1
|
Zhao JX, Elsheikha HM, Shang KM, Su JW, Wei YJ, Qin Y, Zhao ZY, Ma H, Zhang XX. Investigation of the genetic diversity of gut mycobiota of the wild and laboratory mice. Microbiol Spectr 2025; 13:e0284024. [PMID: 40162766 PMCID: PMC12054021 DOI: 10.1128/spectrum.02840-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Mice are colonized by diverse gut fungi, known as the mycobiota, which have received much less attention than bacterial microbiota. Here, we studied the diversities and structures of cecal fungal communities in wild (Lasiopodomys brandtii, Apodemus agrarius, and Microtus fortis) vs laboratory C57BL/6J mice to disentangle the contributions of gut fungi to the adaptation of mice to genetic diversity. Using ITS1 gene sequencing, we obtained 2,912 amplicon sequence variants (ASVs) and characterized the composition and diversity of cecal mycobiota in mice. There were significant differences in the composition of cecal fungal communities between wild and C57BL/6J mice, with more species diversity and richness of fungi in wild mice than C57BL/6J mice. We cultured 428 fungal strains from the cecal mycobiota, sequenced the whole genome of 48 selected strains, and identified 500,849 genes. Functional annotation analysis revealed multiple pathways related to energy metabolism, carbohydrate metabolism, fatty acid metabolism, and enzymes involved in the degradation of polysaccharides, lipids, and proteins, and secondary metabolite biosynthesis. The functions and abundance of Hypocreales and Pleosporales, which included the majority of the crucial metabolic pathways, were significantly higher in wild mice than in C57BL/6J mice. The results suggest that variations in the fungal community composition may relate to the adaptability of mice to their environmental habitats. IMPORTANCE In this study, we analyzed the fungal microbiota of three wild mouse species alongside laboratory mice using ITS1 amplicon sequencing. By integrating whole-genome sequencing with culturomics, we sequenced the genomes of 48 fungi isolated from cultured strains and investigated their biological functions to understand the role of intestinal fungi in the environmental adaptability of wild mice. This investigation has expanded the functional gene repository of gut fungi and shed new light on the intricate interplay between mice and their gut fungal communities. The data offer valuable insight into the ecological adaptation in wild mice, emphasizing the complex and dynamic relationship between the murine hosts and their mycobiota.
Collapse
Affiliation(s)
- Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jin-Wen Su
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ya Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Zi-Yu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Abasubong KP, Jiang GZ, Guo HX, Wang X, Li XF, Yan-Zou D, Liu WB, Desouky HE. High-fat diet alters intestinal microbiota and induces endoplasmic reticulum stress via the activation of apoptosis and inflammation in blunt snout bream. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1079-1095. [PMID: 37831370 DOI: 10.1007/s10695-023-01240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023]
Abstract
The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum stress and inflammation. 60 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet (6% fat) and a high-fat diet (12 % fat) in four replicates for 12 weeks. From the result, hepatosomatic index (HSI), Visceralsomatic index (VSI), abdominal fat (ADF), Intestosomatic index (ISI), mesenteric fat (MFI), Triglycerides (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) content were substantially greater on HFD compared to the control diet. Moreover, fish provided the HFD significantly obtained lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. In contrast, an opposite result was seen in malondialdehyde (MDA) content in comparison to the control. HFD significantly altered intestinal microbiota in blunt snout bream, characterized by an increased abundance of Aeromonas, Plesiomonas proteobacteria, and firmicutes with a reduced abundance of Cetobacterium and ZOR0006. The transcriptional levels of glucose-regulated protein 78 (grp78), inositol requiring enzyme 1 (ire1), spliced X box-binding protein 1 (xbp1), DnaJ heat shock protein family (Hsp40) member B9 (dnajb9), tumor necrosis factor alpha (tnf-α), nuclear factor-kappa B (nf-κb), monocyte chemoattractant protein-1 (mcp-1), and interleukin-6 (il-6) in the intestine were markedly upregulated in fish fed HFD than the control group. Also, the outcome was similar in bax, caspases-3, and caspases-9, ZO-1, Occludin-1, and Occludin-2 expressions. In conclusion, HFD could alter microbiota and facilitate chronic inflammatory signals via activating endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Dong Yan-Zou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| | - Hesham Eed Desouky
