1
|
Han J, Dong S, Guan J, Liu X, Gu X, Miao H, Zhang S. Genome-wide identification of Brassinosteroid insensitive 1-associated receptor kinase 1 genes and expression analysis in response to pathogen infection in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2024; 24:737. [PMID: 39095762 PMCID: PMC11295520 DOI: 10.1186/s12870-024-05453-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND BAK1 (Brassinosteroid insensitive 1-associated receptor kinase 1) plays an important role in disease resistance in plants. However, the function of BAK1 family in cucumber and the decisive genes for disease-resistance remain elusive. RESULTS Here, we identified 27 CsBAK1s in cucumber, and classified them into five subgroups based on phylogenetic analysis and gene structure. CsBAK1s in the same subgroup shared the similar motifs, but different gene structures. Cis-elements analysis revealed that CsBAK1s might respond to various stress and growth regulation. Three segmentally duplicated pairwise genes were identified in cucumber. In addition, Ka/Ks analysis indicated that CsBAK1s were under positive selection during evolution. Tissue expression profile showed that most CsBAK1s in Subgroup II and IV showed constitutive expression, members in other subgroups showed tissue-specific expression. To further explore whether CsBAK1s were involved in the resistance to pathogens, the expression patterns of CsBAK1s to five pathogens (gummy stem blight, powdery mildew, downy mildew, grey mildew, and fusarium wilt) reveled that different CsBAK1s had specific roles in different pathogen infections. The expression of CsBAK1-14 was induced/repressed significantly by five pathogens, CsBAK1-14 might play an important role in disease resistance in cucumber. CONCLUSIONS 27 BAK1 genes were identified in cucumber from a full perspective, which have important functions in pathogen infection. Our study provided a theoretical basis to further clarify the function of BAK1s to disease resistance in cucumber.
Collapse
Affiliation(s)
- Jianan Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Amas JC, Bayer PE, Hong Tan W, Tirnaz S, Thomas WJW, Edwards D, Batley J. Comparative pangenome analyses provide insights into the evolution of Brassica rapa resistance gene analogues (RGAs). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2100-2112. [PMID: 37431308 PMCID: PMC10502758 DOI: 10.1111/pbi.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Brassica rapa is grown worldwide as economically important vegetable and oilseed crop. However, its production is challenged by yield-limiting pathogens. The sustainable control of these pathogens mainly relies on the deployment of genetic resistance primarily driven by resistance gene analogues (RGAs). While several studies have identified RGAs in B. rapa, these were mainly based on a single genome reference and do not represent the full range of RGA diversity in B. rapa. In this study, we utilized the B. rapa pangenome, constructed from 71 lines encompassing 12 morphotypes, to describe a comprehensive repertoire of RGAs in B. rapa. We show that 309 RGAs were affected by presence-absence variation (PAV) and 223 RGAs were missing from the reference genome. The transmembrane leucine-rich repeat (TM-LRR) RGA class had more core gene types than variable genes, while the opposite was observed for nucleotide-binding site leucine-rich repeats (NLRs). Comparative analysis with the B. napus pangenome revealed significant RGA conservation (93%) between the two species. We identified 138 candidate RGAs located within known B. rapa disease resistance QTL, of which the majority were under negative selection. Using blackleg gene homologues, we demonstrated how these genes in B. napus were derived from B. rapa. This further clarifies the genetic relationship of these loci, which may be useful in narrowing-down candidate blackleg resistance genes. This study provides a novel genomic resource towards the identification of candidate genes for breeding disease resistance in B. rapa and its relatives.
Collapse
Affiliation(s)
- Junrey C. Amas
- School of Biological Sciences and the Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Philipp E. Bayer
- School of Biological Sciences and the Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Wei Hong Tan
- School of Biological Sciences and the Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Soodeh Tirnaz
- School of Biological Sciences and the Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - William J. W. Thomas
- School of Biological Sciences and the Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - David Edwards
- School of Biological Sciences and the Centre for Applied BioinformaticsThe University of Western AustraliaCrawleyWAAustralia
| | - Jacqueline Batley
- School of Biological Sciences and the Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
3
|
Tong C, Zhang Y, Shi F. Genome-wide identification and analysis of the NLR gene family in Medicago ruthenica. Front Genet 2023; 13:1088763. [PMID: 36704335 PMCID: PMC9871256 DOI: 10.3389/fgene.2022.1088763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Medicago ruthenica, important forage in the legume family, possesses high nutritional value and carries abundant tolerance genes. This study used whole-genome data of M. ruthenica to perform a genome-wide analysis of the nucleotide-binding site-leucine-rich repeat receptor (NLR) gene family, which is the largest family of plant disease resistance genes (R genes). A total of 338 NLR genes were identified in the M. ruthenica genome, including 160 typical genes that contained 80 coiled-coil (CC)-NBS-LRR (CNL) genes, 76 toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) genes, four resistance to powdery mildew 8 (RPW8)-NBS-LRR (RNL) subclass genes, and 178 atypical NLR genes encoding proteins without at least one important domain. Among its eight chromosomes, M. ruthenica chromosomes 3 and 8 contained most of the NLR genes. More than 40% of all NLR genes were located on these two chromosomes, mainly in multigene clusters. The NLR proteins of M. ruthenica had six highly conserved motifs: P-loop, GLPL, RNBS-D, kinase-2, RNBS-C, and MHDV. Phylogenetic analysis revealed that the NLR genes of M. ruthenica formed three deeply separated clades according to the N-terminal domain of the proteins encoded by these genes. Gene duplication and syntenic analysis suggested four gene duplication types in the NLR genes of M. ruthenica, namely, tandem, proximal, dispersed, and segmental duplicates, which involved 189, 49, 59, and 41 genes, respectively. A total of 41 segmental duplication genes formed 23 NLR gene pairs located on syntenic chromosomal blocks mainly between chromosomes 6 and 7. In addition, syntenic analysis between M. truncatula and M. ruthenica revealed 193 gene pairs located on syntenic chromosomal blocks of the two species. The expression analysis of M. ruthenica NLR genes showed that 303 (89.6%) of the NLR genes were expressed in different varieties. Overall, this study described the full NLR profile of the M. ruthenica genome to provide an important resource for mining disease-resistant genes and disease-resistant breeding.
Collapse
Affiliation(s)
- Chunyan Tong
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China
| | - Yutong Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China
| | - Fengling Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China,*Correspondence: Fengling Shi,
| |
Collapse
|
4
|
Zhang X, Wang F, Yang N, Chen N, Hu Y, Peng X, Shen S. Bioinformatics analysis and function prediction of NBS-LRR gene family in Broussonetia papyrifera. Biotechnol Lett 2023; 45:13-31. [PMID: 36357714 DOI: 10.1007/s10529-022-03318-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/15/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022]
Abstract
Most of the currently available disease resistance (R) genes have NBS (nucleotide-binding site) and LRR (leucine-rich-repeat) domain which belongs to the NBS-LRR gene family. The whole genome sequencing of Broussonetia papyrifera provides an important bioinformatics database for the study of the NBS-LRR gene family. In this study, 328 NBS-LRR family genes were identified and classified in B. papyrifera according to different classification schemes, where there are 92 N types, 47 CN type, 54 CNL type, 29 NL types, 55 TN type, and 51 TNL type. Subsequently, we conducted bioinformatics analysis of the NBS-LRR gene family. Classification, motif analysis of protein sequences, and phylogenetic tree studies of the NBS-LRR genes in B. papyrifera provide important basis for the functional study of NBS-LRR family genes. Additionally, we performed structural analysis of the chromosomal location, physicochemical properties, and sequences identified by genetic characterization. In addition, through the analysis of GO enrichment, it was found that NBS-LRR genes were involved in defense responses and were significantly enriched in biological stimulation, immune response, and abiotic stress. In addition, we found that Bp06g0955 was the most sensitive to low temperature and encoded the RPM1 protein by analyzing the low temperature transcriptome data of B. papyrifera. Quantitative results of gene expression after 48 h of Fusarium infection showed that Bp01g3293 increased 14 times after infection, which encodes RPM1 protein. The potential of NBS-LRR gene responsive to biotic and abiotic stresses can be exploited to improve the resistance of B. papyrifera.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengfeng Wang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Nianhui Yang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Yanmin Hu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
5
|
Chen K, Shi Z, Zhang S, Wang Y, Xia X, Jiang Y, Gull S, Chen L, Guo H, Wu T, Zhang H, Liu J, Kong W. Methylation and Expression of Rice NLR Genes after Low Temperature Stress. Gene 2022; 845:146830. [PMID: 35995119 DOI: 10.1016/j.gene.2022.146830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) are included in most plant disease resistance proteins. Some NLR proteins have been revealed to be induced by the invasion of plant pathogens. DNA methylation is required for adaption to adversity and proper regulation of gene expression in plants. Low temperature stress (LTS) is a restriction factor in rice growth, development and production. Here, we report the methylation and expression of NLR genes in two rice cultivars, i.e., 9311 (an indica rice cultivar sensitive to LTS), and P427 (a japonica cultivar, tolerant to LTS), after LTS. We found that the rice NLR genes were heavily methylated within CG sites at room temperature and low temperature in 9311 and P427, and many rice NLR genes showed DNA methylation alteration after LTS. A great number of rice NLR genes were observed to be responsive to LTS at the transcriptional level. Our observation suggests that the alteration of expression of rice NLR genes was similar but their change in DNA methylation was dynamic between the two rice cultivars after LTS. We identified that more P427 NLR genes reacted to LTS than those of 9311 at the methylation and transcriptional level. The results in this study will be useful for further understanding the transcriptional regulation and potential functions of rice NLR genes.
