, Nweeia M, Sabeti PC, Shapiro B, Smit AFA, Springer MS, Teeling EC, Weng Z, Hiller M, Levesque DL, Lewin HA, Murphy WJ, Navarro A, Paten B, Pollard KS, Ray DA, Ruf I, Ryder OA, Pfenning AR, Lindblad-Toh K, Karlsson EK. Evolutionary constraint and innovation across hundreds of placental mammals. Science 2023; 380:eabn3943. [PMID: 37104599 PMCID: PMC10250106 DOI: 10.1126/science.abn3943] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/16/2022] [Indexed: 04/29/2023]
Abstract
Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
Collapse
Affiliation(s)
- Matthew J. Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Irene M. Kaplow
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Michael X. Dong
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Xue Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Patrick F. Sullivan
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Allyson G. Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Gregory Andrews
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Joel C. Armstrong
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Matteo Bianchi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Ana M. Breit
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Mark Diekhans
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Cornelia Fanter
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Nicole M. Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Daniel B. Goodman
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Kathleen C. Keough
- Fauna Bio, Inc., Emeryville, CA 94608, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Bogdan Kirilenko
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Amanda Kowalczyk
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Colleen Lawless
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Abigail L. Lind
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Lucas R. Moreira
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ruby W. Redlich
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Louise Ryan
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Alejandro Valenzuela
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Franziska Wagner
- Museum of Zoology, Senckenberg Natural History Collections Dresden, 01109 Dresden, Germany
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Ashley R. Brown
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Joana Damas
- The Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Kaili Fan
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Jenna Grimshaw
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Sergey V. Kozyrev
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Voichita D. Marinescu
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Kathleen M. Morrill
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Austin Osmanski
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - BaDoi N. Phan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Steven K. Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cynthia Steiner
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Megan A. Supple
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Aryn P. Wilder
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James R. Xue
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Bruce W. Birren
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven Gazal
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
- Computer Technologies Laboratory, ITMO University, St. Petersburg 197101, Russia
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, USA
| | - Tomas Marques-Bonet
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Martin Nweeia
- Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Vertebrate Zoology, Canadian Museum of Nature, Ottawa, Ontario K2P 2R1, Canada
- Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002, USA
- Narwhal Genome Initiative, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Mark S. Springer
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Hiller
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | | | - Harris A. Lewin
- The Genome Center, University of California Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
- John Muir Institute for the Environment, University of California Davis, Davis, CA 95616, USA
| | - William J. Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Arcadi Navarro
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
- CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Benedict Paten
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Katherine S. Pollard
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Irina Ruf
- Division of Messel Research and Mammalogy, Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt am Main, Germany
| | - Oliver A. Ryder
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
- Department of Evolution, Behavior and Ecology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92039, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
22
|
The TLK1-MK5 Axis Regulates Motility, Invasion, and Metastasis of Prostate Cancer Cells. Cancers (Basel) 2022; 14:cancers14235728. [PMID: 36497211 PMCID: PMC9736944 DOI: 10.3390/cancers14235728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Metastatic dissemination of prostate cancer (PCa) accounts for the majority of PCa-related deaths. However, the exact mechanism of PCa cell spread is still unknown. We uncovered a novel interaction between two unrelated promotility factors, tousled-like kinase 1 (TLK1) and MAPK-activated protein kinase 5 (MK5), that initiates a signaling cascade promoting metastasis. In PCa, TLK1−MK5 signaling might be crucial, as androgen deprivation therapy (ADT) leads to increased expression of both TLK1 and MK5 in metastatic patients, but in this work, we directly investigated the motility, invasive, and metastatic capacity of PCa cells following impairment of the TLK1 > MK5 axis. Results: We conducted scratch wound repair and transwell invasion assays with LNCaP and PC3 cells to determine if TLK1 and MK5 can regulate motility and invasion. Both genetic depletion and pharmacologic inhibition of TLK1 and MK5 resulted in reduced migration and invasion through a Matrigel plug. We further elucidated the potential mechanisms underlying these effects and found that this is likely due to the reorganization of the actin fibers at lamellipodia and the focal adhesions network, in conjunction with increased expression of some MMPs that can affect penetration through the ECM. PC3, a highly metastatic cell line when assayed in xenografts, was further tested in a tail-vein injection/lung metastasis model, and we showed that, following inoculation, treatment with GLPG0259 (MK5 specific inhibitor) or J54 (TLK1 inhibitor) resulted in the lung tumor nodules being greatly diminished in number, and for J54, also in size. Conclusion: Our data support that the TLK1−MK5 axis is functionally involved in driving PCa cell metastasis and clinical aggressiveness; hence, disruption of this axis may inhibit the metastatic capacity of PCa.