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Beheria, 22713, Egypt
| |
Collapse
|
3
|
Ahmed RO, Ali A, Leeds T, Salem M. Fecal Microbiome Analysis Distinguishes Bacterial Taxa Biomarkers Associated with Red Fillet Color in Rainbow Trout. Microorganisms 2023; 11:2704. [PMID: 38004716 PMCID: PMC10673235 DOI: 10.3390/microorganisms11112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The characteristic reddish-pink fillet color of rainbow trout is an important marketing trait. The gastrointestinal microbiome is vital for host health, immunity, and nutrient balance. Host genetics play a crucial role in determining the gut microbiome, and the host-microbiome interaction impacts the host's phenotypic expression. We hypothesized that fecal microbiota could be used to predict fillet color in rainbow trout. Fish were fed Astaxanthin-supplemented feed for six months, after which 16s rDNA sequencing was used to investigate the fecal microbiome composition in rainbow trout families with reddish-pink fillet coloration (red fillet group, average saturation index = 26.50 ± 2.86) compared to families with pale white fillet color (white fillet group, average saturation index = 21.21 ± 3.53). The linear discriminant analysis effect size (LEFse) tool was used to identify bacterial biomarkers associated with fillet color. The alpha diversity measure shows no difference in the red and white fillet groups. Beta diversity principal component analysis showed clustering of the samples along the white versus red fillet group. The red fillet group has enrichment (LDA score > 1.5) of taxa Leuconostoc lactis, Corynebacterium variabile, Jeotgalicoccus halotolerans, and Leucobacter chromiireducens. In contrast, the white fillet group has an enriched presence of mycoplasma, Lachnoclostridium, and Oceanobacillus indicireducens. The enriched bacterial taxa in the red fillet group have probiotic functions and can generate carotenoid pigments. Bacteria taxa enriched in the white fillet group are either commensal, parasitic, or capable of reducing indigo dye. The study identified specific bacterial biomarkers differentially abundant in fish families of divergent fillet color that could be used in genetic selection to improve feed carotenoid retention and reddish-pink fillet color. This work extends our understanding of carotenoid metabolism in rainbow trout through the interaction between gut microbiota and fillet color.
Collapse
Affiliation(s)
- Ridwan O. Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Tim Leeds
- United States Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, Kearneysville, WV 25430, USA;
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| |
Collapse
|
4
|
Rigas D, Grivas N, Nelli A, Gouva E, Skoufos I, Kormas K, Tzora A, Lagkouvardos I. Persistent Dysbiosis, Parasite Rise and Growth Impairment in Aquacultured European Seabass after Oxytetracycline Treatment. Microorganisms 2023; 11:2302. [PMID: 37764146 PMCID: PMC10534334 DOI: 10.3390/microorganisms11092302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The use of antibiotics in open-water aquaculture is often unavoidable when faced with pathogens with high mortality rates. In addition, seasonal pathogen surges have become more common and more intense over the years. Apart from the apparent cost of antibiotic treatment, it has been observed that, in aquaculture practice, the surviving fish often display measurable growth impairment. To understand the role of gut microbiota on the observed growth impairment, in this study, we follow the incidence of Photobacterium damselae subsp. piscicida in a seabass commercial open-water aquaculture setting in Galaxidi (Greece). Fish around 10 months of age were fed with feed containing oxytetracycline (120 mg/kg/day) for twelve days, followed by a twelve-day withdrawal period, and another eighteen days of treatment. The fish were sampled 19 days before the start of the first treatment and one month after the end of the second treatment cycle. Sequencing of the 16S rRNA gene was used to measure changes in the gut microbiome. Overall, the gut microbiota community, even a month after treatment, was highly dysbiotic and characterized by very low alpha diversity. High abundances of alkalophilic bacteria in the post-antibiotic-treated fish indicated a rise in pH that was coupled with a significant increase in gut parasites. This study's results indicate that oxytetracycline (OTC) treatment causes persistent dysbiosis even one month after withdrawal and provides a more suitable environment for an increase in parasites. These findings highlight the need for interventions to restore a healthy and protective gut microbiome.
