1
|
d'Errico P, Früholz I, Meyer-Luehmann M, Vlachos A. Neuroprotective and plasticity promoting effects of repetitive transcranial magnetic stimulation (rTMS): A role for microglia. Brain Stimul 2025; 18:810-821. [PMID: 40118248 DOI: 10.1016/j.brs.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to modulate neocortical excitability, with expanding applications in neurological and psychiatric disorders. However, the cellular and molecular mechanisms underlying its effects, particularly the role of microglia -the resident immune cells of the central nervous system- remain poorly understood. This review synthesizes recent findings on how different rTMS protocols influence microglial function under physiological conditions and in disease models. Emerging evidence indicates that rTMS modulates microglial activation, promoting neuroprotective and plasticity-enhancing processes not only in models of brain disorders, such as Alzheimer's and Parkinson's disease, but also in healthy neural circuits. While much of the current research has focused on the inflammatory profile of microglia, critical aspects such as activity-dependent synaptic remodeling, phagocytic activity, and process motility remain underexplored. Given the substantial heterogeneity of microglial responses across brain regions, age, and sex, as well as their differential roles in health and disease, a deeper understanding of their involvement in rTMS-induced plasticity is essential. Future studies should integrate selective microglial manipulation and advanced structural, functional, and molecular profiling techniques to clarify their causal involvement. Addressing these gaps will be pivotal in optimizing rTMS protocols and maximizing its therapeutic potential across a spectrum of neurological and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Paolo d'Errico
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Iris Früholz
- Department of Neurology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Carney BN, Illiano P, Pohl TM, Desu HL, Mudalegundi S, Asencor AI, Jwala S, Ascona MC, Singh PK, Titus DJ, Pazarlar BA, Wang L, Bianchi L, Mikkelsen JD, Atkins CM, Lambertsen KL, Brambilla R. Astroglial TNFR2 signaling regulates hippocampal synaptic function and plasticity in a sex dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643110. [PMID: 40161622 PMCID: PMC11952524 DOI: 10.1101/2025.03.13.643110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Astrocytes participate in synaptic transmission and plasticity through tightly regulated, bidirectional communication with pre- and post-synaptic neurons, as well as microglia and oligodendrocytes. A key component of astrocyte-mediated synaptic regulation is the cytokine tumor necrosis factor (TNF). TNF signals via two cognate receptors, TNFR1 and TNFR2, both expressed in astrocytes. While TNFR1 signaling in astrocytes has been long demonstrated to be necessary for physiological synaptic function, the role of astroglial TNFR2 has never been explored. Here, we demonstrate that astroglial TNFR2 is essential for maintaining hippocampal synaptic function and plasticity in physiological conditions. Indeed, Gfap creERT2 :Tnfrsf1b fl/fl mice with selective ablation of TNFR2 in astrocytes exhibited dysregulated expression of neuronal and glial proteins (e.g., SNARE complex molecules, glutamate receptor subunits, glutamate transporters) essential for hippocampal synaptic transmission and plasticity. Hippocampal astrocytes sorted from Gfap creERT2 :Tnfrsf1b fl/fl mice displayed downregulation of genes and pathways implicated in synaptic plasticity, as well as astrocyte-neuron and astrocyte-oligodendrocyte communication. These alterations were accompanied by increased glial reactivity and impaired astrocyte calcium dynamics, and ultimately translated into functional deficits, specifically impaired long-term potentiation (LTP) and cognitive functions. Notably, male Gfap creERT2 :Tnfrsf1b fl/fl mice exhibited more pronounced hippocampal synaptic and cellular alterations, suggesting sex-dependent differences in astroglial TNFR2 regulation of synaptic function. Together, these findings indicate that TNFR2 signaling in astrocytes is essential for proper astrocyte-neuron communication at the basis of synaptic function, and that this is regulated in a sex-dependent manner.
Collapse
|
3
|
De Felice E, Bobotis BC, Rigillo G, Khakpour M, Gonçalves de Andrade E, Benatti C, Vilella A, Tascedda F, Limatola C, Tremblay MÈ, Alboni S, Maggi L. Female mice exhibit similar long-term plasticity and microglial properties between the dorsal and ventral hippocampal poles. Brain Behav Immun 2025; 124:192-204. [PMID: 39617070 DOI: 10.1016/j.bbi.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024] Open
Abstract
The hippocampus is a heterogenous structure that exhibits functional segregation along its longitudinal axis. We recently showed that in male mice, microglia, the brain's resident immune cells, differ between the dorsal (DH) and ventral (VH) hippocampus, impacting long-term potentiation (LTP) mainly through the CX3CL1-CX3CR1 signaling. Here, we assessed the specific features of the hippocampal poles in female mice, demonstrating a similar LTP amplitude in VH and DH in both control and Cx3cr1 knock-out mice. In addition, the expression levels of Cx3cr1 and Cx3cl1 mRNA do not differ between the two poles in control mice. These data support the critical role of the CX3CL1-CX3CR1 signaling in setting the physiological amount of plasticity, equally between poles in females. Although BDNF is higher in DH compared to VH, the expression levels of inflammatory markers involved in plasticity and of phagocytosis markers in microglia are comparable between the two poles. In accordance, microglia soma and arborization area/perimeter, and microglial ultrastructure are similar across regions, with the exception of microglial density, cells arborization solidity and circularity that are higher in DH. Understanding the molecular processes underlying microglial sex differences and their potential implications for plasticity in specific brain regions is of major importance in physiological and pathological conditions.
Collapse
Affiliation(s)
- Eleonora De Felice
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| | - Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Giovanna Rigillo
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Cristina Benatti
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonietta Vilella
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Laboratory Affiliated to Institute Pasteur, Sapienza University, Rome, Italy
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada; Institute On Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia Vancouver, BC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Silvia Alboni
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Benarroch E. What Is the Role of Cytokines in Synaptic Transmission? Neurology 2024; 103:e209928. [PMID: 39303183 DOI: 10.1212/wnl.0000000000209928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
|
5
|
Rana AK, Bhatt B, Kumar M. β-Hydroxybutyrate Improves the Redox Status, Cytokine Production and Phagocytic Potency of Glucose-Deprived HMC3 Human Microglia-like Cells. J Neuroimmune Pharmacol 2024; 19:35. [PMID: 39042253 DOI: 10.1007/s11481-024-10139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Brain glucose deprivation is a component of the pathophysiology of ischemia, glucose transporter1 (GLUT1) deficiency, neurological disorders and occurs transiently in diabetes. Microglia, the neuroimmune cells must function effectively to offer immune defence and debris removal in low-energy settings. Brain glucose deprivation may compromise microglial functions further escalating the disease pathology and deteriorating the overall mental health. In the current study, HMC3 human microglia-like cells were cultured in vitro and exposed to glucose deprivation to investigate the effects of glucose deprivation on phenotypic state, redox status, secretion of cytokines and phagocytic capabilities of HMC3 cells. However, HMC3 cells were able to proliferate in the absence of glucose but showed signs of redox imbalance and mitochondrial dysfunction, as demonstrated by decreased MTT reduction and Mito Tracker™ staining of cells, along with a concomitant reduction in NOX2 protein, superoxide, and nitrite levels. Reduced levels of secreted TNF and IL-1β were the signs of compromised cytokine secretion by glucose-deprived HMC3 microglia-like cells. Moreover, glucose-deprived HMC3 cells also showed reduced phagocytic activity as assessed by fluorescently labelled latex beads-based functional phagocytosis assay. β-hydroxybutyrate (BHB) supplementation restored the redox status, mitochondrial health, cytokine secretion, and phagocytic activity of glucose-deprived HMC3 microglia-like cells. Overall, impaired brain glucose metabolism may hinder microglia's capacity to release diffusible immune factors and perform phagocytosis. This could escalate the mental health issues in neurological diseases where brain glucose metabolism is compromised. Moreover, nutritional ketosis or exogenous ketone supplementation such as BHB may be utilized as a potential metabolic therapies for these conditions.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, 140306, India
| | - Babita Bhatt
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, 140306, India
| | - Mohit Kumar
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, 140306, India.
- Adjunct faculty, Regional Centre for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
6
|
Zhang Y, Tan X, Tang C. Estrogen-immuno-neuromodulation disorders in menopausal depression. J Neuroinflammation 2024; 21:159. [PMID: 38898454 PMCID: PMC11188190 DOI: 10.1186/s12974-024-03152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
A significant decrease in estrogen levels puts menopausal women at high risk for major depression, which remains difficult to cure despite its relatively clear etiology. With the discovery of abnormally elevated inflammation in menopausal depressed women, immune imbalance has become a novel focus in the study of menopausal depression. In this paper, we examined the characteristics and possible mechanisms of immune imbalance caused by decreased estrogen levels during menopause and found that estrogen deficiency disrupted immune homeostasis, especially the levels of inflammatory cytokines through the ERα/ERβ/GPER-associated NLRP3/NF-κB signaling pathways. We also analyzed the destruction of the blood-brain barrier, dysfunction of neurotransmitters, blockade of BDNF synthesis, and attenuation of neuroplasticity caused by inflammatory cytokine activity, and investigated estrogen-immuno-neuromodulation disorders in menopausal depression. Current research suggests that drugs targeting inflammatory cytokines and NLRP3/NF-κB signaling molecules are promising for restoring homeostasis of the estrogen-immuno-neuromodulation system and may play a positive role in the intervention and treatment of menopausal depression.