Collapse
|
23
|
Cayla M, Nievas YR, Matthews KR, Mottram JC. Distinguishing functions of trypanosomatid protein kinases. Trends Parasitol 2022; 38:950-961. [PMID: 36075845 DOI: 10.1016/j.pt.2022.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/13/2023]
Abstract
Trypanosomatid parasitic protozoa are divergent from opisthokont models and have evolved unique mechanisms to regulate their complex life cycles and to adapt to a range of hosts. Understanding how these organisms respond, adapt, and persist in their different hosts could reveal optimal drug-control strategies. Protein kinases are fundamental to many biological processes such as cell cycle control, adaptation to stress, and cellular differentiation. Therefore, we have focused this review on the features and functions of protein kinases that distinguish trypanosomatid kinomes from other eukaryotes. We describe the latest research, highlighting similarities and differences between two groups of trypanosomatid parasites, Leishmania and African trypanosomes.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Y Romina Nievas
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| |
Collapse
|
24
|
Mourkioti I, Angelopoulou A, Belogiannis K, Lagopati N, Potamianos S, Kyrodimos E, Gorgoulis V, Papaspyropoulos A. Interplay of Developmental Hippo-Notch Signaling Pathways with the DNA Damage Response in Prostate Cancer. Cells 2022; 11:cells11152449. [PMID: 35954292 PMCID: PMC9367915 DOI: 10.3390/cells11152449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer belongs in the class of hormone-dependent cancers, representing a major cause of cancer incidence in men worldwide. Since upon disease onset almost all prostate cancers are androgen-dependent and require active androgen receptor (AR) signaling for their survival, the primary treatment approach has for decades relied on inhibition of the AR pathway via androgen deprivation therapy (ADT). However, following this line of treatment, cancer cell pools often become resistant to therapy, contributing to disease progression towards the significantly more aggressive castration-resistant prostate cancer (CRPC) form, characterized by poor prognosis. It is, therefore, of critical importance to elucidate the molecular mechanisms and signaling pathways underlying the progression of early-stage prostate cancer towards CRPC. In this review, we aim to shed light on the role of major signaling pathways including the DNA damage response (DDR) and the developmental Hippo and Notch pathways in prostate tumorigenesis. We recapitulate key evidence demonstrating the crosstalk of those pathways as well as with pivotal prostate cancer-related 'hubs' such as AR signaling, and evaluate the clinical impact of those interactions. Moreover, we attempt to identify molecules of the complex DDR-Hippo-Notch interplay comprising potentially novel therapeutic targets in the battle against prostate tumorigenesis.