Collapse
Affiliation(s)
- Dimitris Rigas
- Galaxidi Marine Farm S.A., 33200 Galaxidi, Greece; (D.R.); (N.G.)
| | - Nikos Grivas
- Galaxidi Marine Farm S.A., 33200 Galaxidi, Greece; (D.R.); (N.G.)
| | - Aikaterini Nelli
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Evangelia Gouva
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446 Volos, Greece;
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221 Volos, Greece
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Ilias Lagkouvardos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
- Department of Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, 71500 Heraklion, Greece
| |
Collapse
|
5
|
Qi J, Cai D, Cui Y, Tan T, Zou H, Guo W, Xie Y, Guo H, Chen SY, Ma X, Gou L, Cui H, Geng Y, Zhang M, Ye G, Zhong Z, Ren Z, Hu Y, Wang Y, Deng J, YU S, Cao S, Wanapat M, Fang J, Wang Z, Zuo Z. Metagenomics Reveals That Intravenous Injection of Beta-Hydroxybutyric Acid (BHBA) Disturbs the Nasopharynx Microflora and Increases the Risk of Respiratory Diseases. Front Microbiol 2021; 11:630280. [PMID: 33613471 PMCID: PMC7892611 DOI: 10.3389/fmicb.2020.630280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
It is widely accepted that maintenance of microbial diversity is essential for the health of the respiratory tract; however, there are limited reports on the correlation between starvation and respiratory tract microbial diversity. In the present study, saline/β-hydroxybutyric acid (BHBA) intravenous injection after dietary restriction was used to imitate different degrees of starvation. A total of 13 healthy male yaks were imposed to different dietary restrictions and intravenous injections, and their nasopharyngeal microbiota profiles were obtained by metagenomic shotgun sequencing. In healthy yaks, the main dominant phyla were Proteobacteria (33.0%), Firmicutes (22.6%), Bacteroidetes (17.2%), and Actinobacteria (13.2%); the most dominated species was Clostridium botulinum (10.8%). It was found that 9 days of dietary restriction and 2 days of BHBA injection (imitating severe starvation) significantly decreased the microbial diversity and disturbed its structure and functional composition, which increased the risk of respiratory diseases. This study also implied that oral bacteria played an important role in maintaining nasopharynx microbial homeostasis. In this study, the correlation between starvation and nasopharynx microbial diversity and its potential mechanism was investigated for the first time, providing new ideas for the prevention of respiratory diseases.
Collapse
Affiliation(s)
- Jiancheng Qi
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongjie Cai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaocheng Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tianyu Tan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Wei Guo
- Department of Clinical Laboratory, Chengdu Medical College, Chengdu, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shi-Yi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin YU
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Effect of Salinity on the Gut Microbiome of Pike Fry (Esox lucius). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increasing popularity of pike in angling and fish farming has created a need to increase pike production. However, intensive pike farming is subject to limitations due to diseases and pathogens. Sodium chloride (NaCl) could be a good alternative to chemotherapeutics, especially for protecting the fish against pathogens and parasites at early life stages. However, the impact of high salinity on the symbiotic bacteria inhabiting freshwater fish is still unclear. Therefore, our objective was to analyze the gut microbiome to find possible changes caused by salinity. In this study, the influence of 3‰ and 7‰ salinity on pike fry was investigated. High-throughput 16S rRNA gene amplicon sequencing was used to profile the gut microbiome of the fish. It was found that salinity had a statistically significant influence on pike fry mortality. Mortality was highest in the 7‰ salinity group and lowest in the 3‰ group. Microbiological analysis indicated that Proteobacteria and Actinobacteria predominated in the pike gut microbiome in all examined groups, followed by lower percentages of Bacteroidetes and Firmicutes. There were no statistically significant differences in the percent abundance of bacterial taxa between the control group and groups with a higher salinity. Our results suggest that salinity influences the gut microbiome structure in pike fry, and that 3‰ salinity may be a good solution for culturing pike at this stage in their development.
