1
|
Yuan Y, Li J, Chen M, Zhao Y, Zhang B, Chen X, Zhao J, Liang H, Chen Q. Nano-encapsulation of drugs to target hepatic stellate cells: Toward precision treatments of liver fibrosis. J Control Release 2024; 376:318-336. [PMID: 39413846 DOI: 10.1016/j.jconrel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Liver fibrosis is characterized by excessive extracellular matrix (ECM) deposition triggered by hepatic stellate cells (HSCs). As central players in fibrosis progression, HSCs are the most important therapeutic targets for antifibrotic therapy. However, owing to the limitations of systemic drug administration, there is still no suitable and effective clinical treatment. In recent years, nanosystems have demonstrated expansive therapeutic potential and evolved into a clinical modality. In liver fibrosis, nanosystems have undergone a paradigm shift from targeting the whole liver to locally targeted modifying processes. Nanomedicine delivered to HSCs has significant potential in managing liver fibrosis, where optimal management would benefit from targeted delivery, personalized therapy based on the specific site of interest, and minor side effects. In this review, we present a brief overview of the role of HSCs in the pathogenesis of liver fibrosis, summarize the different types of nanocarriers and their specific delivery applications in liver fibrosis, and highlight the biological barriers associated with the use of nanosystems to target HSCs and approaches available to solve this issue. We further discuss in-depth all the molecular target receptors overexpressed during HSC activation in liver fibrosis and their corresponding ligands that have been used for drug or gene delivery targeting HSCs.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ying Zhao
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
2
|
Diwan R, Gaytan SL, Bhatt HN, Pena-Zacarias J, Nurunnabi M. Liver fibrosis pathologies and potentials of RNA based therapeutics modalities. Drug Deliv Transl Res 2024; 14:2743-2770. [PMID: 38446352 DOI: 10.1007/s13346-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
Liver fibrosis (LF) occurs when the liver tissue responds to injury or inflammation by producing excessive amounts of scar tissue, known as the extracellular matrix. This buildup stiffens the liver tissue, hinders blood flow, and ultimately impairs liver function. Various factors can trigger this process, including bloodborne pathogens, genetic predisposition, alcohol abuse, non-steroidal anti-inflammatory drugs, non-alcoholic steatohepatitis, and non-alcoholic fatty liver disease. While some existing small-molecule therapies offer limited benefits, there is a pressing need for more effective treatments that can truly cure LF. RNA therapeutics have emerged as a promising approach, as they can potentially downregulate cytokine levels in cells responsible for liver fibrosis. Researchers are actively exploring various RNA-based therapeutics, such as mRNA, siRNA, miRNA, lncRNA, and oligonucleotides, to assess their efficacy in animal models. Furthermore, targeted drug delivery systems hold immense potential in this field. By utilizing lipid nanoparticles, exosomes, nanocomplexes, micelles, and polymeric nanoparticles, researchers aim to deliver therapeutic agents directly to specific biomarkers or cytokines within the fibrotic liver, increasing their effectiveness and reducing side effects. In conclusion, this review highlights the complex nature of liver fibrosis, its underlying causes, and the promising potential of RNA-based therapeutics and targeted delivery systems. Continued research in these areas could lead to the development of more effective and personalized treatment options for LF patients.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Samantha Lynn Gaytan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Himanshu Narendrakumar Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Jacqueline Pena-Zacarias
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biological Sciences, College of Science, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA.
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA.
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA.
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
3
|
Osna NA, Tikhanovich I, Ortega-Ribera M, Mueller S, Zheng C, Mueller J, Li S, Sakane S, Weber RCG, Kim HY, Lee W, Ganguly S, Kimura Y, Liu X, Dhar D, Diggle K, Brenner DA, Kisseleva T, Attal N, McKillop IH, Chokshi S, Mahato R, Rasineni K, Szabo G, Kharbanda KK. Alcohol-Associated Liver Disease Outcomes: Critical Mechanisms of Liver Injury Progression. Biomolecules 2024; 14:404. [PMID: 38672422 PMCID: PMC11048648 DOI: 10.3390/biom14040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Alcohol-associated liver disease (ALD) is a substantial cause of morbidity and mortality worldwide and represents a spectrum of liver injury beginning with hepatic steatosis (fatty liver) progressing to inflammation and culminating in cirrhosis. Multiple factors contribute to ALD progression and disease severity. Here, we overview several crucial mechanisms related to ALD end-stage outcome development, such as epigenetic changes, cell death, hemolysis, hepatic stellate cells activation, and hepatic fatty acid binding protein 4. Additionally, in this review, we also present two clinically relevant models using human precision-cut liver slices and hepatic organoids to examine ALD pathogenesis and progression.
Collapse
Affiliation(s)
- Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Martí Ortega-Ribera
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (M.O.-R.); (G.S.)
| | - Sebastian Mueller
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
- Viscera AG Bauchmedizin, 83011 Bern, Switzerland
| | - Chaowen Zheng
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Johannes Mueller
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Siyuan Li
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Sadatsugu Sakane
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Raquel Carvalho Gontijo Weber
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Hyun Young Kim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Wonseok Lee
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Souradipta Ganguly
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Yusuke Kimura
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Xiao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Debanjan Dhar
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
| | - Karin Diggle
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Neha Attal
- Department of Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC 28203, USA; (N.A.); (I.H.M.)
| | - Iain H. McKillop
- Department of Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC 28203, USA; (N.A.); (I.H.M.)
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE59NT, UK;
- School of Microbial Sciences, King’s College, London SE59NT, UK
| | - Ram Mahato
- Department of Pharmaceutical Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA;
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68106, USA;
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (M.O.-R.); (G.S.)
| | - Kusum K. Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68106, USA;
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
4
|
Qin L, Liu N, Bao CLM, Yang DZ, Ma GX, Yi WH, Xiao GZ, Cao HL. Mesenchymal stem cells in fibrotic diseases-the two sides of the same coin. Acta Pharmacol Sin 2023; 44:268-287. [PMID: 35896695 PMCID: PMC9326421 DOI: 10.1038/s41401-022-00952-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023]
Abstract
Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair. Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation. A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.
Collapse
Affiliation(s)
- Lei Qin
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Nian Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Chao-le-meng Bao
- CASTD Regengeek (Shenzhen) Medical Technology Co. Ltd, Shenzhen, 518000 China
| | - Da-zhi Yang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Gui-xing Ma
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Wei-hong Yi
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Guo-zhi Xiao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Hui-ling Cao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| |
Collapse
|
5
|
Liu X, Brenner DA, Kisseleva T. Human Hepatic Stellate Cells: Isolation and Characterization. Methods Mol Biol 2023; 2669:221-232. [PMID: 37247063 DOI: 10.1007/978-1-0716-3207-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Liver fibrosis of different etiologies is characterized by activation of hepatic stellate cells (aHSCs) into collagen type I secreting myofibroblasts, which produce fibrous scar and make the liver fibrotic. aHSCs are the major source of myofibroblasts and, therefore, the primary targets of anti-fibrotic therapy. Despite extensive studies, targeting of aHSCs in patients provides challenges. The progress in anti-fibrotic drug development relies on translational studies but is limited by the availability of primary human HSCs. Here we describe a perfusion/gradient centrifugation-based method of the large-scale isolation of highly purified and viable human HSCs (hHSCs) from normal and diseased human livers and the strategies of hHSC cryopreservation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, USA
- Department of Surgery, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - David A Brenner
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego School of Medicine, San Diego, CA, USA.
| |
Collapse
|
6
|
Xie R, Tang S, Yang Y. Associations of peroxisome proliferator-activated receptor-γ Pro12Ala polymorphism with non-alcoholic fatty liver disease: A meta-analysis. J Diabetes Complications 2022; 36:108261. [PMID: 36055011 DOI: 10.1016/j.jdiacomp.2022.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Polymorphisms in peroxisome proliferator-activated receptor-γ pro12Ala (PPAR-γ Pro12Ala) have been associated with Non-alcoholic Fatty Liver Disease (NAFLD) in several studies. However, the results of these studies are not entirely consistent. Thus, we performed a meta-analysis to investigate the association between the PPAR-γ Pro12Ala polymorphisms and NAFLD. METHODS Studies were identified by searching PubMed database and manual assessment of the cited references in the retrieved articles. Study-specific relative risks (RRs) and 95 % confidence intervals (CIs) were estimated using a random-effect model. Study quality was assessed using the Newcastle-Ottawa scale. RESULTS Relevant medical researches show that 11 studies have been conducted on the analysis of NAFLD for meta-analysis, with a total of 2404 cases and 3959 participating controls. Meta-analysis results show that PPAR-γ Pro12Ala polymorphism and NALAD Ala alleles[no association between dominance model (OR = 0.968, 95%CI: 0.734-1.276, P = 0.815); Pro/Ala vs. Pro/Pro (OR = 0.930, 95 % CI: 0.701-1.233, P = 0.612); Ala/Ala vs. Pro/Pro (OR = 1.220, 95 % CI: 0.668-2.230, P = 0.518); recessive model (OR = 0.907, 95 % CI: 0.516-1.596, P = 0.736)]. Moreover, stratification by ethnicity also revealed that no matter it is in Caucasian populations or in Asian populations, NAFLD has no association with the PPAR-γ Pro12Ala polymorphism. CONCLUSIONS According to the meta-analysis, both in Asians and Caucasian populations, the PPAR-γ Pro12Ala polymorphism can't be demonstrated to have any link with susceptibility to NAFLD.