Collapse
Affiliation(s)
- Ioanna Mourkioti
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Andriani Angelopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Spyridon Potamianos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Efthymios Kyrodimos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| |
Collapse
|
25
|
Khalil MI, De Benedetti A. Tousled-like kinase 1: a novel factor with multifaceted role in mCRPC progression and development of therapy resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:93-101. [PMID: 35582542 PMCID: PMC8992593 DOI: 10.20517/cdr.2021.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Standard treatment for advanced Prostate Cancer (PCa) consists of androgen deprivation therapy (ADT), but ultimately fails, resulting in the incurable phase of the disease: metastatic castration-resistant prostate cancer (mCRPC). Targeting PCa cells before their progression to mCRPC would greatly improve the outcome, if strategies could be devised selectively targeting androgen receptor (AR)-dependent and/or independent compensatory pathways which promote mCRPC development. Combination therapy by targeting the DNA damage response (DDR) along with ADT has been limited by general toxicity, and a goal of clinical trials is how to target the DDR more specifically. In recent years, our lab has identified a key role for the DDR kinase, TLK1, in mediating key aspects of adaptation to ADT, first by promoting a cell cycle arrest (through the TLK1>NEK1>ATR>Chk1 kinase cascade) under the unfavorable growth conditions (androgen deprivation), and then by reprogramming the PCa cells to adapt to androgen-independent growth via the NEK1>YAP/AR>CRPC conversion. In addition, TLK1 plays a key anti-apoptotic role via the NEK1>VDAC1 regulation on the intrinsic mitochondrial apoptotic pathway when the DDR is activated. Finally, TLK1 was recently identified as having an important role in motility and metastasis via regulation of the kinases MK5/PRAK and AKT (indirectly via AKTIP).
Collapse
Affiliation(s)
- Md Imtiaz Khalil
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71103, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
26
|
Li L, Meyer C, Zhou ZW, Elmezayen A, Westover K. Therapeutic Targeting the Allosteric Cysteinome of RAS and Kinase Families. J Mol Biol 2022; 434:167626. [PMID: 35595166 DOI: 10.1016/j.jmb.2022.167626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Allosteric mechanisms are pervasive in nature, but human-designed allosteric perturbagens are rare. The history of KRASG12C inhibitor development suggests that covalent chemistry may be a key to expanding the armamentarium of allosteric inhibitors. In that effort, irreversible targeting of a cysteine converted a non-deal allosteric binding pocket and low affinity ligands into a tractable drugging strategy. Here we examine the feasibility of expanding this approach to other allosteric pockets of RAS and kinase family members, given that both protein families are regulators of vital cellular processes that are often dysregulated in cancer and other human diseases. Moreover, these heavily studied families are the subject of numerous drug development campaigns that have resulted, sometimes serendipitously, in the discovery of allosteric inhibitors. We consequently conducted a comprehensive search for cysteines, a commonly targeted amino acid for covalent drugs, using AlphaFold-generated structures of those families. This new analysis presents potential opportunities for allosteric targeting of validated and understudied drug targets, with an emphasis on cancer therapy.
Collapse
Affiliation(s)
- Lianbo Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| | - Cynthia Meyer
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| | - Zhi-Wei Zhou
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| | - Ammar Elmezayen
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| | - Kenneth Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA.
| |
Collapse
|
27
|
Woods E, Spiller M, Balasubramanian M. Report of two children with global developmental delay in association with de novo TLK2 variant and literature review. Am J Med Genet A 2022; 188:931-940. [PMID: 34821460 DOI: 10.1002/ajmg.a.62580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 11/06/2022]
Abstract
We describe clinical details, including novel findings, of two further children with the newly defined TLK2-related disorder. One patient was recruited to the Deciphering Developmental Delay (DDD) Study to identify underlying etiology of global developmental delay. The other was detected on whole-exome sequencing as part of second line investigations following normal microarray. Both patients were found to have de novo heterozygous pathogenic TLK2 variants. A novel c.6del p.(Glu3Lysfs*) loss-of-function frameshift variant was found in Patient 1. A c.1121+1G>A splice-donor variant was detected in Patient 2. TLK2-related neurodevelopmental disorder is a specific syndrome that has been recently described. Global developmental delay, behavioral problems, gastrointestinal disorders, and typical facial dysmorphism are common features. Neuropsychiatric disorders, ophthalmic, musculoskeletal and cranial abnormalities, as well as short stature, have also all been described. The novel findings we describe include sleep disturbance, nondifferentiation of lateral semi-circular canals (where asymmetric semi-circular canals were a feature in the previous cohort), vesico-ureteric reflux, and bilateral periauricular skin tags. Here, we report a novel TLK2 variant and previously undescribed features of TLK2-related disorder, to expand the clinical phenotype and provide further genotype-phenotype correlation.