Collapse
Affiliation(s)
- Kun Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zuqi Shi
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shengwei Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yanxin Wang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xue Xia
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yan Jiang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Sadia Gull
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Lin Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hui Guo
- Rice Research Institute, Guizhou Provincial Academy of Agriculture Sciences, Guiyang, 550006, China
| | - Tingkai Wu
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hongyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Jinglan Liu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Weiwen Kong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
6
|
Functional characterization of powdery mildew resistance gene MlIW172, a new Pm60 allele and its allelic variation in wild emmer wheat. J Genet Genomics 2022; 49:787-795. [DOI: 10.1016/j.jgg.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|
7
|
Chen W, Chi Y, Zhang J, Bai B, Ji X, Shen Y. MtWRP1, a Novel Fabacean Specific Gene, Regulates Root Nodulation and Plant Growth in Medicago truncatula. Genes (Basel) 2022; 13:genes13020193. [PMID: 35205237 PMCID: PMC8871812 DOI: 10.3390/genes13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Fabaceans symbiotically interact with nitrogen-fixing rhizobacteria to form root nodules. Some fabacean specific proteins play important roles in the symbiosis. WRKY-related Protein (WRP) is a novel fabacean specific protein, whose functions have not been well characterized. In this study, MtWRP1 was functionally characterized in Medicago truncatula. It contains a WRKY domain at C-terminal and a novel transmembrane (TM) domain at N-terminal, and its WRKY domain was highly similar to the N-terminal WRKY domain of the group I WRKY proteins. The TM domain was highly homologous to the eukaryotic cytochrome b561 (Cytb561) proteins from birds. Subcellular localization revealed that MtWRP1 was targeted to the Golgi apparatus through the novel TM domain. MtWRP1 was highly expressed in roots and nodules, suggesting its possible roles in the regulation of root growth and nodulation. Both MtWRP1-overexpression transgenic M. truncatula and MtWRP1 mutants showed altered root nodulation and plant growth performance. Specifically, the formation of root nodules was significantly reduced in the absence of MtWRP1. These results demonstrated that MtWRP1 plays critical roles in root nodulation and plant growth.
Collapse
|
8
|
Zhong Y, Chen Z, Cheng ZM. Different scales of gene duplications occurring at different times have jointly shaped the NBS-LRR genes in Prunus species. Mol Genet Genomics 2022; 297:263-276. [PMID: 35031863 PMCID: PMC8803762 DOI: 10.1007/s00438-021-01849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
In this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P. avium, P. dulcis, P. persica and P. yedoensis var. nudiflora, respectively. Two NBS-LRR gene subclasses, TIR-NBS-LRR (TNL) and non-TIR-NBS-LRR (non-TNL), were also discovered. In total, 435 TNL and 1511 non-TNL genes were identified and could be classified into 30/55/75 and 103/158/191 multi-gene families, respectively, according to three different criteria. Higher Ks and Ka/Ks values were detected in TNL gene families than in non-TNL gene families. These results indicated that the TNL genes had more members involved in relatively ancient duplications and were affected by stronger selection pressure than the non-TNL genes. In general, the NBS-LRR genes were shaped by species-specific duplications, and lineage-specific duplications occurred at recent and relatively ancient periods among the six Prunus species. Therefore, different duplicated copies of NBS-LRRs can resist specific pathogens and will provide an R-gene library for resistance breeding in Prunus species.
Collapse
Affiliation(s)
- Yan Zhong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhao Chen
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zong-Ming Cheng
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Genome-Wide Association Study of QTLs Conferring Resistance to Bacterial Leaf Streak in Rice. PLANTS 2021; 10:plants10102039. [PMID: 34685848 PMCID: PMC8541590 DOI: 10.3390/plants10102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Bacterial leaf streak (BLS) is a devastating rice disease caused by the bacterial pathogen, Xanthomonas oryzae pv. oryzicola (Xoc), which can result in severe damage to rice production worldwide. Based on a total of 510 rice accessions, trialed in two seasons and using six different multi-locus GWAS methods (mrMLM, ISIS EM-BLASSO, pLARmEB, FASTmrMLM, FASTmrEMMA and pKWmEB), 79 quantitative trait nucleotides (QTNs) reflecting 69 QTLs for BLS resistance were identified (LOD > 3). The QTNs were distributed on all chromosomes, with the most distributed on chromosome 11, followed by chromosomes 1 and 5. Each QTN had an additive effect of 0.20 (cm) and explained, on average, 2.44% of the phenotypic variance, varying from 0.00–0.92 (cm) and from 0.00–9.86%, respectively. Twenty-five QTNs were detected by at least two methods. Among them, qnBLS11.17 was detected by as many as five methods. Most of the QTNs showed a significant interaction with their environment, but no QTNs were detected in both seasons. By defining the QTL range for each QTN according to the LD half-decay distance, a total of 848 candidate genes were found for nine top QTNs. Among them, more than 10% were annotated to be related to biotic stress resistance, and five showed a significant response to Xoc infection. Our results could facilitate the in-depth study and marker-assisted improvement of rice resistance to BLS.
Collapse
|
10
|
Inheritance of Black Rot Resistance and Development of Molecular Marker Linked to Xcc Races 6 and 7 Resistance in Cabbage. PLANTS 2021; 10:plants10091940. [PMID: 34579471 PMCID: PMC8472523 DOI: 10.3390/plants10091940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022]
Abstract
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), produces V-shaped chlorotic lesions on the leaves of cabbage (Brassica oleracea var. capitata L.), causing darkened veins and drastically reducing yield and quality. Of the 11 Xcc races identified, races 1, 4, and 6 are predominant globally. In the present study, we aimed to develop a molecular marker linked to black rot resistance against Xcc races 6 and 7. Crossed between black rot-resistant ('SCNU-C-3470') and -susceptible ('SCNU-C-3328') lines obtained 186 F2 plants. Resistance to Xcc race 6 segregated in a 3:1 (susceptible:resistant) ratio in the F2 population, which is consistent with a monogenic recessive trait. Nucleotide-binding site (NBS) leucine rich repeat (LRR)-encoding resistance (R) genes play a crucial role in plant defenses to various pathogens. The candidate R gene (Bol031422) located on chromosome C08, previously reported by our research group, was cloned and sequenced in resistant and susceptible cabbage lines. The R gene Bol031422 consisted of a single exon with a 3 bp insertion/deletions (InDels), a 292 bp polymorphism (an insertion in the exon of the resistant line relative to the susceptible line) and several single nucleotide polymorphisms (SNPs). Here, we developed the InDel marker BR6-InDel to assess linkage between variation at Bol031422 and resistance to Xcc races 6 and 7. This marker will help cabbage breeders develop cabbage cultivars resistant to Xcc races 6 and 7.
Collapse
|
11
|
Nagy ED, Stevens JL, Yu N, Hubmeier CS, LaFaver N, Gillespie M, Gardunia B, Cheng Q, Johnson S, Vaughn AL, Vega-Sanchez ME, Deng M, Rymarquis L, Lawrence RJ, Garvey GS, Gaeta RT. Novel disease resistance gene paralogs created by CRISPR/Cas9 in soy. PLANT CELL REPORTS 2021; 40:1047-1058. [PMID: 33704523 PMCID: PMC8184530 DOI: 10.1007/s00299-021-02678-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/24/2021] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE Novel disease resistance gene paralogues are generated by targeted chromosome cleavage of tandem duplicated NBS-LRR gene complexes and subsequent DNA repair in soybean. This study demonstrates accelerated diversification of innate immunity of plants using CRISPR. Nucleotide-binding-site-leucine-rich-repeat (NBS-LRR) gene families are key components of effector-triggered immunity. They are often arranged in tandem duplicated arrays in the genome, a configuration that is conducive to recombinations that will lead to new, chimeric genes. These rearrangements have been recognized as major sources of novel disease resistance phenotypes. Targeted chromosome cleavage by CRISPR/Cas9 can conceivably induce rearrangements and thus emergence of new resistance gene paralogues. Two NBS-LRR families of soy have been selected to demonstrate this concept: a four-copy family in the Rpp1 region (Rpp1L) and a large, complex locus, Rps1 with 22 copies. Copy-number variations suggesting large-scale, CRISPR/Cas9-mediated chromosome rearrangements in the Rpp1L and Rps1 complexes were detected in up to 58.8% of progenies of primary transformants using droplet-digital PCR. Sequencing confirmed development of novel, chimeric paralogs with intact open reading frames. These novel paralogs may confer new disease resistance specificities. This method to diversify innate immunity of plants by genome editing is readily applicable to other disease resistance genes or other repetitive loci.
Collapse
Affiliation(s)
- Ervin D Nagy
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA.
| | - Julia L Stevens
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Neil Yu
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Chris S Hubmeier
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Nona LaFaver
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Megan Gillespie
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Brian Gardunia
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Qianshun Cheng
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Steven Johnson
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Audrey L Vaughn
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | | | - Mingqui Deng
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Linda Rymarquis
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Richard J Lawrence
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Graeme S Garvey
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Robert T Gaeta
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| |
Collapse
|
12
|
Du D, Zhang C, Xing Y, Lu X, Cai L, Yun H, Zhang Q, Zhang Y, Chen X, Liu M, Sang X, Ling Y, Yang Z, Li Y, Lefebvre B, He G. The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1052-1064. [PMID: 33368943 PMCID: PMC8131040 DOI: 10.1111/pbi.13530] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/07/2020] [Indexed: 05/20/2023]
Abstract
Nucleotide-binding site-leucine-rich repeat (NB-LRR) resistance proteins are critical for plant resistance to pathogens; however, their mechanism of activation and signal transduction is still not well understood. We identified a mutation in an as yet uncharacterized rice coiled-coil (CC)-NB-LRR, Oryza sativa RPM1-like resistance gene 1 (OsRLR1), which leads to hypersensitive response (HR)-like lesions on the leaf blade and broad-range resistance to the fungal pathogen Pyricularia oryzae (syn. Magnaporthe oryzae) and the bacterial pathogen Xanthomonas oryzae pv. oryzae, together with strong growth reduction. Consistently, OsRLR1-overexpression lines showed enhanced resistance to both pathogens. Moreover, we found that OsRLR1 mediates the defence response through direct interaction in the nucleus with the transcription factor OsWRKY19. Down-regulation of OsWRKY19 in the rlr1 mutant compromised the HR-like phenotype and resistance response, and largely restored plant growth. OsWRKY19 binds to the promoter of OsPR10 to activate the defence response. Taken together, our data highlight the role of a new residue involved in the NB-LRR activation mechanism, allowing identification of a new NB-LRR downstream signalling pathway.