Collapse
Affiliation(s)
- Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xiying Tan
- Department of Neurology, Xinxiang City First People's Hospital, Xinxiang, 453000, Henan, China
| | - Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
7
|
Inglebert Y, Wu PY, Tourbina-Kolomiets J, Dang CL, McKinney RA. Synaptopodin is required for long-term depression at Schaffer collateral-CA1 synapses. Mol Brain 2024; 17:17. [PMID: 38566234 PMCID: PMC10988887 DOI: 10.1186/s13041-024-01089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Synaptopodin (SP), an actin-associated protein found in telencephalic neurons, affects activity-dependant synaptic plasticity and dynamic changes of dendritic spines. While being required for long-term depression (LTD) mediated by metabotropic glutamate receptor (mGluR-LTD), little is known about its role in other forms of LTD induced by low frequency stimulation (LFS-LTD) or spike-timing dependent plasticity (STDP). Using electrophysiology in ex vivo hippocampal slices from SP-deficient mice (SPKO), we show that absence of SP is associated with a deficit of LTD at Sc-CA1 synapses induced by LFS-LTD and STDP. As LTD is known to require AMPA- receptors internalization and IP3-receptors calcium signaling, we tested by western blotting and immunochemistry if there were changes in their expression which we found to be reduced. While we were not able to induce LTD, long-term potentiation (LTP), albeit diminished in SPKO, can be recovered by using a stronger stimulation protocol. In SPKO we found no differences in NMDAR, which are the primary site of calcium signalling to induce LTP. Our study shows, for the first time, the key role of the requirement of SP to allow induction of activity-dependant LTD at Sc-CA1 synapses.
Collapse
Affiliation(s)
- Yanis Inglebert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
- Current address Department of Neurosciences, Montreal University, Montreal, Canada.
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | - Cong Loc Dang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
8
|
Duan D, Wang L, Feng Y, Hu D, Cui D. Picroside Ⅱ attenuates neuropathic pain by regulating inflammation and spinal excitatory synaptic transmission. Can J Physiol Pharmacol 2024; 102:281-292. [PMID: 37976472 DOI: 10.1139/cjpp-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nerve injury induced microglia activation, which released inflammatory mediators and developed neuropathic pain. Picroside Ⅱ (PⅡ) attenuated neuropathic pain by inhibiting the neuroinflammation of the spinal dorsal horn; however, how it engaged in the cross talk between microglia and neurons remained ambiguous. This study aimed to investigate PⅡ in the modulation of spinal synaptic transmission mechanisms on pain hypersensitivity in neuropathic rats. We investigated the analgesia of PⅡ in mechanical and thermal hyperalgesia using the spinal nerve ligation (SNL)-induced neuropathic pain model and formalin-induced tonic pain model, respectively. RNA sequencing and network pharmacology were employed to screen core targets and signaling pathways. Immunofluorescence staining and qPCR were performed to explore the expression level of microglia and inflammatory mediator mRNA. The whole-cell patch-clamp recordings were utilized to record miniature excitatory postsynaptic currents in excitatory synaptic transmission. Our results demonstrated that the analgesic of PⅡ was significant in both pain models, and the underlying mechanism may involve inflammatory signaling pathways. PⅡ reversed the SNL-induced overexpression of microglia and inflammatory factors. Moreover, PⅡ dose dependently inhibited excessive glutamate transmission. Thus, this study suggested that PⅡ attenuated neuropathic pain by inhibiting excitatory glutamate transmission of spinal synapses, induced by an inflammatory response on microglia.
Collapse
Affiliation(s)
- Dongxia Duan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Lian Wang
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yueyang Feng
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daiyu Hu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| |
Collapse
|
9
|
Zhao L, Liu J, Zhao W, Chen J, Fan J, Ge T, Tu Y. Morphological and genetic decoding shows heterogeneous patterns of brain aging in chronic musculoskeletal pain. NATURE MENTAL HEALTH 2024; 2:435-449. [DOI: 10.1038/s44220-024-00223-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2025]
|
10
|
Kruse P, Brandes G, Hemeling H, Huang Z, Wrede C, Hegermann J, Vlachos A, Lenz M. Synaptopodin Regulates Denervation-Induced Plasticity at Hippocampal Mossy Fiber Synapses. Cells 2024; 13:114. [PMID: 38247806 PMCID: PMC10814840 DOI: 10.3390/cells13020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Neurological diseases can lead to the denervation of brain regions caused by demyelination, traumatic injury or cell death. The molecular and structural mechanisms underlying lesion-induced reorganization of denervated brain regions, however, are a matter of ongoing investigation. In order to address this issue, we performed an entorhinal cortex lesion (ECL) in mouse organotypic entorhino-hippocampal tissue cultures of both sexes and studied denervation-induced plasticity of mossy fiber synapses, which connect dentate granule cells (dGCs) with CA3 pyramidal cells (CA3-PCs) and play important roles in learning and memory formation. Partial denervation caused a strengthening of excitatory neurotransmission in dGCs, CA3-PCs and their direct synaptic connections, as revealed by paired recordings (dGC-to-CA3-PC). These functional changes were accompanied by ultrastructural reorganization of mossy fiber synapses, which regularly contain the plasticity-regulating protein synaptopodin and the spine apparatus organelle. We demonstrate that the spine apparatus organelle and synaptopodin are related to ribosomes in close proximity to synaptic sites and reveal a synaptopodin-related transcriptome. Notably, synaptopodin-deficient tissue preparations that lack the spine apparatus organelle failed to express lesion-induced synaptic adjustments. Hence, synaptopodin and the spine apparatus organelle play a crucial role in regulating lesion-induced synaptic plasticity at hippocampal mossy fiber synapses.
Collapse
Affiliation(s)
- Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Hanna Hemeling
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
11
|
Ji F, Feng C, Qin J, Wang C, Zhang D, Su L, Wang W, Zhang M, Li H, Ma L, Lu W, Liu C, Teng Z, Hu B, Jian F, Xie J, Jiao J. Brain-specific Pd1 deficiency leads to cortical neurogenesis defects and depressive-like behaviors in mice. Cell Death Differ 2023; 30:2053-2065. [PMID: 37553426 PMCID: PMC10482844 DOI: 10.1038/s41418-023-01203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023] Open
Abstract
Embryonic neurogenesis is tightly regulated by multiple factors to ensure the precise development of the cortex. Deficiency in neurogenesis may result in behavioral abnormalities. Pd1 is a well-known inhibitory immune molecule, but its function in brain development remains unknown. Here, we find brain specific deletion of Pd1 results in abnormal cortical neurogenesis, including enhanced proliferation of neural progenitors and reduced neuronal differentiation. In addition, neurons in Pd1 knockout mice exhibit abnormal morphology, both the total length and the number of primary dendrites were reduced. Moreover, Pd1cKO mice exhibit depressive-like behaviors, including immobility, despair, and anhedonia. Mechanistically, Pd1 regulates embryonic neurogenesis by targeting Pax3 through the β-catenin signaling pathway. The constitutive expression of Pax3 partly rescues the deficiency of neurogenesis in the Pd1 deleted embryonic brain. Besides, the administration of β-catenin inhibitor, XAV939, not only rescues abnormal brain development but also ameliorates depressive-like behaviors in Pd1cKO mice. Simultaneously, Pd1 plays a similar role in human neural progenitor cells (hNPCs) proliferation and differentiation. Taken together, our findings reveal the critical role and regulatory mechanism of Pd1 in embryonic neurogenesis and behavioral modulation, which could contribute to understanding immune molecules in brain development.
Collapse
Affiliation(s)
- Fen Ji
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Chao Feng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Sino-Danish College at University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jie Qin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Sino-Danish College at University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chong Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Dongming Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Libo Su
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenwen Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mengtian Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hong Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Longbing Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weicheng Lu
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Changmei Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fengzeng Jian
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Jianwei Jiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
12
|
Sheng R, Chen C, Chen H, Yu P. Repetitive transcranial magnetic stimulation for stroke rehabilitation: insights into the molecular and cellular mechanisms of neuroinflammation. Front Immunol 2023; 14:1197422. [PMID: 37283739 PMCID: PMC10239808 DOI: 10.3389/fimmu.2023.1197422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide, with most survivors reporting dysfunctions of motor, sensation, deglutition, cognition, emotion, and speech, etc. Repetitive transcranial magnetic stimulation (rTMS), one of noninvasive brain stimulation (NIBS) techniques, is able to modulate neural excitability of brain regions and has been utilized in neurological and psychiatric diseases. Moreover, a large number of studies have shown that the rTMS presents positive effects on function recovery of stroke patients. In this review, we would like to summarized the clinical benefits of rTMS for stroke rehabilitation, including improvements of motor impairment, dysphagia, depression, cognitive function, and central post-stroke pain. In addition, this review will also discuss the molecular and cellular mechanisms underlying rTMS-mediated stroke rehabilitation, especially immune regulatory mechanisms, such as regulation of immune cells and inflammatory cytokines. Moreover, the neuroimaging technique as an important tool in rTMS-mediated stroke rehabilitation has been discussed, to better understanding the mechanisms underlying the effects of rTMS. Finally, the current challenges and future prospects of rTMS-mediated stroke rehabilitation are also elucidated with the intention to accelerate its widespread clinical application.