Collapse
Affiliation(s)
- Emily Woods
- Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Michael Spiller
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK.,Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
28
|
Simon B, Lou HJ, Huet-Calderwood C, Shi G, Boggon TJ, Turk BE, Calderwood DA. Tousled-like kinase 2 targets ASF1 histone chaperones through client mimicry. Nat Commun 2022; 13:749. [PMID: 35136069 PMCID: PMC8826447 DOI: 10.1038/s41467-022-28427-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022] Open
Abstract
Tousled-like kinases (TLKs) are nuclear serine-threonine kinases essential for genome maintenance and proper cell division in animals and plants. A major function of TLKs is to phosphorylate the histone chaperone proteins ASF1a and ASF1b to facilitate DNA replication-coupled nucleosome assembly, but how TLKs selectively target these critical substrates is unknown. Here, we show that TLK2 selectivity towards ASF1 substrates is achieved in two ways. First, the TLK2 catalytic domain recognizes consensus phosphorylation site motifs in the ASF1 C-terminal tail. Second, a short sequence at the TLK2 N-terminus docks onto the ASF1a globular N-terminal domain in a manner that mimics its histone H3 client. Disrupting either catalytic or non-catalytic interactions through mutagenesis hampers ASF1 phosphorylation by TLK2 and cell growth. Our results suggest that the stringent selectivity of TLKs for ASF1 is enforced by an unusual interaction mode involving mutual recognition of a short sequence motifs by both kinase and substrate. Tousled-like kinase 2 (TLK2) phosphorylates ASF1 histone chaperones to promote nucleosome assembly in S phase. Here, the authors show that TLK2 targets ASF1 by simulating its client protein histone H3, exploiting a primordial protein interaction surface for regulatory control.
Collapse
Affiliation(s)
- Bertrand Simon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | | | - Guangda Shi
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - David A Calderwood
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA. .,Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
29
|
Pavinato L, Villamor-Payà M, Sanchiz-Calvo M, Andreoli C, Gay M, Vilaseca M, Arauz-Garofalo G, Ciolfi A, Bruselles A, Pippucci T, Prota V, Carli D, Giorgio E, Radio FC, Antona V, Giuffrè M, Ranguin K, Colson C, De Rubeis S, Dimartino P, Buxbaum JD, Ferrero GB, Tartaglia M, Martinelli S, Stracker TH, Brusco A. Functional analysis of TLK2 variants and their proximal interactomes implicates impaired kinase activity and chromatin maintenance defects in their pathogenesis. J Med Genet 2022; 59:170-179. [PMID: 33323470 PMCID: PMC10631451 DOI: 10.1136/jmedgenet-2020-107281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/19/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in TLK2 were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies. METHODS We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders. Using spatial proteomics (BioID) and single-cell gel electrophoresis, we investigated the proximity interaction landscape of TLK2 and analysed the effects of p.(Asp551Gly) and a previously reported missense variant (c.1850C>T; p.(Ser617Leu)) on TLK2 interactions, localisation and activity. RESULTS We identified three new unrelated MRD57 families. Two were sporadic and caused by a missense change (c.1652A>G; p.(Asp551Gly)) or a 39 kb deletion encompassing TLK2, and one was familial with three affected siblings who inherited a nonsense change from an affected mother (c.1423G>T; p.(Glu475Ter)). The clinical phenotypes were consistent with those of previously reported cases. The tested mutations strongly impaired TLK2 kinase activity. Proximal interactions between TLK2 and other factors implicated in neurological disorders, including CHD7, CHD8, BRD4 and NACC1, were identified. Finally, we demonstrated a more relaxed chromatin state in lymphoblastoid cells harbouring the p.(Asp551Gly) variant compared with control cells, conferring susceptibility to DNA damage. CONCLUSION Our study identified novel TLK2 pathogenic variants, confirming and further expanding the MRD57-related phenotype. The molecular characterisation of missense variants increases our knowledge about TLK2 function and provides new insights into its role in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, Torino, Italy
- Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marina Villamor-Payà
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Maria Sanchiz-Calvo
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy
| | - Marina Gay
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Marta Vilaseca
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Tommaso Pippucci