Collapse
Affiliation(s)
- Dan Du
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Changwei Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Yadi Xing
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
- Agricultural CollegeZhengzhou UniversityZhengzhouChina
| | - Xin Lu
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Linjun Cai
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Han Yun
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Qiuli Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Yingying Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Xinlong Chen
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Mingming Liu
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Xianchun Sang
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Yinghua Ling
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Zhenglin Yang
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Yunfeng Li
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Benoit Lefebvre
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
- LIPM, INRAE, CNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| |
Collapse
|
13
|
Hasan J, Megha S, Rahman H. Clubroot in Brassica: recent advances in genomics, breeding, and disease management. Genome 2021; 64:735-760. [PMID: 33651640 DOI: 10.1139/gen-2020-0089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae, affects Brassica oilseed and vegetable production worldwide. This review is focused on various aspects of clubroot disease and its management, including understanding the pathogen and resistance in the host plants. Advances in genetics, molecular biology techniques, and omics research have helped to identify several major loci, QTL, and genes from the Brassica genomes involved in the control of clubroot resistance. Transcriptomic studies have helped to extend our understanding of the mechanism of infection by the pathogen and the molecular basis of resistance/susceptibility in the host plants. A comprehensive understanding of the clubroot disease and host resistance would allow developing a better strategy by integrating the genetic resistance with cultural practices to manage this disease from a long-term perspective.
Collapse
Affiliation(s)
- Jakir Hasan
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Swati Megha
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
14
|
Qin X, Zhang Z, Lou Q, Xia L, Li J, Li M, Zhou J, Zhao X, Xu Y, Li Q, Yang S, Yu X, Cheng C, Huang S, Chen J. Chromosome-scale genome assembly of Cucumis hystrix-a wild species interspecifically cross-compatible with cultivated cucumber. HORTICULTURE RESEARCH 2021; 8:40. [PMID: 33642577 PMCID: PMC7917098 DOI: 10.1038/s41438-021-00475-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 05/06/2023]
Abstract
Cucumis hystrix Chakr. (2n = 2x = 24) is a wild species that can hybridize with cultivated cucumber (C. sativus L., 2n = 2x = 14), a globally important vegetable crop. However, cucumber breeding is hindered by its narrow genetic base. Therefore, introgression from C. hystrix has been anticipated to bring a breakthrough in cucumber improvement. Here, we report the chromosome-scale assembly of C. hystrix genome (289 Mb). Scaffold N50 reached 14.1 Mb. Over 90% of the sequences were anchored onto 12 chromosomes. A total of 23,864 genes were annotated using a hybrid method. Further, we conducted a comprehensive comparative genomic analysis of cucumber, C. hystrix, and melon (C. melo L., 2n = 2x = 24). Whole-genome comparisons revealed that C. hystrix is phylogenetically closer to cucumber than to melon, providing a molecular basis for the success of its hybridization with cucumber. Moreover, expanded gene families of C. hystrix were significantly enriched in "defense response," and C. hystrix harbored 104 nucleotide-binding site-encoding disease resistance gene analogs. Furthermore, 121 genes were positively selected, and 12 (9.9%) of these were involved in responses to biotic stimuli, which might explain the high disease resistance of C. hystrix. The alignment of whole C. hystrix genome with cucumber genome and self-alignment revealed 45,417 chromosome-specific sequences evenly distributed on C. hystrix chromosomes. Finally, we developed four cucumber-C. hystrix alien addition lines and identified the exact introgressed chromosome using molecular and cytological methods. The assembled C. hystrix genome can serve as a valuable resource for studies on Cucumis evolution and interspecific introgression breeding of cucumber.
Collapse
Affiliation(s)
- Xiaodong Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhonghua Zhang
- College of Horticulture, Qingdao Agricultural University, 266109, Qingdao, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lei Xia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Mengxue Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Junguo Zhou
- College of Horticulture and Landscape, Henan Institute of Science and Technology, 453003, Xinxiang, China
| | - Xiaokun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yuanchao Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Qing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Shuqiong Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sanwen Huang
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
15
|
Cui Y, Ge Q, Zhao P, Chen W, Sang X, Zhao Y, Chen Q, Wang H. Rapid Mining of Candidate Genes for Verticillium Wilt Resistance in Cotton Based on BSA-Seq Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:703011. [PMID: 34691091 PMCID: PMC8531640 DOI: 10.3389/fpls.2021.703011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 05/05/2023]
Abstract
Cotton is a globally important cash crop. Verticillium wilt (VW) is commonly known as "cancer" of cotton and causes serious loss of yield and fiber quality in cotton production around the world. Here, we performed a BSA-seq analysis using an F2:3 segregation population to identify the candidate loci involved in VW resistance. Two QTLs (qvw-D05-1 and qvw-D05-2) related to VW resistance in cotton were identified using two resistant/susceptible bulks from the F2 segregation population constructed by crossing the resistant cultivar ZZM2 with the susceptible cultivar J11. A total of 30stop-lost SNPs and 42 stop-gained SNPs, which included 17 genes, were screened in the qvw-D05-2 region by SnpEff analysis. Further analysis of the transcriptome data and qRT-PCR revealed that the expression level of Ghir_D05G037630 (designated as GhDRP) varied significantly at certain time points after infection with V. dahliae. The virus-induced gene silencing of GhDRP resulted in higher susceptibility of the plants to V. dahliae than the control, suggesting that GhDRP is involved in the resistance to V. dahlia infection. This study provides a method for rapid mining of quantitative trait loci and screening of candidate genes, as well as enriches the genomic information and gene resources for the molecular breeding of disease resistance in cotton.
Collapse
Affiliation(s)
- Yanli Cui
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaohui Sang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Yunlei Zhao,
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- Quanjia Chen,
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hongmei Wang,
| |
Collapse
|
16
|
Islam MR, Hossain MR, Jesse DMI, Jung HJ, Kim HT, Park JI, Nou IS. Characterization, identification and expression profiling of genome-wide R-genes in melon and their putative roles in bacterial fruit blotch resistance. BMC Genet 2020; 21:80. [PMID: 32698865 PMCID: PMC7376666 DOI: 10.1186/s12863-020-00885-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/12/2020] [Indexed: 11/30/2022] Open
Abstract
Background Bacterial fruit blotch (BFB), a disease caused by Acidovorax citrulli, results in significant economic losses in melon. The causal QTLs and genes for resistance to this disease have yet to be identified. Resistance (R)-genes play vital roles in resistance to plant diseases. Since the complete genome sequence of melon is available and genome-wide identification of R-genes has been performed for this important crop, comprehensive expression profiling may lead to the identification of putative candidate genes that function in the response to BFB. Results We identified melon accessions that are resistant and susceptible to BFB through repeated bioassays and characterized all 70 R-genes in melon, including their gene structures, chromosomal locations, domain organizations, motif distributions, and syntenic relationships. Several disease resistance-related domains were identified, including NBS, TIR, LRR, CC, RLK, and DUF domains, and the genes were categorized based on the domains of their encoded proteins. In addition, we profiled the expression patterns of the genes in melon accessions with contrasting levels of BFB resistance at 12 h, 1 d, 3 d, and 6 d after inoculation with A. citrulli. Six R-genes exhibited consistent expression patterns (MELO3C023441, MELO3C016529, MELO3C022157, MELO3C022146, MELO3C025518, and MELO3C004303), with higher expression levels in the resistant vs. susceptible accession. Conclusion We identified six putative candidate R-genes against BFB in melon. Upon functional validation, these genes could be targeted for manipulation via breeding and biotechnological approaches to improve BFB resistance in melon in the future.
Collapse
Affiliation(s)
- Md Rafiqul Islam
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea.,Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Mohammad Rashed Hossain
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea.,Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
17
|
Development of Molecular Marker Linked with Bacterial Fruit Blotch Resistance in Melon ( Cucumis melo L.). Genes (Basel) 2020; 11:genes11020220. [PMID: 32093120 PMCID: PMC7074460 DOI: 10.3390/genes11020220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial fruit blotch (BFB) causes losses in melon marketable yield. However, until now, there has been no information about the genetic loci responsible for resistance to the disease or their pattern of inheritance. We determined the inheritance pattern of BFB resistance from a segregating population of 491 F2 individuals raised by crossing BFB-resistant (PI 353814) and susceptible (PI 614596) parental accessions. All F1 plants were resistant to Acidovorax citrulli strain KACC18782, and F2 plants segregated with a 3:1 ratio for resistant and susceptible phenotypes, respectively, in a seedling bioassay experiment, indicating that BFB resistance is controlled by a monogenic dominant gene. In an investigation of 57 putative disease-resistance related genes across the melon genome, only the MELO3C022157 gene (encoding TIR-NBS-LRR domain), showing polymorphism between resistant and susceptible parents, revealed as a good candidate for further investigation. Cloning, sequencing and quantitative RT-PCR expression of the polymorphic gene MELO3C022157 located on chromosome 9 revealed multiple insertion/deletions (InDels) and single nucleotide polymorphisms (SNPs), of which the SNP A2035T in the second exon of the gene caused loss of the LRR domain and truncated protein in the susceptible accession. The InDel marker MB157-2, based on the large (504 bp) insertion in the first intron of the susceptible accession, was able to distinguish resistant and susceptible accessions among 491 F2 and 22 landraces/inbred accessions with 98.17% and 100% detection accuracy, respectively. This novel PCR-based, co-dominant InDel marker represents a practical tool for marker-assisted breeding aimed at developing BFB-resistant melon accessions.
Collapse
|
18
|
Goyal N, Bhatia G, Sharma S, Garewal N, Upadhyay A, Upadhyay SK, Singh K. Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics 2020; 112:312-322. [PMID: 30802599 DOI: 10.1016/j.ygeno.2019.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 02/14/2019] [Indexed: 11/23/2022]
Abstract
NBS-LRR comprises a large class of disease resistance (R) proteins that play a widespread role in plant protection against pathogens. In grapevine, powdery mildew cause significant losses in its productivity and efforts are being directed towards finding of resistance loci or genes imparting resistance/tolerance against such fungal diseases. In the present study, we performed genome-wide analysis of NBS-LRR genes during PM infection in grapevine. We identified 18, 23, 12, 16, 10, 10, 9, 20 and 14 differentially expressed NBS-LRR genes in response to PM infection in seven partially PM-resistant (DVIT3351.27, Husseine, Karadzhandal, Khalchili, Late vavilov, O34-16, Sochal) and 2 PM-susceptible (Carignan and Thompson seedless) V. vinifera accessions. Further, the identified sequences were characterized based on chromosomal locations, physicochemical properties, gene structure and motif analysis, and functional annotation by Gene Ontology (GO) mapping. The NBS-LRR genes responsive to powdery mildew could potentially be exploited to improve resistance in grapes.