Collapse
Affiliation(s)
- Rong Xie
- The Gastroenterology Department of the First Hospital of Nanning, Nanning, Guangxi Province 530022, PR China
| | - Shaobo Tang
- The Gastroenterology Department of the First Hospital of Nanning, Nanning, Guangxi Province 530022, PR China.
| | - Yanna Yang
- The Ultrasonography of Maternal and Children Health Hospital of Guangxi, Guangxi Province 530022, PR China
| |
Collapse
|
7
|
Toda-Oti KS, Stefano JT, Cavaleiro AM, Carrilho FJ, Correa-Gianella ML, Oliveira CPMDSD. Association of UCP3 Polymorphisms with Nonalcoholic Steatohepatitis and Metabolic Syndrome in Nonalcoholic Fatty Liver Disease Brazilian Patients. Metab Syndr Relat Disord 2022; 20:114-123. [PMID: 35020496 DOI: 10.1089/met.2020.0104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: We investigated the possible association of uncoupling protein 3 gene (UCP3) single nucleotide polymorphisms (SNPs) with nonalcoholic steatohepatitis (NASH) and metabolic syndrome (MetS) in nonalcoholic fatty liver disease (NAFLD) Brazilian patients. Methods:UCP3 SNPs rs1726745, rs3781907, and rs11235972 were genotyped in 158 biopsy-proven NAFLD Brazilian patients. Statistics was performed with JMP, R, and SHEsis softwares. Results: The TT genotype of rs1726745 was associated with less occurrence of MetS (P = 0.006) and with lower body mass index (BMI) in the entire NAFLD sample (P = 0.01) and in the NASH group (P = 0.02). The rs1726745-T was associated with lower values of AST (P = 0.001), ALT (P = 0.0002), triglycerides (P = 0.01), and total cholesterol (P = 0.02) in the entire NAFLD sample. Between groups, there were lower values of aminotransferases strictly in individuals with NASH (AST, P = 0.002; ALT, P = 0.0007) and with MetS (AST, P = 0.002; ALT, P = 0.001). The rs3781907-G was associated with lower GGT elevation values in the entire NAFLD sample (P = 0.002), in the NASH group (P = 0.004), and with MetS group (P = 0.003) and with protection for advanced fibrosis (P = 0.01). The rs11235972-A was associated with lower GGT values in the entire NAFLD sample (P = 0.006) and in the NASH group (P = 0.01) and with MetS group (P = 0.005), with fibrosis absence (P = 0.01) and protection for advanced fibrosis (P = 0.01). The TAA haplotype was protective for NASH (P = 0.002), and TGG haplotype was protective for MetS (P = 0.01). Conclusion:UCP3 gene variants were associated with protection against NASH and MetS, in addition to lower values of liver enzymes, lipid profile, BMI and, lesser fibrosis severity in the studied population.
Collapse
Affiliation(s)
- Karla Sawada Toda-Oti
- Departamento de Gastroenterologia, Faculdade de Medicina da, Universidade de São Paulo, São Paulo, Brazil
| | - José Tadeu Stefano
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), Departamento de Gastroenterologia e Hepatologia, Faculdade de Medicina, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Mercedes Cavaleiro
- Laboratório de Carboidratos e Radioimunensaio (LIM-18), Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Flair José Carrilho
- Departamento de Gastroenterologia, Faculdade de Medicina da, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), Departamento de Gastroenterologia e Hepatologia, Faculdade de Medicina, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lúcia Correa-Gianella
- Laboratório de Carboidratos e Radioimunensaio (LIM-18), Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Cláudia Pinto Marques de Souza de Oliveira
- Departamento de Gastroenterologia, Faculdade de Medicina da, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), Departamento de Gastroenterologia e Hepatologia, Faculdade de Medicina, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Smirne C, Croce E, Di Benedetto D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E, Pirisi M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. LIVERS 2022; 2:30-76. [DOI: 10.3390/livers2010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments.
Collapse
Affiliation(s)
- Carlo Smirne
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Eleonora Croce
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Davide Di Benedetto
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Elena Grossini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
9
|
Abstract
Interleukin 17A (IL-17A)-producing T helper 17 (Th17) cells were identified as a subset of T helper cells that play a critical role in host defense against bacterial and fungal pathogens. Th17 cells differentiate from Th0 naïve T-cells in response to transforming growth factor β1 (TGF-β1) and IL-6, the cytokines which also drive development of liver fibrosis, require activation of transcription factor retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt). IL-17A signals through the ubiquitously expressed receptor IL-17RA. Expression of IL-17RA is upregulated in patients with hepatitis B virus/hepatitis C virus (HBV/HCV) infections, nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (AALD), hepatocellular carcinoma (HCC), and experimental models of chronic toxic liver injury. The role of IL-17 signaling in the pathogenesis of NASH- and AALD-induced metabolic liver injury and HCC will be the focus of this review. The role of IL-17A-IL-17RA axis in mediation of the cross-talk between metabolically injured hepatic macrophages, hepatocytes, and fibrogenic myofibroblasts will be discussed.
Collapse
Affiliation(s)
- Na Li
- Shanghai University of Medicine & Health Sciences, Shanghai, P.R. China.,Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Gen Yamamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Hiroaki Fuji
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA
| |
Collapse
|
10
|
Sardana O, Goyal R, Bedi O. Molecular and pathobiological involvement of fetuin-A in the pathogenesis of NAFLD. Inflammopharmacology 2021; 29:1061-1074. [PMID: 34185201 DOI: 10.1007/s10787-021-00837-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The liver acts as a manufacturing unit for the production of fetuin-A, which is essential for various physiological characteristics. Scientific research has shown that a moderate upward push in fetuin-A serum levels is associated with a confirmed non-alcoholic fatty liver disease (NAFLD) diagnosis. Fetuin-A modulation is associated with a number of pathophysiological variables that cause liver problems, including insulin receptor signaling deficiencies, adipocyte dysfunction, hepatic inflammation, fibrosis, triacylglycerol production, macrophage invasion, and TLR4 activation. The focus of the present review is on the various molecular pathways, and genetic relevance of mRNA expression of fetuin-A which is correlated with progression of NAFLD. The other major area of exploration in the present review is based on the new targets for the modulation of fetuin-A, like calorie restriction and novel pharmacological agents, such as rosuvastatin, metformin, and pioglitazone which are successfully implicated in the management of various liver-related complications.
Collapse
Affiliation(s)
- Ojus Sardana
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ravi Goyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
11
|
Brain CHID1 Expression Correlates with NRGN and CALB1 in Healthy Subjects and AD Patients. Cells 2021; 10:cells10040882. [PMID: 33924468 PMCID: PMC8069241 DOI: 10.3390/cells10040882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease is a progressive, devastating, and irreversible brain disorder that, day by day, destroys memory skills and social behavior. Despite this, the number of known genes suitable for discriminating between AD patients is insufficient. Among the genes potentially involved in the development of AD, there are the chitinase-like proteins (CLPs) CHI3L1, CHI3L2, and CHID1. The genes of the first two have been extensively investigated while, on the contrary, little information is available on CHID1. In this manuscript, we conducted transcriptome meta-analysis on an extensive sample of brains of healthy control subjects (n = 1849) (NDHC) and brains of AD patients (n = 1170) in order to demonstrate CHID1 involvement. Our analysis revealed an inverse correlation between the brain CHID1 expression levels and the age of NDHC subjects. Significant differences were highlighted comparing CHID1 expression of NDHC subjects and AD patients. Exclusive in AD patients, the CHID1 expression levels were correlated positively to calcium-binding adapter molecule 1 (IBA1) levels. Furthermore, both in NDHC and in AD patient’s brains, the CHID1 expression levels were directly correlated with calbindin 1 (CALB1) and neurogranin (NRGN). According to brain regions, correlation differences were shown between the expression levels of CHID1 in prefrontal, frontal, occipital, cerebellum, temporal, and limbic system. Sex-related differences were only highlighted in NDHC. CHID1 represents a new chitinase potentially involved in the principal processes underlying Alzheimer’s disease.