Collapse
|
7
|
Dulski T, Kozłowski K, Ciesielski S. Habitat and seasonality shape the structure of tench (Tinca tinca L.) gut microbiome. Sci Rep 2020; 10:4460. [PMID: 32157130 PMCID: PMC7064478 DOI: 10.1038/s41598-020-61351-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Tench (Tinca tinca L.) is one of the most valued species of the Cyprinidae. This species is commercially important and has been intensively domesticated in recent years. To avoid excessive production losses, the health of farm fish must be maintained. Characterization of the tench gut microbiome can help achieve this goal, as the gastrointestinal microbiome plays an important role in host health. As part of this characterization, investigating the influence of the environment and season will help to understand the interrelationship between host and gut microbiota. Therefore, our aim was to use high-throughput 16S rRNA gene amplicon sequencing to profile the gut microbiome of tench. We studied two populations in summer and autumn: wild tench living in a lake and tench living in a pond in a semi-intensive fish farm. We found that, in the gut microbiome of all fish, the most abundant phylum was Proteobacteria, followed by Firmicutes, Bacteroidetes and Actinobacteria. Together, these phyla constituted up to 90% of the microbial communities. The abundance of Candidatus Xiphinematobacter differed significantly between lake and pond fish in summer, but not in autumn. In pond tench, Methylobacterium abundance was significantly lower in summer than in autumn. Mean Shannon, Chao1 indices and observed OTU's indicated that microbial biodiversity was greater in the gut of lake fish than in that of pond fish. Beta-diversity analysis showed significant divergence between groups with both weighted and unweighted UniFrac distance matrices. Principal coordinates analysis revealed that more of the variance in microbial diversity was attributable to environment than to season. Although some of the diversity in lake tench gut microbiota could be attributable to feeding preferences of individual fish, our results suggest that environment is the main factor in determining gut microbiome diversity in tench.
Collapse
Affiliation(s)
- Tomasz Dulski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Krzysztof Kozłowski
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
8
|
Brugman S, Ikeda-Ohtsubo W, Braber S, Folkerts G, Pieterse CMJ, Bakker PAHM. A Comparative Review on Microbiota Manipulation: Lessons From Fish, Plants, Livestock, and Human Research. Front Nutr 2018; 5:80. [PMID: 30234124 PMCID: PMC6134018 DOI: 10.3389/fnut.2018.00080] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
During recent years the impact of microbial communities on the health of their host (being plants, fish, and terrestrial animals including humans) has received increasing attention. The microbiota provides the host with nutrients, induces host immune development and metabolism, and protects the host against invading pathogens (1-6). Through millions of years of co-evolution bacteria and hosts have developed intimate relationships. Microbial colonization shapes the host immune system that in turn can shape the microbial composition (7-9). However, with the large scale use of antibiotics in agriculture and human medicine over the last decades an increase of diseases associated with so-called dysbiosis has emerged. Dysbiosis refers to either a disturbed microbial composition (outgrowth of possible pathogenic species) or a disturbed interaction between bacteria and the host (10). Instead of using more antibiotics to treat dysbiosis there is a need to develop alternative strategies to combat disturbed microbial control. To this end, we can learn from nature itself. For example, the plant root (or "rhizosphere") microbiome of sugar beet contains several bacterial species that suppress the fungal root pathogen Rhizoctonia solani, an economically important fungal pathogen of this crop (11). Likewise, commensal bacteria present on healthy human skin produce antimicrobial molecules that selectively kill skin pathogen Staphylococcus aureus. Interestingly, patients with atopic dermatitis (inflammation of the skin) lacked antimicrobial peptide secreting commensal skin bacteria (12). In this review, we will give an overview of microbial manipulation in fish, plants, and terrestrial animals including humans to uncover conserved mechanisms and learn how we might restore microbial balance increasing the resilience of the host species.