Collapse
Affiliation(s)
- Neetu Goyal
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Garima Bhatia
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), D. No. 1-121/1, 4th and 5th Floors, Axis Clinicals Building, Opp. to Talkie Town, Miyapur, Hyderabad, Telangana 500 049, India
| | - Naina Garewal
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Anuradha Upadhyay
- National Research Centre for Grapes, P.B. No. 3, Manjri Farm P.O., Solapur Road, Pune, Maharashtra 412 307, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
19
|
Zhang Y, Guo M, Shen J, Song X, Dong S, Wen Y, Yuan X, Guo P. Comparative Genomics Analysis in Grass Species Reveals Two Distinct Evolutionary Strategies Adopted by R Genes. Sci Rep 2019; 9:10735. [PMID: 31341223 PMCID: PMC6656885 DOI: 10.1038/s41598-019-47121-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/05/2019] [Indexed: 12/04/2022] Open
Abstract
Resistance genes play an important role in the defense of plants against the invasion of pathogens. In Setaria italica and closely related grass species, R genes have been identified through genetic mapping and genome-wide homologous/domain searching. However, there has been to date no systematic analysis of the evolutionary features of R genes across all sequenced grass genomes. Here, we determined and comprehensively compared R genes in all 12 assembled grass genomes and an outgroup species (Arabidopsis thaliana) through synteny and selection analyses of multiple genomes. We found that the two groups of nucleotide binding site (NBS) domains containing R genes—R tandem duplications (TD) and R singletons—adopted different strategies and showed different features in their evolution. Based on Ka/Ks analysis between syntenic R loci pairs of TDs or singletons, we conclude that R singletons are under stronger purifying selection to be conserved among different grass species than R TDs, while R genes located at TD arrays have evolved much faster through diversifying selection. Furthermore, using the variome datasets of S. italica populations, we scanned for selection signals on genes and observed that a part of R singleton genes have been under purifying selection in populations of S. italica, which is consistent with the pattern observed in syntenic R singletons among different grass species. Additionally, we checked the synteny relationships of reported R genes in grass species and found that the functionally mapped R genes for novel resistance traits are prone to appear in TDs and are heavily divergent from their syntenic orthologs in other grass species, such the black streak R gene Rxo1 in Z. mays and the blast R gene Pi37 in O. sativa. These findings indicate that the R genes from TDs adopted tandem duplications to evolve faster and accumulate more mutations to facilitate functional innovation to cope with variable threats from a fluctuating environment, while R singletons provide a way for R genes to maintain sequence stability and retain conservation of function.
Collapse
Affiliation(s)
- Yinan Zhang
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Meijun Guo
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Jie Shen
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Xie Song
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Yinyuan Wen
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Pingyi Guo
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
20
|
Oladzad A, Zitnick-Anderson K, Jain S, Simons K, Osorno JM, McClean PE, Pasche JS. Genotypes and Genomic Regions Associated With Rhizoctonia solani Resistance in Common Bean. FRONTIERS IN PLANT SCIENCE 2019; 10:956. [PMID: 31396253 PMCID: PMC6667560 DOI: 10.3389/fpls.2019.00956] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 05/11/2023]
Abstract
Rhizoctonia solani Kühn (teleomorph Thanatephorus cucumeris) is an important root rot pathogen of common bean (Phaseolus vulgaris L.). To uncover genetic factors associated with resistance to the pathogen, the Andean (ADP; n = 273) and Middle American (MDP; n = 279) diversity panels, which represent much of the genetic diversity known in cultivated common bean, were screened in the greenhouse using R. solani anastomosis group 2-2. Repeatability of the assay was confirmed by the response of five control genotypes. The phenotypic data for both panels were normally distributed. The resistance responses of ∼10% of the ADP (n = 28) and ∼6% of the MDP (n = 18) genotypes were similar or higher than that of the resistant control line VAX 3. A genome-wide association study (GWAS) was performed using ∼200k single nucleotide polymorphisms to discover genomic regions associated with resistance in each panel, For GWAS, the raw phenotypic score, and polynomial and binary transformation of the scores, were individually used as the input data. A major QTL peak was observed on Pv02 in the ADP, while a major QTL was observed on Pv01 with the MDP. These regions were associated with clusters of TIR-NB_ARC-LRR (TNL) gene models encoding proteins similar to known disease resistance genes. Other QTL, unique to each panel, were mapped within or adjacent to a gene model or cluster of related genes associated with disease resistance. This is a first case study that provides evidence for major as well as minor genes involved in resistance to R. solani in common bean. This information will be useful to integrate more durable root rot resistance in common bean breeding programs and to study the genetic mechanisms associated with root diseases in this important societal legume.
Collapse
Affiliation(s)
- Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | | | - Shalu Jain
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Kristin Simons
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Juan M. Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Julie S. Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
21
|
Hassan MZ, Rahim MA, Jung HJ, Park JI, Kim HT, Nou IS. Genome-Wide Characterization of NBS-Encoding Genes in Watermelon and Their Potential Association with Gummy Stem Blight Resistance. Int J Mol Sci 2019; 20:ijms20040902. [PMID: 30791419 PMCID: PMC6412240 DOI: 10.3390/ijms20040902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/06/2019] [Accepted: 02/17/2019] [Indexed: 11/29/2022] Open
Abstract
Watermelon (Citrullus lanatus) is a nutritionally rich and economically important horticultural crop of the Cucurbitaceae family. Gummy stem blight (GSB) is a major disease of watermelon, which is caused by the fungus Didymella bryoniae, and results in substantial economic losses in terms of yield and quality. However, only a few molecular studies have focused on GSB resistance in watermelon. Nucleotide binding site (NBS)-encoding resistance (R) genes play important roles in plant defense responses to several pathogens, but little is known about the role of NBS-encoding genes in disease resistance in watermelon. The analyzed NBS-encoding R genes comprises several domains, including Toll/interleukin-1 receptor(TIR), NBS, leucine-rich repeat (LRR), resistance to powdery mildew8(RPW8) and coiled coil (CC), which are known to be involved in disease resistance. We determined the expression patterns of these R genes in resistant and susceptible watermelon lines at different time points after D. bryoniae infection by quantitative RT-PCR. The R genes exhibited various expression patterns in the resistant watermelon compared to the susceptible watermelon. Only six R genes exhibited consistent expression patterns (Cla001821, Cla019863, Cla020705, Cla012430, Cla012433 and Cla012439), which were higher in the resistant line compared to the susceptible line. Our study provides fundamental insights into the NBS-LRR gene family in watermelon in response to D. bryoniae infection. Further functional studies of these six candidate resistance genes should help to advance breeding programs aimed at improving disease resistance in watermelons.
Collapse
Affiliation(s)
- Md Zahid Hassan
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| | - Md Abdur Rahim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| |
Collapse
|
22
|
Fu Y, Zhang Y, Mason AS, Lin B, Zhang D, Yu H, Fu D. NBS-Encoding Genes in Brassica napus Evolved Rapidly After Allopolyploidization and Co-localize With Known Disease Resistance Loci. FRONTIERS IN PLANT SCIENCE 2019; 10:26. [PMID: 30761170 PMCID: PMC6363714 DOI: 10.3389/fpls.2019.00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/09/2019] [Indexed: 05/19/2023]
Abstract
Genes containing nucleotide-binding sites (NBS) play an important role in pathogen resistance in plants. However, the evolutionary fate of NBS-encoding genes after formation of allotetraploid Brassica napus (AnAnCnCn, 2n = 38) is still unknown. We performed a genome-wide comparison of putatively functional NBS-encoding genes in B. napus and its progenitor species Brassica rapa (ArAr, 2n = 20) and Brassica oleracea (CoCo, 2n = 18), identifying 464, 202, and 146 putatively functional NBS-encoding genes respectively, with genes unevenly distributed in several clusters. The An-subgenome of B. napus possessed similar numbers of NBS-encoding genes (191 genes) to the Ar genome of B. rapa (202 genes) and similar clustering patterns. However, the Cn genome of B. napus had many more genes (273) than the B. oleracea Co genome (146), with different clustering trends. Only 97 NBS-encoding genes (66.4%) in B. oleracea were homologous with NBS-encoding genes in B. napus, while 176 NBS-encoding genes (87.1%) were homologous between B. rapa and B. napus. These results suggest a greater diversification of NBS-encoding genes in the C genome may have occurred after formation of B. napus. Although most NBS-encoding genes in B. napus appeared to derive from the progenitors, the birth and death of several NBS-encoding genes was also putatively mediated by non-homologous recombination. The Ka/Ks values of most homologous pairs between B. napus and the progenitor species were less than 1, suggesting purifying selection during B. napus evolution. The majority of NBS-encoding genes (60% in all species) showed higher expression levels in root tissue (out of root, leaf, stem, seed and flower tissue types). Comparative analysis of NBS-encoding genes with mapped resistance QTL against three major diseases of B. napus (blackleg, clubroot and Sclerotinia stem rot) found 204 NBS-encoding genes in B. napus located within 71 resistance QTL intervals. The majority of NBS-encoding genes were co-located with resistance QTLs against a single disease, while 47 genes were co-located with QTLs against two diseases and 3 genes were co-located with QTLs against all three. Our results revealed significant variation as well as interesting evolutionary trajectories of NBS-encoding genes in the different Brassica subgenomes, while co-localization of NBS-encoding genes and resistance QTL may facilitate resistance breeding in oilseed rape.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Annaliese S. Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dongqing Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Huasheng Yu, Donghui Fu,
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Huasheng Yu, Donghui Fu,
| |
Collapse
|
23
|
Dang PM, Lamb MC, Bowen KL, Chen CY. Identification of expressed R-genes associated with leaf spot diseases in cultivated peanut. Mol Biol Rep 2018; 46:225-239. [PMID: 30498882 DOI: 10.1007/s11033-018-4464-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/01/2018] [Indexed: 01/13/2023]
Abstract
Peanut (Arachis hypogaea L.) is an important food and oilseed crop worldwide. Yield and quality can be significantly reduced by foliar fungal diseases, such as early and late leaf spot diseases. Acceptable levels of leaf spot resistance in cultivated peanut have been elusive due to environmental interactions and the proper combination of QTLs in any particular peanut genotype. Resistance gene analogs, as potential resistance (R)-genes, have unique roles in the recognition and activation of disease resistance responses. Novel R-genes can be identified by searches for conserved domains such as nucleotide binding site, leucine rich repeat, receptor like kinase, and receptor like protein from expressed genes or through genomic sequences. Expressed R-genes represent necessary plant signals in a disease response. The goals of this research are to identify expressed R-genes from cultivated peanuts that are naturally infected by early and late spot pathogens, compare these to the closest diploid progenitors, and evaluate specific gene expression in cultivated peanuts. Putative peanut R-genes (381) were available from a public database (NCBI). Primers were designed and PCR products were sequenced. A total of 214 sequences were produced which matched to proteins with the corresponding R-gene motifs. These R-genes were mapped to the genome sequences of Arachis duranensis and Arachis ipaensis, which are the closest diploid progenitors for tetraploid cultivated peanut, A. hypogaea. Identification and association of specific gene-expression will elucidate potential disease resistance mechanism in peanut and may facilitate the selection of breeding lines with high levels of leaf spot resistance.