Collapse
|
12
|
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18:151-166. [PMID: 33128017 DOI: 10.1038/s41575-020-00372-7] [Citation(s) in RCA: 1080] [Impact Index Per Article: 270.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
Chronic liver injury leads to liver inflammation and fibrosis, through which activated myofibroblasts in the liver secrete extracellular matrix proteins that generate the fibrous scar. The primary source of these myofibroblasts are the resident hepatic stellate cells. Clinical and experimental liver fibrosis regresses when the causative agent is removed, which is associated with the elimination of these activated myofibroblasts and resorption of the fibrous scar. Understanding the mechanisms of liver fibrosis regression could identify new therapeutic targets to treat liver fibrosis. This Review summarizes studies of the molecular mechanisms underlying the reversibility of liver fibrosis, including apoptosis and the inactivation of hepatic stellate cells, the crosstalk between the liver and the systems that orchestrate the recruitment of bone marrow-derived macrophages (and other inflammatory cells) driving fibrosis resolution, and the interactions between various cell types that lead to the intracellular signalling that induces fibrosis or its regression. We also discuss strategies to target hepatic myofibroblasts (for example, via apoptosis or inactivation) and the myeloid cells that degrade the matrix (for example, via their recruitment to fibrotic liver) to facilitate fibrosis resolution and liver regeneration.
Collapse
Affiliation(s)
- Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Wang J, Ye C, Fei S. Association between APOC3 polymorphisms and non-alcoholic fatty liver disease risk: a meta-analysis. Afr Health Sci 2020; 20:1800-1808. [PMID: 34394242 PMCID: PMC8351815 DOI: 10.4314/ahs.v20i4.34] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIM The apolipoprotein C3 (APOC3) polymorphism has been reported to predispose to non-alcoholic fatty liver disease (NAFLD). However, the results remain inconclusive. This meta-analysis aimed to provide insights into the association between APOC3 polymorphisms and NAFLD risk. METHODS Studies with terms "NALFD" and "APOC3" were retrieved from PubMed, Web of Science, CNKI and Wanfang databases up to August 1, 2019. Pooled odds ratio (OR) and 95% confidence interval (95% CI) for the association of APOC3 polymorphisms and NAFLD risk were calculated using fixed and random-effects models. RESULTS A total of twelve studies from eleven articles were included. Of them, eight studies (1750 cases and 2181 controls) reported the strong association of variant rs2854116 with NAFLD and six studies (1523 cases and 1568 controls) found the association of rs2854117 polymorphism with NAFLD. Overall, a statistically significant association between rs2854116 polymorphism of APOC3 gene and NAFLD risk was found only under dominant model. However, association of rs2854117 polymorphism with NAFLD risk was not detected under all four genetic models. In sub-group analysis of NAFLD subjects based on country, no association among them in China was detected. Besides, four studies analyze the association between the two polymorphisms and clinical characteristics in all subjects or NAFLD patients, and we also failed detect any association between the wild carriers and variant carriers. CONCLUSION The meta-analyses suggests that the rs2854116 polymorphism but not rs2854117 polymorphism in APOC3 gene might be a risk factor for NAFLD among Asians. That is, individuals with CT+CC genotype have higher risk of developing NAFLD. However, studies with sufficient sample size are needed for the further validation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastroenterology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Chuncui Ye
- Department of Gastroenterology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Sujuan Fei
- Department of Gastroenterology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| |
Collapse
|
14
|
The expression levels of CHI3L1 and IL15Rα correlate with TGM2 in duodenum biopsies of patients with celiac disease. Inflamm Res 2020; 69:925-935. [PMID: 32500186 DOI: 10.1007/s00011-020-01371-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN Celiac disease (CD) is an intestinal inflammatory disorder of the small intestine. Gliadins are a component of gluten and there are three main types (α, γ, and ω). Recent studies indicate that gliadin peptides are able to activate an innate immune response. IL15 is a major mediator of the innate immune response and is involved in the early alteration of CD mucosa. The chitinase molecules are highly expressed by the innate immune cells during the inflammatory processes. MATERIAL OR SUBJECTS We analyzed several microarray datasets of PBMCs and duodenum biopsies of CD patients and healthy control subjects (HCs). We verified the modulation CHI3L1 in CD patients and correlated the expression levels to the IL15, IL15Rα, TGM2, IFNγ, and IFNGR1/2. Duodenal biopsy samples belonged to nine active and nine treated children patients (long-term effects of gliadin), and 17 adult CD patients and 10 adults HCs. We also selected 169 samples of PBMCs from 127 CD patients on adherence to a gluten-free diet (GFD) for at least 2 years and 44 HCs. RESULTS Our analysis showed that CHI3L1 and IL15Rα were significantly upregulated in adult and children's celiac duodenum biopsies. In addition, the two genes were correlated significantly both in children than in adults CD duodenum biopsies. No significant modulation was observed in PBMCs of adult CD patients compared to the HCs. The correlation analysis of the expression levels of CHI3L1 and IL15Rα compared to TGM showed significant values both in adults and in children duodenal biopsies. Furthermore, the IFNγ expression levels were positively correlated with CHI3L1 and IL15Rα. Receiver operating characteristic (ROC) analysis confirmed the diagnostic ability of CHI3L1 and IL15Rα to discriminate CD from HCs. CONCLUSION Our data suggest a role for CHI3L1 underlying the pathophysiology of CD and represent a starting point aiming to inspire new investigation that proves the possible use of CHI3L1 as a diagnostic factor and therapeutic target.
Collapse
|
15
|
Calderón-Torres CM, Sarabia-Curz L, Ledesma-Soto Y, Murguía-Romero M, Terrazas LI. Denitrase activity of Debaryomyces hansenii reduces the oxidized compound 3-nitrotyrosine in mice liver with colitis. Exp Ther Med 2019; 17:3748-3754. [PMID: 31007730 DOI: 10.3892/etm.2019.7395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
The oxidation of tyrosine to 3-nitrotyrosine is irreversible, and due to this characteristic, 3-nitrotyrosine is used as a marker for oxidative stress in a range of diverse chronic and degenerative diseases. It has been established that the yeast Debaryomyces hansenii (D. hansenii) can assimilate free 3-nitrotyrosine as unique source of nitrogen, and during saline stress, has a high denitrase activity to detoxify this compound in a reaction that involves the liberation of nitrogen dioxide from 3-nitrotyrosine. However, until now it has not been determined whether D. hansenii can detoxify protein-bound 3-nitrotyrosine such as nitrated proteins present in different chronic illnesses. TThe aim of the present study was to evaluate the denitrase activity of D. hansenii to reduce 3-nitrotyrosine from liver proteins of mice with colitis. Firstly, the levels of reactive oxygen species of liver tissue of colitic and control mice were measured by the reaction with the 2'7'-dichlorofluorescein diacetate. Denitrase activity of D. hansenii was evaluated by incubating cell extracts of the yeast with protein extracts from livers of mice with colitis. Following incubation, 3-nitrotyrosine was measured, and to corroborate that denitrase reaction had occurred, the production of nitrites was measured. In samples of liver tissue from mice with colitis, the maximum levels of reactive oxygen species were up to two times higher compared with the control livers. Following the incubation of colitic liver samples with cell extracts of D. hansenii, it was observed that 3-nitrotyrosine decreased to the basal concentration of control liver samples, and that the concentration of nitrites was increased. These results indicate that denitrase of D. hansenii extracts can effectively detoxify 3-nitrotyrosine bound to proteins and that the extracts could be used to decrease protein oxidation damage in chronic degenerative diseases.