Collapse
Affiliation(s)
- Rongjun Sheng
- Department of Radiology, The First People’s Hospital of Linping District, Hangzhou, China
| | - Changchun Chen
- Department of Radiology, The People’s Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou, China
| | - Huan Chen
- Department of Radiology, The People’s Hospital of Longyou, Quzhou, China
| | - Peipei Yu
- Department of Radiology, Sanmen People’s Hospital, Taizhou, China
| |
Collapse
|
13
|
Gruol DL, Calderon D, French K, Melkonian C, Huitron-Resendiz S, Cates-Gatto C, Roberts AJ. Neuroimmune interactions with binge alcohol drinking in the cerebellum of IL-6 transgenic mice. Neuropharmacology 2023; 228:109455. [PMID: 36775097 PMCID: PMC10029700 DOI: 10.1016/j.neuropharm.2023.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
The neuroimmune system of the brain, which is comprised primarily of astrocytes and microglia, regulates a variety of homeostatic mechanisms that underlie normal brain function. Numerous conditions, including alcohol consumption, can disrupt this regulatory process by altering brain levels of neuroimmune factors. Alcohol and neuroimmune factors, such as proinflammatory cytokines IL-6 and TNF-alpha, act at similar targets in the brain, including excitatory and inhibitory synaptic transmission. Thus, alcohol-induced production of IL-6 and/or TNF-alpha could be important contributing factors to the effects of alcohol on the brain. Recent studies indicate that IL-6 plays a role in alcohol drinking and the effects of alcohol on the brain activity following the cessation of alcohol consumption (post-alcohol period), however information on these topics is limited. Here we used homozygous and heterozygous female and male transgenic mice with increased astrocyte expression of IL-6 to examined further the interactions between alcohol and IL-6 with respect to voluntary alcohol drinking, brain activity during the post-alcohol period, IL-6 signal transduction, and expression of synaptic proteins. Wildtype littermates (WT) served as controls. The transgenic mice model brain neuroimmune status with respect to IL-6 in subjects with a history of persistent alcohol use. Results showed a genotype dependent reduction in voluntary alcohol consumption in the Drinking in the Dark protocol and in frequency-dependent relationships between brain activity in EEG recordings during the post-alcohol period and alcohol consumption. IL-6, TNF-alpha, IL-6 signal transduction partners pSTAT3 and c/EBP beta, and synaptic proteins were shown to play a role in these genotypic effects.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Delilah Calderon
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Katharine French
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Claudia Melkonian
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
14
|
Eichler A, Kleidonas D, Turi Z, Fliegauf M, Kirsch M, Pfeifer D, Masuda T, Prinz M, Lenz M, Vlachos A. Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation. J Neurosci 2023; 43:3042-3060. [PMID: 36977586 PMCID: PMC10146500 DOI: 10.1523/jneurosci.2226-22.2023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches that modulate microglia function in a brain region-specific manner have not been established. In this study, we tested for the effects of repetitive transcranial magnetic stimulation (rTMS), a clinically used noninvasive brain stimulation technique, on microglia-mediated synaptic plasticity; 10 Hz electromagnetic stimulation triggered a release of plasticity-promoting cytokines from microglia in mouse organotypic brain tissue cultures of both sexes, while no significant changes in microglial morphology or microglia dynamics were observed. Indeed, substitution of tumor necrosis factor α (TNFα) and interleukin 6 (IL6) preserved synaptic plasticity induced by 10 Hz stimulation in the absence of microglia. Consistent with these findings, in vivo depletion of microglia abolished rTMS-induced changes in neurotransmission in the mPFC of anesthetized mice of both sexes. We conclude that rTMS affects neural excitability and plasticity by modulating the release of cytokines from microglia.SIGNIFICANCE STATEMENT Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that induces cortical plasticity. Despite its wide use in neuroscience and clinical practice (e.g., depression treatment), the cellular and molecular mechanisms of rTMS-mediated plasticity remain not well understood. Herein, we report an important role of microglia and plasticity-promoting cytokines in synaptic plasticity induced by 10 Hz rTMS in organotypic slice cultures and anesthetized mice, thereby identifying microglia-mediated synaptic adaptation as a target of rTMS-based interventions.
Collapse
Affiliation(s)
- Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Fliegauf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Kirsch
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
15
|
Lenz M, Eichler A, Kruse P, Stöhr P, Kleidonas D, Galanis C, Lu H, Vlachos A. Denervated mouse CA1 pyramidal neurons express homeostatic synaptic plasticity following entorhinal cortex lesion. Front Mol Neurosci 2023; 16:1148219. [PMID: 37122623 PMCID: PMC10130538 DOI: 10.3389/fnmol.2023.1148219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Structural, functional, and molecular reorganization of denervated neural networks is often observed in neurological conditions. The loss of input is accompanied by homeostatic synaptic adaptations, which can affect the reorganization process. A major challenge of denervation-induced homeostatic plasticity operating in complex neural networks is the specialization of neuronal inputs. It remains unclear whether neurons respond similarly to the loss of distinct inputs. Here, we used in vitro entorhinal cortex lesion (ECL) and Schaffer collateral lesion (SCL) in mouse organotypic entorhino-hippocampal tissue cultures to study denervation-induced plasticity of CA1 pyramidal neurons. We observed microglia accumulation, presynaptic bouton degeneration, and a reduction in dendritic spine numbers in the denervated layers 3 days after SCL and ECL. Transcriptome analysis of the CA1 region revealed complex changes in differential gene expression following SCL and ECL compared to non-lesioned controls with a specific enrichment of differentially expressed synapse-related genes observed after ECL. Consistent with this finding, denervation-induced homeostatic plasticity of excitatory synapses was observed 3 days after ECL but not after SCL. Chemogenetic silencing of the EC but not CA3 confirmed the pathway-specific induction of homeostatic synaptic plasticity in CA1. Additionally, increased RNA oxidation was observed after SCL and ECL. These results reveal important commonalities and differences between distinct pathway lesions and demonstrate a pathway-specific induction of denervation-induced homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Phyllis Stöhr
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
MacPherson KP, Eidson LN, Houser MC, Weiss BE, Gollihue JL, Herrick MK, de Sousa Rodrigues ME, Sniffen L, Weekman EM, Hamilton AM, Kelly SD, Oliver DL, Yang Y, Chang J, Sampson TR, Norris CM, Tansey MG. Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer's disease mouse model. Front Cell Neurosci 2023; 17:895017. [PMID: 37006470 PMCID: PMC10052573 DOI: 10.3389/fncel.2023.895017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/20/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: Increasing evidence indicates that neurodegenerative diseases, including Alzheimer's disease (AD), are a product of gene-by-environment interplay. The immune system is a major contributor mediating these interactions. Signaling between peripheral immune cells and those within the microvasculature and meninges of the central nervous system (CNS), at the blood-brain barrier, and in the gut likely plays an important role in AD. The cytokine tumor necrosis factor (TNF) is elevated in AD patients, regulates brain and gut barrier permeability, and is produced by central and peripheral immune cells. Our group previously reported that soluble TNF (sTNF) modulates cytokine and chemokine cascades that regulate peripheral immune cell traffic to the brain in young 5xFAD female mice, and in separate studies that a diet high in fat and sugar (HFHS) dysregulates signaling pathways that trigger sTNF-dependent immune and metabolic responses that can result in metabolic syndrome, which is a risk factor for AD. We hypothesized that sTNF is a key mediator of peripheral immune cell contributions to gene-by-environment interactions to AD-like pathology, metabolic dysfunction, and diet-induced gut dysbiosis. Methods: Female 5xFAD mice were subjected to HFHS diet for 2 months and then given XPro1595 to inhibit sTNF for the last month or saline vehicle. We quantified immune cell profiles by multi-color flow cytometry on cells isolated from brain and blood; metabolic, immune, and inflammatory mRNA and protein marker biochemical and immunhistological analyses, gut microbiome, and electrophysiology in brain slices were also performed. Results: Here, we show that selective inhibition of sTNF signaling via the biologic XPro1595 modulates the effects of an HFHS diet in 5xFAD mice on peripheral and central immune profiles including CNS-associated CD8+ T cells, the composition of gut microbiota, and long-term potentiation deficits. Discussion: Obesogenic diet induces immune and neuronal dysfunction in 5xFAD mice and sTNF inhibition mitigates its effects. A clinical trial in subjects at risk for AD due to genetic predisposition and underlying inflammation associated with peripheral inflammatory co-morbidities will be needed to investigate the extent to which these findings translate to the clinic.