Collapse
Affiliation(s)
- Phat M Dang
- USDA-ARS, National Peanut Research Laboratory, 1011 Forrester Dr. SE, PO Box 509, Dawson, GA, 39842, USA.
| | - Marshall C Lamb
- USDA-ARS, National Peanut Research Laboratory, 1011 Forrester Dr. SE, PO Box 509, Dawson, GA, 39842, USA
| | - Kira L Bowen
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse, Auburn, AL, 36849, USA
| | - Charles Y Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, 258 Funchess Hall, Auburn, AL, 36849, USA
| |
Collapse
|
24
|
Abstract
Chickpea is a highly nutritious grain legume crop, widely appreciated as a health food, especially in the Indian subcontinent. The major constraints on chickpea production are biotic (Helicoverpa, bruchid, aphid, ascochyta) and abiotic (drought, heat, salt, cold) stresses, which reduce the yield by up to 90%. Various strategies like conventional breeding, molecular breeding, and modern plant breeding have been used to overcome these problems. Conventionally, breeding programs aim at development of varieties that combine maximum number of traits through inter-specific hybridization, wide hybridization, and hybridization involving more than two parents. Breeding is difficult in this crop because of its self-pollinating nature and limited genetic variation. Recent advances in in vitro culture and gene technologies offer unique opportunities to realize the full potential of chickpea production. However, as of date, no transgenic chickpea variety has been approved for cultivation in the world. In this review, we provide an update on the development of genetically modified chickpea plants, including those resistant to Helicoverpa armigera, Callosobruchus maculatus, Aphis craccivora, as well as to drought and salt stress. The genes utilized for development of resistance against pod borer, bruchid, aphid, drought, and salt tolerance, namely, Bt, alpha amylase inhibitor, ASAL, P5CSF129A, and P5CS, respectively, are discussed.
Collapse
|
25
|
Hassan MZ, Rahim MA, Natarajan S, Robin AHK, Kim HT, Park JI, Nou IS. Gummy Stem Blight Resistance in Melon: Inheritance Pattern and Development of Molecular Markers. Int J Mol Sci 2018; 19:E2914. [PMID: 30257511 PMCID: PMC6213961 DOI: 10.3390/ijms19102914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gummy stem blight (GSB) causes enormous losses to melon (Cucumis melo L.) production worldwide. We aimed to develop useful molecular markers linked to GSB resistance. In this study, 168 F2 plants were obtained from the F₁ population of a cross between the GSB-susceptible 'Cornell ZPPM 339' and the GSB-resistant 'PI482399' lines. A 3:1 ratio of susceptible and resistant genotypes was observed in the F₂ population, indicating control by a single recessive gene. Nucleotide-binding site leucine-rich repeat (NBS-LRR) genes confer resistance against insects and diseases in cucurbits including melon. We cloned and sequenced the TIR-NBS-LRR-type resistance gene MELO3C022157, located on melon chromosome 9, from resistant and susceptible lines. Sequence analysis revealed deletions in the first intron, a 2-bp frameshift deletion from the second exon and a 7-bp insertion in the 4th exon of the resistant line. We developed two insertion/deletion (InDel) markers, GSB9-kh-1 and GSB9-kh-2, which were found in the first intron of MELO3C022157 linked to GSB resistance. We validated these markers with the F₂ population and inbred lines. These InDels may be used to facilitate marker-assisted selection of GSB resistance in melon. However, functional analysis of overexpressing and/or knock-down mutants is needed to confirm the frameshift mutation.
Collapse
Affiliation(s)
- Md Zahid Hassan
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Md Abdur Rahim
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Sathishkumar Natarajan
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| |
Collapse
|
26
|
Neupane S, Andersen EJ, Neupane A, Nepal MP. Genome-Wide Identification of NBS-Encoding Resistance Genes in Sunflower (Helianthus annuus L.). Genes (Basel) 2018; 9:genes9080384. [PMID: 30061549 PMCID: PMC6115920 DOI: 10.3390/genes9080384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
Nucleotide Binding Site—Leucine-Rich Repeat (NBS-LRR) genes encode disease resistance proteins involved in plants’ defense against their pathogens. Although sunflower is affected by many diseases, only a few molecular details have been uncovered regarding pathogenesis and resistance mechanisms. Recent availability of sunflower whole genome sequences in publicly accessible databases allowed us to accomplish a genome-wide identification of Toll-interleukin-1 receptor-like Nucleotide-binding site Leucine-rich repeat (TNL), Coiled Coil (CC)-NBS-LRR (CNL), Resistance to powdery mildew8 (RPW8)-NBS-LRR (RNL) and NBS-LRR (NL) protein encoding genes. Hidden Markov Model (HMM) profiling of 52,243 putative protein sequences from sunflower resulted in 352 NBS-encoding genes, among which 100 genes belong to CNL group including 64 genes with RX_CC like domain, 77 to TNL, 13 to RNL, and 162 belong to NL group. We also identified signal peptides and nuclear localization signals present in the identified genes and their homologs. We found that NBS genes were located on all chromosomes and formed 75 gene clusters, one-third of which were located on chromosome 13. Phylogenetic analyses between sunflower and Arabidopsis NBS genes revealed a clade-specific nesting pattern in CNLs, with RNLs nested in the CNL-A clade, and species-specific nesting pattern for TNLs. Surprisingly, we found a moderate bootstrap support (BS = 50%) for CNL-A clade being nested within TNL clade making both the CNL and TNL clades paraphyletic. Arabidopsis and sunflower showed 87 syntenic blocks with 1049 high synteny hits between chromosome 5 of Arabidopsis and chromosome 6 of sunflower. Expression data revealed functional divergence of the NBS genes with basal level tissue-specific expression. This study represents the first genome-wide identification of NBS genes in sunflower paving avenues for functional characterization and potential crop improvement.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
27
|
Identification of NBS-encoding genes linked to black rot resistance in cabbage (Brassica oleracea var. capitata). Mol Biol Rep 2018; 45:773-785. [PMID: 29931534 DOI: 10.1007/s11033-018-4217-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Abstract
Heading cabbage is a nutritionally rich and economically important cruciferous vegetable. Black rot disease, caused by the bacterium Xanthomonas campestris pv. campestris, reduces both the yield and quality of the cabbage head. Nucleotide binding site (NBS)-encoding resistance (R) genes play a vital role in the plant immune response to various pathogens. In this study, we analyzed the expression and DNA sequence variation of 31 NBS-encoding genes in cabbage (Brassica oleracea var. capitata). These genes encoded TIR, NBS, LRR and RPW8 protein domains, all of which are known to be involved in disease resistance. RNA-seq revealed that these 31 genes were differentially expressed in leaf, root, silique, and stem tissues. Furthermore, qPCR analyses revealed that several of these genes were more highly expressed in resistant compared to susceptible cabbage lines, including Bol003711, Bol010135, Bol010559, Bol022784, Bol029866, Bol042121, Bol031422, Bol040045 and Bol042095. Further analysis of these genes promises to yield both practical benefits, such as molecular markers for marker-assisted breeding, and fundamental insights to the mechanisms of resistance to black rot in cabbage.
Collapse
|
28
|
Food safety evaluation for R-proteins introduced by biotechnology: A case study of VNT1 in late blight protected potatoes. Regul Toxicol Pharmacol 2018. [DOI: 10.1016/j.yrtph.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Funk A, Galewski P, McGrath JM. Nucleotide-binding resistance gene signatures in sugar beet, insights from a new reference genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:659-671. [PMID: 29797366 DOI: 10.1111/tpj.13977] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/19/2018] [Accepted: 05/04/2018] [Indexed: 05/28/2023]
Abstract
Nucleotide-binding (NB-ARC), leucine-rich-repeat genes (NLRs) account for 60.8% of resistance (R) genes molecularly characterized from plants. NLRs exist as large gene families prone to tandem duplication and transposition, with high sequence diversity among crops and their wild relatives. This diversity can be a source of new disease resistance, but difficulty in distinguishing specific sequences from homologous gene family members hinders characterization of resistance for improving crop varieties. Current genome sequencing and assembly technologies, especially those using long-read sequencing, are improving resolution of repeat-rich genomic regions and clarifying locations of duplicated genes, such as NLRs. Using the conserved NB-ARC domain as a model, 231 tentative NB-ARC loci were identified in a highly contiguous genome assembly of sugar beet, revealing diverged and truncated NB-ARC signatures as well as full-length sequences. The NB-ARC-associated proteins contained NLR resistance gene domains, including TIR, CC and LRR, as well as other integrated domains. Phylogenetic relationships of partial and complete domains were determined, and patterns of physical clustering in the genome were evaluated. Comparison of sugar beet NB-ARC domains to validated R-genes from monocots and eudicots suggested extensive Beta vulgaris-specific subfamily expansions. The NLR landscape in the rhizomania resistance conferring Rz region of Chromosome 3 was characterized, identifying 26 NLR-like sequences spanning 20 MB. This work presents the first detailed view of NLR family composition in a member of the Caryophyllales, builds a foundation for additional disease resistance work in B. vulgaris, and demonstrates an additional nucleic-acid-based method for NLR prediction in non-model plant species.