Collapse
Affiliation(s)
| | - Lirio Sarabia-Curz
- Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla 54090, Mexico
| | - Yadira Ledesma-Soto
- Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla 54090, Mexico
| | - Miguel Murguía-Romero
- Morphology and Function Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla 54090, Mexico
| | - Luis I Terrazas
- Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla 54090, Mexico
| |
Collapse
|
16
|
Abdelmegeed MA, Ha SK, Choi Y, Akbar M, Song BJ. Role of CYP2E1 in Mitochondrial Dysfunction and Hepatic Injury by Alcohol and Non-Alcoholic Substances. Curr Mol Pharmacol 2019; 10:207-225. [PMID: 26278393 DOI: 10.2174/1874467208666150817111114] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD) are two pathological conditions that are spreading worldwide. Both conditions are remarkably similar with regard to the pathophysiological mechanism and progression despite different causes. Oxidative stressinduced mitochondrial dysfunction through post-translational protein modifications and/or mitochondrial DNA damage has been a major risk factor in both AFLD and NAFLD development and progression. Cytochrome P450-2E1 (CYP2E1), a known important inducer of oxidative radicals in the cells, has been reported to remarkably increase in both AFLD and NAFLD. Interestingly, CYP2E1 isoforms expressed in both endoplasmic reticulum (ER) and mitochondria, likely lead to the deleterious consequences in response to alcohol or in conditions of NAFLD after exposure to high fat diet (HFD) and in obesity and diabetes. Whether CYP2E1 in both ER and mitochondria work simultaneously or sequentially in various conditions and whether mitochondrial CYP2E1 may exert more pronounced effects on mitochondrial dysfunction in AFLD and NAFLD are unclear. The aims of this review are to briefly describe the role of CYP2E1 and resultant oxidative stress in promoting mitochondrial dysfunction and the development or progression of AFLD and NAFLD, to shed a light on the function of the mitochondrial CYP2E1 as compared with the ER-associated CYP2E1. We finally discuss translational research opportunities related to this field.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892. United States
| | - Seung-Kwon Ha
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| |
Collapse
|
17
|
Ye D, Zhang T, Lou G, Xu W, Dong F, Chen G, Liu Y. Plasma miR-17, miR-20a, miR-20b and miR-122 as potential biomarkers for diagnosis of NAFLD in type 2 diabetes mellitus patients. Life Sci 2018; 208:201-207. [PMID: 30030064 DOI: 10.1016/j.lfs.2018.07.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
AIMS Type 2 diabetes mellitus (T2DM), with non-alcoholic fatty liver disease (NAFLD) complication, may aggravate the disturbance of metabolism, increase the risk of non-alcoholic steatohepatitis, and promote the progress of liver fibrosis. Therefore, early detection of NAFLD in T2DM patients is critical in avoiding the adverse effects of the complication. This study aimed to identify circulating miRNAs for early diagnosis of the complication. MATERIALS AND METHODS Plasma miRNA expression profiles of T2DM patients complicated with or without NAFLD were examined by miRNA array analysis and then were validated by qRT-PCR. A new index for prediction the presence of NAFLD was developed based on the result of multivariate logistic regression analysis. STZ and high fat diet were used for construction a rat model of T2DM complicated with NAFLD. KEY FINDINGS Plasma miR-17, miR-20a, miR-20b, and miR-122 were up-regulated in T2DM patients with NAFLD complicated compared in those without NAFLD (P < 0.05). Moreover, the data from the rat model further showed that the above miRNAs were more sensitive than traditional serological markers for predicting the complication. Meanwhile, in order to improve the diagnostic accuracy, we try to construct an AUC by using the new index, 24.852 × WHR-1.121 × miR122 + 1.988 × LDL-21.838, which was significantly higher than a chance assignment (asymptotic significance P < 0.001) for predicting the presence of NAFLD. SIGNIFICANCE Plasma miRNAs and the new index involving WHR, LDL, and miR-122 are potential novel tools for the early diagnosis and risk estimation of NAFLD in T2DM patients.
Collapse
Affiliation(s)
- Dan Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianbao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengqin Dong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoping Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
The genetic backgrounds in nonalcoholic fatty liver disease. Clin J Gastroenterol 2018; 11:97-102. [PMID: 29492830 DOI: 10.1007/s12328-018-0841-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022]
|
19
|
Sanfilippo C, Longo A, Lazzara F, Cambria D, Distefano G, Palumbo M, Cantarella A, Malaguarnera L, Di Rosa M. CHI3L1 and CHI3L2 overexpression in motor cortex and spinal cord of sALS patients. Mol Cell Neurosci 2017; 85:162-169. [PMID: 28989002 DOI: 10.1016/j.mcn.2017.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/07/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterized by the degeneration and death of upper (UMN) and lower (LMN) motor neurons. In the last decade, it has been shown that Chitinases are an important prognostic indicator of neuro-inflammatory damage induced by microglia and astrocytes. MATERIALS AND METHODS We analyzed microarray datasets obtained from the Array Express in order to verify the expression levels of CHI3L1 and CHI3L2 in motor cortex biopsies of sALS patients with different survival times. We also divided the sALS patients into smokers and non-smokers. In order to extend our analysis, we explored two additional microarray datasets, GSE833 and GSE26927, of post-mortem spinal cord biopsies from sALS patients. RESULTS The analysis showed that CHI3L1 and CHI3L2 expression levels were significantly upregulated in the motor cortex of sALS patients, compared to the healthy controls. Moreover, their expression levels were negatively correlated with survival time. Interesting results were obtained when we compared the expression levels of Chitinases among smokers. We showed that CHI3L1 and CHI3L2 were significantly upregulated in sALS smokers compared to non-smokers. Furthermore, we found that four genes belonging to the Chitinases network (SERPINA3, C1s, RRAD, HLA-DQA1) were significantly upregulated in the motor cortex of sALS patients and positively correlated with Chitinases expression levels. Similar results were obtained during the exploration of the two-microarray dataset. CONCLUSIONS This study suggests that CHI3L1 and CHI3L2 are associated with the progression of neurodegeneration in motor cortex and spinal cord of sALS patients.
Collapse
Affiliation(s)
- C Sanfilippo
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - A Longo
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - F Lazzara
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - D Cambria
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - G Distefano
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - M Palumbo
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - A Cantarella
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - L Malaguarnera
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - M Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy.
| |
Collapse
|
20
|
Sanfilippo C, Nunnari G, Calcagno A, Malaguarnera L, Blennow K, Zetterberg H, Di Rosa M. The chitinases expression is related to Simian Immunodeficiency Virus Encephalitis (SIVE) and in HIV encephalitis (HIVE). Virus Res 2017; 227:220-230. [PMID: 27794455 DOI: 10.1016/j.virusres.2016.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/14/2016] [Accepted: 10/21/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Human Immunodeficiency Virus (HIV) infection can induce neurocognitive complications classified as HIV-associated neurocognitive disorder (HAND). The chitinase family is associated with innate immunity cells and many infectious diseases. METHODS We analyzed microarray datasets obtained from NCBI in order to verify the expression of chitinase family genes in hippocampus of uninfected rhesus macaques versus those with histopathologic evidence of Simian Immunodeficiency Virus Encephalitis (SIVE). Moreover, we have analysed two human microarray datasets to verify the results obtained in macaques hippocampus affected by SIVE. For these studies, we have also used the open source tools Genome-scale Integrated Analysis of gene Networks in Tissues (GIANT) to identify the chitinase genes network. RESULTS CHIT1, CHI3L1 and CHI3L2 levels were significantly increased in SIVE hippocampus as compared to non-infected control specimens. Furthermore, we found a negative correlation between CHIA vs. Brain Viral Load (BVL). These data was confirmed partially in human brain section of HAD/HIVE subjects. Also, we showed that HIV-1 was able to modulate the expression of CHIT1, CHI3L1, CHI3L2 and CHID1 in human macrophages. CONCLUSIONS These results suggest that chitinase gene expression is altered in SIVE and in HAD/HIVE brain sections and call for more studies examining whether this is a protective immunological reaction or a destructive tissue response to encephalitis.