- Medical Genetics Unity, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Valentina Prota
- Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy
| | - Diana Carli
- Department of Pediatrics and Public Health and Pediatric Sciences, University of Turin, Torino, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Torino, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Vincenzo Antona
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Mario Giuffrè
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Kara Ranguin
- Department of Genetics, Reference center for Rare Diseases and Developmental Anomalies, Caen, France
| | - Cindy Colson
- Department of Genetics, Reference center for Rare Diseases and Developmental Anomalies, Caen, France
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Paola Dimartino
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Giovanni Battista Ferrero
- Department of Pediatrics and Public Health and Pediatric Sciences, University of Turin, Torino, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy
| | - Travis H Stracker
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Torino, Italy
- Unit of Medical Genetics, "Città della Salute e della Scienza" University Hospital, Torino, Italy
| |
Collapse
|
30
|
Lee SB, Chang TY, Lee NZ, Yu ZY, Liu CY, Lee HY. Design, synthesis and biological evaluation of bisindole derivatives as anticancer agents against Tousled-like kinases. Eur J Med Chem 2022; 227:113904. [PMID: 34662748 DOI: 10.1016/j.ejmech.2021.113904] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 11/03/2022]
Abstract
This study presents the design, synthesis, and characterization of bisindole molecules as anti-cancer agents against Tousled-like kinases (TLKs). We show that compound 2 composed of an indirubin-3'-oxime group linked with a (N-methylpiperidin-2-yl)ethyl moiety possessed inhibitory activity toward both TLK1 and TLK2 in vitro and diminished the phosphorylation level of the downstream substrate anti-silencing function 1 (ASF1) in replicating cells. The treatment of compound 2 impaired DNA replication, slowed S-phase progression, and triggered DNA damage response in replicating cells. Structure optimization further discovered six derivatives exhibiting potent TLK inhibitory activity and revealed the importance of the tertiary amine-containing moiety of the side chain. Moreover, the derivatives 6, 17, 19, and 20 strongly suppressed the growth of triple-negative breast cancer MDA-MB-231 cells, non-small cell lung cancer A549 cells, and colorectal cancer HCT-116 cells, while normal lung fibroblast MRC5 and IMR90 cells showed a lower response to these compounds. Taken together, this study identifies tertiary amine-linked indirubin-3'-oximes as potent anticancer agents that inhibit TLK activity.
Collapse
Affiliation(s)
- Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Chang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Nian-Zhe Lee
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Zih-Yao Yu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yuan Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Yun Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
31
|
Interaction of TLK1 and AKTIP as a Potential Regulator of AKT Activation in Castration-Resistant Prostate Cancer Progression. PATHOPHYSIOLOGY 2021; 28:339-354. [PMID: 35366279 PMCID: PMC8830441 DOI: 10.3390/pathophysiology28030023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer (PCa) progression is characterized by the emergence of resistance to androgen deprivation therapy (ADT). AKT/PKB has been directly implicated in PCa progression, often due to the loss of PTEN and activation of PI3K>PDK1>AKT signaling. However, the regulatory network of AKT remains incompletely defined. Here, we describe the functional significance of AKTIP in PCa cell growth. AKTIP, identified in an interactome analysis as a substrate of TLK1B (that itself is elevated following ADT), enhances the association of AKT with PDK1 and its phosphorylation at T308 and S473. The interaction between TLK1 and AKTIP led to AKTIP phosphorylation at T22 and S237. The inactivation of TLK1 led to reduced AKT phosphorylation, which was potentiated with AKTIP knockdown. The TLK1 inhibitor J54 inhibited the growth of the LNCaP cells attributed to reduced AKT activation. However, LNCaP cells that expressed constitutively active, membrane-enriched Myr-AKT (which is expected to be active, even in the absence of AKTIP) were also growth-inhibited with J54. This suggested that other pathways (like TLK1>NEK1>YAP) regulating proliferation are also suppressed and can mediate growth inhibition, despite compensation by Myr-AKT. Nonetheless, further investigation of the potential role of TLK1>AKTIP>AKT in suppressing apoptosis, and conversely its reversal with J54, is warranted.