Collapse
Affiliation(s)
- Andrew Funk
- Department of Plant, Soil, and Microbial Science, Plant Breeding, Genetics, and Biotechnology Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Paul Galewski
- Department of Plant, Soil, and Microbial Science, Plant Breeding, Genetics, and Biotechnology Program, Michigan State University, East Lansing, MI, 48824, USA
| | - J Mitchell McGrath
- USDA-ARS, Sugarbeet and Bean Research Unit, 1066 Bogue Street, 494 PSSB, East Lansing, MI, 48824, USA
| |
Collapse
|
30
|
Lin Y, Wang K, Li X, Sun C, Yin R, Wang Y, Wang Y, Zhang M. Evolution, functional differentiation, and co-expression of the RLK gene family revealed in Jilin ginseng, Panax ginseng C.A. Meyer. Mol Genet Genomics 2018; 293:845-859. [PMID: 29468273 PMCID: PMC6061065 DOI: 10.1007/s00438-018-1425-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 02/03/2018] [Indexed: 12/18/2022]
Abstract
Most genes in a genome exist in the form of a gene family; therefore, it is necessary to have knowledge of how a gene family functions to comprehensively understand organismal biology. The receptor-like kinase (RLK)-encoding gene family is one of the most important gene families in plants. It plays important roles in biotic and abiotic stress tolerances, and growth and development. However, little is known about the functional differentiation and relationships among the gene members within a gene family in plants. This study has isolated 563 RLK genes (designated as PgRLK genes) expressed in Jilin ginseng (Panax ginseng C.A. Meyer), investigated their evolution, and deciphered their functional diversification and relationships. The PgRLK gene family is highly diverged and formed into eight types. The LRR type is the earliest and most prevalent, while only the Lec type originated after P. ginseng evolved. Furthermore, although the members of the PgRLK gene family all encode receptor-like protein kinases and share conservative domains, they are functionally very diverse, participating in numerous biological processes. The expressions of different members of the PgRLK gene family are extremely variable within a tissue, at a developmental stage and in the same cultivar, but most of the genes tend to express correlatively, forming a co-expression network. These results not only provide a deeper and comprehensive understanding of the evolution, functional differentiation and correlation of a gene family in plants, but also an RLK genic resource useful for enhanced ginseng genetic improvement.
Collapse
Affiliation(s)
- Yanping Lin
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Xiangyu Li
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Rui Yin
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China. .,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China. .,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China.
| |
Collapse
|
31
|
Arya P, Acharya V. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense. Mol Genet Genomics 2017; 293:17-31. [PMID: 28900732 DOI: 10.1007/s00438-017-1368-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 09/07/2017] [Indexed: 01/18/2023]
Abstract
STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.
Collapse
Affiliation(s)
- Preeti Arya
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India.,National Agri-Food Biotechnology Institute, Sector-81 (Knowledge City), SAS Nagar, Punjab, 140306, India
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India.
| |
Collapse
|
32
|
Genome-wide identification and tissue-specific expression analysis of nucleotide binding site-leucine rich repeat gene family in Cicer arietinum (kabuli chickpea). GENOMICS DATA 2017; 14:24-31. [PMID: 28840100 PMCID: PMC5558467 DOI: 10.1016/j.gdata.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022]
Abstract
The nucleotide binding site-leucine rich repeat (NBS-LRR) proteins play an important role in the defense mechanisms against pathogens. Using bioinformatics approach, we identified and annotated 104 NBS-LRR genes in chickpea. Phylogenetic analysis points to their diversification into two families namely TIR-NBS-LRR and non-TIR-NBS-LRR. Gene architecture revealed intron gain/loss events in this resistance gene family during their independent evolution into two families. Comparative genomics analysis elucidated its evolutionary relationship with other fabaceae species. Around 50% NBS-LRRs reside in macro-syntenic blocks underlining positional conservation along with sequence conservation of NBS-LRR genes in chickpea. Transcriptome sequencing data provided evidence for their transcription and tissue-specific expression. Four cis-regulatory elements namely WBOX, DRE, CBF, and GCC boxes, that commonly occur in resistance genes, were present in the promoter regions of these genes. Further, the findings will provide a strong background to use candidate disease resistance NBS-encoding genes and identify their specific roles in chickpea.
Collapse
|
33
|
Yin R, Zhao M, Wang K, Lin Y, Wang Y, Sun C, Wang Y, Zhang M. Functional differentiation and spatial-temporal co-expression networks of the NBS-encoding gene family in Jilin ginseng, Panax ginseng C.A. Meyer. PLoS One 2017; 12:e0181596. [PMID: 28727829 PMCID: PMC5519184 DOI: 10.1371/journal.pone.0181596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022] Open
Abstract
Ginseng, Panax ginseng C.A. Meyer, is one of the most important medicinal plants for human health and medicine. It has been documented that over 80% of genes conferring resistance to bacteria, viruses, fungi and nematodes are contributed by the nucleotide binding site (NBS)-encoding gene family. Therefore, identification and characterization of NBS genes expressed in ginseng are paramount to its genetic improvement and breeding. However, little is known about the NBS-encoding genes in ginseng. Here we report genome-wide identification and systems analysis of the NBS genes actively expressed in ginseng (PgNBS genes). Four hundred twelve PgNBS gene transcripts, derived from 284 gene models, were identified from the transcriptomes of 14 ginseng tissues. These genes were classified into eight types, including TNL, TN, CNL, CN, NL, N, RPW8-NL and RPW8-N. Seven conserved motifs were identified in both the Toll/interleukine-1 receptor (TIR) and coiled-coil (CC) typed genes whereas six were identified in the RPW8 typed genes. Phylogenetic analysis showed that the PgNBS gene family is an ancient family, with a vast majority of its genes originated before ginseng originated. In spite of their belonging to a family, the PgNBS genes have functionally dramatically differentiated and been categorized into numerous functional categories. The expressions of the across tissues, different aged roots and the roots of different genotypes. However, they are coordinating in expression, forming a single co-expression network. These results provide a deeper understanding of the origin, evolution and functional differentiation and expression dynamics of the NBS-encoding gene family in plants in general and in ginseng particularly, and a NBS gene toolkit useful for isolation and characterization of disease resistance genes and for enhanced disease resistance breeding in ginseng and related species.
Collapse
Affiliation(s)
- Rui Yin
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- The Center of Ginseng Germplasm Research, Development and Utilization, Changchun, Jilin, China
| | - Yanping Lin
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- The Center of Ginseng Germplasm Research, Development and Utilization, Changchun, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- The Center of Ginseng Germplasm Research, Development and Utilization, Changchun, Jilin, China
- * E-mail: (MPZ); (YW)
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- The Center of Ginseng Germplasm Research, Development and Utilization, Changchun, Jilin, China
- * E-mail: (MPZ); (YW)
| |
Collapse
|
34
|
Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation. Sci Rep 2017; 7:5617. [PMID: 28717205 PMCID: PMC5514137 DOI: 10.1038/s41598-017-05085-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/24/2017] [Indexed: 11/12/2022] Open
Abstract
The genome sequence of globe artichoke (Cynara cardunculus L. var. scolymus, 2n = 2x = 34) is now available for use. A survey of C. cardunculus genetic resources is essential for understanding the evolution of the species, carrying out genetic studies and for application of breeding strategies. We report on the resequencing analyses (~35×) of four globe artichoke genotypes, representative of the core varietal types, as well as a genotype of the related taxa cultivated cardoon. The genomes were reconstructed at a chromosomal scale and structurally/functionally annotated. Gene prediction indicated a similar number of genes, while distinctive variations in miRNAs and resistance gene analogues (RGAs) were detected. Overall, 23,5 M SNP/indel were discovered (range 6,34 M –14,50 M). The impact of some missense SNPs on the biological functions of genes involved in the biosynthesis of phenylpropanoid and sesquiterpene lactone secondary metabolites was predicted. The identified variants contribute to infer on globe artichoke domestication of the different varietal types, and represent key tools for dissecting the path from sequence variation to phenotype. The new genomic sequences are fully searchable through independent Jbrowse interfaces (www.artichokegenome.unito.it), which allow the analysis of collinearity and the discovery of genomic variants, thus representing a one-stop resource for C. cardunculus genomics.
Collapse
|
35
|
Kumari N, Chaturvedi SK, Khan R, Sharma A, Khan RH, Yadav S. Characterization of CNL like protein fragment (CNL-LPF) from mature Lageneria siceraria seeds. Int J Biol Macromol 2017; 104:1194-1203. [PMID: 28676339 DOI: 10.1016/j.ijbiomac.2017.06.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022]
Abstract
Coiled coil domain-nucleotide binding site-leucine rich repeat (CC-NBS-LRR; CNL) proteins are highly conserved family of plant disease resistance proteins, remarkably comprise of coiled-coil domain, which plays significant role in plant innate immunity. The present study reports that moderately elicited oligomerization of plant CNL like protein fragment (CNL-LPF) in presence of ATP/Mg using various biophysical methods Circular dichroism (CD) results depicted a substantial increase in β-sheet structure content of CNL-LPF. ATP/Mg induced conformational change in protein was observed by increase in blue shift with extrinsic fluorescence measurement, which indicates the exposure of hydrophobic regions of CNL-LPF and leads to self-association i.e. oligomerization. Likewise, cluster of protein oligomer and alteration in protein surface morphology were observed in presence of ATP/Mg by Transmission electron microscopy (TEM) and Atomic force microscopy (AFM), respectively. Also, augmented antiproliferation of HT1376 cells (urinary bladder cancer cell lines) was observed by CNL-LPF in presence of ATP/Mg. In conclusion, the current study illustrates that extent of CNL-LPF oligomerization was enhanced in presence of ATP/Mg (as compared to its absence). Utilization of enhanced oligomerization property of CNL-LPF as an anti-proliferative agent needs more assessment.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Rehan Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
36
|
Distinct Patterns of Gene Gain and Loss: Diverse Evolutionary Modes of NBS-Encoding Genes in Three Solanaceae Crop Species. G3-GENES GENOMES GENETICS 2017; 7:1577-1585. [PMID: 28364035 PMCID: PMC5427506 DOI: 10.1534/g3.117.040485] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plant resistance conferred by nucleotide binding site (NBS)-encoding resistance genes plays a key role in the defense against various pathogens throughout the entire plant life cycle. However, comparative analyses for the systematic evaluation and determination of the evolutionary modes of NBS-encoding genes among Solanaceae species are rare. In this study, 447, 255, and 306 NBS-encoding genes were identified from the genomes of potato, tomato, and pepper, respectively. These genes usually clustered as tandem arrays on chromosomes; few existed as singletons. Phylogenetic analysis indicated that three subclasses [TNLs (TIR-NBS-LRR), CNLs (CC-NBS-LRR), and RNLs (RPW8-NBS-LRR)] each formed a monophyletic clade and were distinguished by unique exon/intron structures and amino acid motif sequences. By comparing phylogenetic and systematic relationships, we inferred that the NBS-encoding genes in the present genomes of potato, tomato, and pepper were derived from 150 CNL, 22 TNL, and 4 RNL ancestral genes, and underwent independent gene loss and duplication events after speciation. The NBS-encoding genes therefore exhibit diverse and dynamic evolutionary patterns in the three Solanaceae species, giving rise to the discrepant gene numbers observed today. Potato shows a “consistent expansion” pattern, tomato exhibits a pattern of “first expansion and then contraction,” and pepper presents a “shrinking” pattern. The earlier expansion of CNLs in the common ancestor led to the dominance of this subclass in gene numbers. However, RNLs remained at low copy numbers due to their specific functions. Along the evolutionary process of NBS-encoding genes in Solanaceae, species-specific tandem duplications contributed the most to gene expansions.