Collapse
Affiliation(s)
- C Sanfilippo
- Section of Neurosciences, Department G.F. Ingrassia, University of Catania, Via Santa Sofia, 78, 95123, Catania, Italy
| | - G Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - A Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Italy
| | - L Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, SE-43180, Mölndal, Sweden
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, SE-43180, Mölndal, Sweden
| | - M Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.
| |
Collapse
|
21
|
Sanfilippo C, Malaguarnera L, Di Rosa M. Chitinase expression in Alzheimer's disease and non-demented brains regions. J Neurol Sci 2016; 369:242-249. [DOI: 10.1016/j.jns.2016.08.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/03/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022]
|
22
|
Uhanova J, Minuk G, Lopez Ficher F, Chandok N. Nonalcoholic Fatty Liver Disease in Canadian First Nations and Non-First Nations Patients. Can J Gastroenterol Hepatol 2016; 2016:6420408. [PMID: 27446857 PMCID: PMC4904639 DOI: 10.1155/2016/6420408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
Background. Features of nonalcoholic fatty liver disease (NAFLD) have yet to be described in the Canadian First Nations (FN) population. The aim of this study was to compare the prevalence, severity, and outcome of NAFLD in FN versus non-FN patients at an urban, tertiary care centre. Methods. Adults with NAFLD and no additional liver disease were identified in a prospectively derived database at the University of Manitoba. Demographic, clinical, laboratory, imaging, and histologic data were analyzed. Results. 482 subjects fulfilled diagnostic criteria for NAFLD, including 33 (7%) FN. Aside from rural residence, diabetes and cholestasis being more common in FN patients, the ages, gender distributions, clinical and radiologic features, and liver enzyme/function test results were similar in the two cohorts. Noninvasive tests of fibrosis (APRI and NAFLD fibrosis scores) were also similar in the two cohorts. There were no significant differences in liver enzyme or function tests in either cohort after approximately three years of follow-up. Conclusion. Compared to the prevalence of FN persons in the general population of this study site (10-15%), FN patients were underrepresented in this NAFLD population. The severity and progression of liver disease in FN patients appear to be similar to those in non-FN patients.
Collapse
Affiliation(s)
- Julia Uhanova
- Section of Hepatology, Department of Internal Medicine, University of Manitoba, 804D-715 McDermot Avenue, Winnipeg, MB, Canada R3E 3P4
| | - Gerald Minuk
- Section of Hepatology, Department of Internal Medicine, University of Manitoba, 804D-715 McDermot Avenue, Winnipeg, MB, Canada R3E 3P4
| | - Federico Lopez Ficher
- Section of Hepatology, Department of Internal Medicine, University of Manitoba, 804D-715 McDermot Avenue, Winnipeg, MB, Canada R3E 3P4
| | - Natasha Chandok
- Section of Hepatology, Department of Internal Medicine, University of Manitoba, 804D-715 McDermot Avenue, Winnipeg, MB, Canada R3E 3P4
- Division of Gastroenterology, University of Western Ontario, Room ALL-107, 339 Windermere Road, London, ON, Canada N6A 5A5
| |
Collapse
|
23
|
Tryndyak VP, Han T, Fuscoe JC, Ross SA, Beland FA, Pogribny IP. Status of hepatic DNA methylome predetermines and modulates the severity of non-alcoholic fatty liver injury in mice. BMC Genomics 2016; 17:298. [PMID: 27103143 PMCID: PMC4840954 DOI: 10.1186/s12864-016-2617-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a major health problem and a leading cause of chronic liver disease in the United States and Western countries. In humans, genetic factors greatly influence individual susceptibility to NAFLD; nonetheless, the effect of inter-individual differences in the normal liver epigenome with regard to the susceptibility to NAFLD has not been determined. Results In the present study, we investigated the association between the DNA methylation status in the livers of A/J and WSB/EiJ mice and the severity of NAFLD-associated liver injury. We demonstrate that A/J and WSB/EiJ mice, which are characterized by significant differences in the severity of liver injury induced by a choline- and folate-deficient (CFD) diet exhibit substantial differences in cytosine DNA methylation in their normal livers. Furthermore, feeding A/J and WSB/EiJ mice a CFD diet for 12 weeks resulted in different trends and changes in hepatic cytosine DNA methylation. Conclusion Our findings indicate a primary role of hepatic DNA methylation in the pathogenesis of NAFLD and suggest that individual variations in DNA methylation across the genome may be a factor determining and influencing the vulnerability to NAFLD. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2617-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, FDA, Jefferson, AR, USA
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, FDA, Jefferson, AR, USA
| | - Sharon A Ross
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
24
|
Macaluso FS, Maida M, Petta S. Genetic background in nonalcoholic fatty liver disease: A comprehensive review. World J Gastroenterol 2015; 21:11088-11111. [PMID: 26494964 PMCID: PMC4607907 DOI: 10.3748/wjg.v21.i39.11088] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
In the Western world, nonalcoholic fatty liver disease (NAFLD) is considered as one of the most significant liver diseases of the twenty-first century. Its development is certainly driven by environmental factors, but it is also regulated by genetic background. The role of heritability has been widely demonstrated by several epidemiological, familial, and twin studies and case series, and likely reflects the wide inter-individual and inter-ethnic genetic variability in systemic metabolism and wound healing response processes. Consistent with this idea, genome-wide association studies have clearly identified Patatin-like phosholipase domain-containing 3 gene variant I148M as a major player in the development and progression of NAFLD. More recently, the transmembrane 6 superfamily member 2 E167K variant emerged as a relevant contributor in both NAFLD pathogenesis and cardiovascular outcomes. Furthermore, numerous case-control studies have been performed to elucidate the potential role of candidate genes in the pathogenesis and progression of fatty liver, although findings are sometimes contradictory. Accordingly, we performed a comprehensive literature search and review on the role of genetics in NAFLD. We emphasize the strengths and weaknesses of the available literature and outline the putative role of each genetic variant in influencing susceptibility and/or progression of the disease.
Collapse
|
25
|
Tibullo D, Di Rosa M, Giallongo C, La Cava P, Parrinello NL, Romano A, Conticello C, Brundo MV, Saccone S, Malaguarnera L, Di Raimondo F. Bortezomib modulates CHIT1 and YKL40 in monocyte-derived osteoclast and in myeloma cells. Front Pharmacol 2015; 6:226. [PMID: 26528182 PMCID: PMC4604315 DOI: 10.3389/fphar.2015.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/22/2015] [Indexed: 11/15/2022] Open
Abstract
Osteolytic bone disease is a common manifestation of multiple myeloma (MM) that leads to progressive skeleton destruction and is the most severe cause of morbidity in MM patients. It results from increased osteolytic activity and decrease osteoblastic function. Activation of mammalian chitinases chitotriosidase (CHIT1) and YKL40 is associated with osteoclast (OCs) differentiation and bone digestion. In the current study, we investigated the effect of two Bortezomib’s concentration (2.5 and 5 nM) on osteoclastogenesis by analyzing regulation of chitinase expression. OCs exposition to bortezomib (BO) was able to inhibit the expression of different OCs markers such as RANK, CTSK, TRAP, and MMP9. In addition BO-treatment reduced CHIT1 enzymatic activity and both CHIT1 and YKL40 mRNA expression levels and cytoplasmatic and secreted protein. Moreover, immunofluorescence evaluation of mature OCs showed that BO was able to translocate YKL40 into the nucleus, while CHIT1 remained into the cytoplasm. Since MM cell lines such as U266, SKM-M1 and MM1 showed high levels of CHIT1 activity, we analyzed bone resorption ability of U266 using dentin disk assay resorption pits. Silencing chitinase proteins in U266 cell line with specific small interfering RNA, resulted in pits number reduction on dentine disks. In conclusion, we showed that BO decreases osteoclastogenesis and reduces bone resorption in OCs and U266 cell line by modulating the chitinases CHIT1 and YKL40. These results indicate that chitinases may be a therapeutic target for bone disease in MM patients.
Collapse
Affiliation(s)
- Daniele Tibullo
- Section of Hematology, Department of Surgery and Medical Specialties, University of Catania , Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnology Sciences, University of Catania , Catania, Italy
| | - Cesarina Giallongo
- Section of Hematology, Department of Surgery and Medical Specialties, University of Catania , Catania, Italy
| | - Piera La Cava
- Section of Hematology, Department of Surgery and Medical Specialties, University of Catania , Catania, Italy
| | - Nunziatina L Parrinello
- Section of Hematology, Department of Surgery and Medical Specialties, University of Catania , Catania, Italy
| | - Alessandra Romano
- Section of Hematology, Department of Surgery and Medical Specialties, University of Catania , Catania, Italy
| | - Concetta Conticello
- Section of Hematology, Department of Surgery and Medical Specialties, University of Catania , Catania, Italy
| | - Maria V Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania , Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania , Catania, Italy
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnology Sciences, University of Catania , Catania, Italy
| | - Francesco Di Raimondo
- Section of Hematology, Department of Surgery and Medical Specialties, University of Catania , Catania, Italy
| |
Collapse
|
26
|
Oliveira CP, Stefano JT. Genetic polymorphisms and oxidative stress in non-alcoholic steatohepatitis (NASH): A mini review. Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S35-S40. [PMID: 26160475 DOI: 10.1016/j.clinre.2015.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease, thus becoming an epidemic in the Western world with a major impact on public health. NAFLD encompasses a large spectrum of disease ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and may progress to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The role of genetic polymorphisms is not clear. Evidence supports the hypothesis that genetic factors are involved in the predisposition to NAFLD, and thus should emphasize the polygenic nature of the disease as a limiting factor in these studies. However, the polymorphic allele associated with increased hepatic steatosis appears to be associated with various different combinations of phenotypes, including increase or decrease of the biochemical and clinical parameters. It is possible that SNPs in genes involved in excessive fatty acid oxidation would predispose to NASH. On the other hand, the SNPs could determine the inadequate mitochondrial overload during times of excessive FFA supply. However due to the multiple hits involving some pathways, a brief review of genetic variants on mediators of oxidative stress, inflammation and lipid metabolism pathways is presented. It is clear that the discovery of genetic and environmental associations, robust enough to direct the treatment and to trace specific prevention strategies would only be possible with studies examining the susceptibility of NAFLD in a number of individuals considerably higher than assessed so far. These studies need a large number of well phenotyped cases and controls and certainly require national and international collaboration.