Collapse
|
32
|
Al-Sarraj Y, Al-Dous E, Taha RZ, Ahram D, Alshaban F, Tolfat M, El-Shanti H, Albagha OM. Family-Based Genome-Wide Association Study of Autism Spectrum Disorder in Middle Eastern Families. Genes (Basel) 2021; 12:761. [PMID: 34069769 PMCID: PMC8157263 DOI: 10.3390/genes12050761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by abnormalities in language and social communication with substantial clinical heterogeneity. Genetic factors play an important role in ASD with heritability estimated between 70% to 80%. Genome-wide association studies (GWAS) have identified multiple loci associated with ASD. However, most studies were performed on European populations and little is known about the genetic architecture of ASD in Middle Eastern populations. Here, we report the first GWAS of ASD in the Middle eastern population of Qatar. We analyzed 171 families with ASD, using linear mixed models adjusting for relatedness and other confounders. Results showed that common single nucleotide polymorphisms (SNP) in seven loci are associated with ASD (p < 1 × 10-5). Although the identified loci did not reach genome-wide significance, many of the top associated SNPs are located within or near genes that have been implicated in ASD or related neurodevelopmental disorders. These include GORASP2, GABBR2, ANKS6, THSD4, ERCC6L, ARHGEF6, and HDAC8. Additionally, three of the top associated SNPs were significantly associated with gene expression. We also found evidence of association signals in two previously reported ASD-susceptibility loci (rs10099100 and rs4299400). Our results warrant further functional studies and replication to provide further insights into the genetic architecture of ASD.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Division of Nephrology, Columbia University Medical Center, New York, NY 10032, USA
| | - Fouad Alshaban
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha 33123, Qatar;
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Omar M.E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
33
|
Segura-Bayona S, Villamor-Payà M, Attolini CSO, Koenig LM, Sanchiz-Calvo M, Boulton SJ, Stracker TH. Tousled-Like Kinases Suppress Innate Immune Signaling Triggered by Alternative Lengthening of Telomeres. Cell Rep 2021; 32:107983. [PMID: 32755577 PMCID: PMC7408502 DOI: 10.1016/j.celrep.2020.107983] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The Tousled-like kinases 1 and 2 (TLK1/2) control histone deposition through the ASF1 histone chaperone and influence cell cycle progression and genome maintenance, yet the mechanisms underlying TLK-mediated genome stability remain uncertain. Here, we show that TLK loss results in severe chromatin decompaction and altered genome accessibility, particularly affecting heterochromatic regions. Failure to maintain heterochromatin increases spurious transcription of repetitive elements and induces features of alternative lengthening of telomeres (ALT). TLK depletion culminates in a cGAS-STING-TBK1-mediated innate immune response that is independent of replication-stress signaling and attenuated by the depletion of factors required to produce extra-telomeric DNA. Analysis of human cancers reveals that chromosomal instability correlates with high TLK2 and low STING levels in many cohorts. Based on these findings, we propose that high TLK levels contribute to immune evasion in chromosomally unstable and ALT+ cancers. TLK-deficient cells have increased accessibility at heterochromatin regions TLK1/2 suppress spurious transcription and telomere hyper-recombination Extra-telomeric DNA generated upon TLK loss promotes innate immune signaling cGAS-STING-TBK1 signaling in TLK-deficient cells is independent of replication stress
Collapse
Affiliation(s)
- Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lars M Koenig
- Division of Clinical Pharmacology, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Maria Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
| |
Collapse
|
34
|
Gorecki L, Andrs M, Korabecny J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer. Cancers (Basel) 2021; 13:795. [PMID: 33672884 PMCID: PMC7918546 DOI: 10.3390/cancers13040795] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| | - Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| |
Collapse
|
35
|