Collapse
Affiliation(s)
- Sylvia Brugman
- Cell Biology and Immunology Group, Animal Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Leng RA. Unravelling methanogenesis in ruminants, horses and kangaroos: the links between gut anatomy, microbial biofilms and host immunity. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present essay aims to resolve the question as to why macropod marsupials (e.g. kangaroos and wallabies, hereinafter termed ‘macropods) and horses produce much less methane (CH4) than do ruminants when digesting the same feed. In herbivores, gases produced during fermentation of fibrous feeds do not pose a major problem in regions of the gut that have mechanisms to eliminate them (e.g. eructation in the rumen and flatus in the lower bowel). In contrast, gas pressure build-up in the tubiform forestomach of macropods or in the enlarged tubiform caecum of equids would be potentially damaging. It is hypothesised that, to prevent this problem, evolution has favoured development of controls over gut microbiota that enable enteric gas production (H2 and CH4) to be differently regulated in the forestomach of macropods and the caecum of all three species, from the forestomach of ruminants. The hypothesised regulation depends on interactions between their gut anatomy and host-tissue immune responses that have evolved to modify the species composition of their gut microbiota which, importantly, are mainly in biofilms. Obligatory H2 production during forage fermentation is, thus, captured in CH4 in the ruminant where ruminal gases are readily released by eructation, or in acetate in the macropod forestomach and equid caecum–colon where a build-up in gas pressure could potentially damage these organs. So as to maintain appropriate gut microbiota in different species, it is hypothesised that blind sacs at the cranial end of the haustral anatomy of the macropod forestomach and the equid caecum are sites of release of protobiofilm particles that develop in close association with the mucosal lymphoid tissues. These tissues release immune secretions such as antimicrobial peptides, immunoglobulins, innate lymphoid cells and mucin that eliminate or suppress methanogenic Archaea and support the growth of acetogenic microbiota. The present review draws on microbiological studies of the mammalian gut as well as other microbial environments. Hypotheses are advanced to account for published findings relating to the gut anatomy of herbivores and humans, the kinetics of digesta in ruminants, macropods and equids, and also the composition of biofilm microbiota in the human gut as well as aquatic and other environments where the microbiota exist in biofilms.
Collapse
|
10
|
Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:2-23. [PMID: 27296493 DOI: 10.1016/j.dci.2016.05.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only are psychological and environmental stressors communicated to the immune system, but also, vice versa, the immune response and adaptation to a current pathogen challenge are communicated to the entire body, including the brain, to evoke adaptive responses (e.g., fever, sickness behavior) that ensure allocation of energy to fight the pathogen. This phenomenon is evolutionarily conserved. Hence it is both interesting and important to consider the evolutionary history of this bi-directional neuroendocrine-immune communication to reveal phylogenetically ancient or relatively recently acquired mechanisms. Indeed, such considerations have already disclosed an extensive "common vocabulary" of information pathways as well as molecules and their receptors used by both the neuroendocrine and immune systems. This review focuses on the principal mechanisms of bi-directional communication and the evidence for evolutionary conservation of the important physiological pathways involved.
Collapse
Affiliation(s)
- B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Nicholas Cohen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| |
Collapse
|
11
|
Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. The Gut Microbiota of Wild Mice. PLoS One 2015; 10:e0134643. [PMID: 26258484 PMCID: PMC4530874 DOI: 10.1371/journal.pone.0134643] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/11/2015] [Indexed: 12/28/2022] Open
Abstract
The gut microbiota profoundly affects the biology of its host. The composition of the microbiota is dynamic and is affected by both host genetic and many environmental effects. The gut microbiota of laboratory mice has been studied extensively, which has uncovered many of the effects that the microbiota can have. This work has also shown that the environments of different research institutions can affect the mouse microbiota. There has been relatively limited study of the microbiota of wild mice, but this has shown that it typically differs from that of laboratory mice (and that maintaining wild caught mice in the laboratory can quite quickly alter the microbiota). There is also inter-individual variation in the microbiota of wild mice, with this principally explained by geographical location. In this study we have characterised the gut (both the caecum and rectum) microbiota of wild caught Mus musculus domesticus at three UK sites and have investigated how the microbiota varies depending on host location and host characteristics. We find that the microbiota of these mice are generally consistent with those described from other wild mice. The rectal and caecal microbiotas of individual mice are generally more similar to each other, than they are to the microbiota of other individuals. We found significant differences in the diversity of the microbiotas among mice from different sample sites. There were significant correlations of microbiota diversity and body weight, a measure of age, body-mass index, serum concentration of leptin, and virus, nematode and mite infection.