Collapse
Affiliation(s)
- Claudia P Oliveira
- Department of Gastroenterology (LIM-07), University of São Paulo School of Medicine, São Paulo, Brazil.
| | - Jose Tadeu Stefano
- Department of Gastroenterology (LIM-07), University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
27
|
AlKhater SA. Paediatric non-alcoholic fatty liver disease: an overview. Obes Rev 2015; 16:393-405. [PMID: 25753407 DOI: 10.1111/obr.12271] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/17/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease that encompasses a spectrum of liver diseases, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Data related to survival in children are scarce, but these data firmly associate NAFLD with higher risks of hepatic and non-hepatic morbidities and mortalities compared with the general population. More recently, the association between NAFLD and cardiovascular disease among children has increasingly been recognized. Given that obesity is a major risk factor for the disease, paediatric NAFLD is becoming a global issue, paralleling the dramatic rise in obesity worldwide. NASH, which is more common in obese children, has the potential to advance to liver fibrosis and failure. It is unclear why certain patients undergo such transformation but this susceptibility is likely related to an interaction between a genetically susceptible host and the surrounding environment. Currently, treatment is largely conservative and includes lifestyle modification, attainable through healthy weight reduction via diet and exercise. In this review, current knowledge about NAFLD in children is summarized. This review aims to increase the awareness of the medical community about a hidden public health issue and to identify current gaps in the literature while providing directions for future research.
Collapse
Affiliation(s)
- S A AlKhater
- Department of Pediatric, Dammam University, Dammam, Saudi Arabia
| |
Collapse
|
28
|
Baran B, Akyüz F. Non-alcoholic fatty liver disease: What has changed in the treatment since the beginning? World J Gastroenterol 2014; 20:14219-14229. [PMID: 25339808 PMCID: PMC4202350 DOI: 10.3748/wjg.v20.i39.14219] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an umbrella term to describe the entire spectrum of this common liver disease. In patients with NAFLD, especially those with non-alcoholic steatohepatitis (NASH), most often have one or more components of the metabolic syndrome, but this is not universal. Although most patients with NAFLD share many clinical features, only a subset of patients develops significant liver inflammation and progressive fibrosis. On the other hand, not all patients with NASH exhibit insulin resistance. NASH can be seen in patients who are lean and have no identifiable risk factors. Many clinical studies have tried numerous drugs and alternative medicine, however, investigators have failed to identify a safe and effective therapy for patients with NASH. As summarized, the heterogeneity of pathogenic pathways in individual patients with NASH may warrant the development of an individualized treatment according to the underlying pathogenic pathway. The differentiation of pathogenetic targets may require the development of diagnostic and prognostic biomarkers, and the identification of genetic susceptibilities. At present, evidence-based medicine provides only a few options including life-style modifications targeting weight loss, pioglitazone and vitamin E in non-diabetic patients with biopsy-proven NASH.
Collapse
|
29
|
Di Rosa M, Szychlinska MA, Tibullo D, Malaguarnera L, Musumeci G. Expression of CHI3L1 and CHIT1 in osteoarthritic rat cartilage model. A morphological study. Eur J Histochem 2014; 58:2423. [PMID: 25308850 PMCID: PMC4194398 DOI: 10.4081/ejh.2014.2423] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is a degenerative joint disease, which affects millions of people around the world. It occurs when the protective cartilage at the end of bones wears over time, leading to loss of flexibility of the joint, pain and stiffness. The cause of osteoarthritis is unknown, but its development is associated with different factors, such as metabolic, genetic, mechanical and inflammatory ones. In recent years the biological role of chitinases has been studied in relation to different inflammatory diseases and more in particular the elevated levels of human cartilage glycoprotein 39 (CHI3L1) and chitotriosidase (CHIT1) have been reported in a variety of diseases including chronic inflammation and degenerative disorders. The aim of this study was to investigate, by immunohistochemistry, the distribution of CHI3L1 and CHIT1 in osteoarthritic and normal rat articular cartilage, to discover their potential role in the development of this disease. The hypothesis was that the expression of chitinases could increase in OA disease. Immunohistochemical analysis showed that CHI3L1 and CHIT1 staining was very strong in osteoarthritic cartilage, especially in the superficial areas of the cartilage most exposed to mechanical load, while it was weak or absent in normal cartilage. These findings suggest that these two chitinases could be functionally associated with the development of osteoarthritis and could be used as markers, so in the future they could have a role in the daily clinical practice to stage the severity of the disease. However, the longer-term in vivoand in vitro studies are needed to understand the exact mechanism of these molecules, their receptors and activities on cartilage tissue.
Collapse
|
30
|
Vallin M, Guillaud O, Boillot O, Hervieu V, Scoazec JY, Dumortier J. Recurrent or de novo nonalcoholic fatty liver disease after liver transplantation: natural history based on liver biopsy analysis. Liver Transpl 2014; 20:1064-71. [PMID: 24961607 DOI: 10.1002/lt.23936] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a potential long-term complication after liver transplantation (LT) and can occur as recurrent disease in patients undergoing transplantation for NAFLD or as de novo NAFLD in others. The aim of this study was to compare these 2 different entities. From a cohort of adult patients undergoing transplantation between 2000 and 2010, we selected all patients with a diagnosis of NAFLD made during liver biopsy examinations during post-LT follow-up; clinical, biological, and histological features of patients with recurrent NAFLD and patients with de novo NAFLD were compared. The diagnosis of post-LT NAFLD was made for 91 patients during the study period: 11 cases were classified as recurrent NAFLD, and 80 cases were classified as de novo NAFLD. The groups were not statistically different with respect to the sex ratio, age, prevalence of hypercholesterolemia, prevalence of obesity, or prevalence of hypertension. The prevalence of diabetes mellitus was higher in patients with recurrent NAFLD (100% versus 37.5%, p < 0.01). At 5 years, severe fibrosis (stage 3 or 4) and steatohepatitis were more frequent in patients with recurrent NAFLD versus patients with de novo NAFLD [71.4% versus 12.5% (P < 0.01) and 71.4% versus 17.2% (P < 0.01), respectively]. NAFLD was already present in 67% of the patients with de novo NAFLD and in 100% of the patients with recurrent NAFLD after 1 year. According to successive liver biopsies, steatosis disappeared in 18 patients (22.5%) with de novo NAFLD and in none of the patients with recurrent NAFLD. In conclusion, our results strongly suggest that recurrent NAFLD and de novo NAFLD after LT are different entities; recurrent NAFLD appears to be a more severe and irreversible disease with an earlier onset.