Collapse
|
37
|
Sagi MS, Deokar AA, Tar’an B. Genetic Analysis of NBS-LRR Gene Family in Chickpea and Their Expression Profiles in Response to Ascochyta Blight Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:838. [PMID: 28580004 PMCID: PMC5437156 DOI: 10.3389/fpls.2017.00838] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/04/2017] [Indexed: 05/21/2023]
Abstract
Ascochyta blight is one of the major diseases of chickpea worldwide. The genetic resistance to ascochyta blight in chickpea is complex and governed by multiple QTLs. However, the molecular mechanism of quantitative disease resistance to ascochyta blight and the genes underlying these QTLs are still unknown. Most often disease resistance is determined by resistance (R) genes. The most predominant R-genes contain nucleotide binding site and leucine rich repeat (NBS-LRR) domains. A total of 121 NBS-LRR genes were identified in the chickpea genome. Ninety-eight of these genes contained all essential conserved domains while 23 genes were truncated. The NBS-LRR genes were grouped into eight distinct classes based on their domain architecture. Phylogenetic analysis grouped these genes into two major clusters based on their structural variation, the first cluster with toll or interleukin-1 like receptor (TIR) domain and the second cluster either with or without a coiled-coil domain. The NBS-LRR genes are distributed unevenly across the eight chickpea chromosomes and nearly 50% of the genes are present in clusters. Thirty of the NBS-LRR genes were co-localized with nine of the previously reported ascochyta blight QTLs and were tested as potential candidate genes for ascochyta blight resistance. Expression pattern of these genes was studied in two resistant (CDC Corinne and CDC Luna) and one susceptible (ICCV 96029) genotypes at different time points after ascochyta blight infection using real-time quantitative PCR. Twenty-seven NBS-LRR genes showed differential expression in response to ascochyta blight infection in at least one genotype at one time point. Among these 27 genes, the majority of the NBS-LRR genes showed differential expression after inoculation in both resistant and susceptible genotypes which indicates the involvement of these genes in response to ascochyta blight infection. Five NBS-LRR genes showed genotype specific expression. Our study provides a new insight of NBS-LRR gene family in chickpea and the potential involvement of NBS-LRR genes in response to ascochyta blight infection.
Collapse
|
38
|
Lana UGDP, Prazeres de Souza IR, Noda RW, Pastina MM, Magalhaes JV, Guimaraes CT. Quantitative Trait Loci and Resistance Gene Analogs Associated with Maize White Spot Resistance. PLANT DISEASE 2017; 101:200-208. [PMID: 30682293 DOI: 10.1094/pdis-06-16-0899-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Maize white spot (MWS), caused by the bacterium Pantoea ananatis, is one of the most important maize foliar diseases in tropical and subtropical regions, causing significant yield losses. Despite its economic importance, genetic studies of MWS are scarce. The aim of this study was to map quantitative trait loci (QTL) associated with MWS resistance and to identify resistance gene analogs (RGA) underlying these QTL. QTL mapping was performed in a tropical maize F2:3 population, which was genotyped with simple-sequence repeat and RGA-tagged markers and phenotyped for the response to MWS in two Brazilian southeastern locations. Nine QTL explained approximately 70% of the phenotypic variance for MWS resistance at each location, with two of them consistently detected in both environments. Data mining using 112 resistance genes cloned from different plant species revealed 1,697 RGA distributed in clusters within the maize genome. The RGA Pto19, Pto20, Pto99, and Xa26.151.4 were genetically mapped within MWS resistance QTL on chromosomes 4 and 8 and were preferentially expressed in the resistant parental line at locations where their respective QTL occurred. The consistency of QTL mapping, in silico prediction, and gene expression analyses revealed RGA and genomic regions suitable for marker-assisted selection to improve MWS resistance.
Collapse
|
39
|
Frazier TP, Palmer NA, Xie F, Tobias CM, Donze-Reiner TJ, Bombarely A, Childs KL, Shu S, Jenkins JW, Schmutz J, Zhang B, Sarath G, Zhao B. Identification, characterization, and gene expression analysis of nucleotide binding site (NB)-type resistance gene homologues in switchgrass. BMC Genomics 2016; 17:892. [PMID: 27821048 PMCID: PMC5100175 DOI: 10.1186/s12864-016-3201-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass. RESULTS In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain, jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from 'Alamo', a rust-resistant switchgrass cultivar, and 'Dacotah', a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar 'Summer' plants indicated that the expression of some of these RGHs was developmentally regulated. CONCLUSIONS Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop.
Collapse
Affiliation(s)
| | - Nathan A. Palmer
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, Lincoln, NE 68583-0937 USA
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC 27858 USA
| | | | - Teresa J. Donze-Reiner
- Department of Biology, West Chester University of Pennsylvania, Wester Chester, PA 19382 USA
| | | | - Kevin L. Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94595 USA
| | - Jerry W. Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94595 USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858 USA
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, Lincoln, NE 68583-0937 USA
| | - Bingyu Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061 USA
- 407 Latham Hall, 220 Ag Quad Lane, Blacksburg, VA 24061 USA
| |
Collapse
|
40
|
Polyclonal Antibody Development Against Purified CC-NBS-LRR like Protein Fragment from Mature Lageneria siceraria Seeds and Immunolocalization. Protein J 2016; 35:379-390. [DOI: 10.1007/s10930-016-9683-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Seo E, Kim S, Yeom SI, Choi D. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1205. [PMID: 27559340 PMCID: PMC4978739 DOI: 10.3389/fpls.2016.01205] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/29/2016] [Indexed: 05/18/2023]
Abstract
Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analysis and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL) subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analysis of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding.
Collapse
Affiliation(s)
- Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Seon-In Yeom
- Department of Horticulture, Institute of Agriculture and Life Science, Gyeongsang National UniversityJinju, South Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
42
|
Chen XR, Brurberg MB, Elameen A, Klemsdal SS, Martinussen I. Expression of resistance gene analogs in woodland strawberry (Fragaria vesca) during infection with Phytophthora cactorum. Mol Genet Genomics 2016; 291:1967-78. [PMID: 27447867 PMCID: PMC4990625 DOI: 10.1007/s00438-016-1232-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/12/2016] [Indexed: 01/08/2023]
Abstract
Important losses in strawberry production are often caused by the oomycete Phytophthora cactorum, the causal agent of crown rot. However, very limited studies at molecular levels exist of the mechanisms related to strawberry resistance against this pathogen. To begin to rectify this situation, a PCR-based approach (NBS profiling) was used to isolate strawberry resistance gene analogs (RGAs) with altered expression in response to P. cactorum during a time course (2, 4, 6, 24, 48, 96 and 192 h post-infection). Twenty-three distinct RGA fragments of the NB-LRR type were identified from a resistance genotype (Bukammen) of the wild species Fragaria vesca. The gene transcriptional profiles after infection showed that the response of most RGAs was quicker and stronger in the resistance genotype (Bukammen) than in the susceptible one (FDP821) during the early infection stage. The transcriptional patterns of one RGA (RGA109) were further monitored and compared during the P. cactorum infection of two pairs of resistant and susceptible genotype combinations (Bukammen/FDP821 and FDR1218/1603). The 5′ end sequence was cloned, and its putative protein was characteristic of NBS-LRR R protein. Our results yielded a first insight into the strawberry RGAs responding to P. cactorum infection at molecular level.
Collapse
Affiliation(s)
- Xiao-Ren Chen
- Norwegian Institute of Bioeconomy Research, Box 115, 1431, Ås, Norway.,College of Horticulture and Plant Protection, Yangzhou University, Wenhui Eastern Road 48, Yangzhou, 225009, Jiangsu Province, China
| | | | | | | | - Inger Martinussen
- Norwegian Institute of Bioeconomy Research, Box 115, 1431, Ås, Norway.
| |
Collapse
|
43
|
Habachi-Houimli Y, Khalfallah Y, Makni H, Makni M, Bouktila D. Large-scale bioinformatic analysis of the regulation of the disease resistance NBS gene family by microRNAs in Poaceae. C R Biol 2016; 339:347-56. [PMID: 27349470 DOI: 10.1016/j.crvi.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023]
Abstract
In the present study, we have screened 71, 713, 525, 119 and 241 mature miRNA variants from Hordeum vulgare, Oryza sativa, Brachypodium distachyon, Triticum aestivum, and Sorghum bicolor, respectively, and classified them with respect to their conservation status and expression levels. These Poaceae non-redundant miRNA species (1,669) were distributed over a total of 625 MIR families, among which only 54 were conserved across two or more plant species, confirming the relatively recent evolutionary differentiation of miRNAs in grasses. On the other hand, we have used 257 H. vulgare, 286T. aestivum, 119 B. distachyon, 269 O. sativa, and 139 S. bicolor NBS domains, which were either mined directly from the annotated proteomes, or predicted from whole genome sequence assemblies. The hybridization potential between miRNAs and their putative NBS genes targets was analyzed, revealing that at least 454 NBS genes from all five Poaceae were potentially regulated by 265 distinct miRNA species, most of them expressed in leaves and predominantly co-expressed in additional tissues. Based on gene ontology, we could assign these probable miRNA target genes to 16 functional groups, among which three conferring resistance to bacteria (Rpm1, Xa1 and Rps2), and 13 groups of resistance to fungi (Rpp8,13, Rp3, Tsn1, Lr10, Rps1-k-1, Pm3, Rpg5, and MLA1,6,10,12,13). The results of the present analysis provide a large-scale platform for a better understanding of biological control strategies of disease resistance genes in Poaceae, and will serve as an important starting point for enhancing crop disease resistance improvement by means of transgenic lines with artificial miRNAs.