Collapse
Affiliation(s)
- Laura Weldon
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Stephen Abolins
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Luca Lenzi
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Christian Bourne
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Eleanor M. Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mark Viney
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Brugman S, Schneeberger K, Witte M, Klein MR, van den Bogert B, Boekhorst J, Timmerman HM, Boes ML, Kleerebezem M, Nieuwenhuis EES. T lymphocytes control microbial composition by regulating the abundance of Vibrio in the zebrafish gut. Gut Microbes 2014; 5:737-47. [PMID: 25536157 PMCID: PMC4615293 DOI: 10.4161/19490976.2014.972228] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dysbiosis of the intestinal microbial community is considered a risk factor for development of chronic intestinal inflammation as well as other diseases such as diabetes, obesity and even cancer. Study of the innate and adaptive immune pathways controlling bacterial colonization has however proven difficult in rodents, considering the extensive cross-talk between bacteria and innate and adaptive immunity. Here, we used the zebrafish to study innate and adaptive immune processes controlling the microbial community. Zebrafish lack a functional adaptive immune system in the first weeks of life, enabling study of the innate immune system in the absence of adaptive immunity. We show that in wild type zebrafish, the initial lack of adaptive immunity associates with overgrowth of Vibrio species (a group encompassing fish and human pathogens), which is overcome upon adaptive immune development. In Rag1-deficient zebrafish (lacking adaptive immunity) Vibrio abundance remains high, suggesting that adaptive immune processes indeed control Vibrio species. Using cell transfer experiments, we confirm that adoptive transfer of T lymphocytes, but not B lymphocytes into Rag1-deficient recipients suppresses outgrowth of Vibrio. In addition, ex vivo exposure of intestinal T lymphocytes to Rag1-deficient microbiota results in increased interferon-gamma expression by these T lymphocytes, compared to exposure to wild type microbiota. In conclusion, we show that T lymphocytes control microbial composition by effectively suppressing the outgrowth of Vibrio species in the zebrafish intestine.
Collapse
Affiliation(s)
- Sylvia Brugman
- Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands,Animal Sciences Group, Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands,Correspondence to: Sylvia Brugman;
| | - Kerstin Schneeberger
- Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Merlijn Witte
- Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands,Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and University Medical Centre, Utrecht, The Netherlands
| | - Mark R Klein
- Laboratory of Pediatric Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Bartholomeus van den Bogert
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,Top Institute Food and Nutrition (TIFN) Wageningen, The Netherlands
| | - Jos Boekhorst
- NIZO food research, Ede, The Netherlands,Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Nijmegen Medical Centre, The Netherlands
| | | | - Marianne L Boes
- Laboratory of Pediatric Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University, Wageningen, The Netherlands,NIZO food research, Ede, The Netherlands
| | - Edward ES Nieuwenhuis
- Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Abstract
Co-infection of individual hosts by multiple parasite species is a pattern that is very commonly observed in natural populations. Understanding the processes that generate these patterns poses a challenge. For example, it is difficult to discern the relative roles of exposure and susceptibility in generating the mixture and density of parasites within hosts. Yet discern them we must, if we are to design and deliver successful medical interventions for co-infected populations. Here, we synthesise an emergent understanding of how processes operate and interact to generate patterns of co-infection. We consider within-host communities (or infracommunities) generally, that is including not only classical parasites but also the microbiota that are so abundant on mucosal surfaces and which are increasingly understood to be so influential on host biology. We focus on communities that include a helminth, but we expect similar inferences to pertain to other taxa. We suggest that, thanks to recent research at both the within-host (e.g. immunological) and between-host (e.g. epidemiological) scales, researchers are poised to reveal the processes that generate the observed distribution of parasite communities among hosts. Progress will be facilitated by using new technologies as well as statistical and experimental tools to test competing hypotheses about processes that might generate patterns in co-infection data. By understanding the multiple interactions that underlie patterns of co-infection, we will be able to understand and intelligently predict how a suite of co-infections (and thus the host that bears them) will together respond to medical interventions as well as other environmental changes. The challenge for us all is to become scholars of co-infections.