Collapse
Affiliation(s)
- Mélanie Vallin
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Digestive Diseases, Lyon, France
| | | | | | | | | | | |
Collapse
|
31
|
Wang J, Guo XF, Yu SJ, Song J, Zhang JX, Cao Z, Wang J, Ji MY, Dong WG. Adiponectin polymorphisms and non-alcoholic fatty liver disease risk: a meta-analysis. J Gastroenterol Hepatol 2014; 29:1396-405. [PMID: 24548122 DOI: 10.1111/jgh.12562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM The adiponectin polymorphism has been implicated in susceptibility to non-alcoholic fatty liver disease (NAFLD), but the results remain inconclusive. The aim of this meta-analysis is to investigate the association between adiponectin polymorphisms and NAFLD risk. METHODS All eligible case-control studies published up to September 2013 were identified by searching PubMed, Web of Science, and CNKI. Effect sizes of odds ratio (OR) and 95% confidence interval (95% CI) were calculated by using a fixed- or random-effect model. RESULTS A total of 10 case-control studies were included; of those, there were nine studies (1223 cases and 1580 controls) for +45T>G polymorphism, seven studies (876 cases and 989 controls) for +276G>T polymorphism, and three studies (299 cases and 383 controls) for -11337C>G polymorphism. Overall, a significantly increased risk was found for +45T>G and -11377C>G polymorphism (+45T>G: OR = 1.45, 95% CI: 1.06-2.00 for recessive model, OR = 1.48, 95% CI: 1.07-2.06 for GG vs TT; -11377C>G: OR = 1.52, 95% CI: 1.10-2.09 for dominant model, OR = 3.88, 95% CI: 1.29-11.68 for GG vs CC), while for +276G>T polymorphism, we found a significantly decreased risk between them (OR = 0.65, 95% CI: 0.45-0.94 for recessive model, OR = 0.58, 95% CI: 0.40-0.84 for TT vs GG). In subgroup analysis by ethnicity, significant association was detected among Asians for +276G>T polymorphism, but not for +45T>G polymorphism. Besides, none of the three adiponectin polymorphisms was associated with the serum adiponectin levels. CONCLUSION This meta-analysis suggests that adiponectin +45T>G and -11377C>G polymorphisms might be a risk factor for NAFLD, while +276G>T polymorphism may be a protective factor for NAFLD among Asians.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Di Rosa M, Tibullo D, Vecchio M, Nunnari G, Saccone S, Di Raimondo F, Malaguarnera L. Determination of chitinases family during osteoclastogenesis. Bone 2014; 61:55-63. [PMID: 24440516 DOI: 10.1016/j.bone.2014.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/13/2013] [Accepted: 01/09/2014] [Indexed: 01/18/2023]
Abstract
Mammalian chitinases consisting of CHIA, CHIT1, CHI3L1, CHI3L2 and CHID1 exert important biological roles in the monocyte lineage and chronic inflammatory diseases. Pathological bone resorption is a cause of significant morbidity in diseases affecting the skeleton such as rheumatoid arthritis, osteoporosis, periodontitis and cancer metastasis. The biologic role of chitinases in bone resorption is poorly understood. In this study, we evaluated the expression of the chitinases family during osteoclast differentiation. The expression of CHIA, CHI3L2 and CHID1 resulted unchanged during osteoclast differentiation, whereas CHIT1 and CHI3L1 increased significantly. We also observed that CHIT1 and CHI3L1 are involved in osteoclast function. Indeed, silencing CHIT1 and CHI3L1 with siRNA resulted in a significant decrease in bone resorption activity. In addition, transfection with CHIT1 or CHI3L1 siRNA and co-transfection with both decreased the levels of the pro-differentiative marker MMP9. Overall, these discoveries reveal a novel and crucial role for both CHIT1 and CHI3L1 in promoting bone resorption and identifying new potential candidate markers for therapeutic targeting.
Collapse
Affiliation(s)
| | - Daniele Tibullo
- Department of Clinical and Molecular Biomedicine, University of Catania, Ospedale Ferrarotto, Italy
| | - Michele Vecchio
- Physical Medicine and Rehabilitation Unit, University of Catania, Hospital Policlinic Vittorio Emanuele, Catania, Italy
| | - Giuseppe Nunnari
- Department of Clinical and Molecular Biomedicine, Division of Infectious Diseases, University of Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Francesco Di Raimondo
- Department of Clinical and Molecular Biomedicine, University of Catania, Ospedale Ferrarotto, Italy
| | | |
Collapse
|
33
|
Oriente F, Cabaro S, Liotti A, Longo M, Parrillo L, Pagano TB, Raciti GA, Penkov D, Paciello O, Miele C, Formisano P, Blasi F, Beguinot F. PREP1 deficiency downregulates hepatic lipogenesis and attenuates steatohepatitis in mice. Diabetologia 2013; 56:2713-22. [PMID: 24052111 DOI: 10.1007/s00125-013-3053-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/26/2013] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate the function of Prep1 (also known as Pknox1) in hepatic lipogenesis. METHODS The hepatic lipogenesis pathway was evaluated by real-time RT-PCR and Western blot. Biochemical variables were assessed using a clinical chemistry analyser. RESULTS Serum triacylglycerols and liver expression of fatty acid synthase (FAS) were significantly decreased in Prep1 hypomorphic heterozygous (Prep1 (i/+) ) mice compared with their non-hypomorphic littermates. Upstream FAS expression, phosphorylation of protein kinase C (PKC)ζ, liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) increased in Prep1 (i/+) mice, while protein and mRNA levels of the lipid phosphatase inhibitor of PKCζ, SH2-containing inositol 5'-phosphatase 2 (SHIP2), was more than 60% reduced. Consistent with these findings, HepG2 cells transfected with Prep1 cDNA exhibited increased triacylglycerol accumulation and FAS expression, with strongly reduced PKCζ, LKB1, AMPK and ACC phosphorylation. Further experiments revealed the presence of both Prep1 and its major partner Pbx1 at the Ship2 (also known as Inppl1) promoter. PBX-regulating protein 1 (PREP1) and pre-B cell leukaemia transcription factor 1 (PBX1) enhanced Ship2 transcription. The PREP1HR mutant, which is unable to bind PBX1, exhibited no effect on Ship2 function, indicating transcriptional activation of Ship2 by the PREP1/PBX1 complex. Treatment with a methionine- and choline-deficient diet (MCDD) induced steatosis in both Prep1 (i/+) and non-hypomorphic control mice. However, alanine aminotransferase increase, intracellular triacylglycerol content and histological evidence of liver steatosis, inflammation and necrosis were significantly less evident in Prep1 (i/+) mice, indicating that Prep1 silencing protects mice from MCDD-induced steatohepatitis. CONCLUSIONS/INTERPRETATION Our results indicate that Prep1 silencing reduces lipotoxicity by increasing PKCζ/LKB1/AMPK/ACC signalling, while levels of PREP1 expression may determine the risk of steatohepatitis and its progression.
Collapse
Affiliation(s)
- Francesco Oriente
- Department of Translational Medical Sciences, 'Federico II' University of Naples and Institute of Experimental Endocrinology and Oncology, National Council of Research, Via Pansini 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Franco Brochado MJ, Domenici FA, Candolo Martinelli ADL, Zucoloto S, de Carvalho da Cunha SF, Vannucchi H. Methylenetetrahydrofolate reductase gene polymorphism and serum homocysteine levels in nonalcoholic fatty liver disease. ANNALS OF NUTRITION AND METABOLISM 2013; 63:193-9. [PMID: 24051448 DOI: 10.1159/000353139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/15/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS Nonalcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by hepatic fat accumulation in the absence of alcohol consumption. Hyperhomocysteinemia is considered an independent risk factor for liver diseases, and the genetic polymorphisms C677T and A1298C in the MTHFR gene have been linked to hyperhomocysteinemia. The purpose of this study was to investigate serum homocysteine (Hcy) concentrations and the MTHFR C677T and A1298C polymorphisms as risk factors for the development of NAFLD. METHODS One hundred and thirty-four Brazilian patients with biopsy-proven NAFLD and 134 healthy controls were recruited. The MTHFR C677T and A1298C polymorphisms were detected through polymerase chain reaction restriction fragment length polymorphism. Serum Hcy levels were determined by chemiluminescence. RESULTS Serum Hcy levels were higher in NAFLD patients as compared to control subjects, but there were no differences between patients with steatosis and nonalcoholic steatohepatitis. The NAFLD and control groups did not differ in genotypic and allelic frequencies of the MTHFR C677T and A1298C polymorphisms, either. Elevated plasma Hcy levels were positively correlated with age in the NAFLD subjects. CONCLUSION The MTHFR C677T and A1298C polymorphisms are not genetic risk factors for the development of NAFLD. Higher Hcy levels exist in NAFLD subjects, but they are not associated with liver disease severity.