Collapse
Affiliation(s)
- Yosra Habachi-Houimli
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Yosra Khalfallah
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Hanem Makni
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia; Institut supérieur de l'animation pour la jeunesse et la culture (ISAJC), université de Tunis, 2055 Bir El Bey, Tunisia
| | - Mohamed Makni
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Dhia Bouktila
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia; Institut supérieur de biotechnologie de Béja (ISBB), université de Jendouba, 9000 Béja, Tunisia.
| |
Collapse
|
44
|
Shao ZQ, Xue JY, Wu P, Zhang YM, Wu Y, Hang YY, Wang B, Chen JQ. Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns. PLANT PHYSIOLOGY 2016; 170:2095-109. [PMID: 26839128 PMCID: PMC4825152 DOI: 10.1104/pp.15.01487] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/01/2016] [Indexed: 05/18/2023]
Abstract
Nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes make up the largest plant disease resistance gene family (R genes), with hundreds of copies occurring in individual angiosperm genomes. However, the expansion history of NBS-LRR genes during angiosperm evolution is largely unknown. By identifying more than 6,000 NBS-LRR genes in 22 representative angiosperms and reconstructing their phylogenies, we present a potential framework of NBS-LRR gene evolution in the angiosperm. Three anciently diverged NBS-LRR classes (TNLs, CNLs, and RNLs) were distinguished with unique exon-intron structures and DNA motif sequences. A total of seven ancient TNL, 14 CNL, and two RNL lineages were discovered in the ancestral angiosperm, from which all current NBS-LRR gene repertoires were evolved. A pattern of gradual expansion during the first 100 million years of evolution of the angiosperm clade was observed for CNLs. TNL numbers remained stable during this period but were eventually deleted in three divergent angiosperm lineages. We inferred that an intense expansion of both TNL and CNL genes started from the Cretaceous-Paleogene boundary. Because dramatic environmental changes and an explosion in fungal diversity occurred during this period, the observed expansions of R genes probably reflect convergent adaptive responses of various angiosperm families. An ancient whole-genome duplication event that occurred in an angiosperm ancestor resulted in two RNL lineages, which were conservatively evolved and acted as scaffold proteins for defense signal transduction. Overall, the reconstructed framework of angiosperm NBS-LRR gene evolution in this study may serve as a fundamental reference for better understanding angiosperm NBS-LRR genes.
Collapse
Affiliation(s)
- Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China (Z.-Q.S., P.W., Y.-M.Z., Y.W., B.W., J.-Q.C.); andInstitute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China (J.-Y.X., Y.-M.Z., Y.-Y.H.)
| | - Jia-Yu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China (Z.-Q.S., P.W., Y.-M.Z., Y.W., B.W., J.-Q.C.); andInstitute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China (J.-Y.X., Y.-M.Z., Y.-Y.H.)
| | - Ping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China (Z.-Q.S., P.W., Y.-M.Z., Y.W., B.W., J.-Q.C.); andInstitute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China (J.-Y.X., Y.-M.Z., Y.-Y.H.)
| | - Yan-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China (Z.-Q.S., P.W., Y.-M.Z., Y.W., B.W., J.-Q.C.); andInstitute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China (J.-Y.X., Y.-M.Z., Y.-Y.H.)
| | - Yue Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China (Z.-Q.S., P.W., Y.-M.Z., Y.W., B.W., J.-Q.C.); andInstitute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China (J.-Y.X., Y.-M.Z., Y.-Y.H.)
| | - Yue-Yu Hang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China (Z.-Q.S., P.W., Y.-M.Z., Y.W., B.W., J.-Q.C.); andInstitute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China (J.-Y.X., Y.-M.Z., Y.-Y.H.)
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China (Z.-Q.S., P.W., Y.-M.Z., Y.W., B.W., J.-Q.C.); andInstitute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China (J.-Y.X., Y.-M.Z., Y.-Y.H.)
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China (Z.-Q.S., P.W., Y.-M.Z., Y.W., B.W., J.-Q.C.); andInstitute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China (J.-Y.X., Y.-M.Z., Y.-Y.H.)
| |
Collapse
|
45
|
Kobayashi T. Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:32-39. [PMID: 26668110 DOI: 10.1016/j.jinsphys.2015.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Many plant-parasite interactions that include major plant resistance genes have subsequently been shown to exhibit features of gene-for-gene interactions between plant Resistance genes and parasite Avirulence genes. The brown planthopper (BPH) Nilaparvata lugens is an important pest of rice (Oryza sativa). Historically, major Resistance genes have played an important role in agriculture. As is common in gene-for-gene interactions, evolution of BPH virulence compromises the effectiveness of singly-deployed resistance genes. It is therefore surprising that laboratory studies of BPH have supported the conclusion that virulence is conferred by changes in many genes rather than a change in a single gene, as is proposed by the gene-for-gene model. Here we review the behaviour, physiology and genetics of the BPH in the context of host plant resistance. A problem for genetic understanding has been the use of various insect populations that differ in frequencies of virulent genotypes. We show that the previously proposed polygenic inheritance of BPH virulence can be explained by the heterogeneity of parental populations. Genetic mapping of Avirulence genes indicates that virulence is a monogenic trait. These evolving concepts, which have brought the gene-for-gene model back into the picture, are accelerating our understanding of rice-BPH interactions at the molecular level.
Collapse
Affiliation(s)
- Tetsuya Kobayashi
- Division of Insect Sciences, National Institute of Agrobiological Sciences, 1-2, O-washi, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
46
|
Ose T, Oikawa A, Nakamura Y, Maenaka K, Higuchi Y, Satoh Y, Fujiwara S, Demura M, Sone T, Kamiya M. Solution structure of an avirulence protein, AVR-Pia, from Magnaporthe oryzae. JOURNAL OF BIOMOLECULAR NMR 2015; 63:229-235. [PMID: 26362280 DOI: 10.1007/s10858-015-9979-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Toyoyuki Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, N12, W6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Azusa Oikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, N12, W6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yukiko Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, N12, W6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, N12, W6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yuya Higuchi
- Graduate School of Agriculture, Hokkaido University, N9, W9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Yuki Satoh
- Graduate School of Agriculture, Hokkaido University, N9, W9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Shiho Fujiwara
- Graduate School of Agriculture, Hokkaido University, N9, W9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Teruo Sone
- Graduate School of Agriculture, Hokkaido University, N9, W9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.
| | - Masakatsu Kamiya
- Faculty of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
47
|
Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM. Disease Resistance Gene Analogs (RGAs) in Plants. Int J Mol Sci 2015; 16:19248-90. [PMID: 26287177 PMCID: PMC4581296 DOI: 10.3390/ijms160819248] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/01/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022] Open
Abstract
Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens' resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.
Collapse
Affiliation(s)
- Manoj Kumar Sekhwal
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Pingchuan Li
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Irene Lam
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Xiue Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sylvie Cloutier
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Frank M You
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
- Plant Science Department, University of Manitoba, Winnipeg, MB R3T 2N6, Canada.
| |
Collapse
|
48
|
Afanador-Kafuri L, Mejía JF, González A, Álvarez E. Identifying and Analyzing the Diversity of Resistance Gene Analogs in Colombian Rubus Genotypes. PLANT DISEASE 2015; 99:994-1001. [PMID: 30690980 DOI: 10.1094/pdis-05-14-0475-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Five Andean blackberry Rubus genotypes, three resistant and two susceptible to anthracnose, were used to identify regions in the Rubus genome with homology to disease-resistance genes found in other plant species. Polymerase chain reaction amplification with 12 pairs of primers and fragment cloning yielded 520 clones, of which 151 showed inserts between 500 and 700 bp long. When sequenced, 47 clones showed homology with two types of resistance genes, non-Toll/interleukin-1 receptor (TIR) nucleotide binding site (NBS) leucine-rich repeat (LRR) and TIR-NBS-LRR, thereby confirming their designation as resistance gene analogs (RGAs). The number of RGAs detected per Rubus genotype ranged from 7 to 11, with the highest in a wild resistant and a cultivated susceptible genotype. Rubus RGAs were also homologous with several non-TIR- and TIR-type RGAs found in other members of the Rosaceae family (Rosa hybrid cultivar, Rosa roxburghii, Malus × domestica, M. prunifolia, M. baccata, M. floribunda, Pyrus communis, Prunus persica, P. kansuensis, P. avium, and Fragaria vesca). Three RGAs shared identity with two Rosaceae RGAs associated with the CRPM1 locus for powdery mildew resistance in R. roxburghii and the Rosa hybrid cultivar. This is the first report on RGAs present in the Andean blackberry in Colombia.
Collapse
Affiliation(s)
| | - J F Mejía
- Tropical Fruit Project, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - A González
- Tropical Fruit Project, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - E Álvarez
- Tropical Fruit Project, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
49
|
Lozano R, Hamblin MT, Prochnik S, Jannink JL. Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genomics 2015; 16:360. [PMID: 25948536 PMCID: PMC4422547 DOI: 10.1186/s12864-015-1554-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant resistance genes (R genes) exist in large families and usually contain both a nucleotide-binding site domain and a leucine-rich repeat domain, denoted NBS-LRR. The genome sequence of cassava (Manihot esculenta) is a valuable resource for analysing the genomic organization of resistance genes in this crop. RESULTS With searches for Pfam domains and manual curation of the cassava gene annotations, we identified 228 NBS-LRR type genes and 99 partial NBS genes. These represent almost 1% of the total predicted genes and show high sequence similarity to proteins from other plant species. Furthermore, 34 contained an N-terminal toll/interleukin (TIR)-like domain, and 128 contained an N-terminal coiled-coil (CC) domain. 63% of the 327 R genes occurred in 39 clusters on the chromosomes. These clusters are mostly homogeneous, containing NBS-LRRs derived from a recent common ancestor. CONCLUSIONS This study provides insight into the evolution of NBS-LRR genes in the cassava genome; the phylogenetic and mapping information may aid efforts to further characterize the function of these predicted R genes.
Collapse
Affiliation(s)
- Roberto Lozano
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Martha T Hamblin
- Institute for Genomic Diversity, Biotechnology Building, Cornell University, Ithaca, NY, 14853, USA.
| | - Simon Prochnik
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA.
| | - Jean-Luc Jannink
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA.
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) R.W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| |
Collapse
|
50
|
Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Latif MA. Current advance methods for the identification of blast resistance genes in rice. C R Biol 2015; 338:321-34. [DOI: 10.1016/j.crvi.2015.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 11/25/2022]
|