Collapse
Affiliation(s)
- Kathryn P. MacPherson
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Lori N. Eidson
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Madelyn C. Houser
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Blaine E. Weiss
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jenna L. Gollihue
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Mary K. Herrick
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, FL, United States
| | - Maria Elizabeth de Sousa Rodrigues
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Lindsey Sniffen
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Erica M. Weekman
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Adam M. Hamilton
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean D. Kelly
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Danielle L. Oliver
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yuan Yang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy R. Sampson
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Malú Gámez Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
17
|
Chi X, Wang L, Liu H, Zhang Y, Shen W. Post-stroke cognitive impairment and synaptic plasticity: A review about the mechanisms and Chinese herbal drugs strategies. Front Neurosci 2023; 17:1123817. [PMID: 36937659 PMCID: PMC10014821 DOI: 10.3389/fnins.2023.1123817] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Post-stroke cognitive impairment, is a major complication of stroke, characterized by cognitive dysfunction, which directly affects the quality of life. Post-stroke cognitive impairment highlights the causal relationship between stroke and cognitive impairment. The pathological damage of stroke, including the increased release of excitatory amino acids, oxidative stress, inflammatory responses, apoptosis, changed neurotrophic factor levels and gene expression, influence synaptic plasticity. Synaptic plasticity refers to the activity-dependent changes in the strength of synaptic connections and efficiency of synaptic transmission at pre-existing synapses and can be divided into structural synaptic plasticity and functional synaptic plasticity. Changes in synaptic plasticity have been proven to play important roles in the occurrence and treatment of post-stroke cognitive impairment. Evidence has indicated that Chinese herbal drugs have effect of treating post-stroke cognitive impairment. In this review, we overview the influence of pathological damage of stroke on synaptic plasticity, analyze the changes of synaptic plasticity in post-stroke cognitive impairment, and summarize the commonly used Chinese herbal drugs whose active ingredient or extracts can regulate synaptic plasticity. This review will summarize the relationship between post-stroke cognitive impairment and synaptic plasticity, provide new ideas for future exploration of the mechanism of post-stroke cognitive impairment, compile evidence of applying Chinese herbal drugs to treat post-stroke cognitive impairment and lay a foundation for the development of novel formulas for treating post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Xiansu Chi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liuding Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxi Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Shen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Engler-Chiurazzi EB, Russell AE, Povroznik JM, McDonald KO, Porter KN, Wang DS, Hammock J, Billig BK, Felton CC, Yilmaz A, Schreurs BG, O'Callaghan JD, Zwezdaryk KJ, Simpkins JW. Intermittent systemic exposure to lipopolysaccharide-induced inflammation disrupts hippocampal long-term potentiation and impairs cognition in aging male mice. Brain Behav Immun 2023; 108:279-291. [PMID: 36549577 PMCID: PMC10019559 DOI: 10.1016/j.bbi.2022.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related cognitive decline, a common component of the brain aging process, is associated with significant impairment in daily functioning and quality of life among geriatric adults. While the complexity of mechanisms underlying cognitive aging are still being elucidated, microbial exposure and the multifactorial inflammatory cascades associated with systemic infections are emerging as potential drivers of neurological senescence. The negative cognitive and neurobiological consequences of a single pathogen-associated inflammatory experience, such as that modeled through treatment with lipopolysaccharide (LPS), are well documented. Yet, the brain aging impacts of repeated, intermittent inflammatory challenges are less well studied. To extend the emerging literature assessing the impact of infection burden on cognitive function among normally aging mice, here, we repeatedly exposed adult mice to intermittent LPS challenges during the aging period. Male 10-month-old C57BL6 mice were systemically administered escalating doses of LPS once every two weeks for 2.5 months. We evaluated cognitive consequences using the non-spatial step-through inhibitory avoidance task, and both spatial working and reference memory versions of the Morris water maze. We also probed several potential mechanisms, including cortical and hippocampal cytokine/chemokine gene expression, as well as hippocampal neuronal function via extracellular field potential recordings. Though there was limited evidence for an ongoing inflammatory state in cortex and hippocampus, we observed impaired learning and memory and a disruption of hippocampal long-term potentiation. These data suggest that a history of intermittent exposure to LPS-induced inflammation is associated with subtle but significantly impaired cognition among normally aging mice. The broader impact of these findings may have important implications for standard of care involving infections in aging individuals or populations at-risk for dementia.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA; Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA.
| | - A E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA; Magee Women's Research Institute, Allied Member, Pittsburgh, PA 15213, USA
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - K O McDonald
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - K N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - D S Wang
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J Hammock
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - B K Billig
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - C C Felton
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - A Yilmaz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - B G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J D O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - K J Zwezdaryk
- Department of Microbiology and Immunology, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
19
|
Kinoshita PF, Orellana AM, Andreotti DZ, de Souza GA, de Mello NP, de Sá Lima L, Kawamoto EM, Scavone C. Consequences of the Lack of TNFR1 in Ouabain Response in the Hippocampus of C57BL/6J Mice. Biomedicines 2022; 10:biomedicines10112937. [PMID: 36428505 PMCID: PMC9688030 DOI: 10.3390/biomedicines10112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1β in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Giovanna Araujo de Souza
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Natalia Prudente de Mello
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence:
| |
Collapse
|
20
|
Deschamps C, Uyttersprot F, Debris M, Marié C, Fouquet G, Marcq I, Vilpoux C, Naassila M, Pierrefiche O. Anti-inflammatory drugs prevent memory and hippocampal plasticity deficits following initial binge-like alcohol exposure in adolescent male rats. Psychopharmacology (Berl) 2022; 239:2245-2262. [PMID: 35314896 DOI: 10.1007/s00213-022-06112-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Binge drinking during adolescence impairs learning and memory on the long term, and many studies suggest a role of neuroinflammation. However, whether neuroinflammation occurs after the very first exposures to alcohol remains unclear, while initial alcohol exposure impairs learning for several days in male rats. OBJECTIVES To investigate the role of neuroinflammation in the effects of only two binge-like episodes on learning and on neuronal plasticity in adolescent male rat hippocampus. METHODS Animals received two ethanol i.p. injections (3 g/kg) 9 h apart. Forty-eight hours later, we recorded long-term depression (LTD) and potentiation (LTP) in CA1 area of hippocampus slices. In isolated CA1, we measured immunolabelings for microglial activation and Toll-like receptor 4 (TLR4) and mRNA levels for several cytokines. RESULTS Forty-eight hours after the two binges, rats performed worse than control rats in novel object recognition, LTD was reduced, LTP was increased, and excitatory neurotransmission was more sensitive to an antagonist of the GluN2B subunit of the NMDA receptor. Exposure to ethanol with minocycline or indomethacin, two anti-inflammatory drugs, or with a TLR4 antagonist, prevented all effects of ethanol. Immunolabelings at 48 h showed a reduction of neuronal TLR4 that was prevented by minocycline pretreatment, while microglial reactivity was undetected and inflammatory cytokines mRNA levels were unchanged. CONCLUSION Two binge-like ethanol exposures during adolescence in rat involved neuroinflammation leading to changes in TLR4 expression and in GluN2B functioning inducing disturbances in synaptic plasticity and cognitive deficits. Anti-inflammatory drugs are good candidates to prevent brain function and memory deficits induced by few binge-drinking episodes.
Collapse
Affiliation(s)
- Chloé Deschamps
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Floriane Uyttersprot
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Margot Debris
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Constance Marié
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Grégory Fouquet
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Ingrid Marcq
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Catherine Vilpoux
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Mickael Naassila
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Olivier Pierrefiche
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France.
| |
Collapse
|
21
|
Kung PL, Chou TW, Lindman M, Chang NP, Estevez I, Buckley BD, Atkins C, Daniels BP. Zika virus-induced TNF-α signaling dysregulates expression of neurologic genes associated with psychiatric disorders. J Neuroinflammation 2022; 19:100. [PMID: 35462541 PMCID: PMC9036774 DOI: 10.1186/s12974-022-02460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging flavivirus of global concern. ZIKV infection of the central nervous system has been linked to a variety of clinical syndromes, including microcephaly in fetuses and rare but serious neurologic disease in adults. However, the potential for ZIKV to influence brain physiology and host behavior following apparently mild or subclinical infection is less well understood. Furthermore, though deficits in cognitive function are well-documented after recovery from neuroinvasive viral infection, the potential impact of ZIKV on other host behavioral domains has not been thoroughly explored. METHODS We used transcriptomic profiling, including unbiased gene ontology enrichment analysis, to assess the impact of ZIKV infection on gene expression in primary cortical neuron cultures. These studies were extended with molecular biological analysis of gene expression and inflammatory cytokine signaling. In vitro observations were further confirmed using established in vivo models of ZIKV infection in immunocompetent hosts. RESULTS Transcriptomic profiling of primary neuron cultures following ZIKV infection revealed altered expression of key genes associated with major psychiatric disorders, such as bipolar disorder and schizophrenia. Gene ontology enrichment analysis also revealed significant changes in gene expression associated with fundamental neurobiological processes, including neuronal development, neurotransmission, and others. These alterations to neurologic gene expression were also observed in the brain in vivo using several immunocompetent mouse models of ZIKV infection. Mechanistic studies identified TNF-α signaling via TNFR1 as a major regulatory mechanism controlling ZIKV-induced changes to neurologic gene expression. CONCLUSIONS Our studies reveal that cell-intrinsic innate immune responses to ZIKV infection profoundly shape neuronal transcriptional profiles, highlighting the need to further explore associations between ZIKV infection and disordered host behavioral states.