Feng Z, Zhang J, Zheng Y, Wang Q, Min X, Tian T. Elevated expression of ASF1B correlates with poor prognosis in human lung adenocarcinoma. Per Med 2021; 18:115-127. [PMID: 33576264 DOI: 10.2217/pme-2020-0112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aim: ASF1 is involved in tumorigenesis. However, its possible role in lung adenocarcinoma (LUAD) is unclear. This study thus explored the role of ASF1A and ASF1B in LUAD. Materials & methods: Data from The Cancer Genome Atlas and Gene Expression Omnibus were employed to investigate ASF1A and ASF1B expression and its roles in LUAD prognosis. Immunohistochemistry was applied to determine the protein expression of ASF1B of 30 LUAD patients. Results: The upregulation of ASF1B in tumor tissues is associated with worse overall survival and progress-free survival and is correlated with advanced tumor stage and tumor development. However, aberrant expression of ASF1A was not found in LUAD and ASF1A was not related to patients' overall survival and progress-free survival. Conclusion: ASF1B could be a promising prognostic and therapeutic biomarker in LUAD.
Collapse
Affiliation(s)
- Zhenxing Feng
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, PR China.,Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, PR China
| | - Jiao Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, PR China.,Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Yafang Zheng
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, PR China
| | - Qingzhang Wang
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, PR China
| | - Xiaochuan Min
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, PR China
| | - Tieshuan Tian
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, PR China
| |
Collapse
|
36
|
Abstract
Epstein-Barr virus (EBV) infects 95% of adults worldwide and causes infectious mononucleosis. EBV is associated with endemic Burkitt lymphoma, Hodgkin lymphoma, posttransplant lymphomas, nasopharyngeal and gastric carcinomas. In these cancers and in most infected B-cells, EBV maintains a state of latency, where nearly 80 lytic cycle antigens are epigenetically suppressed. To gain insights into host epigenetic factors necessary for EBV latency, we recently performed a human genome-wide CRISPR screen that identified the chromatin assembly factor CAF1 as a putative Burkitt latency maintenance factor. CAF1 loads histones H3 and H4 onto newly synthesized host DNA, though its roles in EBV genome chromatin assembly are uncharacterized. Here, we found that CAF1 depletion triggered lytic reactivation and virion secretion from Burkitt cells, despite also strongly inducing interferon-stimulated genes. CAF1 perturbation diminished occupancy of histones 3.1 and 3.3 and of repressive histone 3 lysine 9 and 27 trimethyl (H3K9me3 and H3K27me3) marks at multiple viral genome lytic cycle regulatory elements. Suggestive of an early role in establishment of latency, EBV strongly upregulated CAF1 expression in newly infected primary human B-cells prior to the first mitosis, and histone 3.1 and 3.3 were loaded on the EBV genome by this time point. Knockout of CAF1 subunit CHAF1B impaired establishment of latency in newly EBV-infected Burkitt cells. A nonredundant latency maintenance role was also identified for the DNA synthesis-independent histone 3.3 loader histone regulatory homologue A (HIRA). Since EBV latency also requires histone chaperones alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX) and death domain-associated protein (DAXX), EBV coopts multiple host histone pathways to maintain latency, and these are potential targets for lytic induction therapeutic approaches.IMPORTANCE Epstein-Barr virus (EBV) was discovered as the first human tumor virus in endemic Burkitt lymphoma, the most common childhood cancer in sub-Saharan Africa. In Burkitt lymphoma and in 200,000 EBV-associated cancers per year, epigenetic mechanisms maintain viral latency, during which lytic cycle factors are silenced. This property complicated EBV's discovery and facilitates tumor immunoevasion. DNA methylation and chromatin-based mechanisms contribute to lytic gene silencing. Here, we identified histone chaperones CAF1 and HIRA, which have key roles in host DNA replication-dependent and replication-independent pathways, respectively, as important for EBV latency. EBV strongly upregulates CAF1 in newly infected B-cells, where viral genomes acquire histone 3.1 and 3.3 variants prior to the first mitosis. Since histone chaperones ATRX and DAXX also function in maintenance of EBV latency, our results suggest that EBV coopts multiple histone pathways to reprogram viral genomes and highlight targets for lytic induction therapeutic strategies.