Collapse
Affiliation(s)
- Mark E Viney
- School of Biological Sciences, University of Bristol, Woodland Road, UK.
| | | |
Collapse
|
14
|
Ellis RJ, Bruce KD, Jenkins C, Stothard JR, Ajarova L, Mugisha L, Viney ME. Comparison of the distal gut microbiota from people and animals in Africa. PLoS One 2013; 8:e54783. [PMID: 23355898 PMCID: PMC3552852 DOI: 10.1371/journal.pone.0054783] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/17/2012] [Indexed: 01/20/2023] Open
Abstract
The gut microbiota plays a key role in the maintenance of healthy gut function as well as many other aspects of health. High-throughput sequence analyses have revealed the composition of the gut microbiota, showing that there is a core signature to the human gut microbiota, as well as variation in its composition between people. The gut microbiota of animals is also being investigated. We are interested in the relationship between bacterial taxa of the human gut microbiota and those in the gut microbiota of domestic and semi-wild animals. While it is clear that some human gut bacterial pathogens come from animals (showing that human--animal transmission occurs), the extent to which the usually non-pathogenic commensal taxa are shared between humans and animals has not been explored. To investigate this we compared the distal gut microbiota of humans, cattle and semi-captive chimpanzees in communities that are geographically sympatric in Uganda. The gut microbiotas of these three host species could be distinguished by the different proportions of bacterial taxa present. We defined multiple operational taxonomic units (OTUs) by sequence similarity and found evidence that some OTUs were common between human, cattle and chimpanzees, with the largest number of shared OTUs occurring between chimpanzees and humans, as might be expected with their close physiological similarity. These results show the potential for the sharing of usually commensal bacterial taxa between humans and other animals. This suggests that further investigation of this phenomenon is needed to fully understand how it drives the composition of human and animal gut microbiotas.
Collapse
Affiliation(s)
- Richard J Ellis
- Specialist Scientific Support Department, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
A computer model of the gut shows how a host can readily select friendly bacteria over harmful bacteria through a process called “selectivity amplification.” The human gut harbours a large and genetically diverse population of symbiotic microbes that both feed and protect the host. Evolutionary theory, however, predicts that such genetic diversity can destabilise mutualistic partnerships. How then can the mutualism of the human microbiota be explained? Here we develop an individual-based model of host-associated microbial communities. We first demonstrate the fundamental problem faced by a host: The presence of a genetically diverse microbiota leads to the dominance of the fastest growing microbes instead of the microbes that are most beneficial to the host. We next investigate the potential for host secretions to influence the microbiota. This reveals that the epithelium–microbiota interface acts as a selectivity amplifier: Modest amounts of moderately selective epithelial secretions cause a complete shift in the strains growing at the epithelial surface. This occurs because of the physical structure of the epithelium–microbiota interface: Epithelial secretions have effects that permeate upwards through the whole microbial community, while lumen compounds preferentially affect cells that are soon to slough off. Finally, our model predicts that while antimicrobial secretion can promote host epithelial selection, epithelial nutrient secretion will often be key to host selection. Our findings are consistent with a growing number of empirical papers that indicate an influence of host factors upon microbiota, including growth-promoting glycoconjugates. We argue that host selection is likely to be a key mechanism in the stabilisation of the mutualism between a host and its microbiota. The cells of our bodies are greatly outnumbered by the bacteria that live on us and, in particular, in our gut. It is now clear that many gut bacteria are highly beneficial, protecting us from pathogens and helping us with digestion. But what prevents beneficial bacteria from going bad? Why don't bacteria evolve to shirk on the help that they provide and simply use us as a food source? Here we explore this problem using a computer model that reduces the problem to its key elements. We first illustrate the basic problem faced by a host: Whenever beneficial bacteria grow slowly, the host will lose them to fast-growing species that provide no benefit. We then propose a solution to the host's problem: The host can use secretions—nutrients and toxins—to control the bacteria that grow on the epithelial cell layer of the gut. In particular, our model predicts that the epithelial surface acts as a “selectivity amplifier”. The host can thereby maintain beneficial bacteria with only small amounts of weakly selective secretions. Our model fits with a growing body of experimental data showing that hosts have diverse and important influences on their gut bacteria.