Collapse
Affiliation(s)
- Po-Lun Kung
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Tsui-Wen Chou
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Marissa Lindman
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Nydia P. Chang
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Irving Estevez
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Benjamin D. Buckley
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Colm Atkins
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Brian P. Daniels
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| |
Collapse
|
22
|
Pathway-specific TNF-mediated metaplasticity in hippocampal area CA1. Sci Rep 2022; 12:1746. [PMID: 35110639 PMCID: PMC8810872 DOI: 10.1038/s41598-022-05844-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 01/29/2023] Open
Abstract
Long-term potentiation (LTP) is regulated in part by metaplasticity, the activity-dependent alterations in neural state that coordinate the direction, amplitude, and persistence of future synaptic plasticity. Previously, we documented a heterodendritic metaplasticity effect whereby high-frequency priming stimulation in stratum oriens (SO) of hippocampal CA1 suppressed subsequent LTP in the stratum radiatum (SR). The cytokine tumor necrosis factor (TNF) mediated this heterodendritic metaplasticity in wild-type rodents and in a mouse model of Alzheimer’s disease. Here, we investigated whether LTP at other afferent synapses to CA1 pyramidal cells were similarly affected by priming stimulation. We found that priming stimulation in SO inhibited LTP only in SR and not in a second independent pathway in SO, nor in stratum lacunosum moleculare (SLM). Synapses in SR were also more sensitive than SO or SLM to the LTP-inhibiting effects of pharmacological TNF priming. Neither form of priming was sex-specific, while the metaplasticity effects were absent in TNFR1 knock-out mice. Our findings demonstrate an unexpected pathway specificity for the heterodendritic metaplasticity in CA1. That Schaffer collateral/commissural synapses in SR are particularly susceptible to such metaplasticity may reflect an important control of information processing in this pathway in addition to its sensitivity to neuroinflammation under disease conditions.
Collapse
|
23
|
Kleidonas D, Vlachos A. Scavenging Tumor Necrosis Factor α Does Not Affect Inhibition of Dentate Granule Cells Following In Vitro Entorhinal Cortex Lesion. Cells 2021; 10:3232. [PMID: 34831454 PMCID: PMC8618320 DOI: 10.3390/cells10113232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Neurons that lose part of their afferent input remodel their synaptic connections. While cellular and molecular mechanisms of denervation-induced changes in excitatory neurotransmission have been identified, little is known about the signaling pathways that control inhibition in denervated networks. In this study, we used mouse entorhino-hippocampal tissue cultures of both sexes to study the role of the pro-inflammatory cytokine tumor necrosis factor α (TNFα) in denervation-induced plasticity of inhibitory neurotransmission. In line with our previous findings in vitro, an entorhinal cortex lesion triggered a compensatory increase in the excitatory synaptic strength of partially denervated dentate granule cells. Inhibitory synaptic strength was not changed 3 days after the lesion. These functional changes were accompanied by a recruitment of microglia in the denervated hippocampus, and experiments in tissue cultures prepared from TNF-reporter mice [C57BL/6-Tg(TNFa-eGFP)] showed increased TNFα expression in the denervated zone. However, inhibitory neurotransmission was not affected by scavenging TNFα with a soluble TNF receptor. In turn, a decrease in inhibition, i.e., decreased frequencies of miniature inhibitory postsynaptic currents, was observed in denervated dentate granule cells of microglia-depleted tissue cultures. We conclude from these results that activated microglia maintain the inhibition of denervated dentate granule cells and that TNFα is not required for the maintenance of inhibition after denervation.
Collapse
Affiliation(s)
- Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Center Brain Links Brain Tools, University of Freiburg, 79110 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
24
|
Lenz M, Eichler A, Kruse P, Muellerleile J, Deller T, Jedlicka P, Vlachos A. All-trans retinoic acid induces synaptopodin-dependent metaplasticity in mouse dentate granule cells. eLife 2021; 10:71983. [PMID: 34723795 PMCID: PMC8560091 DOI: 10.7554/elife.71983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
Previously we showed that the vitamin A metabolite all-trans retinoic acid (atRA) induces synaptic plasticity in acute brain slices prepared from the mouse and human neocortex (Lenz et al., 2021). Depending on the brain region studied, distinct effects of atRA on excitatory and inhibitory neurotransmission have been reported. Here, we used intraperitoneal injections of atRA (10 mg/kg) in adult C57BL/6J mice to study the effects of atRA on excitatory and inhibitory neurotransmission in the mouse fascia dentata—a brain region implicated in memory acquisition. No major changes in synaptic transmission were observed in the ventral hippocampus while a significant increase in both spontaneous excitatory postsynaptic current frequencies and synapse numbers were evident in the dorsal hippocampus 6 hr after atRA administration. The intrinsic properties of hippocampal dentate granule cells were not significantly different and hippocampal transcriptome analysis revealed no essential neuronal changes upon atRA treatment. In light of these findings, we tested for the metaplastic effects of atRA, that is, for its ability to modulate synaptic plasticity expression in the absence of major changes in baseline synaptic strength. Indeed, in vivo long-term potentiation (LTP) experiments demonstrated that systemic atRA treatment improves the ability of dentate granule cells to express LTP. The plasticity-promoting effects of atRA were not observed in synaptopodin-deficient mice, therefore, extending our previous results regarding the relevance of synaptopodin in atRA-mediated synaptic strengthening in the mouse prefrontal cortex. Taken together, our data show that atRA mediates synaptopodin-dependent metaplasticity in mouse dentate granule cells.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Muellerleile
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt am Main, Germany.,ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Lantoine J, Procès A, Villers A, Halliez S, Buée L, Ris L, Gabriele S. Inflammatory Molecules Released by Mechanically Injured Astrocytes Trigger Presynaptic Loss in Cortical Neuronal Networks. ACS Chem Neurosci 2021; 12:3885-3897. [PMID: 34614352 DOI: 10.1021/acschemneuro.1c00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deformation, compression, or stretching of brain tissues cause diffuse axonal injury (DAI) and induce structural and functional alterations of astrocytes, the most abundant cell type in the brain. To gain further insight into the role of mechanically activated astrocytes on neuronal networks, this study was designed to investigate whether cytokines released by mechanically activated astrocytes can affect the growth and synaptic connections of cortical neuronal networks. Astrocytes were cultivated on elastic membranes and subjected to repetitive mechanical insults, whereas well-defined protein micropatterns were used to form standardized neuronal networks. GFAP staining showed that astrocytes were mechanically activated after two cycles of stretch and mesoscale discovery assays indicated that injured astrocytes released four major cytokines. To understand the role of these cytokines, neuronal networks were cultured with the supernatant of healthy or mechanically activated astrocytes, and the individual contribution of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) was studied. We found that the supernatant of two-cycle stretched astrocytes decreased presynaptic terminals and indicated that TNF-α must be considered a key player of the synaptic loss. Furthermore, our results indicate that cytokines released by injured astrocytes significantly modulate the balance between TNFR1 and TNFR2 receptors by enhancing R2 receptors. We demonstrated that TNF-α is not involved in this process, suggesting a predominant role of other secreted cytokines. Together, these results contribute to a better understanding of the consequences of repetitive astrocyte deformations and highlight the role of inflammatory signaling pathways in synaptic plasticity and modulation of TNFR1 and TNFR2 receptors.
Collapse
Affiliation(s)
- Joséphine Lantoine
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
| | - Anthony Procès
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
- Laboratory of Neuroscience, Research Institute for Biosciences, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | - Agnès Villers
- Laboratory of Neuroscience, Research Institute for Biosciences, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | - Sophie Halliez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000 Lille, France
| | - Laurence Ris
- Laboratory of Neuroscience, Research Institute for Biosciences, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
26
|
Smilovic D, Rietsche M, Drakew A, Vuksic M, Deller T. Constitutive tumor necrosis factor (TNF)-deficiency causes a reduction in spine density in mouse dentate granule cells accompanied by homeostatic adaptations of spine head size. J Comp Neurol 2021; 530:656-669. [PMID: 34498735 DOI: 10.1002/cne.25237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/16/2021] [Accepted: 08/15/2021] [Indexed: 01/14/2023]
Abstract
The majority of excitatory synapses terminating on cortical neurons are found on dendritic spines. The geometry of spines, in particular the size of the spine head, tightly correlates with the strength of the excitatory synapse formed with the spine. Under conditions of synaptic plasticity, spine geometry may change, reflecting functional adaptations. Since the cytokine tumor necrosis factor (TNF) has been shown to influence synaptic transmission as well as Hebbian and homeostatic forms of synaptic plasticity, we speculated that TNF-deficiency may cause concomitant structural changes at the level of dendritic spines. To address this question, we analyzed spine density and spine head area of Alexa568-filled granule cells in the dentate gyrus of adult C57BL/6J and TNF-deficient (TNF-KO) mice. Tissue sections were double-stained for the actin-modulating and plasticity-related protein synaptopodin (SP), a molecular marker for strong and stable spines. Dendritic segments of TNF-deficient granule cells exhibited ∼20% fewer spines in the outer molecular layer of the dentate gyrus compared to controls, indicating a reduced afferent innervation. Of note, these segments also had larger spines containing larger SP-clusters. This pattern of changes is strikingly similar to the one seen after denervation-associated spine loss following experimental entorhinal denervation of granule cells: Denervated granule cells increase the SP-content and strength of their remaining spines to homeostatically compensate for those that were lost. Our data suggest a similar compensatory mechanism in TNF-deficient granule cells in response to a reduction in their afferent innervation.