Collapse
|
37
|
Stracker TH, Morrison CG, Gergely F. Molecular causes of primary microcephaly and related diseases: a report from the UNIA Workshop. Chromosoma 2020; 129:115-120. [PMID: 32424716 DOI: 10.1007/s00412-020-00737-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
The International University of Andalucía (UNIA) Current Trends in Biomedicine Workshop on Molecular Causes of Primary Microcephaly and Related Diseases took place in Baeza, Spain, November 18-20, 2019. This meeting brought together scientists from Europe, the USA and China to discuss recent advances in our molecular and genetic understanding of a group of rare neurodevelopmental diseases characterised by primary microcephaly, a condition in which head circumference is smaller than normal at birth. Microcephaly can be caused by inherited mutations that affect key cellular processes, or environmental exposure to radiation or other toxins. It can also result from viral infection, as exemplified by the recent Zika virus outbreak in South America. Here we summarise a number of the scientific advances presented and topics discussed at the meeting.
Collapse
Affiliation(s)
- Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona) and Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, H91 TK33, Ireland
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
38
|
Singh V, Khalil MI, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle 2020; 19:363-375. [PMID: 31914854 PMCID: PMC7028156 DOI: 10.1080/15384101.2019.1711317] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The TLK1/Nek1 axis contributes to cell cycle arrest and implementation of the DDR to mediate survival upon DNA damage. However, when the damage is too severe, the cells typically are forced into apoptosis, and the contribution of TLKs in this process has not been investigated. In contrast, it is known that Nek1 may play a role by phosphorylating VDAC1 maintaining proper opening and closure of the channel and thus mitochondrial integrity. We now show that the activating phosphorylation of Nek1-T141 by TLK1 contributes to the phosphorylation and stability of VDAC1 and thereby to mitochondrial permeability and integrity. Treatment of three different cell lines model that overexpress Nek1-T141A mutant with doxorubicin showed exquisite sensitivity to the drug, with implementation of rapid accumulation of cells with subG1 DNA content (apoptotic) and other alterations in the cell cycle. In addition, these cells displayed reduced oxygen consumption under normal conditions and less reliance on mitochondria and more dependence on glycolysis for energy production. Consistent with greater apoptosis, upon treatment with low doses of doxorubicin, cells overexpressing Nek1-T141A displayed leakage of Cyt-C into the cytoplasmic fraction. This suggests that inhibiting the TLK1/Nek1/VDAC1 nexus could sensitize cancer cells to apoptotic killing in combination with an appropriate DNA damaging agent. We in fact have previously reported that Nek1 expression is elevated in advanced Prostate Cancer (PCa) and we now report that VDAC1 expression is elevated and correlated with disease stage, thereby making the TLK1/Nek1/VDAC1 nexus a very attractive target for PCa.
Collapse
Affiliation(s)
- Vibha Singh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Md Imtiaz Khalil
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|