Collapse
|
16
|
Rombout JHWM, Abelli L, Picchietti S, Scapigliati G, Kiron V. Teleost intestinal immunology. FISH & SHELLFISH IMMUNOLOGY 2011; 31:616-26. [PMID: 20832474 DOI: 10.1016/j.fsi.2010.09.001] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/24/2010] [Accepted: 09/02/2010] [Indexed: 05/12/2023]
Abstract
Teleosts clearly have a more diffuse gut associated lymphoid system, which is morphological and functional clearly different from the mammalian GALT. All immune cells necessary for a local immune response are abundantly present in the gut mucosa of the species studied and local immune responses can be monitored after intestinal immunization. Fish do not produce IgA, but a special mucosal IgM isotype seems to be secreted and may (partly) be the recently described IgZ/IgT. Fish produce a pIgR in their mucosal tissues but it is smaller (2 ILD) than the 4-5 ILD pIgR of higher vertebrates. Whether teleost pIgR is transcytosed and cleaved off in the same way needs further investigation, especially because a secretory component (SC) is only reported in one species. Teleosts also have high numbers of IEL, most of them are CD3-ɛ+/CD8-α+ and have cytotoxic and/or regulatory function. Possibly many of these cells are TCRγδ cells and they may be involved in the oral tolerance induction observed in fish. Innate immune cells can be observed in the teleost gut from first feeding onwards, but B cells appear much later in mucosal compartments compared to systemic sites. Conspicuous is the very early presence of putative T cells or their precursors in the fish gut, which together with the rag-1 expression of intestinal lymphoid cells may be an indication for an extra-thymic development of certain T cells. Teleosts can develop enteritis in their antigen transporting second gut segment and epithelial cells, IEL and eosinophils/basophils seem to play a crucial role in this intestinal inflammation model. Teleost intestine can be exploited for oral vaccination strategies and probiotic immune stimulation. A variety of encapsulation methods, to protect vaccines against degradation in the foregut, are reported with promising results but in most cases they appear not to be cost effective yet. Microbiota in fish are clearly different from terrestrial animals. In the past decade a fast increasing number of papers is dedicated to the oral administration of a variety of probiotics that can have a strong health beneficial effect, but much more attention has to be paid to the immune mechanisms behind these effects. The recent development of gnotobiotic fish models may be very helpful to study the immune effects of microbiota and probiotics in teleosts.
Collapse
Affiliation(s)
- Jan H W M Rombout
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
17
|
Bevins CL, Salzman NH. The potter's wheel: the host's role in sculpting its microbiota. Cell Mol Life Sci 2011; 68:3675-85. [PMID: 21968920 PMCID: PMC3222938 DOI: 10.1007/s00018-011-0830-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 02/08/2023]
Abstract
Animals, ranging from basal metazoans to primates, are host to complex microbial ecosystems; engaged in a symbiotic relationship that is essential for host physiology and homeostasis. Epithelial surfaces vary in the composition of colonizing microbiota as one compares anatomic sites, developmental stages and species origin. Alterations of microbial composition likely contribute to susceptibility to several distinct diseases. The forces that shape the colonizing microbial composition are the focus of much current investigation, and it is evident that there are pressures exerted both by the host and the external environment to mold these ecosystems. The focus of this review is to discuss recent studies that demonstrate the critical importance of host factors in selecting for its microbiome. Greater insight into host-microbiome interactions will be essential for understanding homeostasis at mucosal surfaces, and developing useful interventions when homeostasis is disrupted.
Collapse
Affiliation(s)
- Charles L. Bevins
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA 95616 USA
| | - Nita H. Salzman
- Division of Gastroenterology, Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226 USA
| |
Collapse
|