Collapse
Affiliation(s)
- Dinko Smilovic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany.,Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Michael Rietsche
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Alexander Drakew
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Mario Vuksic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany.,Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
27
|
Tang J, Bair M, Descalzi G. Reactive Astrocytes: Critical Players in the Development of Chronic Pain. Front Psychiatry 2021; 12:682056. [PMID: 34122194 PMCID: PMC8192827 DOI: 10.3389/fpsyt.2021.682056] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is associated with long term plasticity of nociceptive pathways in the central nervous system. Astrocytes can profoundly affect synaptic function and increasing evidence has highlighted how altered astrocyte activity may contribute to the pathogenesis of chronic pain. In response to injury, astrocytes undergo a shift in form and function known as reactive astrogliosis, which affects their release of cytokines and gliotransmitters. These neuromodulatory substances have been implicated in driving the persistent changes in central nociceptive activity. Astrocytes also release lactate which neurons can use to produce energy during synaptic plasticity. Furthermore, recent research has provided insight into lactate's emerging role as a signaling molecule in the central nervous system, which may be involved in directly modulating neuronal and astrocytic activity. In this review, we present evidence for the involvement of astrocyte-derived tumor necrosis factor alpha in pain-associated plasticity, in addition to research suggesting the potential involvement of gliotransmitters D-serine and adenosine-5'-triphosphate. We also discuss work implicating astrocyte-neuron metabolic coupling, and the possible role of lactate, which has been sparsely studied in the context of chronic pain, in supporting pathological changes in central nociceptive activity.
Collapse
Affiliation(s)
| | | | - Giannina Descalzi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
28
|
Amyloid-Beta Mediates Homeostatic Synaptic Plasticity. J Neurosci 2021; 41:5157-5172. [PMID: 33926999 PMCID: PMC8211553 DOI: 10.1523/jneurosci.1820-20.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022] Open
Abstract
The physiological role of the amyloid-precursor protein (APP) is insufficiently understood. Recent work has implicated APP in the regulation of synaptic plasticity. Substantial evidence exists for a role of APP and its secreted ectodomain APPsα in Hebbian plasticity. Here, we addressed the relevance of APP in homeostatic synaptic plasticity using organotypic tissue cultures prepared from APP -/- mice of both sexes. In the absence of APP, dentate granule cells failed to strengthen their excitatory synapses homeostatically. Homeostatic plasticity is rescued by amyloid-β and not by APPsα, and it is neither observed in APP+/+ tissue treated with β- or γ-secretase inhibitors nor in synaptopodin-deficient cultures lacking the Ca2+-dependent molecular machinery of the spine apparatus. Together, these results suggest a role of APP processing via the amyloidogenic pathway in homeostatic synaptic plasticity, representing a function of relevance for brain physiology as well as for brain states associated with increased amyloid-β levels.
Collapse
|
29
|
Lenz M, Kruse P, Eichler A, Straehle J, Beck J, Deller T, Vlachos A. All-trans retinoic acid induces synaptic plasticity in human cortical neurons. eLife 2021; 10:e63026. [PMID: 33781382 PMCID: PMC8009674 DOI: 10.7554/elife.63026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
A defining feature of the brain is the ability of its synaptic contacts to adapt structurally and functionally in an experience-dependent manner. In the human cortex, however, direct experimental evidence for coordinated structural and functional synaptic adaptation is currently lacking. Here, we probed synaptic plasticity in human cortical slices using the vitamin A derivative all-trans retinoic acid (atRA), a putative treatment for neuropsychiatric disorders such as Alzheimer's disease. Our experiments demonstrated that the excitatory synapses of superficial (layer 2/3) pyramidal neurons underwent coordinated structural and functional changes in the presence of atRA. These synaptic adaptations were accompanied by ultrastructural remodeling of the calcium-storing spine apparatus organelle and required mRNA translation. It was not observed in synaptopodin-deficient mice, which lack spine apparatus organelles. We conclude that atRA is a potent mediator of synaptic plasticity in the adult human cortex.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University FrankfurtFreiburg im BreisgauGermany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
- Center Brain Links Brain Tools, University of FreiburgFreiburg im BreisgauGermany
| |
Collapse
|
30
|
Monitoring and Modulating Inflammation-Associated Alterations in Synaptic Plasticity: Role of Brain Stimulation and the Blood-Brain Interface. Biomolecules 2021; 11:biom11030359. [PMID: 33652912 PMCID: PMC7996828 DOI: 10.3390/biom11030359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammation of the central nervous system can be triggered by endogenous and exogenous stimuli such as local or systemic infection, trauma, and stroke. In addition to neurodegeneration and cell death, alterations in physiological brain functions are often associated with neuroinflammation. Robust experimental evidence has demonstrated that inflammatory cytokines affect the ability of neurons to express plasticity. It has been well-established that inflammation-associated alterations in synaptic plasticity contribute to the development of neuropsychiatric symptoms. Nevertheless, diagnostic approaches and interventional strategies to restore inflammatory deficits in synaptic plasticity are limited. Here, we review recent findings on inflammation-associated alterations in synaptic plasticity and the potential role of the blood–brain interface, i.e., the blood–brain barrier, in modulating synaptic plasticity. Based on recent findings indicating that brain stimulation promotes plasticity and modulates vascular function, we argue that clinically employed non-invasive brain stimulation techniques, such as transcranial magnetic stimulation, could be used for monitoring and modulating inflammation-induced alterations in synaptic plasticity.
Collapse
|
31
|
Alvarez Cooper I, Beecher K, Chehrehasa F, Belmer A, Bartlett SE. Tumour Necrosis Factor in Neuroplasticity, Neurogenesis and Alcohol Use Disorder. Brain Plast 2020; 6:47-66. [PMID: 33680846 PMCID: PMC7903009 DOI: 10.3233/bpl-190095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder is a pervasive and detrimental condition that involves changes in neuroplasticity and neurogenesis. Alcohol activates the neuroimmune system and alters the inflammatory status of the brain. Tumour necrosis factor (TNF) is a well characterised neuroimmune signal but its involvement in alcohol use disorder is unknown. In this review, we discuss the variable findings of TNF's effect on neuroplasticity and neurogenesis. Acute ethanol exposure reduces TNF release while chronic alcohol intake generally increases TNF levels. Evidence suggests TNF potentiates excitatory transmission, promotes anxiety during alcohol withdrawal and is involved in drug use in rodents. An association between craving for alcohol and TNF is apparent during withdrawal in humans. While anti-inflammatory therapies show efficacy in reversing neurogenic deficit after alcohol exposure, there is no evidence for TNF's essential involvement in alcohol's effect on neurogenesis. Overall, defining TNF's role in alcohol use disorder is complicated by poor understanding of its variable effects on synaptic transmission and neurogenesis. While TNF may be of relevance during withdrawal, the neuroimmune system likely acts through a larger group of inflammatory cytokines to alter neuroplasticity and neurogenesis. Understanding the individual relevance of TNF in alcohol use disorder awaits a more comprehensive understanding of TNF's effects within the brain.