Collapse
|
35
|
Edwards L, Wanless IR. Mechanisms of liver involvement in systemic disease. Best Pract Res Clin Gastroenterol 2013; 27:471-83. [PMID: 24090936 DOI: 10.1016/j.bpg.2013.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023]
Abstract
The liver may be injured during the course of many systemic diseases. The mechanisms of injury can be broadly divided into four pathways: vascular, toxic, immune, and hormonal. Vascular obstruction may be an early event but is also the late common pathway from all mechanisms. Despite the large number of possible initiating factors, the end results are few, including death of hepatocytes or cholangiocytes, leading to the stereotyped syndromes of acute liver failure, non-cirrhotic portal hypertension, or cirrhosis. This small number of outcomes is a reflection of the few anatomic patterns that can be generated by microvascular obstruction. Vascular obstruction may occur by thrombosis, inflammation, or congestive injury. The innate immunity pathway is activated by endotoxin and other agents, leading to inflammatory infiltration, release of cytokines and reactive oxygen species, and necrosis. The adaptive immune pathway involves the generation of antibodies and antigen-specific cell-mediated attack on hepatic cells. Hormonal effects are principally involved when overnutrition leads to hyperinsulinemia followed by hepatocellular necrosis.
Collapse
Affiliation(s)
- Lori Edwards
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| | | |
Collapse
|
36
|
Wang J, Guo X, Wu P, Song J, Ye C, Yu S, Zhang J, Dong W. Association between the Pro12Ala polymorphism of PPAR-γ gene and the non-alcoholic fatty liver disease: a meta-analysis. Gene 2013; 528:328-34. [PMID: 23891820 DOI: 10.1016/j.gene.2013.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022]
Abstract
Several studies have been conducted to examine the association between PPAR-γ2 Pro12Ala polymorphism and non-alcoholic fatty liver disease (NAFLD), but the results remain inconsistent. In this study, a meta-analysis was performed to assess the association of PPAR-γ Pro12Ala polymorphism with NAFLD risk. A total of 8 case-control studies, including 1697 cases and 2427 controls, were selected. Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed- or random-effects model. Overall, no evidence has indicated that the Pro12Ala polymorphism was associated with the susceptibility to NAFLD. Besides, stratified analysis with ethnicity also indicated that no significant association between PPAR-γ Pro12Ala and the risk of NAFLD under all for genetic model in both Asian and Caucasian populations was observed. This meta-analysis indicated that the Pro12Ala polymorphism is not associated with NAFLD risk. Large and well-designed studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Di Rosa M, Mangano K, De Gregorio C, Nicoletti F, Malaguarnera L. Association of chitotriosidase genotype with the development of non-alcoholic fatty liver disease. Hepatol Res 2013; 43:267-75. [PMID: 22971072 DOI: 10.1111/j.1872-034x.2012.01063.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIM Based on the role of chitotriosidase (CHIT-1) in the evolution of non-alcoholic fatty liver disease, we explored whether CHIT-1 mutant allele plays a role in NAFLD progression. METHODS We genotyped 200 patients with NAFLD (110 with non-alcoholic steatohepatitis [NASH] and 90 with simple steatosis) and 100 control subjects. The χ(2) -test was performed for a case-control study. Odds ratios (OR) were adjusted for age, sex and body mass index (BMI) by using multiple logistic regression analysis with genotypes (additive model), age, sex and BMI as the independent variables. Multiple linear regression analysis was performed to test the independent effect of risk allele on clinical parameters while considering the effects of other variables (age, sex and BMI), which were assumed to be independent of the effect of the single nucleotide polymorphism. RESULTS The risk allele frequency of CHIT-1 wild type (Wt) was 0.71 in the control subjects, 0.77 in simple steatosis and 0.92 in patients with NASH. The OR (95% confidence interval) adjusted for age and BMI was 1.73. Multiple linear regression analysis indicated that the CHIT-1 Wt was significantly associated with increases in ferritin levels (P = 0.014) and the fibrosis stage (P = 0.011) in the patients with NASH, even after adjustment for age, sex and BMI, corroborating that the presence of the CHIT-1 Wt allele was an independent predictor of fibrotic NAFLD. In contrast, the steatosis grade was not associated with CHIT-1 mutant allele. CONCLUSION These findings suggest that a functional polymorphism in the CHIT-1 gene protects against NAFLD progression.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
38
|
Bouziana SD, Tziomalos K. Inhibition of apoptosis in the management of nonalcoholic fatty liver disease. World J Gastrointest Pharmacol Ther 2013; 4:4-8. [PMID: 23516172 PMCID: PMC3600542 DOI: 10.4292/wjgpt.v4.i1.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/26/2012] [Accepted: 01/11/2013] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in the developed world. The pathogenesis of NAFLD is multifactorial, involving obesity, insulin resistance, inflammation and oxidative stress. Accordingly, several treatments targeting these pathways have been evaluated in patients with NAFLD but have either shown limited efficacy or an unfavorable safety profile. On the other hand, increased hepatocyte apoptosis also appears to be implicated in the development and progression of NAFLD and recent pilot studies suggest that inhibition of apoptosis might represent a useful approach in this disease. However, several issues pertaining both to the efficacy and safety of this new class of agents remain unresolved and larger studies are required to clarify the role of this therapeutic modality in the management of NAFLD.
Collapse
|
39
|
Yilmaz Y. Review article: is non-alcoholic fatty liver disease a spectrum, or are steatosis and non-alcoholic steatohepatitis distinct conditions? Aliment Pharmacol Ther 2012; 36:815-23. [PMID: 22966992 DOI: 10.1111/apt.12046] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is currently conceptualised as a clinical spectrum that results from a ‘multiple-hit’ process which begins with simple steatosis and subsequently renders the hepatocytes susceptible to a variety of insults. Ultimately, more serious liver injuries like non-alcoholic steatohepatitis (NASH) and cirrhosis may develop. Although the metabolic syndrome is considered the crucial player in the pathogenesis of NAFLD, recent studies have highlighted novel pathophysiological mechanisms in this clinical entity. AIM To discuss the pathophysiology of NAFLD based on the hypothesis that simple steatosis and NASH are discrete entities rather than two points on a spectrum. METHODS A literature search was conducted in August 2012 on PubMed, Ovid Embase, Ovid Medline and Scopus using the following search terms: steatosis, non-alcoholic steatohepatitis, pathophysiology, fatty liver, natural history and genetics. RESULTS Simple steatosis and NASH appear as two distinct pathophysiological entities and progression from pure fatty liver to NASH appears to be so rare as to warrant publication. The possible pathogenetic pathways specifically related to NASH are highlighted. CONCLUSIONS Although simple steatosis and non-alcoholic steatohepatitis are currently viewed as two histological subtypes of the unique spectrum of non-alcoholic fatty liver disease, the two conditions are likely distinct not only from a histological but also from a pathophysiological standpoint. Efforts to distinguish simple steatosis from non-alcoholic steatohepatitis using non-invasive modalities should be informed by the current pathophysiology of these two clinical entities.
Collapse
Affiliation(s)
- Y Yilmaz
- Institute of Gastroenterology, Marmara University, Maltepe, Istanbul, Turkey.
| |
Collapse
|
40
|
Tryndyak V, de Conti A, Kobets T, Kutanzi K, Koturbash I, Han T, Fuscoe JC, Latendresse JR, Melnyk S, Shymonyak S, Collins L, Ross SA, Rusyn I, Beland FA, Pogribny IP. Interstrain differences in the severity of liver injury induced by a choline- and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. FASEB J 2012; 26:4592-602. [PMID: 22872676 DOI: 10.1096/fj.12-209569] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health problem and a leading cause of chronic liver disease in the United States and developed countries. In humans, genetic factors greatly influence individual susceptibility to NAFLD. The goals of this study were to compare the magnitude of interindividual differences in the severity of liver injury induced by methyl-donor deficiency among individual inbred strains of mice and to investigate the underlying mechanisms associated with the variability. Feeding mice a choline- and folate-deficient diet for 12 wk caused liver injury similar to NAFLD. The magnitude of liver injury varied among the strains, with the order of sensitivity being A/J ≈ C57BL/6J ≈ C3H/HeJ < 129S1/SvImJ ≈ CAST/EiJ < PWK/PhJ < WSB/EiJ. The interstrain variability in severity of NAFLD liver damage was associated with dysregulation of genes involved in lipid metabolism, primarily with a down-regulation of the peroxisome proliferator receptor α (PPARα)-regulated lipid catabolic pathway genes. Markers of oxidative stress and oxidative stress-induced DNA damage were also elevated in the livers but were not correlated with severity of liver damage. These findings suggest that the PPARα-regulated metabolism network is one of the key mechanisms determining interstrain susceptibility and severity of NAFLD in mice.
Collapse
Affiliation(s)
- Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|