Collapse
Affiliation(s)
- Ignatius Alvarez Cooper
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Kate Beecher
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Selena E. Bartlett
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
32
|
Lenz M, Eichler A, Kruse P, Strehl A, Rodriguez-Rozada S, Goren I, Yogev N, Frank S, Waisman A, Deller T, Jung S, Maggio N, Vlachos A. Interleukin 10 Restores Lipopolysaccharide-Induced Alterations in Synaptic Plasticity Probed by Repetitive Magnetic Stimulation. Front Immunol 2020; 11:614509. [PMID: 33391287 PMCID: PMC7772211 DOI: 10.3389/fimmu.2020.614509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Systemic inflammation is associated with alterations in complex brain functions such as learning and memory. However, diagnostic approaches to functionally assess and quantify inflammation-associated alterations in synaptic plasticity are not well-established. In previous work, we demonstrated that bacterial lipopolysaccharide (LPS)-induced systemic inflammation alters the ability of hippocampal neurons to express synaptic plasticity, i.e., the long-term potentiation (LTP) of excitatory neurotransmission. Here, we tested whether synaptic plasticity induced by repetitive magnetic stimulation (rMS), a non-invasive brain stimulation technique used in clinical practice, is affected by LPS-induced inflammation. Specifically, we explored brain tissue cultures to learn more about the direct effects of LPS on neural tissue, and we tested for the plasticity-restoring effects of the anti-inflammatory cytokine interleukin 10 (IL10). As shown previously, 10 Hz repetitive magnetic stimulation (rMS) of organotypic entorhino-hippocampal tissue cultures induced a robust increase in excitatory neurotransmission onto CA1 pyramidal neurons. Furthermore, LPS-treated tissue cultures did not express rMS-induced synaptic plasticity. Live-cell microscopy in tissue cultures prepared from a novel transgenic reporter mouse line [C57BL/6-Tg(TNFa-eGFP)] confirms that ex vivo LPS administration triggers microglial tumor necrosis factor alpha (TNFα) expression, which is ameliorated in the presence of IL10. Consistent with this observation, IL10 hampers the LPS-induced increase in TNFα, IL6, IL1β, and IFNγ and restores the ability of neurons to express rMS-induced synaptic plasticity in the presence of LPS. These findings establish organotypic tissue cultures as a suitable model for studying inflammation-induced alterations in synaptic plasticity, thus providing a biological basis for the diagnostic use of transcranial magnetic stimulation in the context of brain inflammation.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Strehl
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Silvia Rodriguez-Rozada
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Itamar Goren
- Pharmazentrum Frankfurt/ZAFES, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Stefan Frank
- Pharmazentrum Frankfurt/ZAFES, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Maggio
- Department of Neurology and Sagol Center for Neurosciences, Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Tel HaShomer, Israel
- Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Network Pharmacology-Based Strategy to Investigate Pharmacological Mechanisms of Qiaoshao Formula for Treatment of Premature Ejaculation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1418634. [PMID: 33273947 PMCID: PMC7676949 DOI: 10.1155/2020/1418634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
Background Qiaoshao (QS) formula, a traditional Chinese medicine (TCM) comprising seven herbs, has been clinically proven to have a favorable treatment effect on premature ejaculation (PE). However, its underlying pharmacological mechanisms in the treatment of PE need to be further clarified. Methods In the present study, a network pharmacology-based strategy was adopted. The active compounds of QS formula were obtained from the Chinese medicine database, and the potential targets of these compounds were collected from the DrugBank database to construct compound-compound targets network. PE-related targets were identified from human disease databases and used to construct the protein-protein interaction (PPI) networks. Compound-disease target PPI network was constructed by merging the PPI network of disease-targets and compound-targets. Cluster and enrichment analyses were performed on the PPI network of disease targets and compound-disease targets. The influence of QS formula on serum 5-HT, NO, oxytocin, and thyroid hormones of PE patients was verified. Results Four primary pharmacological networks of QS formula were constructed, including the compound-compound targets network, PPI network of PE-related targets and compound-disease targets, and the QS-PE mechanism network. The module and pathway enrichment analyses revealed that the QS formula had the potential to affect varieties of biological process and pathways, such as nitric oxide biosynthetic process, oxytocin, thyroid hormone, TNF, PI3K-Akt, and the HIF-1 signaling pathway, that play an important role in the pathogenesis of PE. Meanwhile, the QS formula has been clinically confirmed to regulate the serum level of 5-HT, NO, oxytocin, and TT in PE patients. Conclusion This study preliminarily discovered the potential targets and pathways of QS formula in the treatment of PE, which laid a good foundation for further experimental research.
Collapse
|
34
|
Shemer A, Scheyltjens I, Frumer GR, Kim JS, Grozovski J, Ayanaw S, Dassa B, Van Hove H, Chappell-Maor L, Boura-Halfon S, Leshkowitz D, Mueller W, Maggio N, Movahedi K, Jung S. Interleukin-10 Prevents Pathological Microglia Hyperactivation following Peripheral Endotoxin Challenge. Immunity 2020; 53:1033-1049.e7. [PMID: 33049219 DOI: 10.1016/j.immuni.2020.09.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/06/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023]
Abstract
Microglia, the resident macrophages of the brain parenchyma, are key players in central nervous system (CNS) development, homeostasis, and disorders. Distinct brain pathologies seem associated with discrete microglia activation modules. How microglia regain quiescence following challenges remains less understood. Here, we explored the role of the interleukin-10 (IL-10) axis in restoring murine microglia homeostasis following a peripheral endotoxin challenge. Specifically, we show that lipopolysaccharide (LPS)-challenged mice harboring IL-10 receptor-deficient microglia displayed neuronal impairment and succumbed to fatal sickness. Addition of a microglial tumor necrosis factor (TNF) deficiency rescued these animals, suggesting a microglia-based circuit driving pathology. Single cell transcriptome analysis revealed various IL-10 producing immune cells in the CNS, including most prominently Ly49D+ NK cells and neutrophils, but not microglia. Collectively, we define kinetics of the microglia response to peripheral endotoxin challenge, including their activation and robust silencing, and highlight the critical role of non-microglial IL-10 in preventing deleterious microglia hyperactivation.
Collapse
Affiliation(s)
- Anat Shemer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Isabelle Scheyltjens
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gal Ronit Frumer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Seok Kim
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jonathan Grozovski
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Serkalem Ayanaw
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hannah Van Hove
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Dena Leshkowitz
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Werner Mueller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 5262 Tel Aviv, Israel
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
35
|
Amitriptyline Downregulates Chronic Inflammatory Response to Biomaterial in Mice. Inflammation 2020; 44:580-591. [PMID: 33034827 DOI: 10.1007/s10753-020-01356-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Recent data has signaled that in addition to its therapeutic indications as antidepressant and analgesic, amitriptyline (AM) exerts anti-inflammatory effects in humans and experimental animal models of acute inflammation. We tested the hypothesis that this compound could also modulate the chronic inflammatory process induced by synthetic matrix in mice. Polyether-polyurethane sponge disks were implanted subcutaneously in 9-week-old male C57BL/6 mice. The animals received by oral gavage 5.0 mg/kg of amitriptyline for seven consecutive days in two treatment regimens. In the first series, the treatment was initiated on the day of surgery and the implants removed at day 7 post-implantation. For the assessment of the effect of amitriptyline on chronic inflammation, the treatment was initiated 7 days post-implantation and the sponge discs removed 14 after implantation. The inflammatory markers evaluated, myeloperoxidase - MPO, nitrite content, IL-6, IFN-γ, TNF-α, CXCL1 and CCL2 levels, and NF-κB transcription factor activation were reduced in implants when the treatment began 7 days post-implantation (chronic inflammation). In contrast, only mast cell number, MPO activity and activation of NF-κB pathway decreased when the treatment began soon after implantation (sub-acute inflammation) in 7-day old implants. The anti-inflammatory effects of amitriptyline described here, extend its range of actions as a potential agent able to attenuate long-term inflammatory processes.
Collapse
|
36
|
Matelski L, Keil Stietz KP, Sethi S, Taylor SL, Van de Water J, Lein PJ. The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Curr Res Toxicol 2020; 1:85-103. [PMID: 34296199 PMCID: PMC8294704 DOI: 10.1016/j.crtox.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants implicated as risk factors for neurodevelopmental disorders (NDDs). Immune dysregulation is another NDD risk factor, and developmental PCB exposures are associated with early life immune dysregulation. Studies of the immunomodulatory effects of PCBs have focused on the higher-chlorinated congeners found in legacy commercial mixtures. Comparatively little is known about the immune effects of contemporary, lower-chlorinated PCBs. This is a critical data gap given recent reports that lower-chlorinated congeners comprise >70% of the total PCB burden in serum of pregnant women enrolled in the MARBLES study who are at increased risk for having a child with an NDD. To examine the influence of PCBs, sex, and genotype on cytokine levels, mice were exposed throughout gestation and lactation to a PCB mixture in the maternal diet, which was based on the 12 most abundant PCBs in sera from MARBLES subjects. Using multiplex array, cytokines were quantified in the serum and hippocampus of weanling mice expressing either a human gain-of-function mutation in ryanodine receptor 1 (T4826I mice), a human CGG premutation repeat expansion in the fragile X mental retardation gene 1 (CGG mice), or both mutations (DM mice). Congenic wildtype (WT) mice were used as controls. There were dose-dependent effects of PCB exposure on cytokine concentrations in the serum but not hippocampus. Differential effects of genotype were observed in the serum and hippocampus. Hippocampal cytokines were consistently elevated in T4826I mice and also in WT animals for some cytokines compared to CGG and DM mice, while serum cytokines were usually elevated in the mutant genotypes compared to the WT group. Males had elevated levels of 19 cytokines in the serum and 4 in the hippocampus compared to females, but there were also interactions between sex and genotype for 7 hippocampal cytokines. Only the chemokine CCL5 in the serum showed an interaction between PCB dose, genotype, and sex. Collectively, these findings indicate differential influences of PCB exposure and genotype on cytokine levels in serum and hippocampal tissue of weanling mice. These results suggest that developmental PCB exposure has chronic effects on baseline serum, but not hippocampal, cytokine levels in juvenile mice.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sandra L. Taylor
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA,MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Corresponding author at: Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer's brain. J Neurochem 2020; 154:583-597. [PMID: 32180217 PMCID: PMC7487043 DOI: 10.1111/jnc.15007] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
It is increasingly accepted that early cognitive impairment in Alzheimer's disease results in considerable part from synaptic dysfunction caused by the accumulation of a range of oligomeric assemblies of amyloid β-protein (Aβ). Most studies have used synthetic Aβ peptides to explore the mechanisms of memory deficits in rodent models, but recent work suggests that Aβ assemblies isolated from human (AD) brain tissue are far more potent and disease-relevant. Although reductionist experiments show Aβ oligomers to impair synaptic plasticity and neuronal viability, the responsible mechanisms are only partly understood. Glutamatergic receptors, GABAergic receptors, nicotinic receptors, insulin receptors, the cellular prion protein, inflammatory mediators, and diverse signaling pathways have all been suggested. Studies using AD brain-derived soluble Aβ oligomers suggest that only certain bioactive forms (principally small, diffusible oligomers) can disrupt synaptic plasticity, including by binding to plasma membranes and changing excitatory-inhibitory balance, perturbing mGluR, PrP, and other neuronal surface proteins, down-regulating glutamate transporters, causing glutamate spillover, and activating extrasynaptic GluN2B-containing NMDA receptors. We synthesize these emerging data into a mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Wang D. Tumor Necrosis Factor-Alpha Alters Electrophysiological Properties of Rabbit Hippocampal Neurons. J Alzheimers Dis 2020; 68:1257-1271. [PMID: 30909246 DOI: 10.3233/jad-190043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have shown tumor necrosis factor-alpha (TNF-α) may impact neurodegeneration in Alzheimer's disease (AD) by regulating amyloid-β and tau pathogenesis. However, it is unclear whether TNF-α has a role in a cholesterol-fed rabbit model of AD or TNF-α affects the electrophysiological properties of rabbit hippocampus. This study was designed to investigate whether long-term feeding of cholesterol diet known to induce AD pathology regulates TNF-α expression in the hippocampus and whether TNF-α would modulate electrophysiological properties of rabbit hippocampal CA1 neurons. TNF-α ELISA showed dietary cholesterol increased hippocampal TNF-α expression in a dose-dependent manner. Whole-cell recordings revealed TNF-α altered the membrane properties of rabbit hippocampal CA1 neurons, which was characterized by a decrease in after-hyperpolarization amplitudes; Field potential recordings showed TNF-α inhibited long-term potentiation but did not influence presynaptic function. Interestingly, TNF-α did not significantly affect the after-hyperpolarization amplitudes of hippocampal CA1 neurons from cholesterol fed rabbits compared to normal chow fed rabbits. In conclusion, dietary cholesterol generated an in vivo model of chronic TNF-α elevation and TNF-α may underlie the learning and memory changes previously seen in the rabbit model of AD by acting as a bridge between dietary cholesterol and brain function and directly modulating the electrophysiological properties of hippocampal CA1 neurons.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA.,Rockefeller Neuroscience Institute, Morgantown, WV, USA
| |
Collapse
|
39
|
Korgaonkar AA, Nguyen S, Li Y, Sekhar D, Subramanian D, Guevarra J, Pang KCH, Santhakumar V. Distinct cellular mediators drive the Janus faces of toll-like receptor 4 regulation of network excitability which impacts working memory performance after brain injury. Brain Behav Immun 2020; 88:381-395. [PMID: 32259563 PMCID: PMC7415537 DOI: 10.1016/j.bbi.2020.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/15/2023] Open
Abstract
The mechanisms by which the neurophysiological and inflammatory responses to brain injury contribute to memory impairments are not fully understood. Recently, we reported that the innate immune receptor, toll-like receptor 4 (TLR4) enhances AMPA receptor (AMPAR) currents and excitability in the dentate gyrus after fluid percussion brain injury (FPI) while limiting excitability in controls. Here, we examine the cellular mediators underlying TLR4 regulation of dentate excitability and its impact on memory performance. In ex vivo slices, astrocytic and microglial metabolic inhibitors selectively abolished TLR4 antagonist modulation of excitability in controls, but not in rats after FPI, demonstrating that glial signaling contributes to TLR4 regulation of excitability in controls. In glia-depleted neuronal cultures from naïve mice, TLR4 ligands bidirectionally modulated AMPAR charge transfer consistent with neuronal TLR4 regulation of excitability, as observed after brain injury. In vivo TLR4 antagonism reduced early post-injury increases in mediators of MyD88-dependent and independent TLR4 signaling without altering expression in controls. Blocking TNFα, a downstream effector of TLR4, mimicked effects of TLR4 antagonist and occluded TLR4 agonist modulation of excitability in slices from both control and FPI rats. Functionally, transiently blocking TLR4 in vivo improved impairments in working memory observed one week and one month after FPI, while the same treatment impaired memory function in uninjured controls. Together these data identify that distinct cellular signaling mechanisms converge on TNFα to mediate TLR4 modulation of network excitability in the uninjured and injured brain and demonstrate a role for TLR4 in regulation of working memory function.
Collapse
Affiliation(s)
- Akshata A. Korgaonkar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103,,Correspondence: Akshata Korgaonkar, PhD, Department of Neurology, Washington University School of Medicine, 660 South Euclid Ave, Campus box 8111, St Louis, MO 63110, Phone (Off): 314.362.2999,
| | - Susan Nguyen
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Ying Li
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Dipika Sekhar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103,,Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Deepak Subramanian
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103,,Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Jenieve Guevarra
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Kevin C H Pang
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103,,Neurobehavioral Research Lab, Department of Veteran Affairs Medical Center–New Jersey Health Care System, East Orange, New Jersey
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103,,Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| |
Collapse
|
40
|
Li Y, He Z, Lv H, Chen W, Chen J. Calpain-2 plays a pivotal role in the inhibitory effects of propofol against TNF-α-induced autophagy in mouse hippocampal neurons. J Cell Mol Med 2020; 24:9287-9299. [PMID: 32627970 PMCID: PMC7417688 DOI: 10.1111/jcmm.15577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Calpains are calcium‐dependent proteases and play critical roles in neuronal autophagy induced by inflammation. Propofol has been reported to exert anti‐inflammatory effects in neurons. We aimed to identify whether and how propofol‐modulated calpain activity and neuron autophagy in response to tumour necrosis factor‐α (TNF‐α). Mouse hippocampal neurons were pre‐treated with propofol and exposed to TNF‐α. Autophagy was evaluated by fluorescent autophagy assay and by measuring LC3I and LC3II expression. Intracellular calcium concentration was measured by fluorescent assay. Calpain activation was measured by calpain activity assay. The protein expression of intracellular signalling molecules was detected by Western blot analysis. Compared with untreated control neurons, 40 ng/mL TNF‐α treatment for 2 hours induced neuron autophagy, which was attenuated by 25 μmol/L propofol. TNF‐α induced intracellular calcium accumulation, the phosphorylation of calcium/calmodulin‐dependent protein kinase II (CAMK II) and calpain‐2, calpain activation and lysosomal cathepsin B release as well as tyrosine kinase receptor B (TrkB) truncation. These effects were alleviated by propofol, calcium chelator, CAMK II inhibitor, calpain‐2 inhibitor, calpain‐2 siRNA transfection and N‐Methyl‐d‐aspartic acid (NMDA) receptor antagonist. Propofol, via NMDA receptor, inhibited TNF‐α‐mediated hippocampal neuron autophagy. The mechanism may involve calcium and calcium‐dependent signalling pathway, especially CAMK II and calpain‐2.
Collapse
Affiliation(s)
- Ying Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyong He
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hu Lv
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiawei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Ralph SJ, Weissenberger A, Bonev V, King LD, Bonham MD, Ferguson S, Smith AD, Goodman-Jones AA, Espinet AJ. Phase I/II parallel double-blind randomized controlled clinical trial of perispinal etanercept for chronic stroke: improved mobility and pain alleviation. Expert Opin Investig Drugs 2020; 29:311-326. [PMID: 31899977 DOI: 10.1080/13543784.2020.1709822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Previous open-label studies showed that chronic post-stroke pain could be abated by treatment with perispinal etanercept, although these benefits were questioned. A randomized double-blind placebo controlled clinical trial was conducted to test perispinal etanercept for chronic post-stroke pain.Research design and methods: Participants received two treatments, either perispinal etanercept (active) or saline (control). Primary outcomes were the differences in daily pain levels between groups analyzed by SPSS.Results: On the 0-100 points visual analog scale, perispinal etanercept reduced mean levels for worst and average daily pain from baseline after two treatments by 19.5 - 24 points (p < 0.05), and pain alleviation was maintained in the etanercept group, with no significant change in the control group. Thirty percent of etanercept participants had near complete pain abatement after first treatment. Goniometry of the paretic arm showed improved mean shoulder rotation by 55 degrees in active forward flexion for the etanercept group (p = 0.003) only.Conclusions: Perispinal etanercept can provide significant and ongoing benefits for the chronic post-stroke management of pain and greater shoulder flexion by the paretic arm. Effects are rapid and highly significant, supporting direct action on brain function.Trial registration: ACTRN12615001377527 and Universal Trial Number U1111-1174-3242.
Collapse
Affiliation(s)
- Stephen J Ralph
- School of Medical Science, Griffith University, Southport, Australia
| | | | | | - Liam D King
- School of Pharmacy, Griffith University, Southport, Australia
| | - Mikaela D Bonham
- School of Applied Psychology, Griffith University, Southport, Australia
| | - Samantha Ferguson
- School of Allied Health Sciences, Menzies Health Institute, Griffith University, Southport, Australia
| | - Ashley D Smith
- School of Allied Health Sciences, Menzies Health Institute, Griffith University, Southport, Australia.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
42
|
The differential impact of acute microglia activation on the excitability of cholinergic neurons in the mouse medial septum. Brain Struct Funct 2019; 224:2297-2309. [DOI: 10.1007/s00429-019-01905-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
|
43
|
Clark IA, Vissel B. Neurodegenerative disease treatments by direct TNF reduction, SB623 cells, maraviroc and irisin and MCC950, from an inflammatory perspective – a Commentary. Expert Rev Neurother 2019; 19:535-543. [DOI: 10.1080/14737175.2019.1618710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- I A Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|